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Abstract— In an effort to detach applications from centralized 

clouds with high latency responses, service providers turn their 

attention to edge computing solutions that offer low latency and 

improved user experience. Existing edge deployment strategies use 

network-related information as decision basis, but their design and 

their placement logic are biased by the assumption that the 

network cannot be controlled. In this paper, we design an 

orchestrator that operates within the telecom infrastructure and 

assumes cooperation with access and core network controllers. As 

a result, network adjustments can be requested, which leads to an 

orchestrator that participates in the provisioning of resources and 

solves an optimization problem that -contrary to the state of the 

art- performs sequential component placement and does not 

assume a known or fixed replication degree of the applications. Its 

function relies on heuristics, including one based on pre-computed 

shortest paths, which runs in polynomial time (i.e., much faster 

than an exhaustive search) and finds the optimal solution in 

approximately 99% of the tested scenarios. 
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I. INTRODUCTION 

The main system design since the emergence of the Internet 
of Things is centered on cloud-hosted applications and their 
interactions with end-devices that integrate sensing and 
actuating features [8]. Even though cloud-hosted servers offer 
sufficient processing power and storage to support multiple 
users, the increasing traffic from a growing number of clients 
causes bandwidth bottlenecks on the underlying network [10]. 
Edge computing counters this effect by pushing multiple 
instances of the (server-side) application closer to the end-users, 
while keeping the programming model intact. Hence, the traffic 
from end-devices follows shorter paths, which reduces latency 
and hinders data accumulation. 

Although application-hosting is monopolized by cloud 
providers (e.g., Amazon or Microsoft), telecom operators have 
been trying to enter this business. Edge computing poses a great 
opportunity for them because they already have access to edge 
infrastructure i.e., cellular base stations with service hosting 
capabilities, currently used as liaisons to server-side 
applications instead of hosting them. A telecom-driven 
application-hosting infrastructure requires an application 
placement controller, with architecture that resembles 
specifications as ETSI MEC [5] or OpenStack [9]. Accordingly, 
its placement logic can pursue goals such as: minimum latency 
[1] or execution delay [12]. However, all these studies miss an 
important observation that can make a difference in the current 
application-hosting landscape, i.e., the fact that telecom 
operators control the network and the entire infrastructure in a 

fine-grained way before, during, and after application placement 
operations. Taking this into account, we develop an Edge 
Computing Orchestrator which, contrary to related work, i) 
interacts with controllers of the access and core network, ii) 
places applications until their requirements are satisfied, 
considering the option to request network and infrastructure 
adjustments, and iii) reduces the placement problem to an 
Optimal Subset Selection [4], instead of the typical Bin Packing 
or Knapsack [2]. As a result, this orchestrator applies a 
placement logic that is tailored to dynamic networks which 
favor application deployment on the edge. 

II. RELATED WORK 

There are two fields of related work, namely application 
placement architecture and application placement algorithms. 

Regarding application placement architecture, we 
mention the Nova scheduler of OpenStack [9] and the Mobile 
Edge Orchestrator of ETSI MEC [5]. Both components are part 
of architectures that deploy applications on the computing 
nodes that best fit the application requirements. Nova [9] 
maintains a view of all the nodes and determines the placement 
of virtual machines based on a filtering mechanism that focuses 
on compatibility features. However, it is explicitly disconnected 
from the networking components of OpenStack and does not 
consider requirements that originate from the application 
provider. The Mobile Edge Orchestrator [5], deploys 
applications on appropriate hosts based on requirements related 
to computation, storage, latency etc., but lacks an interface to 
the Network Level, thus being forced to ignore cases as: 
detecting violations in application requirements (e.g., required 
bandwidth or latency thresholds) or requesting additional 
resources. Finally, [3], [13] and [6] provide further information 
on related architectures and frameworks. 

Regarding application placement algorithms, related work 
can be found in various domains such as content distribution or 
cloud server management. In [1], the authors develop 
algorithms for resource allocation in cloud environments that 
are geographically distributed on a wide area network. Required 
resources for a computational task are assumed to be known a 
priori and the problem is formulated as finding the nodes with 
available resources that minimize the maximum latency among 
all the latency values induced by the links that interconnect the 
selected nodes. They conclude by stating that an algorithm 
based on subgraph selection provides significant gains over 
alternative methods. In [7], the authors explore the placement 
problem in the context of Context Delivery Networks. They 
design heuristics that replicate and deploy objects on selected 



 

Fig. 1. High-level architecture of the ECO 

 

nodes so that the cost, which is associated with the hop count, is 
minimized. The results point to the conclusion that a greedy 
approach can result in performance that is close to optimal. In 
[12], placement is applied to solve the problem of distributing 
workloads from mobile users to computing nodes. The authors 
organize cloud and edge nodes in a tree hierarchy and develop a 
placement logic that outsources excessive load to nodes higher 
in the hierarchy, with optimization goal to minimize the 
execution delay. Finally, [11] addresses failure scenarios and 
performs fault-tolerant placement by deploying redundant 
instances of the application. 

Despite the variety of placement logic in the literature, no 
related work addresses the exact problem of deploying multiple 
tasks with requirements to each other on multiple nodes when 
task replication is supported but the optimal number of replicas 
is unknown. To solve this problem, we formulate task 
placement in a different manner, as explained in the next 
section. 

III. EDGE COMPUTING ORCHESTRATOR 

The Edge Computing Orchestrator (ECO) is an application 
placement controller that relies on controllers of other layers to 
help in meeting application requirements. Such solutions can 
lead to business benefits, especially for telecom operators, since 
they are the only ones who can natively implement this multi-
layer cooperation, because of being able to control the whole 
network infrastructure in a fine-grained way. 

A. Architecture 

The high-level architecture of the ECO is depicted in Fig. 1 
and includes the following components:  

Controller Cooperation Coordinator (CCC): It 
implements an interface to send/receive requests to/from other 
network controllers. It is used for: i) initial submission of 
applications along with a Service Level Agreement (SLA), ii) 
dynamic network slice negotiation (refers to the capacities of 
nodes and links, that remain private to this application), iii) 
reception of requirement violations (in layers not visible to 
ECO) or reconfiguration requests (e.g. migrations and resource 
adjustments) initiated by other network controllers. 

Network Topology Assembler (NTA): It converts the 
network slice (computed by the controller that provisions 
resources) into a graph representation that is compatible with 
the internal algorithms of the Deployment Plan Finder. 

Deployment Plan Finder (DPF): It computes an optimized 
plan for replicating and deploying applications on computing 
nodes based on their SLA, the network slice and the location of 
client-side users (acquired from access network controllers). 

Deployment Plan Executor (DPE): It receives a placement 
plan from DPE or independent requests from CCC and converts 
them into properly formatted commands that can be executed 
by an Infrastructure Manager (e.g., Nova scheduler [9]). 

Note that dynamic slice negotiation and detection of 
violations based on metrics in the access and core network are 
only possible due to the introduced inter-controller interactions.  

B. Problem Formulation 

The DPF handles task placement based on the optimization 
problem that is formulated in this section. The problem is firmly 
shaped by the following assumptions: i) applications consist of 
components, each one executing a specific task and being 
deployable separately from the others, but potentially 
interacting with them. Each component is paired with a unique 
priority value that reflects its importance. ii) There are 
quantitative requirements among the components (e.g. latency). 
Each requirement is associated with a component and is 
referring to another one of higher priority (for avoiding 
duplicate requirements). iii) Applications intend to serve final-
users and thus, the highest priority component has requirements 
towards client-side applications. iv) Components can be 
replicated and deployed on each one of the computing nodes. 

The network slice is a set C of I nodes: 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐼}. 

Latency between two nodes 𝑐1  and 𝑐2  is denoted as:  𝐿𝑎𝑡𝑐1,𝑐2
. 

An application is a set E of J deployable components: 𝐸 =
{𝑒1, 𝑒2, … , 𝑒𝐽} and each component has a set Q of 𝑋𝑒 hardware 

requirements: 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑋𝑒
}  and a set R of 𝑀𝑒  latency 

requirements: 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑀𝑒
} . Requirements towards 

client-side applications are redirected to the nodes of the set C 
that are closest to users of the client side. This information is 
shared though the CCC by access network controllers. Each 
component is treated as a separate case of optimization and 
beginning from the highest priority component e, the goal is to 
find a set 𝑇 ⊆ 𝐶 such that replicating and deploying e on the 
nodes of T results in the minimum sum of latencies of all the 
latency requirements of e. Additionally, it is required to have 
the minimum number of replications of e that achieves 
minimum latency (i.e., cardinality of the set T). Hence, 
minimum cardinality of T: 

|𝑇| 𝑤𝑖𝑡ℎ 𝑇 ⊆ 𝐶 𝑎𝑛𝑑 𝑇 = {𝑐1, 𝑐2, … , 𝑐𝑘} 

subject to the minimum value of the sum of the latencies 
towards each one of component e’s latency requirements: 



∑ 𝐿𝑎𝑡𝑐𝑎,𝑐𝑏

𝑟𝑀
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with 𝑐𝑎 ∈ 𝐶 being the host node of the component that the 
requirement r is referring to, and 𝑐𝑏 ∈ 𝑇 the node that has min 
latency from 𝑐𝑎 , under hardware constraints so that hardware 
requirements of components are subject to the respective node 
capacities (e.g., CPU, RAM, storage). 

To prove complexity, we rephrase the problem to a case of 
the Optimal Subset Selection [4]. The search space is a set A 

that contains all possible subsets of C and is comprised by 2|𝐶| 
items. The optimal solution is the item of A that satisfies the 
requirements of the optimization goal i.e., min latency and 
replications, under hardware constraints. The Optimal Subset 
Selection is known to be NP-hard in its general form and thus, 
this problem has the same complexity. Identifying the optimal 
solution in NP-hard problems becomes impractical for large 
datasets so in the next section, we develop applicable heuristics. 

C. Placement Heuristics 

In this section, we develop heuristics that compute optimal 
and near-optimal solutions based on the optimization goal. The 
pseudocode follows the notation of the problem formulation and 
performs placement for one component only. The exact same 
logic is repeated sequentially (based on priorities) for the rest of 
the components of the application. 

1) Optimal Placement based on Exhaustion (OPE) 
  This heuristic searches the whole search space to identify 

the optimal solution. It has exponential time complexity. 

Algorithm 1: OPE 

Input: C, e | Output: dp 

int minSumLatency = INF; // variable to hold the min value found for the 

cost function. Initially set to infinity. 
int sumLatency; // variable to hold temporary values of the cost function, 

i.e., for each examined possible solution. 
List currSubset; // a list variable to store the nodes of each possible 

deployment plan, i.e., each subset of C. 
List selectedNodesList; // a list variable to store the nodes of currSubset 

                                        that have enough resources to host the component. 

 

for ( i = 0; i < 2^|C|; i++ ){ // 2^|C| possible deployment plans… 

   currSubset = C.getSubset(i); // returns the i-th subset of C (which is 

                                                        also, a list of computing nodes) 
   selectedNodesList = {}; 

    

   for ( j = 0; j < |currSubset|; j++ ){ 

      if ( currSubset[j].fits(e) ){ //returns true if the j-th node in currSubset 

                                                     can host the component e, false otherwise 
         selectedNodesList.add(currSubset[j]); 

   }  } 

    

   sumLatency = e.sumLatencyIfDeployedOn(selectedNodesList); // 
returns the value of the cost function in the case that e is deployed on each 

one of the nodes of nodesList 

    
   if (sumLatency < minSumLatency) { 

      dp = selectedNodesList; 

      minSumLatency = sumLatency; 

}  } 

 

return dp; // list of nodes on which the component shall be deployed 

 

2) Greedy Placement Unlimited (GPU) 
  This heuristic deploys each component on all the nodes 

that have enough resources to host it. Its time complexity is 
linear. 

Algorithm 2: GPU 

Input: C, e | Output: dp 

List selectedNodesList; // a list variable to store the nodes that have 

enough resources to host the component. 

 

for ( i = 0; i < |C|; i++ ){ 

   if ( C[i].fits(e) ){ 

      selectedNodesList.add(C[i]); 

}  } 

 

dp = selectedNodesList; 

return dp; // list of nodes on which the component shall be deployed 

 

3) Greedy Placement with Cost threshold (GPC) 
  In this heuristic, the node that results in minimum latency 

is selected for replication and placement until the value of the 
latency-related metric of the optimization goal drops below a 
threshold. The time complexity is polynomial. 

Algorithm 3: GPC 

Input: C, e, threshold | Output: dp 

int minSumLatency = INF; // variable to hold the min value found for our 

cost function. Initially set to infinity. 
int sumLatency; // variable to hold temporary values of our cost function, 

i.e., for each examined possible solution. 
List selectedNodesList; // a list variable to store the nodes that lead to a 

minimum cost in each iteration. 

int bestNodeIndex; // a variable to keep the index of the node that leads to 

the best value of the cost function in each iteration. 
 

for ( i =0; i<|C|; i++ ){ 

   minSumLatency = INF; 

    

   for ( i =0; i<|C|; i++ ){ 

      if ( C[i].fits(e) & C[i] NOT IN selectedNodesList){ 

         selectedNodesList.add(C[i]); 
         sumLatency = e.sumLatencyIfDeployedOn(selectedNodesList); // 

returns the value of the cost function in the case that e is 
deployed on each one of the nodes of nodesList 

         if (sumLatency < minSumLatency) { 

            bestNodeIndex = i; 

            minSumLatency = sumLatency; 

         } 

         selectedNodesList.remove(C[i]); 

   }  } 

    

   selectedNodesList.add(C[bestNodeIndex]); 

   if (minSumLatency≤threshold) { 

      break; 

}  } 

 

dp = selectedNodesList; 

return dp; // list of nodes on which the component shall be deployed 

 

4) Optimized Placement based on Shortest Path (PSP) 
  For every host node of a component a requirement is 

referring to, this heuristic selects the node of the shortest path 



 

Fig. 4. Number of times each heuristic finds the 

optimal deployment plan (i.e., the same as OPE). 
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Fig. 2. Average number of replications per 

requirement needed by GPC in order to achieve 

the latency that is indicated by the cost threshold. 
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Fig. 3. Average number of replications per 

requirement each heuristic requires in order to 
find minimum latency. 
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that has enough resources to host the component to be 
deployed. Note that this approach benefits from the inter-
controller communication because ECO has access to core 
network information. Core network controllers maintain a static 
view of the topology and can calculate shortest paths only once 
upon initialization, but share these values with ECO when 
requested. Not having to calculate shortest paths reduces the 
time complexity of the heuristic, which is polynomial. 

Algorithm 4 PSP 

Input: C, e | Output: dp 

List selectedNodesList; // a list variable to store the nodes that already 

been selected for the optimal deployment plan. 

List examinedNodes; // an initially empty list to store the nodes that have 

already been examined for hosting a replica of the component. 
List R = e.getRequirements(); // returns a list R of requirements (of 

component e to already placed replications of other components), in which 

R[i] is the i-th requirement, and R[i].host is the node on which the 

replication that this requirement refers to is hosted. 

 

for ( i = 0; i < |R|; i++ & R[i].host NOT IN examinedNodes){ 

   examinedNodes.add(R[i].host); 

   // The “sorting command” below actually corresponds with a single action 

of retrieving the respective (already sorted) list  
   Sort_the_elements_of_C_based_on_shortest_path_to_R[i].host;  

   for ( j=0; j<|C| ; j++ ){ 

      if ( C[j].fits(e) & C[j] NOT IN selectedNodesList){ // returns true 

if the j-th node in C can host the component e and in not in 

selectedNodesList. 

         selectedNodesList.add(C[j]); 

         break; 

} } } 

 

dp = selectedNodesList; 

return dp; // list of nodes on which the component shall be deployed 

IV. EVALUATION 

Using a Java-based implementation of the ECO and by 
simulating the rest of the infrastructure, we perform an 
evaluation that focuses on the optimality (or near-optimality) of 
the developed heuristics. We use four topologies (with 6, 8, 10 

and 12 nodes) and simulate 10000 placement scenarios for each 
one of them. Each scenario is created by assigning random 
values to variables related to the infrastructure such as: link 
latency (1-20), node CPU cores (0-10), node RAM (0-2000), 
node storage (0-4000) and related to the application component 
such as: number of requirements to other components (1-4), 
CPU cores (1-5), RAM (100-1000), storage (200-2000). 

Fig. 3 shows the average number of replications per 
requirement required by each heuristic to find minimum 
latency. Note that, as indicated by the overlapping confidence 
intervals (99%), OPE and PSP are very close to each other. 

Fig. 4 shows the number of times each heuristic succeeds in 
computing the optimal solution. Note that PSP is extremely 
close to OPE, despite the increasing number of nodes, whereas 
the success rate of GPC and GPU decreases. 

Fig. 2 is based on the performance of GPC and shows how 
increasing the threshold gradually, results in fewer replications 
and thus, reduces the number of utilized resources within the 
network slice. The cost threshold represents the sum of latencies 
towards the component’s requirements as expressed in the 
optimization goal and thus, the same unit applies. Hence, GPC 
also depicts the tradeoff between the number of replications and 
effective latency delay and provides a mechanism to adjust this 
tradeoff based on the application provider’s requirements. 

V. CONCLUSION 

We propose the architecture and the internal algorithms of 
an edge computing orchestrator that performs replication and 
placement of application components in a telecom-driven 
application-hosting infrastructure. This orchestrator implements 
an interface for collaborating with access and core network 
controllers. This leads to a placement logic that is different to 
the state of the art (e.g., dynamic network slice negotiation, 
sequential component placement) and thus involves a different 
placement optimization problem and respective heuristics. 
Among the developed heuristics we highlight the introduced 
Placement based on Shortest Path (PSP) as being the only 
solution that comes very close to optimality in polynomial time. 
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