
Methodology for trade-off analysis when moving
scientific applications to Cloud
Toni Mastelic†, Drazen Lucanin†, Andreas Ipp∗ and Ivona Brandic†

†Information Systems Institute
Vienna University of Technology, Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{toni, drazen, ivona}@infosys.tuwien.ac.at
∗Institute for Theoretical Physics

Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, A-1040 Vienna, Austria
ipp@hep.itp.tuwien.ac.at

Abstract—Scientific applications have always been one of the
major driving forces for the development and efficient utilization
of large scale distributed systems - computational Grids represent
one of the prominent examples. While these infrastructures,
such as Grids or Clusters, are widely used for running most of
the scientific applications, they still use bare physical machines
with fixed configurations and very little customizability. Today,
Clouds represent another step forward in advanced utilization
of distributed computing. They provide a fully customizable and
self-managing infrastructure with scalable on-demand resources.
However, true benefits and trade-offs of running scientific appli-
cations on a cloud infrastructure are still obscure, due to the lack
of decision making support, which would provide a systematic
approach for comparing these infrastructures.

In this paper we introduce a comprehensive methodology
for comparing the costs of using both infrastructures based on
resource and energy usage, as well as their performance. We
also introduce a novel approach for comparing the complexity
of setting up and administrating such an infrastructure.

Index Terms—computing infrastructure; comparison method-
ology; cloud computing; trade-off analysis

I. INTRODUCTION

The scientific community has always been one of the major
consumers of increasing computational power starting with
mainframes, clusters, up to large-scale distributed systems
such as the Grid. It utilizes infrastructures such as E-SciencE
(EGEE) spreading over 91 institutions, and TeraGRID [1],
which is used by 4000 users around 200 universities for
research work in molecular bioscience, mathematics, neu-
roscience, physics etc. Today, the cloud represents another
step forward in advanced utilization of distributed computing,
which provides a fully customizable and self-managing infras-
tructure with scalable on-demand resources. It offers several
deployment types such as Infrastructure/Platform/Software as
a Service (IaaS, PaaS and SaaS), as well as private, hybrid
and public models [2]. Unlike Grids that are implemented
with predefined environments [3], [4] that provide low or even
no customizability, PaaS and specifically IaaS can provide a
fully controllable infrastructure with a customizable execution
environment [3].

A known drawback of using clouds is the loss in per-
formance due to a virtualization layer [5]–[7], while other
aspects such as application portability [8], energy and resource

usage [9], reusability of execution environment [10], fixed
configurations [3] etc. are usually neglected when it comes to
comparing these infrastructures. While the scientific commu-
nity has leveraged from using distributed computing for several
decades, the lack of decision making support for evaluating
benefits and trade-offs between two infrastructures inhibits it
from harnessing the full power of the cloud.

In this paper we introduce a comprehensive methodology for
comparing different computing infrastructures, which provides
a systematic approach for calculating costs of using a certain
infrastructure. We provide scientists with decision making
support for evaluating benefits and trade-offs of choosing
an infrastructure type for running their applications on local
hardware. Our work focuses on comparing four aspects of
these infrastructures: (1) energy and (2) resource usage, as
well as (3) performance and (4) setup complexity. We mon-
itor metrics of four basic resources: cpu, memory, disk and
network, while performance is measured and compared by
monitoring the application itself. Additionally, we introduce
a novel approach for comparing the complexity of setting up
and administrating an infrastructure based on the combination
of a big O notation showing the asymptotic complexity and
story points, a methodology used by agile development teams
for estimating project complexity, which provides more fine-
grained information.

The rest of this paper is organized as follows. Section
II discusses related work. Section III provides a use case
describing the issues when selecting an infrastructure type.
Section IV defines a comparison methodology covering all
four aspects (1-4) mentioned above. Evaluation setup is de-
scribed in Section V. Finally, Section VI gives the conclusion
and the future work.

II. RELATED WORK

There are several examples where the cloud has been
utilized for scientific computation. In [3] Aneka cloud platform
[11] is used for the classification of gene expression data
and the execution of the fMRI brain imaging workflow. The
authors compare the execution time and costs for running
a scientific application on Amazon’s cloud infrastructure. In
[12] the authors present the Nebulous framework built on a



cloud middleware layer such as OpenNebula. It is used for
simplifying the execution of MPI and OpenMP parallel ap-
plications in computational clouds. However, both approaches
focus on providing a framework for scientific applications as
part of a public PaaS cloud. They do not consider trade-
offs and overheads for using cloud related technologies. A
virtualized environment for scientific applications is proposed
in [4]. They present the virtualization layer for a file system
based on chroot that provides a generic interface for scientific
applications. However, the authors do not consider full virtual-
ization or other cloud related technologies. In [10] the authors
compare costs and performance issues when using a cloud
versus physical infrastructure. However, their work focuses
only on data-intensive applications using Google App Engine,
so they do not consider energy and resource consumption
as they are using a public cloud. In [6] the authors analyze
the performance in a Xen-based virtual cluster environment.
They consider resource consumption and introduce a model
for measuring the performance overhead for network latency
and bandwidth. However, they focus only on virtualization
technology without considering complete cloud infrastructure
or energy consumption. [13] deals with moving text analysis
tools to a cloud. However, the authors focus only on the
implementation details and performance improvement. Energy
and resource consumption overhead of virtualization technol-
ogy is evaluated in [9]. The authors compare Xen and KVM
hypervisors against bare metal execution by benchmarking
the three environments. They present trade-offs and server
consolidation guidelines in order to reduce energy usage.
However, only virtualization technology is evaluated, while
other technologies used in a cloud infrastructure are not
considered. Moreover, none of the related work we found
considers the setup complexity of each infrastructure, nor tries
to compare them.

III. USE CASE

The scientific community has always required state of the
art computing infrastructures in order to benefit from rapidly
advancing technologies. Today these infrastructures are based
on large-scale distributed systems such as Open Science Grid
[14] hosting up to 25000 machines. However, a cloud infras-
tructure and its related technologies such as the virtualization
and the self-management are still not fully utilized, and trade-
offs between these two infrastructures are still not clear. Here
we provide a use case describing the issues when selecting an
infrastructure for running scientific applications. We consider
a local hardware infrastructure with 50 physical machines and
an application with 120 hours of the execution time.

Physical infrastructures (i.e., Grids) are usually imple-
mented as bag of tasks (BoTs), workflows or Message Passing
Interface (MPI) applications. However, some scientific appli-
cations do not fit these models and many of them require
a complete redesign and reprogramming in order to run in
preconfigurated environments [3]. In our use case, scientist A
wants to run his application App that requires the execution
environment Env on a physical infrastructure as shown on

Figure 1. Since a physical infrastructure is preconfigured with
the execution environment Env′, scientist A has to adapt
his application and build App′ in order to run it. After the
adaptation, he has to install and run his application on each
node separately. Even after successfully adapting his appli-
cation, due to constant system upgrades, hardware changes
etc., further adaptation will still be required [4]. However,
reprogramming a modern scientific application represents a
complex task [4], which suggests that a traditional execution
model - build and run; then adapt, re-build and re-run - no
longer satisfies their advanced requirements [8]. Furthermore,
in order to boost the performance of his application, scientist
A decides to add an additional node PM1 as shown on Figure
1. However, the additional node is preconfigured with an
environment Env∗, previously used by some other application
requiring a specialized execution environment. He has to
reconfigure the node and rebuild it with the environment Env′,
install the application and run it. Finally, since his application
is now running directly on physical machines, he can expect
good performance.

PM5 

VM 

App 

Env 

VM 

App* 

Env* 

PM4 

VM 

App 

Env 

VM 

App 

Env 

PM1 

App’ 

Env* 

PM2 

App’ 

Env’ 

PM3 

App’ 

Env’ 

App 

App’ 

Env’ 

Adapt 

R
eco

n
figu

re
 

Deploy 

Install/
run 

Install/
run 

Additional node 

Additional 
node 

U
ti

liz
at

io
n

 

P
er

fo
rm

an
ce

 

U
ti

liz
at

io
n

 

Pe
rf

o
rm

an
ce

 

R
es

o
u

rc
e

 

R
es

o
u

rc
e

 

Physical infrastructure 

Cloud infrastructure 

App 

Env 
Virtual 
image 

Scientist A 

Scientist B 

App – Application 
Env – Execution Environment 
VM – Virtual machine 
PM – Physical machine 

Figure 1. Use case for choosing an infrastructure.

If scientist A decided to run his application on a cloud
infrastructure, he only has to create a single virtual image
with a fully customized execution environment Env for his
application, and deploy it on as much nodes as he likes (Figure
1). Moreover, if he requires an additional node, he only has
to deploy the same virtual image he created in the beginning.
Any system upgrades and hardware changes are transparent
to his application as it always runs within a customizable
virtual environment. However, due to a virtualization layer,
he can expect worse performance and greater resource usage.



On the other hand, if he does not use all the resources of a
particular physical machine, i.e., PM5 on Figure 1, by slicing
the physical machine to several virtual machines, scientist
B can use those resources. Thus, a resource utilization is
expected to be better [9] than on a physical infrastructure
where PM3 on Figure 1 is not being fully utilized.

In the following section we introduce our methodology for
supporting scientists when choosing an infrastructure for run-
ning their applications. For terminology, we use a term node
that represents an operating system running on a machine,
where the machine can be physical (PM) or virtual (VM).

IV. COMPARISON METHODOLOGY

Comparing infrastructures described in our use case in
Section III can be done by looking at many different aspects
such as cost, performance, usability etc. In our work we focus
on running a scientific application on a private infrastructure,
thus we construct our comparison methodology based on sev-
eral important aspects: setup complexity, resource and energy
consumption, as well as the performance. Each of these aspects
is described and modeled in the following sections.

A. Complexity model

Setup time could vary depending on the used hardware and
software, as well the expertise of a person setting up this
infrastructure. Therefore, we introduce a novel approach for
comparing infrastructures based on the complexity of a setup
procedure using big O notation for expressing asymptotic
complexity. We define the complexity as O(N ), where N can
be 0, 1 or n, where n represents a number of nodes being
set up. However, since using only big O notation does not
provide a fine grained complexity we require, we expand it by
combining it with a story points [15], a methodology widely
used in agile software development. Story points break the
procedure (i.e., a story) to a number of points, which we refer
to as tasks. Each task is assigned with a complexity grade
that abstractly describes the complexity, the effort and the
uncertainty for executing a certain task. Grades are defined
relatively and form a complexity scale similar to the one
in Table I, which shows a modified fibonacci scale widely
used by agile software development teams for estimating
project complexity combined with our own arbitrary naming
convention. However, following the scheme of story points,
the complexity scale can be fully customized to better reflect
infrastructures being compared, as well as the expertise of
an administrator team that performs the setup. It is important
to notice that a combination of these two methodologies is
highly required, since neither of them could solely express the
complexity required for setting up computing infrastructure:
the big O notation would only show an asymptotic complexity
without fine-grained details, while story points would show
the complexity of each task without considering the number
of times this task has to be repeated.

Our complexity model covers all the steps from setting
up hardware to the moment when an application is being
executed. Four steps are defined: hardware setup, platform

Table I
COMPLEXITY SCALE FOR GRADING TASKS.

ID Task complexity Grade
c0 do nothing 0
c1 one-line commmand 2
c2 using wizard 3
c3 advanced setup 5
c4 manual configuration 13
c5 recompile and link 40
c6 to many components 100
c7 reprogram 1000

setup, environment setup and run. The steps are divided into
several tasks that are noted using the big O notation and graded
using our complexity scale. The defined grades and big O
notations are used to calculate complexity of each step using
Equation 1, where Cxinfra is a complexity of a step x for
an infrastructure infra, T is a total number of tasks, Ci is
the complexity grade cj and Ni is the big O notation for
task ti. The big O notation for all tasks is shown in Table
II and is defined as a default notation, which assumes that no
helper or deployment tools (e.g., dodai-deploy [16]) is used
for their completation. This clearly shows the flexibility of our
complexity model in that it can be easily modified by simply
adding and/or removing tasks from a certain step, as well as
changing the big O notation if a task has been automated.

Cxinfra =

T∑
i=1

Ci ·N infra
i (1)

We describe and analyze latter three steps in the following
sections, while we exclude the hardware setup step since it is
the same for both infrastructures and is performed only in the
initial setup.
Step 1: Platform setup includes installing an operating
system and related drivers, as well as any additional piece of
software that is required for building the target infrastructure.
It consists of the following tasks:
t1 Installing an operating system
t2 Installing drivers
t3 Installing a hypervisor
t4 Installing a cloud management software

For a physical infrastructure only tasks t1 and t2 apply, while
a cloud infrastructure requires all the tasks, i.e., t1, t2, t3 and
t4. Tasks t1, t2 and t3 must be performed on each computing
node separately, which makes them O(n). Task t4 is performed
only once on a central node, which makes it O(1). Equations
2 and 3 represent the complexity of the step 1 for a physical
and a cloud infrastructure respectively.

C1physical = (C1 + C2)n (2)

C1cloud = (C1 + C2 + C3)n+ C4 (3)

Step 2: Environment setup considers setting up an execu-
tion environment for an application. This includes installing all



Table II
COMPLEXITY GRADES AND BIG O NOTATION FOR EACH TASK

Task C Nphsyical N cloud

t1 c2 n n
t2 c3 n n
t3 c1 0 n
t4 c6 0 1
t5 c2 n 1
t6 c2 n 1
t7 c1 0 1
t8 c1 1 1

of the dependent libraries and the application itself. It consists
of the following tasks:
t5 Installing libraries
t6 Installing application

Both tasks t5 and t6 apply for both infrastructures. However,
for a physical infrastructure this step is performed on every
node separately, thus both tasks in this step are O(n) as seen
in Equation 4. For a cloud infrastructure this step represents
creating a virtual image, thus both tasks are performed only
once as shown in Equation 5.

C2physical = (C5 + C6)n (4)

C2cloud = C5 + C6 (5)

Step 3: Run represents the final step where an application
is deployed and executed. It consists of the following tasks:
t7 Deploy
t8 Run

Setting up a physical infrastructure includes only task t8
(Equation 6), since the application is already considered as
deployed after it has been installed. For a cloud infrastructure
the task t7 is required and refers to the deployment of virtual
images. Its complexity is O(1) since images are deployed
automatically by a cloud management software, where the
complexity of the entire step is represented with the Equation
7.

C3physical = C8 (6)

C3cloud = C7 + C8 (7)

Scenarios: For comparing the complexity of setting up both
infrastructures using our model described above, we consider
three scenarios:
• Initial setup, which represents the first setup of an

infrastructure for a certain application. Both infrastruc-
tures require all three steps for this scenario, where the
complexity is calculated by combining the complexities
of all included steps. Thus, for a physical infrastructure
we combine equations 2, 4 and 6 that gives Equation 8.
For a cloud infrastructure we take equations 3, 5 and 7,
which gives Equation 9.

C3physical = (C1 + C2 +C5 +C6)n+ C8 (8)

C3cloud = (C1+C2+C3)n+C4+C5+C6+C7+C8

(9)
As seen from equations 8 and 9 the initial setup of a
physical infrastructure has four tasks depending on a
number of nodes n, while a cloud has only three. Since
C1 and C2 apply for both infrastructures, Ccloud

3 has to be
equal to Cphysical

5 + Cphysical
6 in order for complexities

to have the same linear growth - that is, setting up a
hypervisor has to have the same complexity as setting up
libraries and the application itself. However, as opposed
to a physical infrastructure (line L0 in Figure 2), a cloud
infrastructure would still have greater initial complexity
because of the one-time tasks t4, t5, 6 and t7 with their
complexities C4, C5, C6 and C7 respectively, as shown
by the line L1 on Figure 2.

C
o

m
p

le
xi

ty
 

Number of nodes n 

PHYSICAL INFRASTRUCTURE: 

CLOUD INFRASTRUCTURE: 

L1 Initial setup (𝐶3
𝑐𝑙𝑜𝑢𝑑 = 𝐶5

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
+ 𝐶6

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
) 

L2 Initial setup (𝐶3
𝑐𝑙𝑜𝑢𝑑< 𝐶5

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
+ 𝐶6

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
) 

L0 All scenarios 

L3 Next setup 

L4 Migration 

Figure 2. Complexity graph for different scenarios.

However, if Ccloud
3 < Cphysical

5 +Cphysical
6 , then setting

up a cloud infrastructure pays of after a certain number
of nodes as shown by the line L2 on Figure 2.

• Next setup assumes that the initial setup has been done,
and now we want to run a different application requiring
a different execution environment. For this scenario a
physical infrastructure still requires all three steps (Equa-
tion 8), since a new environment might also require a
different operating system. On the other hand, a cloud
infrastructure requires only steps S2 and S3 since a new
environment (i.e. new virtual image) can be deployed on
top of the existing infrastructure (Equation 10).

C3cloud = C4 + C5 + C6 + C7 + C8 (10)

As seen from the Equation 10 a cloud infrastructure
has only O(1) tasks (line L3 in Figure 2), while a
physical infrastructure keeps its linear complexity growth
depending on a number of nodes as shown by the line L0

in Figure 2. Even if step S1 would not be required, that
is if an existing operating system would be sufficient, the
physical infrastructure would still have a setup complex-
ity of linear growth because of step S2 and its complexity
expressed in Equation 4.

• Migration considers migrating an application to another
infrastructure of the same type. A physical infrastructure



again requires all the three steps defined by Equation
8 and shown with line L0 in 2, as we cannot assume
that a new environment will be fit for the application
being migrated. On the other hand, a cloud only requires
step S3 (Equation 7), since the infrastructure already
exists, as well as the virtual image that only needs to be
deployed and executed. Thus, the complexity of a cloud
infrastructure for the migration scenario is constant as
shown by the line L4 on Figure 2.

B. Performance model

The performance is monitored in order to compare the
behavior of an application and the trade-off of using a specific
infrastructure. The performance is measured using a perfor-
mance metric specific to a running application, referred to as
a specific class metric in [17]. The application is benchmarked
until the configuration with the best performance is found,
and is later compared using the same approach on a different
infrastructure. We consider different application parameters
that are specific to the application, e.g., number of workers per
node in an MPI application. The goal is to avoid influencing
the results by selecting a configuration that is more suited for
a certain infrastructure type.

However, based on the existing research results from [6],
we can see that paravirtualization results in small performance
degradation, which makes infrastructures that use paravirtual-
ization a good alternatives to physical infrastructures. How-
ever, such alternatives are only acceptable if the time lost due
to performance degradation is less than the time saved due
to shorter setup time. The same applies for full virtualization
as well. However, full virtualization shows worse performance
than paravirtualization [9], thus the setup time must be even
shorter to compensate for it.

After the performance trade-off is calculated, resource and
energy consumption is compared between the two infrastruc-
tures in order to measure consumption overheads.

C. Resource model

As described in the use case in Section III, reasons for
measuring resource consumption are twofold: (1) calculate
the resource consumption overhead by measuring the average
resource consumption during an application runtime and (2)
resource utilization to see how much resources were wasted.
We selected four main resources that we monitor on a system
level for each physical machine: cpu, memory, disk and
network traffic, inbound and outbound. Total consumption
Rused of a specific resource is calculated by summing up
consumption r over all machines n using Equation 11. As
shown in [9] resource consumption will generally be greater
in a cloud infrastructure due to the virtualization overhead, as
well as the overhead of a cloud management software.

Rused =

n∑
i=1

ri (11)

For cpu usage we chose the cpu time metric, which rep-
resents the time in milliseconds used by a cpu for executing

some task. The resident memory metric is used for a memory
resource. It represents the amount of bytes allocated within
physical RAM. For a disk resource we take the disk usage
metric defined as the amount of bytes stored on a hard-disk.
Finally, network bandwidth is used for calculating the network
usage. It represents the number of bytes/sec transmitted and
received over a network.

Utilization U of a specific resource is calculated using
Equation 12, where Rused is the amount of used resources and
Rreserved is the amount of resources that has been reserved
for the execution of an application.

U =
Rused

Rreserved
(12)

We consider static resource reservation where each applica-
tion requires its own execution environment, with Rtotal being
the total amount of available resources. Thus for a physical
infrastructure Rreserved will always be equal to Rtotal since
all the resources of a physical machine are reserved, while
for a cloud infrastructure Rreserved can be less than Rtotal

since resources can be sliced to several virtual machines. Due
to this fact, utilization is expected to be better in a cloud
infrastructure, as shown in [9].

D. Energy model

Power consumption is measured for each physical machine
within the infrastructure, after which an average value is
calculated during an application runtime. Energy used by the
application depends not only on the average power consump-
tion Waverage, but on total execution time Ttotal as well. Thus
we formulate Equation 13 in order to calculate a total energy
usage Etotal of the application.

Etotal = Waverage · Ttotal (13)

Due to a generally longer execution time on an infrastruc-
ture that uses a virtualization and higher resource usage due to
its overhead, the energy consumption is expected to be greater
for a cloud infrastructure than for a physical infrastructure [9].

V. EVALUATION SETUP

We plan to evaluate our comparison methodology in a real
world scenario on our own local infrastructure by building both
cloud and a physical infrastructures. Machines are already con-
nected with an ethernet connection and supplied with power
through Dominion PX [18] power unit used also for measuring
the energy consumption. Both for physical and virtual nodes
we plan to use Ubuntu Server [19] as an operating system.
Moreover, for cloud infrastructure we will use OpenStack
[20] as a cloud management software and KVM [21] for a
virtualization layer.

For performing our evaluation, we intend to use a real
world scientific application for calculating Weibel instabilities
within quark-gluon plasma during particle collisions [22] such
as those in the Large Hardon Collider at CERN [23], all
this in collaboration with the Particle Physics Group from
the Institute for Theoretical Physics at Vienna University



of Technology. After analyzing preliminary research results,
we conclude that this application can be benchmarked for
all four selected resources from the Section IV-C, as well
as energy consumption. For monitoring resource and energy
consumption we will use an improved version of our M4Cloud
monitoring tool presented in [17].

Evaluation comprises of four steps: (1) building both infras-
tructures using our local hardware in order to evaluate com-
plexity of the different setup procedures; (2) performing tests
with different application and system parameters as defined in
Section IV-B in order to find a best performing configuration;
(3) resource and energy consumption will be measured for
the best configuration in order to measure a resource and
energy consumption overheads; (4) comparing and analyzing
the results to see which infrastructure provides more benefits
for building and executing the scientific application.

This evaluation will not only show the usability of our
comparison methodology, but will also provide some new
insights into trade-offs between the two infrastructures.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a methodology for comparing
different computing infrastructures used by the scientific com-
munity. We demonstrated that comparing two infrastructures
goes beyond comparing only performance trade-offs. By intro-
ducing a novel approach for measuring complexity of setting
up and administrating an infrastructure, we added another di-
mension for comparing the trade-offs between infrastructures.
We combined it with performance, energy and resource con-
sumption overheads and provided a straightforward approach
for supporting scientists in their decision-making procedure
for choosing an infrastructure.

In addition to performing the evaluation described in the
Section V, we also consider extending our work by including
an application development step in order to define a method-
ology for agile cloud software development, which would
provide clear guidelines for scientists when targeting their
applications to a specific infrastructure. Moreover, we plan
to improve our complexity model by adding a learning curve
parameter, as well as task parallelization, and use it for making
an in-depth analysis of different cloud setups.

REFERENCES

[1] C. Catlett, “TeraGrid: A Foundation for US Cyberinfrastructure,” in
Network and Parallel Computing (H. Jin, D. Reed, and W. Jiang, eds.),
vol. 3779 of Lecture Notes in Computer Science, ch. 1, p. 1, Berlin,
Heidelberg: Springer Berlin / Heidelberg, 2005.

[2] P. Louridas, “Up in the air: Moving your applications to the cloud,”
Software, IEEE, vol. 27, pp. 6 –11, july-aug. 2010.

[3] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International Symposium
on, pp. 4 –16, dec. 2009.

[4] B. Konning, C. Engelmann, S. Scott, and G. Geist, “Virtualized envi-
ronments for the harness high performance computing workbench,” in
Parallel, Distributed and Network-Based Processing, 2008. PDP 2008.
16th Euromicro Conference on, pp. 133 –140, feb. 2008.

[5] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and
modeling virtualization performance overhead for cloud environments.,”
in CLOSER (F. Leymann, I. Ivanov, M. van Sinderen, and B. Shishkov,
eds.), pp. 563–573, SciTePress, 2011.

[6] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster environment,” in
High Performance Computing and Communications (HPCC), 2010 12th
IEEE International Conference on, pp. 273 –280, sept. 2010.

[7] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, pp. 931 –945, june 2011.

[8] P. Kang, E. Tilevich, S. Varadarajan, and N. Ramakrishnan, “Maintain-
able and reusable scientific software adaptation: democratizing scientific
software adaptation,” in Proceedings of the tenth international confer-
ence on Aspect-oriented software development, AOSD ’11, (New York,
NY, USA), pp. 165–176, ACM, 2011.

[9] Y. Jin, Y. Wen, and Q. Chen, “Energy efficiency and server virtualization
in data centers: An empirical investigation,” in Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on,
pp. 133 –138, march 2012.

[10] A. Angabini, N. Yazdani, T. Mundt, and F. Hassani, “Suitability of cloud
computing for scientific data analyzing applications; an empirical study,”
in P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2011
International Conference on, pp. 193 –199, oct. 2011.

[11] C. Vecchiola, X. Chu, and R. Buyya, Aneka: A Software Platform for
.NET-based Cloud Computing. IOS Press, 2010.

[12] G. Galante and L. de Bona, “Nebulous: A framework for scientific appli-
cations execution on cloud environments,” in Sistemas Computacionais
(WSCAD-SSC), 2011 Simpasio em, p. 6, oct. 2011.

[13] H. Vashishtha, M. Smit, and E. Stroulia, “Moving text analysis tools
to the cloud,” in Services (SERVICES-1), 2010 6th World Congress on,
pp. 107 –114, july 2010.

[14] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Wrthwein, I. Foster, R. Gardner,
M. Wilde, A. Blatecky, J. McGee, and R. Quick, “The open science
grid,” Journal of Physics: Conference Series, vol. 78, no. 1, p. 012057,
2007.

[15] M. Cohn, Agile Estimating and Planning. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2005.

[16] N. I. of Informatics Cloud Team, “dodai-deploy - software management
tool..” https://github.com/nii-cloud/dodai-deploy/wiki, 2012.

[17] T. Mastelic, V. Emeakaroha, M. Maurer, and I. Brandic, “M4cloud -
generic application level monitoring for resource-shared cloud envi-
ronments,” in CLOSER 2012, 2st International Conference on Cloud
Computing and Services Science, 2012.

[18] Raritan, “Dominion PX - inteligent power distribution unit..”
http://www.raritan.com/drc/files/products/DominionPX/DominionPX 1.10-
UserGuide.pdf, 2008.

[19] Canonical, “Ubuntu - debian based linux distribution.”
http://www.ubuntu.com/, 2012.

[20] OpenStack, “OpenStack - open source software for building private and
public clouds..” http://www.openstack.org/, 2012.

[21] R. H. Inc., “KVM - kernel based virtual machine..” http://www.linux-
kvm.org, 2012.

[22] A. Ipp, A. Rebhan, and M. Strickland, “Non-abelian plasma instabilities:
Su(3) versus su(2),” Phys. Rev. D, vol. 84, p. 056003, Sep 2011.

[23] CERN, “LHC - large hadron collider..” http://public.web.cern.ch/public/,
2012.


