
Network-Integrated Edge Computing Orchestrator for

Application Placement

Vasileios Karagiannis, Apostolos Papageorgiou

NEC Laboratories Europe, Heidelberg, Germany
basilkaragiannis@gmail.com, apostolos.papageorgiou@neclab.eu

Abstract— In an effort to detach applications from centralized

clouds with high latency responses, service providers turn their

attention to edge computing solutions that offer low latency and

improved user experience. Existing edge deployment strategies use

network-related information as decision basis, but their design and

their placement logic are biased by the assumption that the

network cannot be controlled. In this paper, we design an

orchestrator that operates within the telecom infrastructure and

assumes cooperation with access and core network controllers. As

a result, network adjustments can be requested, which leads to an

orchestrator that participates in the provisioning of resources and

solves an optimization problem that -contrary to the state of the

art- performs sequential component placement and does not

assume a known or fixed replication degree of the applications. Its

function relies on heuristics, including one based on pre-computed

shortest paths, which runs in polynomial time (i.e., much faster

than an exhaustive search) and finds the optimal solution in

approximately 99% of the tested scenarios.

Keywords— Edge Computing, Application Placement

I. INTRODUCTION

The main system design since the emergence of the Internet
of Things is centered on cloud-hosted applications and their
interactions with end-devices that integrate sensing and
actuating features [8]. Even though cloud-hosted servers offer
sufficient processing power and storage to support multiple
users, the increasing traffic from a growing number of clients
causes bandwidth bottlenecks on the underlying network [10].
Edge computing counters this effect by pushing multiple
instances of the (server-side) application closer to the end-users,
while keeping the programming model intact. Hence, the traffic
from end-devices follows shorter paths, which reduces latency
and hinders data accumulation.

Although application-hosting is monopolized by cloud
providers (e.g., Amazon or Microsoft), telecom operators have
been trying to enter this business. Edge computing poses a great
opportunity for them because they already have access to edge
infrastructure i.e., cellular base stations with service hosting
capabilities, currently used as liaisons to server-side
applications instead of hosting them. A telecom-driven
application-hosting infrastructure requires an application
placement controller, with architecture that resembles
specifications as ETSI MEC [5] or OpenStack [9]. Accordingly,
its placement logic can pursue goals such as: minimum latency
[1] or execution delay [12]. However, all these studies miss an
important observation that can make a difference in the current
application-hosting landscape, i.e., the fact that telecom
operators control the network and the entire infrastructure in a

fine-grained way before, during, and after application placement
operations. Taking this into account, we develop an Edge
Computing Orchestrator which, contrary to related work, i)
interacts with controllers of the access and core network, ii)
places applications until their requirements are satisfied,
considering the option to request network and infrastructure
adjustments, and iii) reduces the placement problem to an
Optimal Subset Selection [4], instead of the typical Bin Packing
or Knapsack [2]. As a result, this orchestrator applies a
placement logic that is tailored to dynamic networks which
favor application deployment on the edge.

II. RELATED WORK

There are two fields of related work, namely application
placement architecture and application placement algorithms.

Regarding application placement architecture, we
mention the Nova scheduler of OpenStack [9] and the Mobile
Edge Orchestrator of ETSI MEC [5]. Both components are part
of architectures that deploy applications on the computing
nodes that best fit the application requirements. Nova [9]
maintains a view of all the nodes and determines the placement
of virtual machines based on a filtering mechanism that focuses
on compatibility features. However, it is explicitly disconnected
from the networking components of OpenStack and does not
consider requirements that originate from the application
provider. The Mobile Edge Orchestrator [5], deploys
applications on appropriate hosts based on requirements related
to computation, storage, latency etc., but lacks an interface to
the Network Level, thus being forced to ignore cases as:
detecting violations in application requirements (e.g., required
bandwidth or latency thresholds) or requesting additional
resources. Finally, [3], [13] and [6] provide further information
on related architectures and frameworks.

Regarding application placement algorithms, related work
can be found in various domains such as content distribution or
cloud server management. In [1], the authors develop
algorithms for resource allocation in cloud environments that
are geographically distributed on a wide area network. Required
resources for a computational task are assumed to be known a
priori and the problem is formulated as finding the nodes with
available resources that minimize the maximum latency among
all the latency values induced by the links that interconnect the
selected nodes. They conclude by stating that an algorithm
based on subgraph selection provides significant gains over
alternative methods. In [7], the authors explore the placement
problem in the context of Context Delivery Networks. They
design heuristics that replicate and deploy objects on selected

Fig. 1. High-level architecture of the ECO

nodes so that the cost, which is associated with the hop count, is
minimized. The results point to the conclusion that a greedy
approach can result in performance that is close to optimal. In
[12], placement is applied to solve the problem of distributing
workloads from mobile users to computing nodes. The authors
organize cloud and edge nodes in a tree hierarchy and develop a
placement logic that outsources excessive load to nodes higher
in the hierarchy, with optimization goal to minimize the
execution delay. Finally, [11] addresses failure scenarios and
performs fault-tolerant placement by deploying redundant
instances of the application.

Despite the variety of placement logic in the literature, no
related work addresses the exact problem of deploying multiple
tasks with requirements to each other on multiple nodes when
task replication is supported but the optimal number of replicas
is unknown. To solve this problem, we formulate task
placement in a different manner, as explained in the next
section.

III. EDGE COMPUTING ORCHESTRATOR

The Edge Computing Orchestrator (ECO) is an application
placement controller that relies on controllers of other layers to
help in meeting application requirements. Such solutions can
lead to business benefits, especially for telecom operators, since
they are the only ones who can natively implement this multi-
layer cooperation, because of being able to control the whole
network infrastructure in a fine-grained way.

A. Architecture

The high-level architecture of the ECO is depicted in Fig. 1
and includes the following components:

Controller Cooperation Coordinator (CCC): It
implements an interface to send/receive requests to/from other
network controllers. It is used for: i) initial submission of
applications along with a Service Level Agreement (SLA), ii)
dynamic network slice negotiation (refers to the capacities of
nodes and links, that remain private to this application), iii)
reception of requirement violations (in layers not visible to
ECO) or reconfiguration requests (e.g. migrations and resource
adjustments) initiated by other network controllers.

Network Topology Assembler (NTA): It converts the
network slice (computed by the controller that provisions
resources) into a graph representation that is compatible with
the internal algorithms of the Deployment Plan Finder.

Deployment Plan Finder (DPF): It computes an optimized
plan for replicating and deploying applications on computing
nodes based on their SLA, the network slice and the location of
client-side users (acquired from access network controllers).

Deployment Plan Executor (DPE): It receives a placement
plan from DPE or independent requests from CCC and converts
them into properly formatted commands that can be executed
by an Infrastructure Manager (e.g., Nova scheduler [9]).

Note that dynamic slice negotiation and detection of
violations based on metrics in the access and core network are
only possible due to the introduced inter-controller interactions.

B. Problem Formulation

The DPF handles task placement based on the optimization
problem that is formulated in this section. The problem is firmly
shaped by the following assumptions: i) applications consist of
components, each one executing a specific task and being
deployable separately from the others, but potentially
interacting with them. Each component is paired with a unique
priority value that reflects its importance. ii) There are
quantitative requirements among the components (e.g. latency).
Each requirement is associated with a component and is
referring to another one of higher priority (for avoiding
duplicate requirements). iii) Applications intend to serve final-
users and thus, the highest priority component has requirements
towards client-side applications. iv) Components can be
replicated and deployed on each one of the computing nodes.

The network slice is a set C of I nodes: 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐼}.

Latency between two nodes 𝑐1 and 𝑐2 is denoted as: 𝐿𝑎𝑡𝑐1,𝑐2
.

An application is a set E of J deployable components: 𝐸 =
{𝑒1, 𝑒2, … , 𝑒𝐽} and each component has a set Q of 𝑋𝑒 hardware

requirements: 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑋𝑒
} and a set R of 𝑀𝑒 latency

requirements: 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑀𝑒
} . Requirements towards

client-side applications are redirected to the nodes of the set C
that are closest to users of the client side. This information is
shared though the CCC by access network controllers. Each
component is treated as a separate case of optimization and
beginning from the highest priority component e, the goal is to
find a set 𝑇 ⊆ 𝐶 such that replicating and deploying e on the
nodes of T results in the minimum sum of latencies of all the
latency requirements of e. Additionally, it is required to have
the minimum number of replications of e that achieves
minimum latency (i.e., cardinality of the set T). Hence,
minimum cardinality of T:

|𝑇| 𝑤𝑖𝑡ℎ 𝑇 ⊆ 𝐶 𝑎𝑛𝑑 𝑇 = {𝑐1, 𝑐2, … , 𝑐𝑘}

subject to the minimum value of the sum of the latencies
towards each one of component e’s latency requirements:

∑ 𝐿𝑎𝑡𝑐𝑎,𝑐𝑏

𝑟𝑀

𝑟1

with 𝑐𝑎 ∈ 𝐶 being the host node of the component that the
requirement r is referring to, and 𝑐𝑏 ∈ 𝑇 the node that has min
latency from 𝑐𝑎 , under hardware constraints so that hardware
requirements of components are subject to the respective node
capacities (e.g., CPU, RAM, storage).

To prove complexity, we rephrase the problem to a case of
the Optimal Subset Selection [4]. The search space is a set A

that contains all possible subsets of C and is comprised by 2|𝐶|
items. The optimal solution is the item of A that satisfies the
requirements of the optimization goal i.e., min latency and
replications, under hardware constraints. The Optimal Subset
Selection is known to be NP-hard in its general form and thus,
this problem has the same complexity. Identifying the optimal
solution in NP-hard problems becomes impractical for large
datasets so in the next section, we develop applicable heuristics.

C. Placement Heuristics

In this section, we develop heuristics that compute optimal
and near-optimal solutions based on the optimization goal. The
pseudocode follows the notation of the problem formulation and
performs placement for one component only. The exact same
logic is repeated sequentially (based on priorities) for the rest of
the components of the application.

1) Optimal Placement based on Exhaustion (OPE)
 This heuristic searches the whole search space to identify

the optimal solution. It has exponential time complexity.

Algorithm 1: OPE

Input: C, e | Output: dp

int minSumLatency = INF; // variable to hold the min value found for the

cost function. Initially set to infinity.
int sumLatency; // variable to hold temporary values of the cost function,

i.e., for each examined possible solution.
List currSubset; // a list variable to store the nodes of each possible

deployment plan, i.e., each subset of C.
List selectedNodesList; // a list variable to store the nodes of currSubset

 that have enough resources to host the component.

for (i = 0; i < 2^|C|; i++){ // 2^|C| possible deployment plans…

 currSubset = C.getSubset(i); // returns the i-th subset of C (which is

 also, a list of computing nodes)
 selectedNodesList = {};

 for (j = 0; j < |currSubset|; j++){

 if (currSubset[j].fits(e)){ //returns true if the j-th node in currSubset

 can host the component e, false otherwise
 selectedNodesList.add(currSubset[j]);

 } }

 sumLatency = e.sumLatencyIfDeployedOn(selectedNodesList); //
returns the value of the cost function in the case that e is deployed on each

one of the nodes of nodesList

 if (sumLatency < minSumLatency) {

 dp = selectedNodesList;

 minSumLatency = sumLatency;

} }

return dp; // list of nodes on which the component shall be deployed

2) Greedy Placement Unlimited (GPU)
 This heuristic deploys each component on all the nodes

that have enough resources to host it. Its time complexity is
linear.

Algorithm 2: GPU

Input: C, e | Output: dp

List selectedNodesList; // a list variable to store the nodes that have

enough resources to host the component.

for (i = 0; i < |C|; i++){

 if (C[i].fits(e)){

 selectedNodesList.add(C[i]);

} }

dp = selectedNodesList;

return dp; // list of nodes on which the component shall be deployed

3) Greedy Placement with Cost threshold (GPC)
 In this heuristic, the node that results in minimum latency

is selected for replication and placement until the value of the
latency-related metric of the optimization goal drops below a
threshold. The time complexity is polynomial.

Algorithm 3: GPC

Input: C, e, threshold | Output: dp

int minSumLatency = INF; // variable to hold the min value found for our

cost function. Initially set to infinity.
int sumLatency; // variable to hold temporary values of our cost function,

i.e., for each examined possible solution.
List selectedNodesList; // a list variable to store the nodes that lead to a

minimum cost in each iteration.

int bestNodeIndex; // a variable to keep the index of the node that leads to

the best value of the cost function in each iteration.

for (i =0; i<|C|; i++){

 minSumLatency = INF;

 for (i =0; i<|C|; i++){

 if (C[i].fits(e) & C[i] NOT IN selectedNodesList){

 selectedNodesList.add(C[i]);
 sumLatency = e.sumLatencyIfDeployedOn(selectedNodesList); //

returns the value of the cost function in the case that e is
deployed on each one of the nodes of nodesList

 if (sumLatency < minSumLatency) {

 bestNodeIndex = i;

 minSumLatency = sumLatency;

 }

 selectedNodesList.remove(C[i]);

 } }

 selectedNodesList.add(C[bestNodeIndex]);

 if (minSumLatency≤threshold) {

 break;

} }

dp = selectedNodesList;

return dp; // list of nodes on which the component shall be deployed

4) Optimized Placement based on Shortest Path (PSP)
 For every host node of a component a requirement is

referring to, this heuristic selects the node of the shortest path

Fig. 4. Number of times each heuristic finds the

optimal deployment plan (i.e., the same as OPE).

0

2,000

4,000

6,000

8,000

10,000

6 8 1 0 1 2N
U

M
B

ER
 O

F
O

PT
IM

A
L

SO
LU

TI
O

N
S

FO
U

N
D

NUMBER OF NODES

OPE GPU GPC PSP

Fig. 2. Average number of replications per

requirement needed by GPC in order to achieve

the latency that is indicated by the cost threshold.

0.5

0.6

0.7

0.8

0 1 0 2 0 3 0 4 0 5 0

A
V

ER
A

G
E

N
U

M
B

ER
 O

F
R

EP
LI

C
A

TI
O

N
S

PE
R

R

EQ
U

IR
EM

EN
T

VALUE OF COST THRESHOLD

6 Nodes 8 Nodes

10 Nodes 12 Nodes

Fig. 3. Average number of replications per

requirement each heuristic requires in order to
find minimum latency.

0.
71

67

0.
75

14

0.
78

38

0.
80

3

1.
27

17

1.
65

26 2.
03

06

2.
43

23

0.
71

98

0.
76

33

0.
80

45

0.
82

82

0.
71

94

0.
75

46

0.
78

67

0.
80

57

6 8 1 0 1 2A
V

ER
A

G
E

N
U

M
B

ER
 O

F
R

EP
LI

C
A

TI
O

N
S

PE
R

R

EQ
U

IR
EM

EM
T

NUMBER OF NODES

OPE GPU GPC PSP

that has enough resources to host the component to be
deployed. Note that this approach benefits from the inter-
controller communication because ECO has access to core
network information. Core network controllers maintain a static
view of the topology and can calculate shortest paths only once
upon initialization, but share these values with ECO when
requested. Not having to calculate shortest paths reduces the
time complexity of the heuristic, which is polynomial.

Algorithm 4 PSP

Input: C, e | Output: dp

List selectedNodesList; // a list variable to store the nodes that already

been selected for the optimal deployment plan.

List examinedNodes; // an initially empty list to store the nodes that have

already been examined for hosting a replica of the component.
List R = e.getRequirements(); // returns a list R of requirements (of

component e to already placed replications of other components), in which

R[i] is the i-th requirement, and R[i].host is the node on which the

replication that this requirement refers to is hosted.

for (i = 0; i < |R|; i++ & R[i].host NOT IN examinedNodes){

 examinedNodes.add(R[i].host);

 // The “sorting command” below actually corresponds with a single action

of retrieving the respective (already sorted) list
 Sort_the_elements_of_C_based_on_shortest_path_to_R[i].host;

 for (j=0; j<|C| ; j++){

 if (C[j].fits(e) & C[j] NOT IN selectedNodesList){ // returns true

if the j-th node in C can host the component e and in not in

selectedNodesList.

 selectedNodesList.add(C[j]);

 break;

} } }

dp = selectedNodesList;

return dp; // list of nodes on which the component shall be deployed

IV. EVALUATION

Using a Java-based implementation of the ECO and by
simulating the rest of the infrastructure, we perform an
evaluation that focuses on the optimality (or near-optimality) of
the developed heuristics. We use four topologies (with 6, 8, 10

and 12 nodes) and simulate 10000 placement scenarios for each
one of them. Each scenario is created by assigning random
values to variables related to the infrastructure such as: link
latency (1-20), node CPU cores (0-10), node RAM (0-2000),
node storage (0-4000) and related to the application component
such as: number of requirements to other components (1-4),
CPU cores (1-5), RAM (100-1000), storage (200-2000).

Fig. 3 shows the average number of replications per
requirement required by each heuristic to find minimum
latency. Note that, as indicated by the overlapping confidence
intervals (99%), OPE and PSP are very close to each other.

Fig. 4 shows the number of times each heuristic succeeds in
computing the optimal solution. Note that PSP is extremely
close to OPE, despite the increasing number of nodes, whereas
the success rate of GPC and GPU decreases.

Fig. 2 is based on the performance of GPC and shows how
increasing the threshold gradually, results in fewer replications
and thus, reduces the number of utilized resources within the
network slice. The cost threshold represents the sum of latencies
towards the component’s requirements as expressed in the
optimization goal and thus, the same unit applies. Hence, GPC
also depicts the tradeoff between the number of replications and
effective latency delay and provides a mechanism to adjust this
tradeoff based on the application provider’s requirements.

V. CONCLUSION

We propose the architecture and the internal algorithms of
an edge computing orchestrator that performs replication and
placement of application components in a telecom-driven
application-hosting infrastructure. This orchestrator implements
an interface for collaborating with access and core network
controllers. This leads to a placement logic that is different to
the state of the art (e.g., dynamic network slice negotiation,
sequential component placement) and thus involves a different
placement optimization problem and respective heuristics.
Among the developed heuristics we highlight the introduced
Placement based on Shortest Path (PSP) as being the only
solution that comes very close to optimality in polynomial time.

REFERENCES

[1] M. Alicherry and T. V. Lakshman. “Network aware resource allocation in

distributed clouds.” 31st Annual IEEE International Conference on
Computer Communications (INFOCOM 2012), pp. 963-971, IEEE 2012.

[2] S. R. M. Amarante, F. M. Roberto, A. R. Cardoso, and J. Celestino.
“Using the multiple knapsack problem to model the problem of virtual
machine allocation in cloud computing.” 16th IEEE International
Conference on Computational Science and Engineering (CSE ‘13), pp.
476-483. IEEE, 2013.

[3] S. A. Baset. “Open source cloud technologies.” 3rd ACM Symposium on
Cloud Computing (SOCC ‘12) , pp. 28-29. ACM, 2012.

[4] M. Binshtok, R. I. Brafman, S. E. Shimony, A. Martin, and C. Boutilier.
“Computing Optimal Subsets." Association for the advancement of
artificial intelligence (AAAI) press, pp. 1231-1236. AAAI, 2007.

[5] ETSI (European Telecommunications Standards Institute). “Mobile edge
computing (MEC) framework and reference architecture (GS MEC 003
V1.1.1)”, March 2016, online (last visited June 2017):
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_M
EC003v010101p.pdf

[6] J.M. Kang, H. Bannazadeh, and A. Leon-Garcia. “Savi testbed: control
and management of converged virtual ict resources.” In International

Symposium on Integrated Network Management (IM 2013), pp. 664-667,
IFIP/IEEE, 2013.

[7] J. Kangasharju, J. Roberts, and K. W. Ross. “Object replication strategies
in content distribution networks.” Computer Communications, vol. 25, no.
4, pp. 376-383, Elsevier, 2002.

[8] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate. "A survey on application layer protocols for the internet of things."
Transaction on IoT and Cloud Computing vol. 3, no. 1, pp. 11-17, 2015.

[9] OpenStack, documentaion on Nova Scheduler, online (last visited June
2017): https://docs.openstack.org/developer/nova/filter_scheduler.html

[10] M. Satyanarayanan. “The emergence of edge computing.” Computer, vol.
50, no. 1, pp. 30-39, IEEE, 2017.

[11] B. Spinnewyn, B. Braem and S. Latré. “Fault-tolerant application
placement in heterogeneous cloud environments.” 11th International
Conference on Network and Service Management (CNSM), pp. 192-200,
IEEE, 2015.

[12] L. Tong, Y. Li, and W. Gao. “A hierarchical edge cloud architecture for
mobile computing.” 35th Annual IEEE International Conference on
Computer Communications (INFOCOM 2016), pp. 1-9, IEEE, 2016.

[13] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores, D.
Carrera, J. L. Pérez, D. Montero, P. Chacin, A. Corsaro, and A. Olive. “A
new era for cities with fog computing.” Internet Computing vol. 21, no. 2,
pp. 54-67, IEEE, 2017.

