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ABSTRACT
Cloud computing utilizes arbitrary mega-scale computing
infrastructures and is currently revolutionizing the ICT land-
scape by allowing remote access to computing power and
data over the Internet. Besides the huge economical impact
Cloud technology exhibits a high potential to be a corner-
stone of a new generation of sustainable and energy-efficient
ICT. The challenging issue thereby is the energy-efficient
utilization of physical machines (PMs) and the resource-
efficient management of virtual machines (VMs) while at-
taining promised non-functional qualities of service expressed
by means of Service Level Agreements (SLAs). Currently,
there exist solutions for PM power management, VM mi-
grations, and dynamic reconfiguration of VMs. However,
most of the existing approaches consider each of them alone,
and only use rudimentary concepts for migration costs or
disrespect the nature of the highly volatile workloads. In
this paper we present an integrated approach for VM mi-
gration and reconfiguration, and PM power management.
Thereby, we incorporate an autonomic management loop,
where proactive actions are suggested for all three areas in
a hierarchically structured way. We evaluate our approach
with both, synthetic workload data and real-word monitor-
ing data of a Next Generation Sequencing (NGS) application
used for the protein folding in the bioinformatics area. The
efficacy of our approach is evaluated by considering classical
algorithms like First Fit, Monte Carlo and Vector Packing,
adapted for energy-efficient reallocation. The results show
energy savings up to 61.6% while keeping acceptably low
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SLA violation rates.

1. INTRODUCTION
Cloud computing operators provide services and infras-

tructures to thousands of users, enabling them to have full
control over the provided platform. This is achieved by us-
ing virtualization technologies allowing isolation of an en-
vironment as well as reconfiguration and migration of the
Virtual Machines (VM). However, even in the state-of-the-
art data centres, the massive amount of physical machines
(PMs) leads to high power consumption and carbon foot-
print of the data center, as well as high operation costs [11].
Furthermore, not violating so-called Service Level Agree-
ments (SLAs), which guarantee by contract Quality of Ser-
vice (QoS) requirements to the users, is of another paramount,
yet conflicting importance for the Cloud provider.
There are several distinct possibilities to save energy on

Cloud computing infrastructures while keeping SLAs. On
the one hand, using VM migration, one could reallocate the
VMs running on a platform to either consolidate them if
the platform is underutilized, or to load-balance them if dis-
parities appear in PM load, as well as to reduce load on
overloaded (or to-be overloaded) PMs. On the other hand,
the best allocation of VMs to PMs can still waste a lot of
energy, if the resources allocated to these VMs are over-
estimated. This is usually the case, as SLAs, which the size
of a VMs is normally based upon, are often specified rather
pessimistically to guarantee for peak workload. Further-
more, powering off the exact number of unused PMs such
that they are again available when needed is another crucial
question. Since the workload of a service running on a VM
might change quite unexpectedly over time, the problem
of providing proper resources and allocations of VMs does
not only have to be solved once, but has to be re-evaluated
and re-configured frequently over time. Consequently, find-
ing usable solutions in an acceptable small amount of time,
leading to high scalability of the solution, is an additional
constraint to this problem.
Unfortunately, VM migrations and powering on/off PMs
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do have a cost. The impact they have on the energy con-
sumption of the system is another factor for this problem:
First, VM reconfiguration triggers migrations that would
not have occurred for a static system. Second, the migra-
tions of VMs cannot be done instantly, whether with of-
fline (pause, migrate, unpause) or live migration (migrate
while the VM still runs at the cost of slower and higher net-
work data transfer). The usual solution to diminish the time
taken to migrate a VM is to use network storage to store sys-
tem images, as most of the data transfer will be done locally.
However, migration still takes a significant amount of time,
especially with services that use a high amount of memory,
and when several migrations are triggered at the same time.
During the migration one VM requires two running PMs
(source and target PMs). This is not energy-efficient.
The research presented in this paper unifies all the three

mentioned methodologies (VM reconfiguration, VM migra-
tion, PM power management), presents concrete implemen-
tations for each of them, and tackles all of the mentioned
constraints (migration and power management costs, and
scalability). The ultimate goal of the implemented frame-
work is to (a) minimize energy consumption, while (b) min-
imizing SLA violations. For the VM reconfiguration we
adapt a rule-based approach formerly introduced in [18].
For VM allocation and reallocation we present four different
strategies, where we modify simple algorithms like First Fit,
but also smarter algorithms based on a Monte Carlo method
or vector packing. Finally, power management relies on
threat thresholds and statistics about recent PM utilization.
As to migrations and power management, we do not relate
their energy costs to some arbitrary cost function, but to the
time it takes to perform the respective actions. The basis
of this work is an autonomic control loop using a knowledge
base that autonomically governs the infrastructure based on
high-level input: SLAs and energy performance parameters.
We evaluate the described approach with well-established

synthetic workloads for Cloud Computing infrastructures
[17, 18], as well as real-world data stemming from monitor-
ing a scientific bioinformatic workflow for Next Generation
Sequencing (NGS). NGS is a recently introduced technol-
ogy for identifying nucleotide molecules like RNA or DNA
in biomedical samples. It has been successfully adapted as
a Cloud computing application [6].
The main contributions of this paper are:

1. Combining resource-efficient and SLA-enacting VM re-
configuration with energy-efficient VM allocation and
reallocation, and PM power management.

2. Naturally integrating costs for migrations and PM power
management into an existing power model.

3. Evaluating the proposed framework with several work-
loads achieving energy savings up to 61.6% only by VM
reconfiguration, and additional up to 37% by VM re-
allocation algorithms while keeping SLA violations at
a minimum.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work. Whereas Section 3 generally
describes the models used for energy, VM reconfiguration
and migration, as well as PM power management, Section
4 details the implemented solutions. Afterwards, Section
5 discusses the evaluation of the presented approach, and
Section 6 concludes the paper.

2. RELATED WORKS
We can divide related work in this area into two parts:

resource-efficient and SLA-enacting VM and knowledge man-
agement, and energy-efficient and/or SLA-aware PM man-
agement.
As to the first part, there has been some considerable

work on optimizing resource usage while keeping QoS goals.
These papers, however, concentrate on specific subsystems
of Large Scale Distributed Systems, as [13] on the perfor-
mance of memory systems, or only deal with very generic
SLA parameters. Petrucci [23] or Bichler [4] investigate one
general resource constraint, whereas we focus on two con-
crete parameters, where we also allow for easy extension
to others. The Sandpiper framework [28] offers black-box
and gray-box resource management for VMs. Contrary to
our approach, though, it plans reactions just after violations
have occurred. Also Rao et al. [24] with their VCONF model
pursue SLA violation minimization, but can only execute
one action per iteration and neglect the energy consumption
of executed actions. Additionally, none of the presented pa-
pers uses a knowledge base (KB) for possible reconfiguration
and self-adaptation. Hoyer et al. [8] also undertake a spec-
ulative approach as in Section 4.1, but by overbooking PM
resources. They assign VMs to PMs that would exceed their
maximum resource capacities, because VMs hardly ever use
all their assigned resources. Computing this allocation they
also take into consideration workload correlation of differ-
ent VMs. Stillwell et al. [25] in a similar setting define
the resource allocation problem for static workloads, present
the optimal solution for small instances and evaluate heuris-
tics by simulations. Nathani et al. [21], e.g., also deal with
VM placement on PMs using scheduling techniques. [10]
reacts to changing workload demands by starting new VM
instances; taking into account VM startup time, they use
prediction models to have VMs available already before the
peak occurs. Summarizing we can say that there has been
a great deal of work on the different action levels, whereas
VM reconfiguration has not been observed yet.
As to KM and autonomic management of SLAs, especially

rule-based systems have gained some interest. Paschke [22]
et al. investigate a rule-based approach in combination with
the logical formalism ContractLog. Their formalism speci-
fies rules to trigger after a violation has occurred, but it does
not deal with avoidance of SLA violations. Bahati et al. [2]
also use policies, i.e., rules, to achieve autonomic manage-
ment. They provide a system architecture including a KB
and a learning component, and divide all possible states of
the system into so called regions, which they assign a certain
benefit for being in this region. The actions are not struc-
tured, but are mixed together into a single rule, which makes
the rules very hard to manage and to determine a salience
concept behind them. However, we share the idea of defin-
ing “over-utilized”, “neutral” and “under-utilized” regions.
Our KM system allows to choose any arbitrary number of
resource parameters that can be adjusted on a VM.
As far as the second level is concerned, several papers fo-

cus on different levels (as described in Section 3). [29, 20,
15, 26] focus on VM migration and [19] on turning on and
off physical machines, whereas our paper achieves a more
holistic approach taking all these mentioned level plus VM
reconfiguration into account. Voorsluys et al. [27] tackle
the cost of live migration of virtual machines regarding the
response time of the services inside the VMs in order to



match the response time with the SLA requirements of the
services. Liu et al. [14] also have studied live migration of
virtual machines in order to model the performance and en-
ergy of the migration. They show that migration is an I/O
intensive application, and that it consumes energy on both
ends. The architectural framework proposed in [3] for green
clouds also achieves VM reconfiguration, allocation and re-
allocation. The authors use a CPU power model to mon-
itor the energy consumption of the cloud. The algorithm
they propose to dynamically consolidate VMs significantly
reduces the global power consumption of their infrastruc-
ture. Their work, however, differs from our approach in
several points. Most importantly, they use a different VM
migration model, reactive VM reconfiguration actions in-
stead of proactive ones, and they neglect the time to power
on and off PMs. Our research provides a more wholesome
approach than related work and integrates most of the dif-
ferent possible action levels seen in the literature.

3. ACTION, MIGRATION AND POWER MAN-
AGEMENT MODELS

In this section we will model our Cloud infrastructure and
its autonomic control loop including VMs, PMs, SLAs, mi-
gration, PM power management, and energy consumption,
and the governance thereof.
Governing the Cloud infrastructure is achieved by an au-

tonomic control loop called MAPE-K [9], where we monitor
(M) relevant metrics on the infrastructure; next we analyze
(A) them and plan (P) proactive and reactive actions, which
are then executed (E). All this is done in combination with a
knowledge base (K), which stores relevant information and
together with a decision mechanism tries to recommend ap-
propriate actions to take. This is summarized in Figure
1. The monitoring phase puts measurements into the KB
(step 1), and the analysis phase asks it to recommend actions
(step 2). The returned actions (step 3) are finally reflected
in the KB (step 4). The KB itself stores knowledge about
applications, VMs, and PMs as their current and past CPU
or memory utilization. It also keeps track of agreed SLAs,
the inserted measurements, the recommended actions, and
optionally federated clouds that allow outsourcing of appli-
cations.
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ment

Fed-
erated
Cloud

-CPU
-mem
- ...

PMVMApp

-SLO1
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- ...
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decision mechanism
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- ...
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Execution
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Analysis
queries for action
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gathers and inserts 
new measurement

Planning
schedules execution 

of actions

Figure 1: Autonomic MAPE-K loop for Cloud Com-
puting infrastructures

As possible reconfiguration actions we divide this resource
allocation problem into the following levels:

1. VM reconfiguration

2. VM migration

3. PM powering on/off

A fourth possibility, e.g., would be VM outsourcing to
Cloud federations [12], but we focus on solving the resource
allocation problem inside a Cloud first.
As far as our energy model is concerned, we define the

energy consumption E of a PM j as

Ej = Ej
min + utCP U,j · (Ej

max − Ej
min), (1)

where Ej
min and Ej

max represent the minimum and maxi-
mum energy consumption of a certain PM j, respectively,
and utCP U,j signifies the utilization of the CPU of PM j,
with values between 0 and 1. Thus, in our model energy con-
sumption only depends on CPU utilization, and we make a
linear interpolation of the PM’s energy consumption at idle
state (Emin when utCP U = 0) and when fully loaded (Emax

when utCP U = 1). While this energy model might not be
fully realistic, it is corroborated by experiments in the liter-
ature such as [7, 3].
We assume that one VM resides on exactly one PM ex-

cept when it is migrated. Then it resides on exactly two
PMs. We consider a heterogeneous system, thus VMs and
PMs with possibly different amounts of resources, and PMs
with different energy characteristics. Furthermore, we as-
sume that the amount of resources a VM is provided can
be adapted from one iteration to the next, and that PMs
can be powered on and off. However, VM migrations and
powering PMs on and off is not considered “free of charge”,
as far as energy is concerned. We define migration_time,
startup_time and shutdown_time as the time (in iterations
through the MAPE-K cycle) it takes a VM to migrate, and
a PM to start up or shut down, respectively. Figure 2 shows
how migrations are handled in our energy model. We do
not simply add any arbitrary value as a penalty for migra-
tions, but we place the VMs on both PMs, the PM the
VM is migrating from and the PM it is migrating to, for
migration_time iterations. Thus, the energy cost of a mi-
gration is indirectly measured by occupying the resources
of two PMs and leading to CPU utilization on the source
and target PMs for migration_time iterations. We similarly
proceed with the power management of PMs. We assume
that powering on and off PMs takes some time as defined in
startup_time and shutdown_time. This is shown in Figures
3 and 4, respectively.

t t+1 

VM	  1	   VM	  1	  

PM1 PM1 PM2 PM2 

VM	  1	   VM	  1	  

PM1 PM2 

Decision:  
Migrate VM1 from 
PM1 to PM2! 

Figure 2: Concept for migrations with migra-
tion_time=1



t t+1 t+2 

PM1 PM1 

Decision:  
Power on PM1! 

not available for VMs, 
but consuming full energy 
level (Emax). Possibility to 
allocate VMs to this PM 
already. 

Fully operational. 

VM	  1	  

Figure 3: Concept for powering on PMs with
startup_time=1

t t+1 t+2 

PM1 PM1 

Decision:   
Power off PM1! 
Precondition:  No VMs 
are executing on PM1 

not available for 
VMs, 
but consuming full 
energy level (Emax) 

PM1 powered off 

Figure 4: Concept for powering off PMs with shut-
down_time=1

Figure 5 shows a possible configuration of a sample Cloud
infrastructure at six time steps. There are 2 PMs and 2
VMs at time step t: PM 1 hosts the 2 VMs and PM 2 is
powered off. Only 2 resources (CPU and memory) are shown
in the figure. At t + 1, the CPU and memory consumption
of the VMs are increasing requiring the second PM to be
powered on. The machine is effectively powered on at t + 2
and can be used, so we begin the migration of the VM 1
from PM 1 to PM 2. The migration will last for one time
step. At t + 3 the migration ended and we do not need to
modify the system again. At t + 4 the resource needs of VM
2 have greatly decreased, making it possible to consolidate
the system safely by beginning to migrate VM1 back from
PM 2 to PM 1. At the last time step we can shutdown PM
2, which is unused.

4. AUTONOMIC ADAPTATION
This section describes the mechanisms for the three identi-

fied areas for re- and proactive actions: VM reconfiguration,
VM reallocation, and PM power management.

4.1 VM reconfiguration
For VM reconfiguration, we adapt a rule-based approach

first described in [18].
As introduced in [17], we distinguish between agreed, used

and provided values for a certain resource. A Service Level
Objective (SLO) as part of an SLA is of the form “rmin ≤
SLA parameter ≤ rmax”. For memory, e.g., an SLO might
look like 8MB ≤ memory ≤ 512MB. We will refer to rmax

as the agreed value. Furthermore, we measure how much a
VM currently uses and how much we provide to it on any
PM, and can thus calculate the utilization of a resource as
utr = usedr

providedr . Consequently, an SLA violation occurs if

t	   t+1	  

PM1	   	  	  	  	  	  	  	  PM2	  
Powered	  off	  

	  	  	  	  	  PM2	  
Powering	  on	  

PM1	  

t+2	  

PM2	  
	  

PM1	  

t+3	  

PM2	  
	  

PM1	   PM1	   PM2	  
	  

PM1	   	  	  	  	  	  PM2	  
Powering	  off	  

t+4	   t+5	  

VM 2 
VM 1 

C
P
U 

M
E
M 

C
P
U 

M
E
M 

C
P
U 

M
E
M 

migration_time = 1 
startup_time = 1 
shutdown_time = 1 

Figure 5: Configuration sample at six time steps

one would like to use more than provided, but less then
agreed.
From the discussion and the definition of the overall goals

(a) and (b) from Section 1 we determine the following sub-
goals for this action level.

1. Minimize number of SLA violations

2. Maximize VM resource utilization

3. Minimize number of reallocation actions

When viewing the system only at the level of VMs we can
thus directly infer subgoal (1) from goal (a). However, as
no energy can be measured when ignoring PMs, we have to
infer two new subgoals out of goal (b): (2) and (3). Ne-
glecting subgoal (3) would lead to unstable system behavior
enchaining a high probability of necessary migrations. Of
course, when there are no reallocation actions, there is no
need for migrations once the PMs have been consolidated
(see Section 4.2).
We now take a speculative approach and investigate whether

we can provide less than agreed, but more than currently
used, so that we do not run into an SLA violation, but keep
resource utilization high. Not taking this approach would
mean provisioning all VMs at their maximum resource con-
figuration. Usually, the maximum resource configuration is
set so high that it can handle peak usage. Always providing
this maximum would thus result into huge resource wastage
for all non-peak time instances.
The main idea of the rule-based approach is that utiliza-

tion utr of any resource r is divided into three regions +1, 0,
and −1 signifying under-, optimal, and over-utilization, re-
spectively. The regions are identified by two so called threat
thresholds (TTs), i.e., T T r

low and T T r
high, and are defined as

• Region +1: 0 ≤ utr < T T r
low

• Region 0: T T r
low ≤ utr ≤ T T r

high

• Region -1: T T r
high < utr ≤ 100.

Every resource can have its own favorable pair of TTs.
We call the center of region 0 the target value tv. Figure



0%

TT_low=60%

TT_high=80%

100%

Region -1

Region 0

Region +1

tv

t1   t2   t3   t4   t5   t6

Figure 6: Principle of rule-based approach

6 depicts a sample utilization situation for an arbitrary re-
source at six succeeding time steps. At t1 the utilization
of the resource is in region +1, which means that the re-
source is under-provisioned. Thus, the KB recommends to
increase the provided resource in order to move utilization
to tv, which in this example is situated at 70%. As long as
the utilization stays in region 0, which is true for t2, t3, and
t4, the KB recommends no action. Only when the utiliza-
tion leaves again this region as at t5, utilization is set back
to tv. A large enough span between the thresholds T T r

low
and T T r

high helps to prevent oscillations of repeatedly in-
creasing and decreasing the same resource. Figures 7 and 8
depict rule schemes for increasing and decreasing resources,
respectively.

1 IF
2 utr > TT r

high AND utrpredicted > TT r
high

3 THEN
4 Set prr to user

tv(r) for policy modes with plenty of resource left.
5 Set prr to min( user

tv(r) , SLO
r ∗ (1 + ε/100)) for policy modes

with scarce overall resource situation.

Figure 7: Rule scheme for increasing a resource

1 IF
2 utr < TT r

low AND utrpredicted < TT r
low

3 THEN
4 Set prr to max( user

tv(r) ,minPr
r).

Figure 8: Rule scheme for decreasing a resource

The rules have been implemented using the Java rule en-
gine Drools [1]. Different policy modes will load slightly
modified rules into the Drools engine and thus achieve a
high adaptability of the KM system reacting to the general
performance of the Cloud infrastructure.
Preliminary evaluation results in [18] show that the rule-

based approach outperforms many other KM techniques use-
ful for VM resource allocation as Case Based Reasoning,
Situation Calculus or Default Logic [16]. It achieves SLA
violation rates below 1% and resource utilization above 70%
with a maximum number of reconfiguration actions of 20%.

4.2 Power-Aware Reallocation: VM Migrations
In order to achieve power-aware allocation and realloca-

tion of the VMs, we implemented several algorithms with
different behaviours. For each algorithm we implemented a

first allocation version, which will do the initial mapping of
the virtual machines to the physical machines. We then im-
plemented a reallocation algorithm that will output a map-
ping out of an initial allocation, using the VM migration
model.

First Fit
The FirstFit algorithm for the first allocation problem is
the well-known mapping algorithm that will allocate each
VM to the first host on which it fits. We, however, added a
power-aware component to the algorithm, as we will try to
allocate first on the PM that will have the smallest maxi-
mum power consumption which, as shown in [5] has proven
to consume less energy.
When reallocating the VMs the usual packing algorithms

cannot be used, since we have to take into account where
the VMs were allocated at the previous time step, and the
fact that they will consume resources on both source and
destination PMs. The algorithm works in two steps. First
we pick the most loaded PM and we distribute half its load
in a first fit fashion. Then we pick the least loaded PM, and
distribute all its load in a first fit fashion.

Round Robin
The RoundRobin algorithm for the first allocation allocates
one VM to each PM until no VM is left to allocate. We
added the same power-aware component as the FirstFit
algorithm.
When reallocating the VMs, we first take the most loaded

PM and spread its load on other non empty PMs in a round
robin fashion, then we take one VM on each PM and put
it on an empty host. This reallocation algorithm, even if it
does not perform well power-wise, it will serve as a baseline
for other algorithms.

Monte Carlo
The MonteCarlo algorithm works on the basis of the well
known Monte Carlo method, which uses probabilistic tech-
niques to compute a numerical value. In our case, we will do
the first allocation using the RoundRobin algorithm, which
allows us to have an evenly balanced system, and that way
converge faster to a good solution.
For the reallocation, the algorithm computes the cost of

the current allocation using several parameters in order to:

• increase the cost for each job migrating.

• increase the cost for each overloaded host.

• decrease the cost for each host that is empty or will be
empty.

Each parameter can be changed to modify the weight of the
migrations, PM overloads and PM powering down. In our
tests, we will use the values 1 for the migrating jobs, 4 for
the overloaded hosts and −10 for a PM that will be empty.
This means that if we take for instance a system with 3 PMs
and 1 VM migrating from PM1 to PM2 we will get the cost
1×1+4×0+(−10×2) = −15. The algorithm then computes
a random set of job migrations, in order to get the new cost
of the reallocation. If the cost is lower, we keep the set of
migrations. The algorithm repeats those operations a fixed
number of times, to emerge the best set of migrations for
the next iteration.



Vector Packing
The VectorPacking algorithm tries for the first allocation
to allocate each job, beginning with the jobs with the highest
resource needs on the hosts with the lowest maximum power
consumption. It uses a vector packing technique that sorts
the jobs according to their highest resource need. It then
allocates each job picking it from the list that will counter
the current imbalance in the PM’s resource loads.
For the reallocation the algorithm consolidates the VMs as

much as possible using the same heuristic as the allocation.
It then load balances some VMs on the most loaded PMs
that will not be empty in the future iterations. That way,
the algorithm aims to pack the VMs to a minimum number
of PMs and then load balance the VMs between those PMs.

4.3 PM Power Management
Eventually, actual power can only be saved, when PMs

are powered off. However, the question of how many PMs
should be powered off when in order not to risk future SLA
violations is not trivial. Thus, we designed the following
powering off strategy: We consider all empty PMs at the
current iteration, i.e., all PMs that have no VMs running on
them. We decide to switch off a certain fraction a of them,
i.e.,

Number of PMs to switch off = Number of empty PMs
a

This means that when the number of empty PMs stays con-
stant, this technique turns off all but one PMs in an ex-
ponential manner. Thus, when n represents the number of
empty PMs, we want to know when there will be only 1 PM
left. So we need to solve n · a−t = 1 for t, which results into
t = d− loga 1

n
e. This is the number of iterations it will take

to power off all (but one) PMs. This last PM is kept as a
spare PM in order to serve sudden increases in demand as a
first resort. Consequently, this technique allows to power off
all machines very quickly in case of stable VMs, but always
keeps a certain fraction powered on in case VM resources
start to increase again.
As far as powering on machines is concerned, we monitor

average utilization for every resource on all PMs and de-
fine – similarly to the rule-based approach (cf. Section 4.1)
– resource-dependent threat thresholds. If any of these re-
sources exceeds its TT, we power on as many PMs such that
the average resource utilization again falls below its TT.
In both cases, we always power on most energy-efficient

PMs first, and power off least energy-efficient PMs first.

5. EVALUATION
In this section we will evaluate the framework of VM re-

configuration and reallocation algorithms together with PM
management. We divide the evaluation into 4 experiments.
In the first experiment (Section 5.1) we determine the en-
ergy gain VM reconfiguration brings alone. In the second
experiment (Section 5.2) we focus on the four different real-
location algorithms to see which one performs best. In the
third experiment (Section 5.3) we more deeply investigate
some of the parameters for the two best reallocation algo-
rithms. Finally, with the fourth experiment we evaluate the
scalability (Section 5.4) of the algorithms.
We simulate 100 PMs with 1.1GHz processors and 4GB

memory, that consume 20W at idle (Emin) and 100W when
fully loaded (Emax). VMs were each 500 MHz of CPU and

500 MB of memory at t = 0. We used several different work-
loads for the 100 VMs of the system, two synthetic ones and
one based on real measurements of a scientific bioinformatic
workflow presented in [6]. For the synthetic workloads we
distinguish between LIGHT workload volatility, i.e., work-
load does not change a lot (up to 10% from one iteration
to the other), and the opposite MEDIUM_HEAVY (up to
50% from one iteration to the other workload volatility. A
more detailed description of the workload generation can be
found in [18]. We will abbreviate the bioinformatic workflow
with BOKU. We evaluated the algorithms with 100 itera-
tions and the PM powering off strategy with a = 2, unless
stated otherwise.

5.1 Impact of VM reconfiguration over energy
consumption

We perform the first set of runs to experiment on the effect
of the VM reconfiguration on the energy consumption of the
system. In order to do so, we run the four algorithms with
a fixed workload volatility class (here MEDIUM_HEAVY),
and a fixed set of TT pairs. We then compare to the same
runs with VM reconfiguration disabled. Evaluation param-
eters can be found in Table 1.

Parameter Evaluated values
Tested workloads MEDIUM_HEAVY volatility
VM reconfiguration turned on/off
VM reconfiguration
TT pairs

[20%, 40%]

VM reallocation algo-
rithms

RoundRobin, FirstFit, MonteCarlo,
VectorPacking

ttcpu 0.8
ttmemory 0.8

Table 1: Evaluation input parameters for Experi-
ment 1

Figure 9: Energy consumption for Experiment 1

Figure 9 shows the total energy consumption over the 100
time steps. We only plotted one of the no reconfiguration
results since all the 4 runs had the same energy consump-
tion. The reason is that all algorithms achieve the optimal
first allocation of 2 VMs per PM, since the initial CPU re-
quirement of VMs 500MHz, and this requirement does not



Figure 10: SLA violations for Experiment 1

change throughout the run. The difference between the best
achieving algorithm with VM reconfiguration on and off goes
up to 61.6%, since our PMs have a low Emin compared to
Emax, which enables a better performance for underutilized
VMs. However, this gain in the energy consumption can be
made at the price of more SLA violations as shown if Figure
10 due to the speculative reconfiguration approach.

5.2 Evaluation of VM reallocation algorithms
In order to evaluate the performance of the VM realloca-

tion algorithms, we run the simulations for the 4 algorithms
with the VM reconfiguration turned on, and with one set
of TT pairs. We evaluate three different workloads: low
and medium-high volatility of the resource needs, and the
bioinformatic workflow. Parameters are shown in Table 2.

Parameter Evaluated values
Tested workloads LIGHT, MEDIUM_HEAVY, BOKU
VM reconfiguration turned on
VM reconfiguration
TT pairs

[20%, 40%]

VM reallocation algo-
rithms

RoundRobin, FirstFit, MonteCarlo,
VectorPacking

ttcpu 0.8
ttmemory 0.8

Table 2: Evaluation input parameters for Experi-
ment 2

Figure 11 shows the total energy consumption of the PMs
over the 100 time steps for the 3 workloads. As the figure
shows, for LIGHT volatility workloads, the MonteCarlo
algorithm performs best, closely followed by VectorPack-
ing and FirstFit. The RoundRobin algorithm performs
badly since it is consuming twice as much energy. If we
look at the MEDIUM_HEAVY volatility workload, we can
see that the FirstFit algorithm outperforms all other algo-
rithms going up to 37% less energy consumption compared
to RoundRobin. Finally, for the BOKU workload, which
stresses the resources more than the two other workloads,
the results are the same as for the LIGHT workload, only
with a generally much higher energy consumption.
The reason behind these differences is partially shown in

Figure 13, which shows the average number of powered on

PMs during the run. As we can see, the RoundRobin will
load balance the VMs on every PM, thus preventing the
autonomic manager to shut down empty PMs. The algo-
rithm that performs best, however, is the VectorPack-
ing algorithm, since it is designed to heavily consolidate
the VMs, while load balancing if possible on the PMs that
remain powered on. We note that, except for FirstFit
and RoundRobin, the number of powered on PMs increases
as the system resource consumption becomes more volatile.
This can be explained by the fact that the FirstFit algo-
rithm is less proactive than the others, leading to problems
as we will see in Figure 12.
Figure 12 plots the SLA violation percentage of the cloud

for each algorithm. Only the LIGHT andMEDIUM_HEAVY
workloads are plotted, since the BOKU workload is much
less volatile than the others and has an SLA violation rate
of 0%. As we see, the RoundRobin has the least violation
percentage of all the algorithms, since it uses all the PMs.
The small amount of violations is generated by the VM re-
configuration. The VectorPacking and MonteCarlo al-
gorithms are around 4% and 8% of SLA violations. Last, the
FirstFit algorithm which performs better for the LIGHT
volatility workload, performs poorly when the volatility in-
creases, since it goes up to over 16% SLA violations.
To examine the performance of the algorithms, we have to

account for both the energy consumption of the cloud, and
the SLA violations that the reconfiguration of the VMs and
the PMs have induced. The perfect example is when look-
ing at the FirstFit algorithm for the MEDIUM_HEAVY
workload. For these parameters, the algorithm performs ex-
tremely well energy-wise, outperforming smarter algorithms,
but the setback is to have over 16% SLA violations. Looking
at the global picture, we have a 60kW difference between the
two algorithms for a 8 point difference of SLA violations.

Figure 11: Energy consumption of the algorithms
under different workloads

5.3 Evaluation of VM and PM Threat Thresh-
olds

As the next evaluation step we focus on the two threat
threshold pairs we use: One for PM power management
(average CPU and memory utilization of all PMs), which we
call PM-TTs, and one for the VM reconfiguration (T Tmin, T Tmax)



Figure 12: SLA violation percentages of the VMs
under different workloads

Figure 13: Average number of powered on machines

named VM-TTs. We evaluate them on the two VM realloca-
tion algorithms that achieve best results in the previous allo-
cations: MonteCarlo and VectorPacking. We analyze
three different PM-TTs [80%, 80%], [60%, 80%], [60%, 60%]
in the format [CP U, memory]. We use a more cautious TT
for CPU in one case, because this showed to be the resource
which is usually fluctuating more quickly than memory. For
the VM-TTs we use the standard interval [50%, 75%] found
in [18] to be a good general setting additional to the very
cautious setting of [20%, 40%] used in the previous evalua-
tion. All the resulting scenarios are depicted in Table 3.
Figures 14 and 15 show that MonteCarlo is almost al-

ways better in terms of energy and violations. However, it
takes much longer processing time as presented in Section
5.4. For Scenarios 2, 4 and 6 the difference in favor of Mon-
teCarlo is extremely large, as far as energy consumption
is concerned. Not surprisingly, the scenarios, where energy
consumption is lowest has the highest number of SLA vi-
olations and vice versa. Generally speaking, the even and
the odd scenarios show similar behavior meaning the VM-
TTs have a higher impact on the outcome as compared to

Figure 14: Energy consumption for varying VM and
PM thresholds

Figure 15: SLA violations for varying VM and PM
thresholds

the PM-TTs. Moreover, lowering PM-TTs increases energy
consumption, but does not lower SLA violations in all cases.
Finally, the better results of MonteCarlo can also be ex-
plained when looking at the number of PMs that were pow-
ered on or off. VectorPacking powers on at least as much
(if not more) PMs as MonteCarlo, and MonteCarlo
also spends less energy on powering off again PMs that were
unnecessarily powered off by VectorPacking.

5.4 Scalability
Figure 16 shows the runtime of the reallocation algorithms

for 100, 200, 400 and 800 VMs. These runtimes contain
both the VM reconfiguration decisions and the reallocation
algorithm. As we can see, the MonteCarlo algorithm is
taking six time as much time to compute a solution each
time step at 100 VMs, as the others are computing in a
reasonable time (around half a second for 100 VMs with the
reconfiguration overhead). The MonteCarlo algorithm,
even if it performs rather well, will not scale well for two
reasons. The first is that it has to compute lots of time the
solution (100 in our tests), thus taking more and more time



Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
PM-TTs=[CPU,Memory] [80%, 80%] [80%, 80%] [60%, 80%] [60%, 80%] [60%, 60%] [60%, 60%]
VM-TTs=[T Tlow, T Thigh] [20%, 40%] [50%, 75%] [20%, 40%] [50%, 75%] [20%, 40%] [50%, 75%]

Table 3: Scenarios for Experiment 3

Figure 16: Runtime of the algorithms for 100 VMs

to compute. The second reason is that with an increasing
number of VMs and PMs, in order to achieve a near optimal
solution every time step, the algorithm has to increase its
iteration number to increase the chance of a good solution to
emerge. If we increase the number of VMs and PMs without
increasing the number of iterations of the MonteCarlo,
the quality of the results will become more sporadic, and
the average quality of the solution will decrease.
Figure 16 shows that the MonteCarlo algorithm is not

scalable, unlike the other 3 for which the runtime seems
to grow linearly with the number of VMs, and that it takes
around an acceptable 5s to compute a solution for 800 VMs.

6. CONCLUSION
In this paper we have presented a management framework

for governing Cloud Computing infrastructures to achieve
two goals: reduce energy consumption while keeping pre-
defined Service Level Agreements (SLAs). We have devised
a multi-level action approach that breaks down the NP-hard
resource allocation problem for Clouds. We have specialized
on several views of the Cloud Computing infrastructure, i.e.,
VM reconfiguration, VM migration, and PM power manage-
ment, in order to reduce the problem’s complexity. In each
of these views we have defined a subproblem and solved it
using a wide variety of heuristics ranging from rules over
random methods, i.e., Monte Carlo, to vector packing al-
gorithms. We have evaluated the sequential execution of
these views. We showed for the first time that the VM re-
configuration algorithm alone, which was already known to
minimize SLA violations and decrease resource wastage, also
effectively saves up to 61.6% of energy. Considering scalable
algorithms, these energy savings can still be increased by up
to 37% in the best case and 11% in the worst case while
keeping SLA violations at 0% for the workload of a bioinfor-
matic scientific workflow, below 4% for synthetic workloads

with low volatility for all VM migration algorithms, and be-
low 8% for synthetic workloads with higher volatility for the
smarter VM migration algorithms. For future work we plan
to focus more on a possible heterogeneity of the systems, re-
fining the migration model, and integrating the framework
into a real-world Cloud computing environment.
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