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Abstract. Cloud computing is a promising paradigm for the implemen-
tation of scalable on-demand computing infrastructures. Self-manageable
Cloud infrastructures are required in order to comply with users’ re-
quirements specified by Service Level Agreements (SLAs) on one hand
and to minimize user interactions with the system on the other hand.
Adequate SLA monitoring strategies and timely detection of possible
SLA violations represent challenging research issues. In this paper we
present DeSVi—an architecture for detecting SLA violations through
resource monitoring in Cloud computing infrastructures. Based on the
user requests DeSVi allocates necessary resources for a requested service
and arranges its deployment on a virtualized environment. Resources
are monitored using an efficient framework that is also capable of map-
ping low-level resources metrics to user-defined SLAs. The detection of
possible SLA violations is based on the predefined service level objec-
tives and we utilize knowledge databases to manage the SLA violations.
Knowledge databases are implemented using techniques like case-based
reasoning, where reactive actions are defined based on the past system
experience. For the evaluation of our approach, we developed image ren-
dering services, which exhibit heterogeneous workloads for investigating
the optimal monitoring interval of SLA parameters. The achieved re-
sults show that our architecture is able to monitor and prevent SLA
violations considering different costs, measurement intervals, and het-
erogeneous workloads.

Key words: Service Level Agreement, Resource Monitoring, SLA Vio-
lation Detection, SLA Enactment, Cloud Architecture

1 Introduction

Cloud computing represents a novel paradigm for implementation of scalable
computing infrastructures combining concepts from virtualization, distributed



application design, Grid, and enterprise IT management [6,29,31]. Service pro-
visioning in the Cloud relies on Service Level Agreements (SLAS) representing
a contract signed between the customer and the service provider including the
non-functional requirements of the service specified as Quality of Service (QoS).
SLA considers obligations, service pricing, and penalties in case of agreement
violations.

Flexible and reliable management of SLA agreements is of paramount im-
portance for both Cloud providers and consumers. On one hand, prevention of
SLA violations avoids costly penalties provider has to pay in case of violations.
On the other hand, based on flexible and timely reactions to possible SLA viola-
tions, users interaction with the system can be minimized, which enables Cloud
computing to take roots as a flexible and reliable form of on-demand computing.

Although, there is a large body of work considering development of flexible
and self-manageable Cloud computing infrastructures [4,7,16], there is a lack of
adequate monitoring infrastructures, which can predict possible SLA violations.
Most of the available systems either rely on Grid or service-oriented infrastruc-
tures [11], which are not directly compatible to Clouds due to the difference of
resource usage model, or are network-oriented monitoring infrastructures [20].
In our previous work we devised a novel concept for mapping low-level resource
metrics to high-level SLAs—LoM2HiS [14], where measured metrics like system
up and down time can be easily translated to high-level SLAs (e.g. system avail-
ability). Thus, LoM2HiS facilitates efficient monitoring of Cloud infrastructures
and early detection of possible SLA violations. Moreover, LoM2HiS framework
enables user-driven mappings between the resource metric and SLA parameters
by utilizing Domain Specific Languages (DSLs).

However, determination of optimal measurement intervals of low-level met-
rics and their translation to SLAs is still an open research issue. Too frequent
measurement intervals may negatively affect the overall system performance,
whereas too infrequent measurement intervals may cause heavy SLA violations.
In this paper we extend our work on LoM2HiS and devise a novel architecture
suitable for detection of SLA violations through resource monitoring in Cloud
computing infrastructures—the DeSVi architecture.

The main components of the DeSVi architecture are: (i) the automatic VM
deployer, (ii) application deployer, and (iii) the LoM2HiS framework. Based on
the user requests the automatic VM deployer allocates necessary resources for
the requested service and arranges its deployment on a virtual machine (VM).
After the service deployment LoM2HiS framework monitors VMs and translates
the low-level metrics into the high-level SLAs as specified by the users using
DSLs. We utilize knowledge databases for the evaluation of the monitored SLAs
parameters. Knowledge databases are implemented using traditional knowledge
management techniques like case-based reasoning, which allows prediction of
SLA violation based on previous system experience. For the evaluation of our
approach, we developed image rendering services based on POV-Ray* [19]. POV-
Ray, together with our application deployer is suitable for the evaluation of
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Cloud-like applications with characteristics such as client-server architecture,
reconfigurable load, and parallel execution mode via parameter sweeping [8]. It
can be seen as a Cloud service similar to Animoto® for raytracing-based videos.

The main contributions of the paper are: (i) definition of the motivation
scenario for the development of the architecture for detecting SLA violations,
(ii) conceptual design of the DeSVi architecture for prediction of SLA violations,
(iii) discussion on the implementation choices for the DeSVi, and (iv) evaluation
of the architecture using a real-world application for image rendering.

The rest of this paper is organized as follows: Section 2 presents the re-
lated work. Section 3 presents the architecture for the autonomic management
of Cloud services and the motivating scenario for the development of the DeSVi
architecture. Section 4 introduces the DeSVi architecture. In particular we dis-
cuss the automatic VM deployer, application deployer, and the monitoring com-
ponents. Section 5 discusses our implementation choices, whereas Section 6 dis-
cusses experimental evaluation of the DeSVi architecture. Section 7 presents our
conclusions and describes the future work.

2 Related Work

We classify our related work into (i) resource monitoring [18,20, 36], (ii) SLA
management including violation detection [3,10,12,17,23], and (iii) mapping
techniques of monitored metrics to SLA parameters [11,32]. Currently, there is
little work in the area of resource monitoring, low-level metrics mapping, and
SLA violation detection in Cloud computing. Because of that, we look into the
related areas of Grid and Service-Oriented Architecture (SOA) based systems.

Fu et al. [18] propose GridEye, a service-oriented monitoring system with
flexible architecture that is further equipped with an algorithm for prediction
of the overall resource performance characteristics. The authors discuss how
resources are monitored with their approach in Grid environment but they con-
sider neither SLA management nor low-level metric mapping. Gunter et al. [20]
present NetLogger, a distributed monitoring system, which can monitor and
collect information of networks. Applications invoke NetLogger’s API to survey
the overload before and after some request or operation. However, it monitors
only network resources. Wood et al. [36] developed a system, called Sandpiper,
which automates the process of monitoring and detecting hotspots and remap-
ping/reconfiguring VMs whenever necessary. Their monitoring system reminds
ours in terms of goal: avoid SLA violation. Similar to our approach, Sandpiper
uses thresholds to check whether SLAs can be violated. However, it differs from
our system by not allowing the mapping of low level metrics, such as CPU and
memory, to high-level SLA parameters, such as response time.

Boniface et al. [3] discuss dynamic service provisioning using GRIA SLAs.
The authors describe provisioning of services based on agreed SLAs and the
management of the SLAs to avoid violations. Their approach is limited to Grid
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environments. Moreover, they do not detail how the low-level metric are mon-
itored and mapped to high-level SLAs. Koller et al. [23] discuss autonomous
QoS management using a proxy-like approach. Their implementation is based
on WS-Agreement. Thereby, SLAs can be exploited to define certain QoS pa-
rameters that a service has to maintain during its interaction with a specific
customer. However, their approach is limited to Web services. Frutos et al. [17]
discuss the main approach of the EU project BREIN [5] to develop a framework
that extends the characteristics of computational Grids by driving their usage
inside new target areas in the business domain for advanced SLA management.
BREIN applies SLA management to Grids, whereas we target SLA management
in Clouds. Dobson et al. [12] present a unified QoS ontology applicable to QoS-
based Web services selection, QoS monitoring, and QoS adaptation. Comuzzi et
al. [10] define the process for SLA establishment adopted within the EU project
SLA@SOI framework. The authors propose the architecture for monitoring SLAs
considering two requirements introduced by SLA establishment: the availability
of historical data for evaluating SLA offers and the assessment of the capability
to monitor the terms in an SLA offer.

Rosenberg et al. [32] deal with QoS attributes for Web services. They iden-
tify important QoS attributes and their composition from resource metrics. They
present mapping techniques for composing QoS attributes from resource met-
rics to form SLA parameters for a specific domain. However, they do not deal
with monitoring of resource metrics. Bocciarelli et al. [11] introduce a model-
driven approach for integrating performance prediction into service composition
processes carried out by BPEL. In their approach, service SLA parameters are
composed from system metrics using mapping techniques. Nevertheless, they
consider neither resource metric monitoring nor SLA violation detection.

To the best of our knowledge, none of the discussed approaches deals with
mapping of low-level resource metrics to high-level SLA parameters and SLA
violation detection at runtime, which are necessary in Cloud-like environments.

3 Background and Motivation

The processes of service provisioning based on SLA and efficient management of
resources in an autonomic manner are major research challenges in Cloud-like
environments [6,22]. We are currently developing an infrastructure called FoSII
(Foundations of Self-governing Infrastructures), which proposes models and con-
cepts for autonomic SLA management and enforcement in the Cloud. The FoSII
infrastructure is capable of managing the whole lifecycle of self-adaptable Cloud
services [4].

The essence of using SLA in Cloud business is to guarantee customers a cer-
tain level of quality for their services. In a situation where this level of quality
is not met, the provider pays penalties for the breach of contract. In order to
save Cloud providers from paying costly penalties and increase their profit, we
devised the Low Level Metrics to High Level SLA—LoM2HiS framework [14],
which is a building block of the FoSII infrastructure for monitoring Cloud re-
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Fig. 1. FoSII Infrastructure Overview.

sources, mapping the low-level resource metrics to high-level SLA parameters,
and detecting SLA violations as well as future SLA violation threats so as to
react before actual SLA violations occur.

3.1 FoSII Infrastructure Overview

Figure 1 depicts the components of the FoSII infrastructure. Each FoSII service
implements three interfaces: (i) negotiation interface necessary for the estab-
lishment of SLA agreements, (ii) application management interface necessary to
start the application, upload data, and perform similar management actions, and
(iii) self-management interface necessary to devise actions in order to prevent
SLA violations.

The self-management interface shown in Figure 1 is implemented by each
Cloud service and specifies operations for sensing changes of the desired state and
for reacting to those changes [4]. The host monitor sensors continuously monitor
the infrastructure resource metrics (input sensor values arrow a in Figure 1)
and provide the autonomic manager with the current resource status. The run-
time monitor sensors sense future SLA violation threats (input sensor values
arrow b in Figure 1) based on resource usage experiences and predefined threat
thresholds.

Logically, FoSII infrastructure consists of multiple components working to-
gether to achieve a common goal. In this paper we focus on the knowledge
management component and the LoM2HiS framework since they are responsible
for system monitoring and detection of SLA violations.

3.2 LoMZ2HiS Framework Overview

The LoM2HiS framework comprises two core components, namely host moni-
tor and run-time monitor. The former is responsible for monitoring low-level



Table 1. Sample SLA parameter objectives.

SLA Parameter Value

Incoming Bandwidth (IB) > 10 Mbit/s
Outgoing Bandwidth (OB) > 12 Mbit/s
Storage (St) > 1024 GB
Availability (Av) > 99%

resource metrics, whereas the latter is responsible for metric mapping and SLA
violation monitoring. In order to explain our mapping approach we consider
the Service Level Objectives (SLOs) as shown in Table 1, including incoming
bandwidth, outgoing bandwidth, storage, and availability.

As shown in Figure 1, we distinguish between host monitor and run-time
monitor. Resources are monitored by the host monitor using arbitrary monitor-
ing tools such as Ganglia [27]. Resource metrics include downtime, uptime, and
available storage. Based on the predefined mapping rules stored in a database,
monitored metrics are periodically mapped to the SLA parameters. An example
of an SLA parameter is service availability Av, (as shown in Table 1), which is
calculated using the resource metrics downtime and uptime and is defined by
the following the mapping rule:

Av = (1 — downtime/uptime) x 100 (1)

The mapping rules are defined by the provider using appropriate Domain
Specific Languages (DSLs). These rules are used to compose, aggregate, or con-
vert the low-level metrics to form the high-level SLA parameter including map-
pings at different complexity levels, e.g., 1 : n or n : m. The concept of detecting
future SLA violation threats is designed by defining a more restrictive threshold
than the SLA violation threshold known as threat threshold. Thus, calculated
SLA values are compared with the predefined threat threshold in order to react
before SLA violations happen. The generation of threat thresholds, described in
Section 3.3, is part of our ongoing work and includes sophisticated methods for
the system state management.

As described in a previous work [14], we implemented a highly scalable frame-
work for mapping Low Level Resource Metrics to High Level SLA Parameters
(LoM2HiS framework) facilitating the exchange of large numbers of messages.
We designed and implemented a communication model based on the Java Mes-
saging Service (JMS) API [21], which is a Java Message Oriented Middleware
API for sending messages between two or more clients. We use Apache ActiveMQ
as a JMS provider that manages sessions and queues.

3.3 Knowledge Databases

For the decision making we use knowledge databases proposing the reactive
actions by utilizing case-based reasoning [28]. Case-Based Reasoning (CBR) is
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the process of solving problems based on past experience. It tries to solve a case
(a formatted instance of a problem) by looking for similar cases from the past
and reusing the solutions of these cases to solve the current one. In general a
typical CBR cycle consists of the following phases assuming that a new case has
just been received: (i) retrieve the most similar case or cases to the new one, (ii)
reuse the information and knowledge in the similar case(s) to solve the problem,
(iii) revise the proposed solution, and (iv) retain the parts of this experience
likely to be useful for future problem solving.

Considering the SLA depicted in Table 1 and as shown in Figure 2, a complete
case consists of (a) the application ID being concerned (line 2, Figure 2); (b) the
initial case measured by the monitoring component and mapped to the SLAs
consisting of the SLA parameter values of the application and global Cloud
information like number of running virtual machines (lines 4-9); (c) the executed
action (line 11); (d) the resulting case measured some time interval later (lines
13-18) as in (b); and (e) the resulting utility (line 20).

We distinguish between two working modes of the knowledge DB: active and
passive [28]. In the active mode system states and SLA values are periodically
stored into the DB. Thus, based on the observed violations and correlated system
states, cases are obtained as input for the knowledge DB. Furthermore, based
on the utility functions, quality of the reactive actions are evaluated and threat
thresholds are generated.

However, definition of the measurement intervals in the active mode is far
from trivial. An important parameter to be considered is the period on which
resource metrics and SLA parameters are evaluated (e.g. every two seconds or
every two minutes). Too frequent measurement intervals may negatively affect
the overall system performance, whereas too infrequent measurement intervals
may cause heavy SLA violations.
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4 DeSVI Architecture

In this section we describe in details the DeSVi architecture, its components,
and how the components interact with one another. The proposed architecture
is designed to handle the complete service provisioning management lifecycle in
Cloud environments. The service provisioning lifecycle includes activities such
as SLA negotiation, resource allocation to tasks, resource monitoring, and SLA
violation detection. Figure 3 depicts the architecture.

The topmost layer represents the users (customers) who request service pro-
visioning (step 1 in Figure 3) from the Cloud provider. The provider handles
the user service request based on the negotiated and agreed SLAs with the user.
The application deployer, which is located on the same layer of the run-time
monitor, allocates necessary resources for the requested service and arranges its
deployment on VMs (step 2). The deployment of VMs and environment config-
uration are performed by AEF (Automated Emulation Framework) [7] (step 3).
The host monitor observes the metrics of the resource pool comprising virtual
machines and physical hosts (step 4). The relation between the resource metrics
(monitored by the host monitor) and SLAs (monitored by the run-time monitor)
is managed by the LoM2HiS framework.

In Figure 3 the arrow termed Failover indicates redundancy in the monitoring
mechanism. The host monitor is designed to use monitoring agents like Gmond
from Ganglia project [27], which are embedded in each node in the resource
pool to monitor the metrics of the node. Such monitoring agents broadcast their
monitored values to the other agents in the same resource pool, creating the
possibility of accessing the whole resource pool status from any node in the
pool. The metric broadcasting mechanism is configurable and can be deactivated
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if necessary but it can obviate the problem of a bottleneck master node for
accessing the monitored metrics of the resource pool. In the following sections
we explain all components in detail.

4.1 Application Deployer

The Application Deployer is responsible for managing the execution of user ap-
plications; similar to brokers in the Grid literature [1,13,24]. However, compared
to brokers, the Application Deployer has more knowledge and control on the ap-
plication tasks, being able to perform application-level scheduling, in particular
for parameter sweeping executions [9]. It simplifies the processes of transferring
application input data to each VM, starting the execution, and collecting the
results from the VMs to the front-end node. The mapping of application tasks
to VMs is performed by a scheduler located in the Application Deployer.

Figure 4 illustrates the main modules of the Application Deployer. The task
generator receives from the user the application and its parameters, and at the
same time the VM deployer generates a machine file based on user requirements
(step 1). The scheduler uses this machine file and a list of all tasks (step 2) to
map tasks to VMs (step 3). In our current implementation, the scheduler places
an equal number of tasks for each available VM in order to balance the load.
The scheduler can also be configured to use a dynamic load balancing, in which
each VM asks for tasks whenever there is CPU available. A list of task for each
VM is transferred from the task manager to the VMs (step 4). The task manager
is also responsible for triggering the executions on VMs (step 5) and collecting
the results when tasks complete execution.

4.2 Automated Emulation Framework

The Automated Emulation Framework (AEF) was originally conceived for auto-
mated configuration and execution of emulation experiments [7]. Nevertheless,
it also can be used to set up arbitrary virtual environments by not activating
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the emulated wide-area network support. In the latter case AEF works as a vir-
tualized infrastructure manager, similarly to tools like OpenNebula [34], Oracle
VM Manager [30], and OpenPEX [35].

Figure 5 depicts the architecture of the AEF framework. AEF input consists
of two configuration files providing XML description of both the physical and
virtual infrastructures. Using this information, AEF maps VMs to physical hosts.
AEF supports different algorithms for VM mapping. The algorithm used in this
work tries to reduce the number of hosts used by consolidating VMs as long as
one host has enough resources to host several VMs. At the end of the mapping
process, the resulting mapping is sent to the Deployer, which creates VMs in the
hosts accordingly.

If network configuration is required in the environment (e.g. to create vir-
tual networks), the Network Manager component of AEF performs this activity.
Execution of the applications may be triggered by either the user, in case of in-
teractive applications, or directly by AEF in case of non-interactive applications.
In the experiments presented in this paper we opted by the former approach.
VMs can be accessed via cluster front-end and then users can log in the machine
and interact with the application.

4.3 Monitoring

Monitoring in our proposed architecture of Figure 3 is done by the LoM2HiS
framework. Figure 6 presents the architecture of the LoM2HiS framework. The
run-time monitor is designed to monitor the services based on the negotiated
and agreed SLAs. After agreeing on SLA terms, the service provider creates
mappings rules for the LoM2HiS mappings (step 1 in Figure 2) using Domain
Specific Languages (DSLs). An example rule is presented in Equation 1. Once
the customer requests the provisioning of an agreed service (step 2), the run-
time monitor loads the service SLA from the agreed SLA repository (step 3).
Service provisioning is based on the infrastructure resources, which represent
the hosts and network resources in a data center for hosting Cloud services.
The resource metrics are measured by monitoring agents, and the measured raw
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metrics are accessed by the host monitor (step 4). The host monitor extracts
metric-value pairs from the raw metrics and transmits them periodically to the
run-time monitor (step 5) and to the knowledge component (step 6) using our
designed communication model.

Upon reception of the measured metrics, the run-time monitor maps the
low-level metrics based on predefined mapping rules to form an equivalent of
the agreed SLA objectives. The resulting mapping is stored in the mapped met-
ric repository (step 7), which also contains the predefined mapping rules. The
run-time monitor uses the mapped values to monitor the status of the deployed
services. In case future SLA violation threats occur, it notifies (step 8) the knowl-
edge component for preventive actions. The knowledge component also receives
the predefined threat thresholds (step 8) for possible adjustments due to en-
vironmental changes at run-time. This component works out an appropriate
preventive action to avert future SLA violation threats based on the resource
status (step 6) and defined rules. The knowledge component’s decisions (e.g.
assign more CPU to a virtual host) are executed on the infrastructure resources
(step 9).

5 Implementation Issues

The implementation of the DeSVi components targets the fulfillment of some
fundamental Cloud requirements such as scalability, efficiency, and reliability.
To achieve these goals, we incorporated only well-established and tested open
source tools in the implementations.

5.1 Application Deployer

The Application Deployer is written in Python and has as input a machine file
(in plain ASCII format), which contains the list of hostnames or IPs of the VMs
allocated to the user application and a script to split the work to be done into
lists of tasks—one list per VM. For a rendering application, for instance, such a



script includes a list of frames and the command to render them. The division of
work per VM is performed by the Application Deployer’s scheduler as described
in Section 4.1.

Once the mapping of tasks to VMs is completed, the Application Deployer
uses the scp command, a standard Linux tool for copying files among multi-
ple machines, in order to transfer the application-related files from the front-end
node to VMs responsible for executing tasks. The ssh command is then responsi-
ble for triggering task execution on each VM specified in the machine file. During
the user application execution, the Application Deployer generates log files with
the time required to execute each task. After tasks complete execution, results
are transferred to the front-end node via scp.

5.2 Virtual Machine Deployer and Configurator

The automated emulation framework used to deploy and configure the virtual
machines is implemented in Java. The framework inputs are XML files describing
the characteristics of both the required virtual machines and the cluster. The
former description may contain different subnetworks, connected by emulated
WANS (e.g. virtual links with high latency and low bandwidth). Nevertheless,
this feature is not required in the current experiments where the target envi-
ronment is a virtualized cluster. Thus, from AEF point of view the environment
comprises a set of virtual machines in a single Gigabit Ethernet network.

Such an environment is described in the XML file and processed by AEF.
Once the cluster and virtual environment files are parsed, the Mapper component
maps the virtual machines to cluster nodes. During this stage, AEF ensures that
the resources required by all virtual machines assigned to a cluster node do not
exceed the node’s available resources.

Once the mapping is finished, the resulting configuration is applied in the
cluster by the VM Deployer component. Here, a standalone version of the De-
ployer is used, because it does not require external tools or systems for its exe-
cution. This deployer is written in Java and is part of AEF source code. It works
as follows. First, a base image file of the virtual machines is copied, via scp,
to each cluster node that takes part in the experiment, as determined by the
Mapper. This image contains all the software and configuration required by the
experiment. After the base image is copied to each machine, it is replicated so
that an image for each virtual machine is created on each node. These new im-
ages are configured with VM-specific settings required by the experiment, such
as hostname and static IP address. Finally, virtual machines are created on each
host from each image file replicated in the previous step.

5.3 LoM2HiS Components

The host monitor implementation uses the standalone Gmond module from the
Ganglia open source project [27] as monitoring agent. We use it to monitor
the low-level resource metrics. The monitored metric results are presented in
an XML file and written to a predefined network socket. With our implemented



Java routine, the host monitor listens to this network socket where Gmond writes
the XML file containing the monitored metrics to access them. Furthermore, we
implemented an XML parser using the well-known open source SAX API [33] to
parse the XML file in order to extract the metric-value pairs. These metric-value
pairs are sent to the run-time monitor using our implemented communication
model.

Our communication model exploits the capabilities of the Java Messaging
Service API, which is a Java message oriented middleware for sending message
between two or more clients. In order to use JMS, there is a need for a JMS
provider that is capable of managing the sessions and queues. We used the well-
established open source Apache ActiveMQ [2] for this purpose.

The run-time monitor implementation passes the received metric-value pairs
into ESPER engine [15], which provides a filter to remove identical monitored val-
ues so that only changed values between measurements are delivered for further
processing. This strategy drastically reduces the number of messages processed
in the run-time monitor. The received metric-value pairs are stored in MySQL
DB from where the mapping routine accesses them and applies the appropriate
mappings. The agreed service SLA is also stored in the same DB accessible to
the run-time monitor. Furthermore, we implemented a Java routine that checks
for SLA violations by comparing the mapped SLA against the agreed service
level objectives.

6 Evaluation

In this section we discuss the evaluation of the DeSVi architecture and SLA
violation detection strategy. In Section 6.1 we describe our experimental set up
and in Section 6.2 we discuss the achieved experimental results.

6.1 Experimental Configuration

The virtualized cluster used in the experiments comprises five Pentium 4 2.8GHz
machines with 1MB of cache and 2.5GB of RAM memory running Xen 3.4.0 on
top of Oracle VM Server. One of the machines is used as the system front-end
node. It runs AEF, the application deployer, and LoM2HiS. The other machines
are used as cluster computing nodes and run virtual machines deployed via AEF
as described previously. AEF is used to deploy and configure two VMs on each
machine, with the VMs allocating all the available resources from the host.

Virtual machines are worker nodes able to execute POV-Ray applications
submitted via Application Deployer. In order to achieve heterogeneous load,
three POV-Ray workloads are tested, each one with a different characteristic of
time for rendering frames, as illustrated in Figure 7:

— Fish: rotation of a fish on water. Time for rendering frames is variable.
— Box: approximation of a camera to an open box with objects inside. Time
for rendering frames increases during execution.
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— Vase: rotation of a vase with mirrors around. Time for processing different
frames is constant.

Three SLA documents are negotiated for the three POV-Ray applications.
The SLA documents specify the level of Quality of Service (QoS) that should be
guaranteed for each application during its execution. Table 2 presents the SLA
objectives for each application. Based on these SLA objectives, the applications
are monitored to detect SLA violations. These violations may happen because
SLAs are negotiated per application and not per allocated VM considering the

fact that the service provider may provision different application requests on the
same VM.

Table 2. SLA objective definitions for the three POV-Ray applications.

SLA Parameter Fish Box Vase
CPU 20% 15% 10%

Memory 297MB 297MB 297MB
Storage 2.7GB 2.6GB 2.5GB

The virtual machines are continuously monitored by Gmond. Thus, LoM2HiS
has access to resource utilization during execution of applications. Similarly,
information about the time taken to render each frame in each virtual machine
is also available to LoM2HiS. This information is generated by the application
itself and is sent to a location where LoM2HiS can read it. Figure 8 illustrates
our testbed and the information flow from the moment the users negotiate SLAs
with the provider, until the moment the frames are processed and returned to
the users in a form of a movie. As described in Figure 8, users supply the QoS
requirements in terms of SLOs (step 1 in Figure 8). At the same time the images
with the POV-Ray applications and input data (frames) can be uploaded to the
front-end node. Based on the current system status, SLA negotiator establishes
an SLA with the user. Description of the negotiation process and components
is out of scope of this paper and is discussed by Brandic et al. [4]. Thereafter,
VM deployer starts configuration and allocation of the required VMs whereas
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Fig. 8. Experimental testbed and information flow.

application deployer maps the tasks to the appropriate VMs (step 3). In step 4
the application execution is triggered.

6.2 Results and Analysis

The experiments are carried out using three POV-Ray applications with varying
characteristics in terms of frame rendering as explained in Section 6.1. The ap-
plications are provisioned using our described testbed. Application execution is
monitored by LoM2HiS using five different monitoring intervals. Table 3 presents
the results of the experiments for 20-minute execution time for each application
and monitoring interval.

Table 3. Experimentation results.

20s
60

30s
40

2min
10

Imin
20

Intervals| 5s|10s

Nr. of Measurements |240(120
Fish POV-Ray Application
Nr. of Violations
CPU [105| 90| 42| 28 16
SLA Parameter Memory [100| 91| 43| 29 16
Storage | 97| 91| 43| 29 17

Box POV-Ray Application
CPU | 85| 37| 22| 17 12 7

SLA Parameter Memory | 70| 38| 23| 18 12 8
Storage | 65| 38| 23| 18 11 8

Vase POV-Ray Application

© © 0o

CPU | 50| 18| 13| 10 8 5
SLA Parameter Memory | 45| 19| 14| 11 9 6
Storage | 40| 19| 14| 11 9 6

To determine the best monitoring interval for each application, we define a
cost function (C) taking into account the cost of doing the measurement and the
cost for the provider if it fails to detect SLA violations. The ideas of defining this
cost functions are derived from utility functions discussed in [26]. The reference
measurements taken with 5 seconds interval as shown in Table 3 for the three



applications with the same execution length of 20 minutes form the basis of the
cost function. The measurements represent the results of the current interval
used by the provider for the monitoring of service and resources in the Cloud
environment. Equation 2 presents the cost function.

C=p*Chy+ > a () * C, (2)

Ype{cpu,memory,storage}

w is the number of measurements, C,, is the cost of measurement, a () is
the number of undetected SLA violations, and C, is the cost of missing an SLA
violation. The cost of the measurement is defined by considering the intrusiveness
of the measurements on the overall performance of the system. Based on our
system architecture and intrusive test performed, we were able to find out that
measurements have minimal effects on the computing nodes. This is because
measurements and their processing take place in the front-end node while the
services are hosted in the computing node. The monitoring agents running on
computing nodes have minimal impact on resource consumption. The cost of
missing violations is a parameter that is set by the provider considering the
applicable penalties for SLA violations and historical data of SLA enactment
processes.

Applying the cost function on the achieved results of Table 3, with a mea-
surement cost of 0.5 dollar and missing violation cost of 1.5 dollar, we achieve
the monitoring costs presented in Table 4. The cost values specified here are
derived based on the cost function approaches presented in literature [25,37].

Table 4. Monitoring cost.

Fish POV-Ray Application

Intervals / Reference 10s 20s 30s 1min 2min
SLA Parameter
CPU 0 22.5 94.5 115.5 133.5 145.5
Memory 0 13.5 85.5 106.5 126 136.5
Storage 0 9 81 102 120 132
Cost of Measurements 120 60 30 20 15 5
Total Cost 120 105 291 344 394.5 419
Box POV-Ray Application
CPU 0 19.5 42 49.9 58.5 64.5
Memory 0 10.5 33 40.5 49.5 55.5
Storage 0 9 81 102 120 132
Cost of Measurements 120 60 30 20 15 5
Total Cost 120 97.5 135 147.5 169.5 177.5
Vase POV-Ray Application
CPU 0 10.5 18 22.5 25.5 30
Memory 0 6 13.5 18 21 25.5
Storage 0 7.5 15 19.5 22.5 27
Cost of Measurements 120 60 30 20 15 5
Total Cost 120 84 76.5 80 84 87.5

The monitoring cost presented in Table 4 represents the cost of measure-
ment for each frequency and for missing to detect SLA violation situation for
each application. The reference measurement captures all SLA violations for



each application, thus it only incurs measurement cost. Taking a closer look at
Table 4, it is clear that the values of the shorter measurement interval are closer
to the reference measurement than those of the longer measurement interval.
This is attributed to our novel architecture design, which separates management
activities from computing activities in our Cloud testbed.

The relations of the measurement cost and the cost of missing SLA violation
detection is graphically depicted in Figure 9 for the three POV-Ray applications.
From the figures, it can be noticed in terms of measurement cost that the longer
the measurement interval, the smaller the measurement cost and in terms of
detection cost, the higher the number of missed SLA violation detection, the
higher the detection cost rises. This implies that to keep the detection cost low,
the number of missed SLA violation must be low.
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Fig. 9. POV-Ray application cost relations.

Considering the total cost of monitoring the fish POV-Ray application in
Table 4 and Figure 9(a), it can be seen that the reference measurement is not
the cheapest although it does not incur any cost of missing SLA violation de-
tection. In this case the 10-second interval is the cheapest and in our opinion
the most suited measurement interval for this application. In the case of box
POV-Ray application the total cost of monitoring, as shown in Table 4 and
depicted graphically in Figure 9(b), indicates that the lowest cost is incurred



with the 10-second measurement interval. Thus we conclude that this interval
is best suited for this application. Also from Table 4 and Figure 9(c), it is clear
that the reference measurement by far does not have the optimal measurement
interval for the vase POV-Ray application. Based on the application behavior,
longer measurement intervals are better fitted than shorter ones. Therefore, in
this case the 20-second measurement interval is best suited for the considered
scenario.

Based on our experiments, it is observed that there is no best suited mea-
surement interval for all applications. Depending on how steady the resource
consumption is, the monitoring infrastructure requires different measurement
intervals. Note that the architecture can be configured to work with different
intervals. In this case, specification of the measurement frequencies depends on
policies agreed by users and providers.

7 Conclusion and Future Work

Flexible and reliable management of SLA agreements represents an open re-
search issue in Cloud computing infrastructures. Advantages of flexible and re-
liable Cloud infrastructures are manifold. For example, preventions of SLA vi-
olations avoids unnecessary penalties provider has to pay in case of violations.
Moreover, based on flexible and timely reactions to possible SLA violations, in-
teractions with users can be minimized. In this paper we presented DeSVi—the
novel architecture for monitoring and detecting SLA violations in Cloud comput-
ing infrastructures. The main components of our architecture are the automatic
VM deployer, responsible for the allocation of resources and for mapping of
tasks, application deployer, responsible for the execution of user applications,
and LoM2HiS framework which monitors the execution of the applications and
translates low-level metrics into high-level SLAs.

We evaluated our system using an image rendering service based on POV-
Ray with heterogeneous workloads. From our experiments we observed that there
is no particular suited measurement interval for all applications. It is easier to
identify the intervals for applications with steady resource consumption, such
as the ‘vase’ POV-Ray animation. However, applications with variable resource
consumption require dynamic measurement intervals. Our architecture can be
extended to tackle such applications, which will be the scope of our future work.

Besides our investigation on dynamic measurement intervals, we will evaluate
the influence of such intervals in the quality of the reactive actions proposed by
the knowledge database. If the effects of measurement intervals are known, best
reactive actions may be taken, contributing to our vision of flexible and reliable
on-demand computing via fully autonomic cloud infrastructures.
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