10 Questions* you should answer before you get serious with your research <NIER: New Ideas and Emerging Results>

Christoph Dorn www.infosys.tuwien.ac.at/staff/dorn

* Attribution goes to Prof. Richard N. Taylor, UCI

Overview

- Motivation for this talk
 - There are more things to consider before you get serious than you think
 - Applies mainly to writing small/medium/large proposal but also major papers → BUT: not about the actual writing
- 10 Questions:
 - General discussion
 - Eat your own dog food: applied to RiFlexS: Rigorous Flexible Systems
- Feedback
 - Any additional aspects you consider important
 - On RiFlexS (grilling me softly ...)

10 Questions at a glance

Focus on:

- 1. Goal
- 2. Tangible Benefits
- 3. Technical Difficulties
- 4. Approach Elements
- 5. Overcoming Challenges

- 6. Unique/Critical Output
- 7. Potential Spin-Off
- 8. Measuring Progress
- 9. Current Status
- 10. Work Schedule

1. Goal

- What is the main goal of your work?
 - the ultimate target,
 - not the solution
 - formulated precise and short,
 - not the approach
 - sets the scope

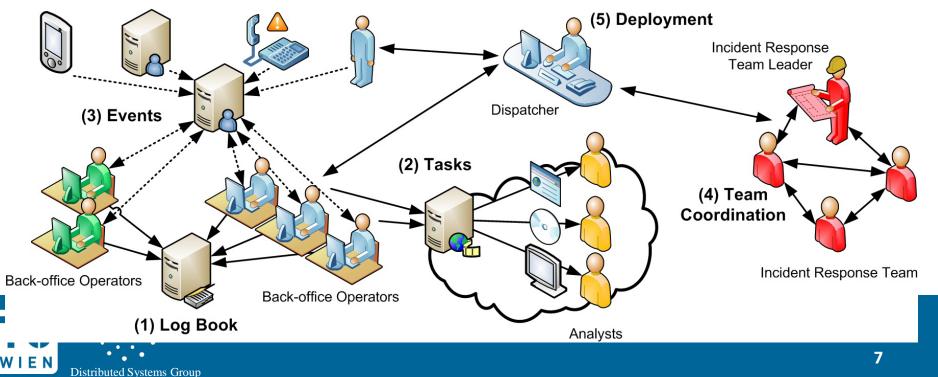
Goal - RiFlexS

- Enable the development of interactionintensive systems that seamless and simultaneously support tightly controlled user actions and flexible ad-hoc interactions.
- Sub-objectives
 - Specification of such systems (interaction aspects)
 - Informing the designer on expected system behavior, trade-offs, and constraints
 - Focused Infrastructure (runtime support)

A Motivating Scenario/Story

- Having a good scenario is important
 - Guides your thoughts
 - Keeps you down to earth
 - Provides scope and boundaries, assumptions
 - One of the earliest "discussion" document
- What is a good scenario
 - Balance between complexity and simplicity
 - Easy to relate to (the more familiar the better)
 - Achievable

Distributed Systems Group


- Realistic assumptions
- Actual problem
- Better to have two or three complementary scenarios, but at least you should have one!

RiFlexS scenario

- Design a system for monitoring critical infrastructure
 - Guaranteed behavior: ensure all event sources are monitored
 - Flexible behavior: allow operators to dynamically compose sources

On-site Personnel + other information sensors

2. Tangible Benefits

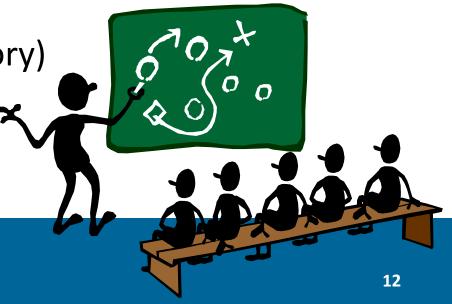
- What are the tangible benefits to society of achieving that goal (i.e. why should anyone pay for this work)?
 - Why is your research important, why should anyone care?
 - How does solving the problem result in benefit? Why is this a relevant problem?
 - Who are the stakeholders (who uses your output, who benefits indirectly)?

Tangible Benefits - RiFlexS

- Enable novel types of applications
 - Enable flexibility in constraint-driven environments without loosing control
 - Enable control in user-driven environments without loosing flexibility
- Applicable to example domains:
 - Hospital domain: enhance precisely specified processes with participant flexibility
 - Collective Intelligence domain: collaborative efforts evolve easier through on-demand coordination/control mechanisms

3. Technical Difficulties

- What are the technical problems/challenges that make the goal difficult to achieve (i.e., why hasn't this been done already)?
 - If it's a problem, but simple, let industry do it
 - What are the tricky aspect that are most likely preventing you from success
 → risk assessment
 - Not about the effort for implementation or evaluation
 - Know your related work


Technical Difficulties - RiFlexS

- Fundamental property: Control and Flexibility are diametric
- [Design] Specifying various degrees of control and flexibility, respectively their trade-offs
 - How much flexibility is possible while maintaining a certain minimum level of control/awareness and vice versa
 - How to (dynamically) shift between flexibility and control
- [Deployment] Collaboration patterns not designed for composition
 - Meaningful integration of different mechanisms for control and flexibility
 - Enforcing control across pattern boundaries
 - Designing for flexibility without jeopardizing control
- [Analysis] Human behavior is inherently fuzzy
 - Realistic assumptions when analyzing composite pattern design
 - Correctly interpreting human behavior at runtime

4. Approach Elements

- What are the main elements of your approach?
 - Focus on Methodology, Steps
 - Where to gain requirements from, what to analyze
 - What process to follow (e.g., iterative, exploratory)
 - How to evaluate
 - Not about the output

Approach Elements - RiFlexS

- Explorative and iterative development
 - Investigate different mechanisms for flexibility and control (breadth of patterns)
 - Refinement of mechanisms (depth of patterns)
 - Investigate different coupling intensities (pattern mapping degree)
- Prototyping and evaluation (comparison with solutions based on existing techniques)
- Two application domains:
 - Adding flexibility to control-centric applications in critical domains such as health care or infrastructure monitoring
 - Adding control to flexibility-centric, Internet-scale, collaborative web applications (e.g., collective awareness)

5. Overcoming Challenges

- How does your approach handle the technical problems that have prevented progress in the past (i.e., what makes you think you can do it when no one else could before)?
 - No, the answer is not your intellect and ingenuity (there are most definitely more intelligent people out there)
 - Apply concrete Techniques, Tools, (conceptual) Frameworks, Principles
 → how do these assist
 - Using machine learning techniques, reasoning techniques, formal specification techniques, architecture styles, ...
 - Refer again to related work

Overcoming Challenges - RiFlexS

- Specify precisely the dependency types among collaborators → these can then be managed
 - characterize collaborations in terms of architectural styles
- Specify precisely the user action range, and loci of control
 Constraints on collab patterns (when to relax, when to enforce)
- Introduce mappings between patterns
 - Investigate which pattern properties can be used as indicator in another pattern, under what assumptions/conditions
 - Remaining within a single style simplifies analysis, but makes specification often awkward, non-intuitive, ...
 - Primarily: mapping between control-flow (i.e. process view) and structure (i.e., architecture component + connector view)

6. Unique/Critical Output 💲 🖮

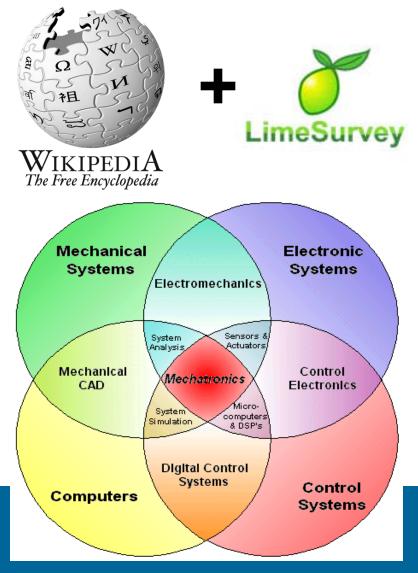
What are the unique, novel, and/or critical technologies developed in your approach?

- Types of output: SotA study, model, modeling language, algorithm, (programming) framework, reference design/architecture, design methodology, proof, user study
- Might want to distinguish according to design-time, deploy-time, run-time, ...
- Beware: evaluation output is not a contribution per se
 - User study for proving prototype's usability \rightarrow no contribution
 - User study for gaining insights into user behavior \rightarrow contribution
- Avoid featuritis: it can do, x, y, z, and a and b. → focus on a few main contributions

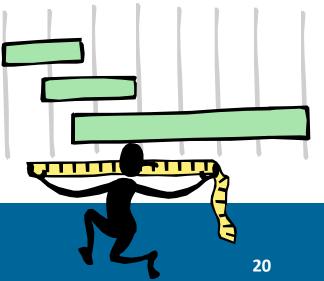
Unique/Critical Output - RiFlexS

- Pattern composition specification language
 - Properties, influence propagation, constraints (under specific assumptions)
- Techniques for composed pattern analysis
 - Get some assurance that the system will work as intended
 - Resource utilization, response time, agility, failure likelihood
- Proof-Of-Concept Runtime framework for composed pattern execution (monitoring, enforcement, ...)
 - Specific, focused set of collaboration capabilities
 - (grounded in actual interaction technologies such as XMPP only in demo applications)

7. Potential Spin-offs


- What are the potential spin-offs or other applications of your work?
 - Improve your (chances of) impact
 - Show that your research is not some obscure, academic exercise
 - Helps to identify additional stakeholders, new perspectives, opportunities for future research (proposals)

Potential Spin-Offs - RiFlexS

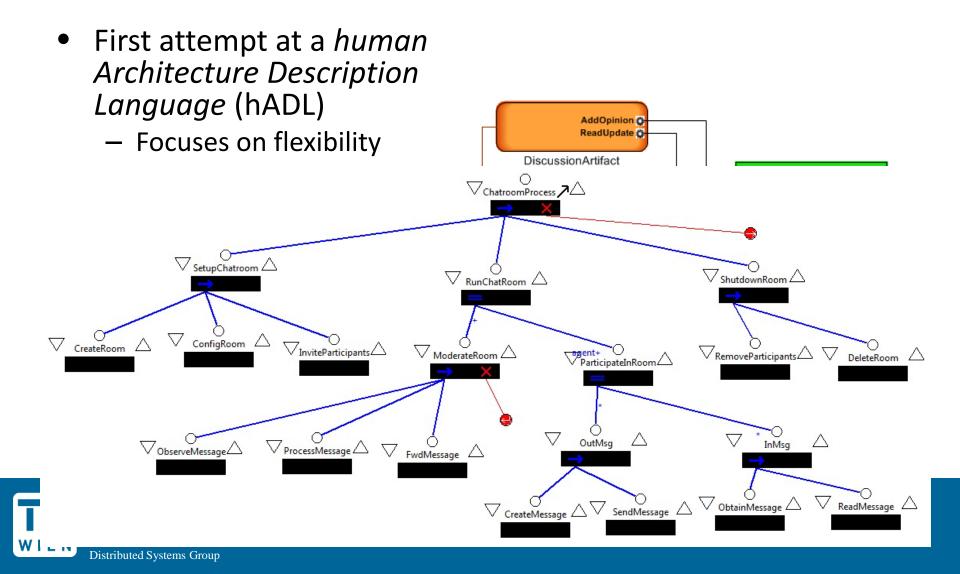

- Utilize in extensible interaction frameworks where user can dynamically compose patterns
 - E.g., imagine a wikipage where you could dynamically add a survey to a particular content selection.
- Refine in mechatronics domain for coordinating among all stakeholders
 - Integrated (automated) coordination among customer, product manager, requirements engineer, architect, analysts, electrical engineer, hydraulics engineer, embedded software engineer, tester, safety, documentation, etc.

8. Measure Progress

- How can progress be measured (i.e., how can anyone tell if/when you've succeeded)?
 - Milestones: specific properties of your output at particular stages (time frame)
 - Evaluation: show that your output has the claimed properties/benefit (intermediate and final)
 - Use case evaluation/demonstration, performance measurements (incl. comparisons), user study, statistical tests, simulation
 - Side Aspect: Enables you to ensure you are doing research correctly.

Measure Progress - RiFlexS

- Iterative Approach (2x) Milestones for each version and deliverable:
 - Specification Language for Multi Pattern Architecture
 - Analysis Tools
 - Runtime Framework
 - Scenario/Demo app
- 2nd iteration improves on expressiveness, scope, features, stability.


9. Current status

- What have you accomplished so far? What knowledge/previous work are you building upon?
 - Demonstrate familiarity/experience with the topic under investigation
 - Demonstrate that you have reason to believe in your success
 - Demonstrate that you won't start from scratch but spend resources wisely/ not reinventing the wheel: "standing on the shoulders of giants".
 - Has implications on your work plan.

Current Status - RiFlexS

10. Work plan

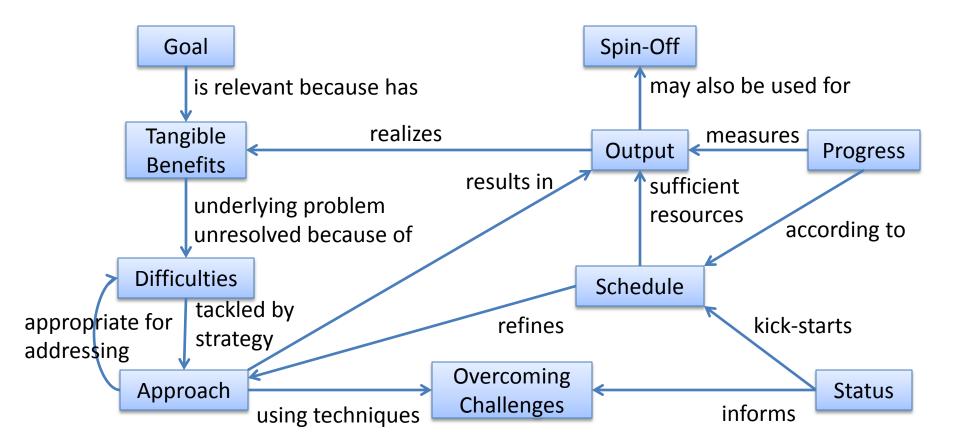
- What is the schedule for your (remaining) work?
 - Brings together approach, milestones, output
 - apply SW Engineering models (iterative, waterfall, ...)
 - Effort estimation for implementation and evaluation
 - Don't ask: how long will Task A take, rather what can I achieve in 1 month, 3 months ...
 - Risk mitigation
 - Research collaboration: when and how to interact, how to split the work
 - e.g., clearly separated research lines for PhD students
 - Keeps you focused

Work plan - RiFlexS

- 3 year project,
 - 6 months warm up (requirements refinement, back ground, SoTA, technology evaluation, ...)
 - 12 months 1st iteration
 - 12 months 2nd iteration
 - 6 months extended evaluation, writing up
- 2 PhD students
 - Focus on modeling and analysis
 - Focus on arch-2-code mapping and runtime enforcement

Conclusions

- Answering the 10 Questions is not done on a day, or week, or month.
 - Some you already know, for some parts you have to start from scratch.
 - Some more, some less relevant for your particular purpose
- A lot of effort
 - But **start small** and fit all answers on one A4 page.
 - Improve iteratively and discuss
 - Unfortunately you can never be sure that you done it correctly/completely \rightarrow live with it.
- Makes you aware what you actually want to do.
 - Not how to write/structure a proposal (very specific aspects for different funding sources)
 - But helps immensely because the core content is mostly there


Thanks for listening

- Questions and Feedback now!
 - 10 Questions
 - RiFlexS

10 Questions/Aspects relations

