Quality-aware data analytics

Hong-Linh Truong
Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/staff/truong
@linhsolar
What this lecture is about

- Data analytics – general view
- Data analytics workflow structures and systems
- Enable quality of analytics (QoA) for data analytics
- Quality of data in data analytics workflows
- Data elasticity management
What this lecture is about

- After this lecture
 - Apply and revise the analytics part in your project
 - Deal with quality of analytics and see how you could offer quality-aware analytics in your project
Big Data

- **Big volume, Big velocity, Big variety, Big Veracity**

- **Sources**
 - Internet of Things, human participation, social networks, software services, environment monitoring, advanced science instruments, science discovery, etc.

- **Several challenges in terms of data gathering, integration, and analytics**

Data Management/Delivery Systems

- Static data – data at rest
 - Hadoop file systems
 - Large scale storage data systems
 - iRODS, NoSQL
 - Web services for Data-as-a-Service (e.g., GIS)

- Real time data – data in motion
 - Cloud data platforms, e.g. Xively
 - Several MOM (Message-oriented Middleware)
 - E.g., Apache Kafka
 - Domain-specific streaming systems (e.g., images)
Data Processing Framework

- Batch processing
 - Mapreduce/Hadoop
 - Scientific workflows
- (Near) realtime streaming processing
 - S4 & Storm
- Hybrid data processing
 - Summingbird, Apache Kylin
 - Impala, Storm-YARN
 - Apache Spark
Conceptual View

Data Analytics

Decision

Data Analysis

Analytics, Tools, Processes & Models

Streaming/Online Data Processing

Batch Workflow Data Processing

Hybrid Data Processing

Data Processing Frameworks

(Near) realtime data

Static data
Data analytics processes – a bird view

Important notes: Structures and resources

We use the term „process“ in a generic meaning!!!
Data analytics processes

- Main categories
 - (Batch) workflow-based processing
 - Stream data processing
 - Hybrid data processing
Workflow-based processing

Workflow

<parallel>

<activity name="mProject1">
<executable name="mProject1"/>
</activity>

<activity name="mProject2">
<executable name="mProject2"/>
</activity>

</parallel>

mProject1Service.java

public void mProject1() {
 A();
 while () {
 ...
 }
}

Different views of (data analytics) workflow systems
Stream data processing

- Processing elements/operators are arranged in graphs
- Streaming data comes to processing elements
- Results from an element are passed to another

Check also: http://www.infosys.tuwien.ac.at/teaching/courses/socloud/ws2011/slides/streamprocessing.pdf
Hybrid data processing

Combine batch processing and streaming processing e.g., https://spark.apache.org/

Source: http://lambda-architecture.net/
Applications

- When we have different problems required different data processing models for different workload/performance
 - Near realtime monitoring + predictive analytics
- Support many phases in data integration and analytics with the same framework
- Dealing with static and realtime data in decision making
WORKFLOWS
Data analytics workflow execution models

Execution Engine

Local Scheduler

Web service

Web service

Web service

People

Data analytics workflows
Data analytics workflow execution models

Data analytics workflows

Execution Engine

Service unit

Local input data

Web service
MapReduce/Hadoop
Sub-Workflow
MPI
Other solutions

Analytics Results

Dockers/VMs/Servers/Cloud/Cluster

ASE Summer 2016
Representing and programming data analytics workflows/processes

- Programming languages
 - General- and specific-purpose programming languages, such as Java, Python, Swift
- Programming models
 - such as MapReduce, Hadoop, Complex event processing, Spark
- Descriptive languages
 - BPEL and several languages designed for specific workflow engines
- They can also be combined
Examples of systems and frameworks for data analytics workflows

- ASKALON
- KEPLER
- TAVERNA
- ADEPT
- MapReduce/Hadoop
- R
- TRIDENT
- Apache ODE + WS-BPEL
- JOpera
- Pegasus
- Swift
- Airflow
Pros and cons of (data analytics) workflow systems

Some examples (1)

Some examples (2)

Source: http://www.dps.uibk.ac.at/projects/brokerage/
Some examples (3)

Some examples (4)

Data analyst running R

\[
e = function(p, q) \{
 jaqlSave(\ldots, p)
 jaqlSave(\ldots, q)
 jaqlTable("read\ldots")
\}
\]

\[
 m = optim(\ldots, e, \ldots)
 \]

R-Jaql bridge

1. Issue query to compute gradients
2. Forward query / parameters to Jaql
3. Execute the query in parallel on cluster
4. Fetch result
5. Format result as R data frame
6. Use the result in R

Hadoop

http://doi.acm.org/10.1145/1807167.1807275
Airflow from Airbnb

- Workflow is a DAG (Direct Acyclic Graph)
- Task/Operator:
 - BashOperator, PythonOperator, EmailOperator, HTTPOperator, SqlOperator, Sensor
 - DockerOperator, HiveOperator, S3FileTransferOperator, PrestoToMysqlOperator, SlackOperator

```python
with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
    dag
    >> DummyOperator(task_id='dummy_1')
    >> BashOperator(
        task_id='bash_1',
        bash_command='echo "HELLO!"'
    )
    >> PythonOperator(
        task_id='python_1',
        python_callable=lambda: print("GOODBYE!"))
```

Source: http://pythonhosted.org/airflow

ASE Summer 2016 25
MapReduce

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Fig. 1. Execution overview.
QUALITY OF ANALYTICS
Quality of Analytics (QoA)

- Characterize the results of analytics processes
- Different elements of QoA
 - Performance
 - Data quality
 - Cost
 - Form/data format of output results
 - Etc.
- Customer: expects QoA
- Provider: offers QoA and enforces QoA
Performance and Data Quality Aspects

Which processes should be used?

Is the data good enough to be stored and shared?

Execution time?
Performance Overhead?
Memory Consumption?

Data in

Executed on

Data out

Analytics Processes

Is the data good enough? How bad data impacts on performance?

Data quality metrics and models are strongly domain-specific

ASE Summer 2016
SO HOW DO WE ENABLE QOA-AWARE ANALYTICS?
Solutions

- Computational resources provisioning?
- Replication of analytics?
- Performance and cost measurement and optimization?
- Improve quality of input data?
- Improve the quality of output data?
Well-addressed concerns -- performance

ASE Summer 2016 32
Well-addressed concerns – performance/cost

Source: David Chiu, Sagar Deshpande, Gagan Agrawal, Rongxing Li: Cost and accuracy sensitive dynamic workflow composition over grid environments. GRID 2008: 9-16
QUALITY OF DATA IN DATA ANALYTICS WORKFLOWS
Very little support

- Qurator workbench
 - “Personal quality models” can be expressed and embedded into query processors or workflows.
 - Assume that quality evidence is presented
- Kepler
 - A data quality monitor allows user to specify quality thresholds.
 - Expect that rules can be used to control the execution based on quality.

Research questions

- What are main QoD metrics, what are the relationship between QoD metrics and other service level objectives, and what are their roles and possible trade-offs?
- How to support different domain-specific QoD models and link them to workflow structures?
- How to model, evaluate and estimate QoD associated with data movement into, within, and out to workflows? When and where software or scientists can perform automatic or manual QoD measurement and analysis
- How to optimize the workflow composition and execution based on QoD specification?
- How does QoD impact on the provisioning of data services, computational services and supporting services?
Approach

- Core models, techniques and algorithms to allow the modeling and evaluating QoD metrics

- QoD-aware composition and execution

- QoD-aware service provisioning and infrastructure optimization
Modeling and evaluating QoD metrics for data analytics workflows
QoD-aware optimization for data analytics workflow composition and execution
HOW TO INTEGRATE QOD EVALUATORS? AND WHICH CONCERNS NEED TO BE CONSIDERED?
QoD metrics evaluation

- Domain-specific metrics
 - Need specific tools and expertise for determining metrics

- Evaluation
 - Cannot done by software only: humans are required

- Complex integration model
 - Where to put QoD evaluators and why?
 - How evaluators obtain the data to be evaluated?

- Impact of QoD evaluation on performance of data analytics workflows
WHAT KIND OF OPTIMIZATION CAN BE DONE?
QoD-aware optimization for data analytics workflows

- Improving quality of analytics
- Reducing analytics costs and time
- Enabling early failure detection
- Enabling elasticity of services provisioning
- Enabling elastic data analytics support
- Etc.
EXAMPLE: QOD-AWARE SIMULATION WORKFLOWS
QoD-aware simulation workflows

Michael Reiter, Uwe Breitenbücher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, Hong Linh Truong: A Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows. eScience 2011: 105-112
Hybrid resources needed for quality evaluation

- **Challenges:**
 - Subjective and objective evaluation
 - Long running processes

- **Our approach:**
 - Different QoD measurements
 - Human and software tasks

![Diagram of data processing flow](image-url)
Evaluating quality of data in workflows

Michael Reiter, Uwe Breitenbücher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, Hong Linh Truong: A Novel Framework for Monitoring and Analyzing Quality of Data in Simulation Workflows. eScience 2011: 105-112

ASE Summer 2016
QoD Evaluator

- **Software-based QoD evaluators**
 - Can be provided under libraries integrated into invoked applications
 - Web services-based evaluators

- **Human-based QoD evaluators**
 - Built based on the concept human-based services
 - Can be interfaces via Human-Task
 - Simple mapping at the moment
 - Human resources from clouds/crowds
How to support QoA driven analytics with tradeoffs of multiple criteria?

QoA: QoD, performance, cost, etc.
Quality-of-analytics driven workflows

- How to support QoA driven analytics?
- Some basic steps
 - Conceptualize expected QoA
 - Associate the expected QoA with workflow activities
 - Use the expected QoA to match/select underlying services (e.g., data sources, cloud IaaS, etc)
 - Utilize the expected QoA and the measured QoA and apply elasticity principles for
 - Refine the workflow structure
 - Provision computation, network and data
Using Data Elasticity Management Process to ensure QoA

Tien-Dung Nguyen, Hong Linh Truong, Georgiana Copil, Duc-Hung Le, Daniel Moldovan, Schahram Dustdar:
On Developing and Operating of Data Elasticity Management Process. ICSOC 2015: 105-119
Exercises

- Read mentioned papers
- Discuss pros and cons of descriptive languages - and programming languages – based data analytics workflows
- Examine how QoD evaluators can be integrated into different programming models for QoA-aware data analytics workflows
- Implement some QoD evaluators
- Develop techniques for determining places where QoD evaluators can be performed in your mini projects
- Support data elasticity management in your mini project
Thanks for your attention

Hong-Linh Truong
Distributed Systems Group, TU Wien
truong@dsq.tuwien.ac.at
http://dsq.tuwien.ac.at/staff/truong
@linhsolar