
Dynamic Instrumentation, Performance Monitoring and Analysis
of Grid Scientific Workflows ∗

Hong-Linh Truong† (truong@dps.uibk.ac.at) and Thomas
Fahringer (tf@dps.uibk.ac.at)
Institute for Computer Science, University of Innsbruck
Technikerstrasse 21A, A-6020 Innsbruck, Austria

Schahram Dustdar (dustdar@infosys.tuwien.ac.at)
Information Systems Institute, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Wien, Austria

Abstract. While existing work concentrates on developing QoS models of business work-
flows and Web services, few tools have been developed to support the monitoring and perfor-
mance analysis of scientific workflows in Grids. This paper describes novel Grid services for
dynamic instrumentation of Grid-based applications, performance monitoring and analysis of
Grid scientific workflows. We describe a Grid dynamic instrumentation service that provides
a widely accessible interface for other services and users to conduct the dynamic instrumenta-
tion of Grid applications during the runtime. We introduce a Grid performance analysis service
for Grid scientific workflows. The analysis service utilizes various types of data including
workflow graphs, monitoring data of resources, execution status of activities, and perfor-
mance measurements obtained from the dynamic instrumentation of invoked applications, and
provides a rich set of functionalities and features to support the online monitoring and perfor-
mance analysis of scientific workflows. Workflows and their relevant information including
performance metrics are stored and utilized for comparing the performance of constructs of
different workflows and for supporting multi-workflow analysis.

Keywords: dynamic instrumentation, Grid computing, Grid service, scientific workflows,
performance monitoring and analysis

1. Introduction

Recently, increased interest can be witnessed in exploiting the potential of
the Grid for scientific workflows. Scientific workflows [31, 37, 42, 43], in
contrast to production and administrative business workflows, are normally
more flexible and completely automatic. On computational Grids [20], the
most common Grid type, scientists usually try to harness and utilize available
resources in Grids for their experiments. As the Grid is diverse, dynamic
and inter-organizational, it comes out that even with a particular scientific
experiment, it requires to have a set of different workflows because (i) one

∗ The work described in this paper is supported in part by the Austrian Science Fund as
part of the Aurora Project under contract SFBF1104 and by the European Union through the
IST-2002-511385 project K-WfGrid.

† Corresponding author

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

truong-jogc.tex; 5/04/2005; 11:25; p.1

2

workflow mostly fits to only a particular configuration of the underlying
Grid systems, and (ii) the available resources allocated for a scientific exper-
iment and their configuration in the Grid are changed each execution. This
requirement is a challenge to the workflow composition and the workflow
scheduler because normally they focus on composing and constructing a par-
ticular workflow with respect to available resources, and on mapping that
workflow into the available resources. It is also a challenge to the perfor-
mance monitoring and analysis of the workflows because very often clients
of the performance analysis service (e.g., users and scheduling systems) want
to compare the performance of different workflow constructs1 with respect
to the resources allocated in order to determine which workflow construct
should be best matched to which topology of the underlying Grid. Even
though numerous tools have been developed for constructing and executing
scientific workflows in the Grid, such as [31, 29, 39, 17], there is a lack of
tools that support the performance monitoring and analysis of such flexible
scientific workflows in the Grid. Most existing work concentrates on develop-
ing QoS (Quality of Service) models of business workflows and Web services
[28, 16, 35, 8], however, few tools have been developed to support scientists
to monitor and analyze the performance of their workflows in the Grid.

Because of the dynamics of the Grid, the performance monitoring and
analysis of workflow-based applications (WFAs) has to be carried out in on-
line manner. Firstly, as a workflow (WF) is executed spanning on distributed
organizations in the Grid, in monitoring and analyzing the performance of the
workflow, we need to collect and process a variety of types of data relevant
to the performance of the WFs, for example execution status of WFs from
workflow management systems (WfMS), monitoring data of resources on
which WF activities are executed, and performance measurements of code
regions of invoked applications of workflow activities. These relevant data are
not only provided by many sources but they are also diverse and distributed.
The performance monitoring and analysis service therefore needs the support
from the monitoring middleware in order to obtain, gather, and utilize that
diverse data in a unified way. Secondly, to fully understand the performance
of a workflow, we need monitoring and performance data of the workflow
that are measured at many levels of detail, such as at the whole-workflow,
activity and code region level. Without the instrumentation of code regions
of workflow activities, we are only able to monitor at the level of activity,
thus significantly reducing the ability to detect and correlate performance
problems. Most existing WF monitoring tools are limited to the activity level.

In previous work, we have developed a middleware which supports ser-
vices to access and utilize a variety types of performance data in a single

1 Basically, a workflow construct consists of a set of dependent activities that are repre-
sented in a connected subgraph of the workflow, e.g., loop, sequence and fork-join. Common
workflow constructs can be found in [7].

truong-jogc.tex; 5/04/2005; 11:25; p.2

3

system named SCALEA-G [41]. In this paper, we firstly present a Grid ser-
vice to support the dynamic instrumentation of Grid applications. The Grid
dynamic instrumentation service provides a widely accessible interface to
other services/users to control the instrumentation process. The instrumen-
tation service leverages an XML-based Standardized Intermediate Repre-
sentation for Binary Code (SIRBC) for describing the program structure of
executable, and an instrumentation request language (IRL) for specifying
code regions of which performance metrics should be determined and con-
trolling the instrumentation process. Secondly, we introduce a Grid service
for online monitoring and performance analysis of scientific workflows on
the Grid. In order to provide detailed performance status and problems of
a workflow, the service collects resources status from the Grid infrastructure
monitoring, workflow execution status from the workflow control and invoca-
tion services, and performance measurements obtained through the dynamic
instrumentation service. It then conducts the online analysis of these data
along with the workflow graph. Relevant data to workflows including work-
flow graphs and performance data are stored. We then develop techniques
to support multi-workflow analysis. Refinement constructs of workflows can
be specified, and performance of refinement constructs of different workflows
can be compared and evaluated for multiple experiments. The work described
in this paper has been implemented based on the SCALEA-G framework
[41].

The rest of this paper is organized as follows: Section 2 discusses instru-
mentation techniques for the Grid. Section 3 describes the dynamic instru-
mentation service for Grid applications. Section 4 details techniques used
to implement incremental online profiling. Performance analysis for WFs
is presented in Section 5. We illustrate experiments in Section 6. Section 7
discusses the related work. We summarize the paper and outline the future
work in Section 8.

2. Instrumentation Techniques for Grid Applications

2.1. INSTRUMENTATION AND MEASUREMENT TECHNIQUES

One of the central elements of the performance analysis of Grid applica-
tions is how performance data is measured and collected. Firstly, we have to
study different instrumentation mechanisms to efficiently measure different
types of performance data. Source code instrumentation provides a simple
and efficient way for collecting measurement data, however, it requires the
availability of all the source files. The instrumented sources have to be com-
piled and linked with instrumentation libraries for specific target machines.
That is a time consuming effort because each time the application executes the

truong-jogc.tex; 5/04/2005; 11:25; p.3

4

resources allocated may be different, not to mention the allocated resources
may not be known in advance. Dynamic instrumentation is complex but well-
suited for measuring volatile and long-running applications, and for applica-
tions whose source code is not available. The WFA is normally dynamically
composed, possibly at runtime, from deployed applications whose source
code is not available for instrumentation. The dynamic instrumentation would
be an alternative for solving the problems arisen from the selection of instru-
mentation and measurement system and the compilation of instrumented code
fitted to the allocated resources.

We believe that instrumentation for the Grid should employ both meth-
ods. We can instrument sources of WF control and invocation service in
order to gather execution status of WFs because execution status information
is normally simple and small. However, for instrumentation of Grid scien-
tific applications, we believe that dynamic instrumentation would be more
suitable. While source code instrumentation for Grid applications is widely
supported, e.g. in [12, 24], dynamic instrumentation in Grids has not got
much attention, even though dynamic instrumentation has a long history in
clustering and parallel computing [32, 18].

Secondly, we have to carefully select the granularity of the measurement
for Grid applications, namely profiling or tracing mechanism. Many tools
support tracing of Grid applications, e.g. [34, 24]. However, as Grid perfor-
mance monitoring and analysis must be carried out in online manner, tracing
is not suited because it generates a huge volume of trace data which has been
transfered on the fly to analysis components. On the other hand, traditional
profiling is not suited for online monitoring and analysis because profiling
data can only be obtained at the end of the execution of applications. There-
fore, incremental mechanisms in which profiling data is updated or requested
and retrieved incrementally at runtime would be more suitable. For example,
in CrossGrid project monitoring data can be periodically retrieved during the
runtime [14].

2.2. INSTRUMENTATION SERVICE

While execution status of workflows and monitoring data of resources may be
obtained from WfMS and infrastructure monitoring, respectively, the current
situation is that the user has to manually instrument his code in order to obtain
performance measurements of code regions of workflow activities, which are
executed on multiple Grid sites, because existing instrumentation systems are
only appropriate for a single Grid site (within a single organization). While
existing Grid toolkits (e.g., Globus[22]) provide core services for job sub-
mission and resource discovery, similar Grid services for instrumenting Grid
application do not exist.

truong-jogc.tex; 5/04/2005; 11:25; p.4

5

Currently, in most cases the instrumentation of Grid workflows must be
carried out manually by the end user. Consider the diversity and dynamics
of the Grid. On the one hand, if the user wants to instrument his code, the
user has to know in advance the Grids he submits jobs to, and has to select
the right instrumentation tool for each Grid site. As a result, the user has to
do a daunting task in order to instrument his code. Moreover, the selected
instrumentation tool may not work with the monitoring middleware deployed
in the selected Grid site. On the other hand, instrumentation techniques are
typically bound to specific languages and systems. Therefore, it is possible
that we need many different instrumentation systems just for instrumenting
an application executed on the Grid.

We argue that the instrumentation service should be a core service of
a Grid. This approach gives many advantages. Firstly, an instrumentation
service is bound to a specific Grid site, which normally consists of (homo-
geneous) computational resources that are controlled by a single security
policy and exchange data through a local network. Thus, the instrumenta-
tion service can be better developed, can efficiently exploit features on that
site, and is better to be coupled with the supportive monitoring middleware
deployed in that site. Secondly, as an instrumentation system is a service, the
user does not need to worry about how to select a suitable instrumentation
system. Instead, he just discovers the service and uses it. Each Grid site may
provide an instrumentation service that allows the user or the high level tools
to control the instrumentation. To this end, the instrumentation service hides
all the low-level details of the instrumentation process while the client of
the instrumentation service just simply specifies its requests. To follow this
idea, the instrumentation service must support widely accessible interfaces,
e.g., Grid/Web service operations, and protocols, e.g., APART SIR and MIR
[36]. Nevertheless, with such generic Grid instrumentation service, we have
to accept some limitations, e.g., instrumentation of arbitrary code regions may
not be possible.

3. Grid Dynamic Instrumentation Service

Figure 1 presents the architecture of our dynamic instrumentation service
for Grids. There are four main components residing in different locations
that involve in the instrumentation process: Instrumentation Requester (IR),
Instrumentation Mediator (IM), Mutator Service (MS) and Instrumentation
Forwarding Service (IFS). The IR controls the instrumentation process. The
MS, executed on the computation node where the application processes ex-
ecute, is responsible for performing the dynamic instrumentation of applica-
tion processes. It attaches the application processes and inserts application
sensors into the application processes. In the middle of the IR and the MS are

truong-jogc.tex; 5/04/2005; 11:25; p.5

6

requester site
Client Service

service site

Sensor Manager
Service

computational node

Instrumentation
Requester

Instrumentation
Mediator Instrumentation

Forwarding
Service

Mutator
Service

Application
Sensor

Data Query and
Subscription

Data
Receiving and

Publishing

Consumer
Service

Run with user identity

Run with service identity,
create process running
under user identity

Run with service identity

Run with user identity

Figure 1. Architecture of the Grid service of dynamic instrumentation.

the IM and IFS which bridge and aggregate requests and responses between
the IR and the MS. IM and IFS are needed because the IR cannot always
directly communicate with the MS, e.g. due to the firewall. Moreover, IR
works at a high-level at which it considers the execution of an application as
a whole. Therefore, IR may conduct the instrumentation spanning multiple
Grid sites. However, MS works at the lower level at which its objects are ap-
plication processes. As a result, IM and IFS are used to transfer and aggregate
requests and responses between the high-level view and the low-level one. An
IFS instance is responsible for forwarding requests to multiple MSs executed
on computational nodes. The above architecture is a service-oriented model
based on two languages. The first language named SIRBC (Standardized In-
termediate Representation for Binary Code) allows the instrumentor (MS)
to describe instrumented applications in a neutral representation and to pro-
vide that representation to IR; SIRBC is an implementation of simplified SIR
[36]. The second language named IRL (Instrumentation Request Language)
allows IR to define what portions of an application should be instrumented
and what performance metrics should be collected. Both SIRBC and IRL are
XML-based. Details of SIRBC and IRL can be found in [41].

The MS is a Grid service which is implemented based on gSOAP, a C++
Web Service toolkit with GSI-plugin [23]. Figure 2 shows interactions be-
tween IR, MI, IFS, and MS instances when conducting requests for instru-
menting an application. At the requester side, the IR specifies requests and
passes these requests to IM. Based on the requests, the IM locates existing
IFSs which can forward the requests to MSs executed on the same compu-
tational nodes of application processes; if no such IFSs exist, IM makes a
request of creating new IFS instances. IM then sends IRL requests to IFSs.
When an IFS receives a request, it will search MS instances which can fulfill
the request. If there is no MS instance for instrumenting application processes
of a user in a computational node, IFS makes a request of creating a new MS
instance for the user on that node. IFS will send the requests to MSs which

truong-jogc.tex; 5/04/2005; 11:25; p.6

7

IR IM IFS MS

Invoke IM with IRL requests

send IRL requests to IFS

send IRL requests to MS

return IRL responses

return IRL responses
return IRL responses

-Parse IRL
- Insert application
sensors

Figure 2. Steps in conducting a request for instrumentation.

in turn forward the requests to corresponding MSs. The MS will parse the
IRL request and then perform the instrumentation of application processes.
The MS inserts application sensors into application processes. The dynamic
instrumentation techniques are facilitated by Dyninst [15]. The application
sensors perform the monitoring and measurement of application processes.
Performance measurements will be sent to Sensor Manager Service (SM),
which is a part of the supportive monitoring middleware, or be collected
through MS. Note that the role of SM is to collect monitoring data from
application sensors. Therefore, in principle, SM can be replaced by simi-
lar infrastructures that can communicate with application sensors. Existing
infrastructures for collecting monitoring data, such as R-GMA [6] and Mer-
cury [11], are not suitable for our purpose because they are using relational
database while our application sensors produce XML-based monitoring data
and use XML-based messages in the communication with SM.

The MS provides the application structure to the requester in SIRBC for-
mat. Based on SIRBC, the IR can decide which code regions should be
instrumented. With the high-level encapsulation and high interoperability,
interfaced through service operations, IRL and SIRBC, the dynamic instru-
mentation service is widely accessible to other services.

3.1. SERVICE INTERFACE

The implementation of MS is based on the factory model. The MS consists
of a Mutator Factory (MF) and Mutator Instance (MI). An MF is a persistent
service deployed in each computational node. The MF provides a main opera-
tion named createMutatorInstance for creating MIs when requested.
The MI is responsible for attaching application processes and instrumenting
these processes.

Information about MF is published to the supportive monitoring middle-
ware. When IRF receives an instrumentation request, it finds MIs on corre-
sponding computational nodes which can instrument application processes
of the calling user. If no such a MI exists, the IFS calls the MF on the cor-

truong-jogc.tex; 5/04/2005; 11:25; p.7

8

responding node to create a new MI. When a MI running, it connects to a
SM, notifies its existence to the SM and waits for control from requesters. MI
provides the following main operations:

− performIRL: to process IRL requests. The MI will react with appro-
priate functions such as attaching the application process, instrumenting
and deinstrumenting, or detaching the application process.

− getProfilingData: to return profiling data collected to the requester.

− destroyInstance: to end the execution of this instance. When this
operation is called the MI frees resources it occupies, and finishes its
execution.

In addition, MF and MI provide two auxiliary operations: ping operation
to support ping service, and getUserProcess to obtain user processes
executed on a computational node.

3.2. PRACTICAL ISSUES IN BUILDING SIR AND INSTRUMENTING
APPLICATIONS

When processing different binary codes compiled by different compilers, we
observed that depending on specific compilers and architectures, SIR for an
executable is quite different from that of the other. It contains many internal
functions that the user may not want to instrument. SIR however is designed
for C/C++/Fortran/Java sources, thus, it does not define filters that can be
used to exclude these irrelevant information when building the SIR from
applications. We extend IRL to allow the IR specifying filters into getsir
requests. Filters include code region names that the instrumentation service
should exclude, and the function scope in which the instrumentation service
should limit its traversal.

Due to the dependence of executable structures on the compilers and plat-
forms, the SIR of different processes of the same program may be different
when the program is compiled and executed on different platforms. Thus,
a SIR is associated with a process, not with a program. In some cases, the
same code region has different identifiers in different SIRs. Therefore, when
using identifiers to specify selected code regions, the IR has to process each
SIR of a process individually. Consider a large number of processes, it is a
time-consuming task for IR, if IR wants to instrument a code region in all
processes. To avoid that, we can specify only the code region name and the
program unit in instrumentation requests. The instrumentation service will
instrument all functions which have that name within a given program unit.

truong-jogc.tex; 5/04/2005; 11:25; p.8

9

3.3. SECURITY MODEL

The security in the dynamic instrumentation service is based on GSI [44]
facilities provided by Globus Toolkit (GT) [22]. As shown in Figure 1, the
security model employs both transport and message level security, using del-
egation, authentication/authorization, and run-as mechanism [1]. Except MS
uses transport level security, the interactions among the remaining compo-
nents are based on message level security. Message level security employs
GSI secure conversation mechanism [1].

IR and IM run with the security identity of the user. IFS service methods
are set to run with the security identity of the client. When IM requests an
IFS service to create an instance, the instance will be run with the security
identity of the user. MF runs with the service identity in a none-privilege
account. However, if MF is deployed to be used by multiple users, it must
be able to create its instances running in the account of calling users. The
MI created by MF upon requests of IFS will be run as user identity. MF uses
a grid-map file to authorize its requesters. As MI executes with the security
identity of the user, it has permission to attach user application processes,
and is able to perform the dynamic instrumentation. Delegation is performed
from IM to IFS to MI.

In push mode, application sensors send measurements to SM. When sub-
scribing and/or querying data provided by application sensors, data requester’s
identity will be recorded. Similarly, before application sensor instances start
sending data to the SM, the SM obtains the security identity of the requester
who executed the application. Both sources of information will be used for
authorizing the requester in receiving data from application sensors. In pull
model, performance measurements collected by applications sensors will be
returned to the requester by MI. MI uses self-authorization mechanism to
check the requester. Requests for obtaining performance measurements sent
by IR will be delegated from IM to IFS to MI. As a result, only the owner can
be able to access performance data.

In our system, service management, instrumentation control, and data query
and subscription tasks are conducted through service-based operations whereas
monitoring data is transfered through TCP-based streams [41], therefore, the
implementation of message level security has very little impact on the perfor-
mance of our system.

4. Incrementally Updating Profiling Data

Traditionally, profiling is performed offline with performance measurements
are summarized and available for being analyzed when the application fin-
ishes. Thus, this approach is not suitable for online profiling as we have

truong-jogc.tex; 5/04/2005; 11:25; p.9

10

complete summary measurements only when the application finishes. On-
line profiling requires measurement data to be collected and analyzed during
runtime of the application. But if summary data is sent back to the analysis
component at the instant the measurement data is updated, a huge volume
data will be sent over the network. As a result, the impact of the monitoring
on the execution of the application is high.

We develop a mechanism to support online and incrementally updating
profiling data. That is, instead of always updating consecutive measurements
of code regions, the monitoring system returns only the most-updated mea-
surements in a maximum pre-defined time or upon a request. To profile a
code region r the instrumentation service inserts a sensor, composed by a
start probe and a stop probe, into the application process as follows:

sis start(PBr)
r

sis stop(PBr)

where PBr is information used to determine the code region;PBr is asso-
ciated with a record storing measurement data of code region r. When an
activation of r finishes, its measurement data will be updated into the record.
Each process keeps a profiling data of all instrumented code regions.

An analysis component can obtain the profiling data through pull or push
mode. In pull mode, profiling data is stored in shared memory. The analy-
sis component calls the getProfilingData operation of MI in order to
obtain the requested profiling data. In push mode, the most recent updated
measurements of n code regions are stored into a flush buffer size n, bufn.
Performance measurements are incrementally sent to Data Receiving and
Publishing (DRP) component of SM (see Figure 1). Figure 3 presents the
algorithm used to send measurement data to the monitoring middleware. In
addition, every t seconds since the last time the buffer is flushed to DRP, the
buffer will be flushed if it is not empty. With this algorithm, performance
measurements of n last executed code regions are flushed to DRP incremen-
tally in maximum t seconds. As a result, we ensure that the requester receives
the newly-updated profiling measurement of a code region no longer than t

seconds since the measurement is updated.
We have already implemented the push mode and currently are imple-

menting the pull mode. We are currently investigating to develop applica-
tion sensors so that they store collected data into shared memory. The task
to support pushing or pulling profiling data will be done by MI. Also the
getProfilingData operation will support requests based on MIR [36].

truong-jogc.tex; 5/04/2005; 11:25; p.10

11

procedure sis start(PBr))

begin
start the measurement of r.
if (it is first execution of r) then

send PBr to DRP component of SM.
end if

end

procedure sis stop(PBr))

begin
stop the measurement of r.
update performance measurements in PBr.
if (PBr is not in bufn) then

add PBr into bufn.
else

update PBr in bufn.
end if
if (bufn is full) then

flush whole bufn to DRP.
reset bufn.

end if

end

Figure 3. Updating profiling data to DRP.

5. Performance Monitoring and Analysis of Grid Workflow-based
Applications

Performance monitoring and analysis of Grid WFs should support:

− inter-activity performance monitoring and analysis: to monitor and
analyze the interactions between activities, the impact of an activity on
the performance of the whole workflow or of the workflow construct that
the activity participates. To this end, the monitoring and analysis tool
has to operate at the whole workflow level and on the whole resources
on which the workflow activities are executed.

− intra-activity performance monitoring and analysis: to monitor and
analyze the performance of the invoked application of the individual

truong-jogc.tex; 5/04/2005; 11:25; p.11

12

Grid Performance
Analysis Service

SCALEA-G
Middleware

MIS: Monitoring and Instrumentation Service, AI: Activity Instance

Workflow
Invocation and

Control

Workflow
Applications

Event
Processing

Analysis
Control

Instrumentation
and Monitoring

Control

Computational Node
MIS AI

Computational Node
MIS AI

Computational Node
MIS AI

Computational Node
MIS AI

Figure 4. Model of monitoring and performance analysis of workflow-based application.

activity. To this end, the monitoring and analysis tool has to operate at
the activity level and on the resource on which the activity is executed.

Figure 4 presents the architecture of the Grid monitoring and performance
analysis service for WFs. The WF is submitted to the Workflow Invocation
and Control (WIC) service which locates resources and executes the WF.
Events containing execution status of activities, such as queuing, processing,
and information about resources on which the activities execute will be sent
to the monitoring tool. The Event Processing processes these events and the
Analysis Control decides which activities should be instrumented, monitored
and analyzed. Based on information of a selected activity instance and its
consumed resource, the Analysis Control requests the Instrumentation and
Monitoring Control to perform the instrumentation and monitoring. Monitor-
ing and measurement data obtained are then analyzed. Based on the result of
the analysis, the Analysis Control can decide what to do in the next step.

This architecture uses the SCALEA-G middleware as its supportive moni-
toring middleware. Various types of performance data are published to, stored
in and retrieved from SCALEA-G.

5.1. SUPPORTING WORKFLOW COMPUTING PARADIGM

Currently we focus on the workflow modeled as a DAG (Direct Acyclic
Graph) because DAG is widely used in modeling scientific workflows. In
a DAG-based WF, a node represents an activity (task) and an edge between
two nodes represents the dependency between the two activities. The invoked
application of an activity instance may be executed on a single or on multiple
resources. Meanwhile, we focus on activities whose invoked applications are
application executables (e.g. MPI program).

truong-jogc.tex; 5/04/2005; 11:25; p.12

13

a0 a1 a2

(a)

a1(1)

a2

a1(2)

a0

... a1(n)

(b)

...

a1(1,m)

a1(1,1)

a1(1,2)

a2

...

a1(2,m)

a1(2,1)

a1(2,2)

...

...

...

...

...

a1(n,m)

a1(n,1)

a1(n,1)

a0

(c)
Figure 5. Multiple workflows of an workflow-based application: (a) sequence workflow, (b)
fork-join workflow, and (c) fork-join structured block of activities.

We particularly concentrate on analyzing (i) fork-join model and (ii) multi-
workflow of an application. Figure 5(b) presents the fork-join model2 of work-
flow activities in which an activity is followed by a set of n activities executed
in parallel. This model is widely used in many scientific WFs. There are
several interesting metrics that can be obtained from this model, such as
load imbalance, slowdown factor, and synchronization delay at the synchro-
nization point. These metrics help to uncover the impact of slower activities
to the overall performance of the whole structure. We also focus on fork-
join structures that contain structured block of activities. A structured block
is a single-entry-single-exit block of activities 3. For example, Figure 5(c)
presents structured blocks of activities.

A workflow-based application (WFA) can have different versions, each
represented by a WF. For example, Figure 5 presents an application with 3
different WFs, each may be selected for executing on specific underlying re-
sources. When developing a WFA, we normally start with a graph describing
the WF. The WFA is gradually developed in a sequence of refinement steps
that creates a better version or an adapted version fitted to a particular under-
lying Grid system. This refinement can be done automatically by workflow
construction tools or manually by the WF developers. In a refinement step, a
subgraph may be replaced by another subgraph of activities, resulting in a set
of different WFs. For example, the activity a1 in Figure 5(a) is replaced by set
of activities {a1(1), a1(2), · · · , a1(n)} in Figure 5(b). (Also we can consider

2 Also called as AND-Split AND-Join [5].
3 Existing WF constructs are detailed in [7].

truong-jogc.tex; 5/04/2005; 11:25; p.13

14

set of activities {a1(1), a1(2), · · · , a1(n)} is reduced to a1.) In Grids a WF
can yield the best result in one particular run but not in the next run because
the Grid may be different from run after run. The concept of the best solution
is now associated with a particular run. Moreover, since the underlying sys-
tem changed from experiment to experiment a single WF may not be enough.
As a result, different solutions for a WFA, even all of them are just used
to solve a specific problem, may equally be important. The key question is
which WF construct is best for a given collection of resources. Therefore,
multi-workflow analysis, the analysis and comparison of the performance of
different WF constructs, ranging from the whole WF to a specific construct
(e.g. a fork-join subgraph), is an important feature.

We focus on the case in which a subgraph of a DAG is replaced by an
another subgraph in the refined DAG. Let G and H be DAG of workflow
WFg and WFh, respectively, of an WFA. G and H represent different ver-
sions of the WFA. H is said to be a refinement of G if H can be derived
by replacing a subgraph SG of G by a subgraph SH of H . SH is said
to be a replaced refinement graph of SG. Note that SG and SH may not
be a DAG nor a connected graph. For example, consider the cases of Fig-
ure 5(a) and Figure 5(b). Subgraph SG = {a1} is replaced by subgraph
SH = {a1(1), a1(2), · · · , a1(n)}; both are not DAG, the first is trivial graph
and the latter is not a connected graph. Generally, we assume that there are n

connected components of a subgraph SG. Each component is either a DAG
or a trivial graph.

Graph refinement is a well-established field and it is not our focus. There-
fore, we do not concentrate on the determination of refinement graphs in
workflows, rather, the workflow developers and/or workflow construction tools
are assumed to do this task. Our main goal is that given different solutions for
a WFA we study the performance similarity and difference between them.

In this paper, (ai, aj) is denoted as the dependency between activity ai

and aj; ai must be finished before the execution of aj . Let G = (N,E) be
given, and select an arbitrary activity ai. pred(ai) and succ(ai) are denoted as
sets of the immediate predecessors and successors, respectively, of ai.

5.2. ACTIVITIES EXECUTION MODEL

Each invoked application of an activity instance may be executed on different
resources allocated by the WIC. We use discrete process model [38] to rep-
resent the execution of an activity a. Let P (a) be an activity execution status
graph modeling the execution of activity a (hence we call the execution graph
of an activity). A P (a) is a directed, acyclic, bipartite graph (S,E,A), in
which S is a set of nodes representing activity states, E is a set of nodes rep-
resenting activity events, and A is a set of edges representing ordered pairs of
activity state and event. Simply put, an activity event (e.g. executed) changes

truong-jogc.tex; 5/04/2005; 11:25; p.14

15

initializing submitted queuing active processing completed

Figure 6. Discrete process model for the execution of an activity. 2 represents a state, ©
represents an event.

Table I. Example of event names.

Event Name Description
active the activity instance has been started to process its work.

completed the execution of the activity instance has completed.
failed the execution of the activity instance has been stopped before its normal

completion.
submitted the activity has been submitted to the scheduling system.

the activity state (e.g. from queuing to processing), which in turn influences
the occurrence and outcome of future activity events (e.g. finished, failed).
Figure 6 presents an example of a discrete process modeling the execution
of an activity. Note that the real execution model of a WF is more complex,
depending on the implementation of WIC. For example, an activity can be
re-submitted, aborted and suspended4 .

Each state s of an activity a is determined by two events: leading event ei,
and ending event ej such that ei, ej ∈ E, s ∈ S, and (ei, s), (s, ej) ∈ A of
P (a). To denote an event name of P (a) we use ename(a). Table 5.2 presents
an example of a few event names used to describe activity events5. We use
t(e) to refer to the timestamp of an event e and tnow to denote the timestamp
at which the analysis is conducted. Because the monitoring and analysis is
conducted at runtime, it is possible that an activity a is in a state s but there
is no such (s, e) ∈ A of P (a). When analyzing such state s, we use tnow as
a timestamp to determine the time spent on state s. We use → to denote the
happened before relation between events.

5.3. WORKFLOW INSTRUMENTATION

The monitoring system collects states and events of each activity instance,
and builds the execution status graph of that activity instance. WIC in our
experiment is currently implemented based on JavaCog [30]. WIC contains a
job submission engine which interfaces to GRAM [4] of the Globus Toolkit.
Currently, to get execution status of activities from WIC, the job submission
engine is instrumented with an event sensor library. Monitoring data of ac-
tivity execution is described by a well-defined XML representation. The job

4 Detailed possible states of a workflow can be found in [5].
5 Detailed possible activity events can be found in [5].

truong-jogc.tex; 5/04/2005; 11:25; p.15

16

submission engine captures execution status of activities and describes the
execution status in the XML representation. The event sensor library is used
to send the activity monitoring data to SCALEA-G middleware. The Grid
performance analysis service receives monitoring data of activity events and
states by using notification mechanism of SCALEA-G and by querying and
subscribing activity monitoring data.

5.4. PERFORMANCE METRICS OF GRID SCIENTIFIC WORKFLOWS

Performance measurements for a Grid WF are collected at two levels: ac-
tivity and whole-application level. Based on monitoring data, performance
measurements and WF graphs, the performance of WF is analyzed.

5.4.1. Activity Level
At activity level, several performance metrics that characterize an activity
are provided. Firstly, we dynamically instrument code regions of the invoked
application of the activity. We collect performance metrics such as wallclock
time, CPU time, hardware counters of instrumented code regions. Perfor-
mance metrics of code regions are incrementally provided to the user during
the execution of the workflow. Based on these metrics, various exploratory
data analysis techniques can be employed, e.g. load imbalance, metric ratio.
We extend our overhead analysis for parallel programs [40] to WFAs. For
each activity, we analyze activity overhead. Activity overhead contains vari-
ous types of overhead, e.g., communication, synchronization, that occur in an
activity instance.

Secondly, we focus on analyzing the response time of activities. Activity
response time, the time an activity takes to be finished, consists of waiting
time and processing time. Waiting time can be queuing time and suspend-
ing/resuming time and processing time can consist of communication and
computation time. For each activity a, its execution status graph, P (a), is
used as the input for analyzing activity response time. Moreover, we an-
alyze synchronization delay between activities. Let consider a dependency
between two activities (ai, aj) where ai ∈ pred(aj). ∀ai ∈ pred(aj), when
ecompleted(ai) → esubmitted(aj), the synchronization delay from ai to aj ,
Tsd(ai, aj), is defined as

Tsd(ai, aj) = t(esubmitted(aj)) − t(ecompleted(ai)) (1)

If at the time of the analysis esubmitted(aj) has not occurred, Tsd(ai, aj) is
computed as

Tsd(ai, aj) = tnow − t(ecompleted(ai)) (2)

Each activity aj associates with a set of the synchronization delays. From that
set, we compute maximum, average and minimum synchronization delay at

truong-jogc.tex; 5/04/2005; 11:25; p.16

17

aj . Note that synchronization delay can be analyzed for any activity which is
dependent on other activities. This metric is particularly useful for analyzing
synchronization points in a workflow.

5.4.2. Workflow level
We analyze performance metrics that characterize the interaction and the per-
formance impact among activities. Interactions between two activities can be
file exchanges, remote method invocations or service calls. There are various
metrics of interest such as average response time, waiting time, queuing time
and synchronization delay of activities, load imbalance, communication to
computation ratio, and success rate of activity invocation. Correlation met-
rics, such as number of activities per resource, resource utilization, etc., are
also important.

We combine WF graph, execution status information and performance
data to analyze load imbalance for fork-join model. Let a0 be the activity
at the fork point. ∀ai, i = 1 : n, ai ∈ succ(a0), load imbalance Tli(ai, s) in
state s is computed as

Tli(ai, s) = T (ai, s) −

∑n
i=1

T (ai, s)

n
(3)

We also apply load imbalance analysis to a set of selected activities. In a
workflow, there could be several activities whose work are the same, e.g.
mProject activities in Figure 7, but are not in fork-join model. Load im-
balance analysis is useful technique to reveal how the work distribution is
conducted.

5.5. MULTI-WORKFLOW ANALYSIS

We analyze slowdown factor for fork-join model. Slowdown factor, sf , is
defined as

sf = n ×
maxn

i=1
(Tn(ai))

T1(ai)
(4)

where Tn(ai) is the processing time of activity ai in the fork-join WF with n

activities and T1(ai) is the fastest processing time of activity ai in the (fork-
join) WF of single activity. The slowdown factor analysis can also be applied
to fork-join structures that contain structured block of activities. In this case,
Tn(ai) will be the processing time of a structured block of activities in the
WF with n blocks.

For different replaced refinement graphs of WFs of the same WFA, we
compute speedup factor between them. Let SG be a subgraph of workflow
WFg of a WFA; SG has ng components. Let Pi =< ai1, ai2, · · · , ain > be a
critical path from starting node to the ending node of the component i, Ci, of

truong-jogc.tex; 5/04/2005; 11:25; p.17

18

SG. The processing time of SG, Tcp(SG), is defined as

Tcp(SG) = max
ng

i=1
(Tcp(Ci)), Tcp(Ci) =

n∑

k=1

T (aik) (5)

where T (aik) is the processing time of activity aik. Now, let SH be the
replaced refinement graph of SG, SG and SH are subgraphs of workflow
WFg and WFh, respectively, of a WFA. Speedup factor sp of SG over SH

is defined as follows:

sp =
Tcp(SG)

Tcp(SH)
(6)

The same technique is used when comparing the speedup factor between two
workflow WFg and WFh.

In order to support multi-workflow analysis of WFs, we collect and store
different DAGs, subgraphs of the WFA, performance data and machine infor-
mation into an experiment repository powered by PostgreSQL. Each graph
is stored with its associated performance metrics; a graph can be DAG of
the WF or a subgraph. We use a table to represent refinement relationship
between subgraphs. Currently, for each experiment, the user can select sub-
graphs, specifying refinement relation between two subgraphs of two WFs.
The analysis service uses data in the experiment repository to conduct multi-
workflow analysis.

6. Experiments

We have implemented prototypes of Grid services for dynamic instrumenta-
tion and performance analysis of Grid WFs. JGraph [26] and JFreeChart [25]
are used to visualize WF graphs and performance results, respectively. In this
section, we illustrate the usefulness of our services by presenting experiments
of different workflows of the Montage application in the Austrian Grid [10].

Montage [33] is a software for generating astronomical image mosaics
with background modeling and rectification capabilities. Based on the Mon-
tage tutorial, we develop a set of WFs, each generating a mosaic from 10
images without applying any background matching. Figure 7 presents exper-
imental workflows of the Montage application. In Figure 7(a), the activity
tRawImage and tUncorrectedMosaic are used to transfer raw images
from user site to computing site and resulting mosaics from computing site to
user site, respectively. mProject is used to reproject input images to a com-
mon spatial scale. mAdd is used to coadd the reprojected images. mImgtbl
is used to build image table which is accessed by mProject and mAdd.

In workflows executed on multiple resources, we have several subgraphs
tRawImage → mImgtbl1 → mProject1 → tP rojectedImage, each

truong-jogc.tex; 5/04/2005; 11:25; p.18

19

tRawImage

mImgtbl1

mProject1

mImgtbl2

mAdd

tUncorrectedMosaic

tRawImage1

mImgtbl11

mProject11

tRawImage2

mImgtbl12

mProject12

tProjectedImage1 tProjectedImage2

mImgtbl2

mAdd

tUncorrectedMosaic

tRawImage1

mImgtbl11

mProject11

...

...

...

tRawImagen

mImgtbl1n

mProject1n

tProjectedImage1 ... tProjectedImagen

mImgtbl2

mAdd

tUncorrectedMosaic

(a) (b) (c)

Figure 7. Experimental workflows of the Montage application: (a) workflow executed on
single resource, (b) workflow executed on two resources, and (c) workflow executed on n

resources

subgraph is executed on a resource. The tProjectedImage activity is
used to transfer projected images produced by mProject to the site on
which mAdd is executed. When executed on n resources, the subgraph mImgtbl2 →
mAdd → tUncorrectedMosaic is allocated on one of that n resources.
When executed on Grid resources using the same NFS (Network File Sys-
tem), the task mProject can work on fork-join fashion.

We conduct experiments on sites named LINZ (Linz University), UIBK
(University of Innsbruck), AURORA6 (University of Vienna) and VCPC (Uni-
versity of Vienna) of the Austrian Grid. The user resides in VCPC and the
workflow invocation and control service (WIC) submits invoked applications
of workflow activities to VCPC, LINZ, UIBK, AURORA6. Most machines
in experiments are non dedicated ones.

6.1. MONITORING EXECUTION STATUS OF ACTIVITIES

Before a WF is submitted to WIC, the performance monitoring and analysis
service subscribes notifications of workflow executions to the SCALEA-G
middleware. When the WF is executed, events containing execution status
(e.g. submitted, active, ..) of activities are reported back to the monitoring and
analysis service. Figure 8 shows the Execution Status display which monitors
the execution status of activities. The left window shows one of Montage
workflows. The right window displays execution status of activities of that
workflow. We also can examine execution time of states during the runtime.

truong-jogc.tex; 5/04/2005; 11:25; p.19

20

Figure 8. Monitoring execution status of a Montage workflow executed on 2 resources.

Figure 9. Execution time of states of Montage workflow executed on 2 resources.

For example, Figure 9 presents the execution time of states of the experiment
presented in Figure 8.

6.2. DYNAMIC INSTRUMENTATION

When an activity is executed, its status is shown in the Execution Status
diagram. The user then can start to instrument activity instances. Figure 10
depicts the GUI used to control the dynamic instrumentation of activity in-
stances. On the top-left window, the user can choose an activity. For each
compute node on which the selected activity instance executed, running pro-
cesses can be examined by invoking GetUserProcesses operation, as shown
in the top-right window of Figure 10. For a given process of the invoked
application of an activity instance, the detailed SIR can be obtained by click-
ing GetSIR button, e.g. SIR of invoked application of activity mProject1
is visualized in the bottom-right window in Figure 10. In the bottom-left
window is an IRL request used to instrument selected code regions in the
main unit with a metric wtime (wallclock time).

truong-jogc.tex; 5/04/2005; 11:25; p.20

21

Figure 10. GUI used to control the instrumentation of activity instances of a workflow.

6.3. PERFORMANCE ANALYSIS

When an invoked application of an activity instance is instrumented, the mea-
surement data collected is analyzed by the performance analysis component.
The performance analysis component retrieves profiling data through data
subscription or query. Figure 11 presents the performance analysis GUI when
analyzing a Montage workflow executed on two resources in UIBK. The
left-pane shows the DAG of the WF. The middle-pane shows the dynamic
code region call graph (DRG) of invoked applications of activities. We can
examine the profiling data of instrumented code region on the fly. The user
can examine the whole DRG of the application, or DRG of an activity in-
stance (by choosing the activity in the DAG). By clicking on a code region,
detailed performance metrics will be displayed in the right-pane. Depend-
ing on the invoked application, source code information may be available,
thus code regions can be associated with their sources. We can examine
historical profiling data of a code region, for example window Historical
Data shows the execution time of code region computeOverlap executed
on hafner.dps.uibk.ac.at. The user also can monitor resources on
which activities are executed. For example, the window Forecast CPU Usage
shows the forecasted CPU usage of hafner.dps.uibk.ac.at.

Figure 12(a) presents the response time and synchronization delay anal-
ysis for activity mImgtbl2 when the Montage workflow, presented in Figure
7(c), is executed on 5 machines, 3 of AURORA6 and 2 of LINZ. The syn-
chronization delays from tProjectedImage3, 4, 5 to tImgtbl2 are very high.
This is caused by the high load imbalance between mProject instances, as

truong-jogc.tex; 5/04/2005; 11:25; p.21

22

Figure 11. Performance analysis of workflow activities.

(a) (b)

Figure 12. Analysis of Montage executed on 5 machines: (a) response time and synchroniza-
tion delay of mImgtbl, and (b) load imbalance of mProject.

shown in Figure 12(b). The load imbalance is not due to the inequality of
work distribution between mProject activities, but due to the differences in
processing capability of resources in the Grid. The two machines in LINZ can
process significantly faster than all machines in AURORA6. This detection
indicates the workflow composition system and scheduling system do not
take into account the processing capability of resources when constructing
activities and distributing them on Grids.

Throughout the workflow development procedure, a subgraph named mPro
jectedImagewhich includes tRawImage → mImgtbl1 → mProject1
in single resource version is replaced by subgraphs of tRawImage →
mImgtbl1 → mProject1 → tP rojectedImage in a multi-resource ver-
sion. These subgraphs basically provide projected images to the mAdd activ-
ity, therefore, we consider they are equivalent in terms of QoS (to the user
point of view); they are replaced refinement graphs. We collect and store

truong-jogc.tex; 5/04/2005; 11:25; p.22

23

Figure 13. Speedup factor for subgraph ProjectedImage of Montage workflows.

performance of these subgraphs in different experiments. Figure 13 shows
the speedup factor for the subgraph mProjectedImage of Montage work-
flows executed on several experiments. The execution of mProjectedImage
of the workflow executed on single resource in LINZ is faster than that of
its refinement graph executed on two resources (in AURORA6, or UIBK).
However, the execution of mProjectedImage of workflow executed on
5 resources, 3 of AURORA6 and 2 of LINZ, is just very slightly faster than
that executed on 5 resources of AURORA6. The reason is that the slower
activities executed on AURORA6 resources have a significant impact on the
overall execution of the whole mProjectedImage as presented on Figure
12(b).

7. Related Work

The Grid computing aims at addressing the interoperability and integration of
diverse resources and services. To achieve that aims, it is necessary to provide
well-defined interface to access these resources and services by hiding their
specific features. The Grid Application Toolkit (GAT) [9] presents a high
level application programming that shields low level details of underlying
Grid sites from the user. The Grid dynamic instrumentation service and GAT
follow the same general approach: using well-defined service interface to hide
low level details of Grids.

Several tools support performance analysis for Grid applications such as
GRM [12], OCM-G [13]. Our tool differs from these tools in many aspects.
Firstly, our tool is OGSA-based service. Secondly, we support dynamic in-
strumentation of Grid workflow-based application. GRM, for example, sup-
ports only manual instrumentation while OCM-G combines source code in-

truong-jogc.tex; 5/04/2005; 11:25; p.23

24

strumentation with a mechanism to dynamically enable instrumentation probes.
OCM-G also supports profiling and and periodically updating monitoring
data [14], but it limits to MPI programs. Existing tools supporting dynamic
instrumentation, e.g., Paradyn [3] and DPCL [18] are not designed to work
with the Grid. Nor do these tools provide enough accessible and interoperable
interface that our Grid dynamic instrumentation service introduces. However,
similar to Paradyn and DPCL, our Grid instrumentation service uses dynamic
instrumentation techniques provided by Dyninst [15].

Monitoring of workflows has been discussed for many years. Many tech-
niques have been introduced to study quality of service and performance
models of workflows, e.g. [28, 16], and to support monitoring and analysis
of the execution of the workflow on distributed systems, e.g., in [35, 8].
Our work and existing work share many general concepts of performance
metrics and monitoring techniques for the workflow in distributed systems.
However, most existing work concentrates on business workflows and Web
services processes while our work targets to the performance of scientific
workflows executed in Grids which are more diverse and dynamic, and inter-
organizational. We support dynamic instrumentation of activity instances,
monitoring and performance analysis of workflows based on not only execu-
tion status but also performance measurements obtained by instrumenting the
invoked application, and resource monitoring data. The performance monitor-
ing and analysis is not limited to activity level, but covers also code regions
of invoked applications. Moreover, we support multi-workflow analysis.

Numerous performance monitoring and analysis tools have been devel-
oped for the Grid, as studied in [21, 45], but most of them do not support
the monitoring and analysis of Grid scientific WFs. Most effort on support-
ing the scientist to develop Grid workflow-based applications is focused on
workflow languages, and workflow construction and execution systems, but
not concentrated on monitoring and performance analysis of the Grid WFs.
P-GRADE [27] is one of few tools that supports tracing of workflow applica-
tions. Instrumentation probes are automatically generated from the graphical
representation of the application. It however limits to MPI and PVM ap-
plications. Our Grid workflow monitoring and performance analysis service
combines online monitoring execution of activities with online profiling anal-
ysis. The support of dynamic instrumentation does not limit to MPI or PVM
applications.

8. Conclusion and Future Work

The dynamics and diversity of the Grid requires a dynamic and flexible mech-
anism in conducting the performance analysis of Grid applications. This pa-
per presents a dynamic approach to the performance instrumentation, mon-

truong-jogc.tex; 5/04/2005; 11:25; p.24

25

itoring, and analysis of Grid workflows. We have introduced a novel Grid
service to support dynamic instrumentation of workflow-based applications.
We have presented a Grid performance analysis service that can be used
to monitor and analyze the performance of scientific workflows in the Grid
on the fly. The Grid performance analysis service which combines dynamic
instrumentation, activity execution monitoring, and performance analysis of
WFs in a single system presents a dynamic and flexible way to conduct the
performance monitoring and analysis of scientific WFs. Workflows and their
relevant performance metrics are stored and utilized for for comparing the
performance of subgraphs of workflows and supporting multi-workflow anal-
ysis. We are currently working towards the full implementation of our pro-
totype, and are in the process to integrate the prototype into the ASKALON
toolset [19].

We should stress that the dynamic approach for conducting the perfor-
mance monitoring and analysis of scientific WFs we present does not re-
quire us to perform the monitoring and analysis at all levels such as whole-
workflow, activity and code region level. We should conduct the performance
analysis from a high level to a low level and the performance analysis should
be based on specific WFs. For example, if we consider invoked applica-
tions as black-boxes, we can collect only activity states and events from
the workflow invocation and control service. However, depending on work-
flows (e.g., workflows based on Web services, activities implemented in Java
invoke legacy C/Fortran code), through the instrumentation of invoked appli-
cations of activities, performance measurements of interactions among activ-
ities (e.g., an invoked application of an activity calls a function of the invoked
application of another activity) or within an activity (e.g., an Java method
calls C/Fortran functions) may be collected and analyzed.

In the current implementation, we manually instrument WIC in order to
get the execution status of activities. To avoid that, we can extend work-
flow specification language with directives specifying monitoring conditions.
These directives will be translated into code used to publish events containing
execution status of activities into the monitoring middleware. WIC can also
provide well-defined interfaces for the monitoring service to access execution
status of activities. Our performance monitoring and analysis limits to DAG
workflows. Recently, scientific workflows which have structured loops (e.g.,
do while structure) are proliferated. Currently, we are investigating to extend
our techniques to cover workflows with structured loops. Another aspect is
that while we focus on invoked applications as executable programs (each
activity instance invokes an executable program), there exist workflows that
each activity instance invokes a Web Service operation (likely written in
Java). This type of workflows will require different instrumentation mecha-
nism, e.g. dynamic instrumentation of Java services. Meanwhile, the process
of analysis, monitoring and instrumentation is controlled by the end-user, but

truong-jogc.tex; 5/04/2005; 11:25; p.25

26

it should be automated. The issues mentioned above will be addressed in
the 6thFP EU K-Wf Grid project [2] in order to support the performance
monitoring and analysis of Grid applications in a knowledge-based workflow
system.

References

1. ‘http://www-unix.globus.org/toolkit/docs/3.2/core/developer/
message security.html’.

2. ‘K-WF Grid Project. http://www.kwfgrid.net’.
3. ‘Paradyn Parallel Performance Tools, http://www.cs.wisc.edu/paradyn/’.
4. ‘The Grid Resource Allocation and Management (GRAM), http://www-

unix.globus.org/toolkit/docs/3.2/gram/ws/index.html’.
5. ‘Worldflow Management Coalition: Terminology and glossary. Technical Report

WFMC-TC-1011, Feb 1999’.
6. A. Cooke et al.: 2003, ‘R-GMA An Information Integration System for Grid Monitor-

ing’. In: Proceedings of 11th International Conference on Cooperative Information
Systems (CoopIS 2003). Sicily,Italy.

7. Aalst, W. M. P. V. D., A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros: 2003,
‘Workflow Patterns’. Distrib. Parallel Databases 14(1), 5–51.

8. Abate, A. F., A. Esposito, N. Grieco, and G. Nota: 2002, ‘Workflow performance evalu-
ation through WPQL’. In: Proceedings of the 14th international conference on Software
engineering and knowledge engineering. pp. 489–495.

9. Allen, G., K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R.
van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, and B. Ullmer: 2005,
‘The Grid Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid’. 93(3), 534–550.

10. AustrianGrid, ‘http://www.austriangrid.at/’.
11. Balaton, Z. and G. Gombas: 2003, ‘Resource and Job Monitoring in the Grid’. In:

Proceedings. Euro-Par 2003 Parallel Processings. Klagenfurt, Austria.
12. Balaton, Z., P. Kacsuk, N. Podhorszki, and F. Vajda: 2001, ‘From Cluster Monitor-

ing to Grid Monitoring Based on GRM’. In: Proceedings. 7th EuroPar’2001 Parallel
Processings. Manchester, UK, pp. 874–881.

13. Balis, B., M. Bubak, W. Funika, T. Szepieniec, and R. Wismüller: 2002, ‘An Infrastruc-
ture for Grid Application Monitoring’. LNCS 2474, 41–49.

14. Balis, B., M. Bubak, W. Funika, R. Wismüller, M. Radecki, T. Szepieniec, T. Ar-
odz, and M. Kurdziel: 2004, ‘Grid environment for on-line application monitoring and
performance analysis.’. Scientific Programming 12(4), 239–251.

15. Buck, B. and J. K. Hollingsworth: 2000, ‘An API for Runtime Code Patching’. The
International Journal of High Performance Computing Applications 14(4), 317–329.

16. Cardoso, J., A. P. Sheth, and J. Miller: 2003, ‘Workflow Quality of Service’. In: Pro-
ceedings of the IFIP TC5/WG5.12 International Conference on Enterprise Integration
and Modeling Technique. pp. 303–311.

17. Deelman, E., J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, and S. Koranda: 2003, ‘Mapping Abstract Complex Workflows
onto Grid Environments’. Journal of Grid Computing 1, 25–39.

18. DeRose, L., T. Hoover Jr., and J. Hollingsworth: 2001, ‘The Dynamic Probe Class
Library: An Infrastucture for Developing Instrumentation for Performance Tools’. In:

truong-jogc.tex; 5/04/2005; 11:25; p.26

27

Proceedings of the 15th International Parallel and Distributed Processing Symposium
(IPDPS-01). Los Alamitos, CA, pp. 66–66.

19. Fahringer, T., A. Jugravu, S. Pllana, R. Prodan, C. S. Junior, and H.-L. Truong:
2005, ‘ASKALON: A Tool Set for Cluster and Grid Computing’. Concurrency and
Computation: Practice and Experience 17(2-4), 143–169.

20. Foster, I. and C. Kesselman (eds.): 1999, The Grid: Blueprint for a New Computing
Infrastructure. San Francisco, CA: Morgan Kaufmann.

21. Gerndt, M., R. Wismueller, Z. Balaton, G. Gombas, P. Kacsuk, Z. Nemeth, N. Pod-
horszki, H.-L. Truong, T. Fahringer, M. Bubak, E. Laure, and T. Margalef: 2004,
Performance Tools for the Grid: State of the Art and Future, Vol. 30 of Research Report
Series, Lehrstuhl fuer Rechnertechnik und Rechnerorganisation (LRR-TUM) Technische
Universitaet Muenchen. Shaker Verlag. ISBN 3-8322-2413-0.

22. Globus Project, ‘http://www.globus.org’.
23. gSOAP: C/C++ Web Services and Clients, ‘http://www.cs.fsu.edu/˜engelen/soap.html’.
24. Gunter, D., B. Tierney, B. Crowley, M. Holding, and J. Lee: 2000, ‘NetLogger: A Toolkit

for Distributed System Performance Analysis’. In: Proceedings of the IEEE Mascots
2000 Conference.

25. JFreeChart, ‘http://www.jfree.org/jfreechart/’.
26. JGraph, ‘http://www.jgraph.com/’.
27. Kacsuk, P., G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton, and G. Gombas:

2003, ‘P-GRADE: a Grid Programming Environment’. Journal of Grid Computing 1(2),
171–197.

28. Kim, K.-H. and C. A. Ellis: 2001, ‘Performance Analytic Models and Analyses for
Workflow Architectures’. Information Systems Frontiers 3(3), 339–355.

29. Krishnan, S., P. Wagstrom, and G. von Laszewski: 2002, ‘GSFL : A Workflow Frame-
work for Grid Services’. Technical report, Argonne National Laboratory, 9700 S. Cass
Avenue, Argonne, IL 60439, U.S.A.

30. Laszewski, G., I. Foster, J. Gawor, and P. Lane: 2001, ‘A Java Commodity Grid Kit’.
Concurrency and Computation: Practice and Experience 13(643-662).

31. Ludaescher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee,
J. Tao, and Y. Zhao: 2005, ‘Scientific Workflow Management and the Kepler Sys-
tem’. Concurrency and Computation: Practice & Experience, Special Issue on Scientific
Workflows.

32. Miller, B., M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kun-
chithapadam, and T. Newhall: 1995, ‘The Paradyn Parallel Performance Measurement
Tool’. IEEE Computer 28(11), 37–46.

33. Montage, ‘http://montage.ipac.caltech.edu’.
34. Podhorszki, N. and P. Kacsuk: 2003, ‘Monitoring Message Passing Applications in the

Grid with GRM and R-GMA’. In: Proceedings of EuroPVM/MPI’2003. Venice, Italy.
35. Savarimuthu, B. T. R., M. Purvis, and M. Fleurke: 2004, ‘Monitoring and controlling

of a multi-agent based workflow system’. In: Proceedings of the second workshop
on Australasian information security, Data Mining and Web Intelligence, and Software
Internationalisation. pp. 127–132.

36. Seragiotto, C., T. Li, T. Fahringer, B. Mohr, M. Gerndt, and H.-L. Truong: 2005, ‘Stan-
dardized interfaces for representing, instrumenting, and monitoring Fortran, Java, C,
and C++ Programs’. Concurrency and Computation: Practice and Experience. On
submission.

37. Singh, M. P. and M. A. Vouk: 1996, ‘Scientific Workflows’. In: Position paper in Refer-
ence Papers of the NSF Workshop on Workflow and Process Automation in Information
Systems: State-of-the-art and Future Directions.

truong-jogc.tex; 5/04/2005; 11:25; p.27

28

38. Sowa, J. F.: 2000, Knowledge Representation: logical, philosophical, and compuational
foundations. Pacific Grove, CA: Brooks/Cole.

39. The Condor Team, ‘DAGMan (Directed Acyclic Graph Manager)’.
http://www.cs.wisc.edu/condor/dagman/.

40. Truong, H.-L. and T. Fahringer: 2003, ‘SCALEA: A Performance Analysis Tool for
Parallel Programs’. Concurrency and Computation: Practice and Experience 15(11-12),
1001–1025.

41. Truong, H.-L. and T. Fahringer: 2004, ‘SCALEA-G: a Unified Monitoring and Perfor-
mance Analysis System for the Grid’. Scientific Programming 12(4), 225–237. IOS
Press.

42. Vouk, M. A. and M. P. Singh: 1996, ‘Quality of Service and Scientific Workflows’.
Technical Report TR-96-19, Department of Computer Science, North Carolina State
University. Thu, 19 Sep 96 22:59:36 GMT.

43. Wainer, J., M. Weske, G. Vossen, and C. B. Medeiros: 1996, ‘Scientific Workflow Sys-
tems’. In: Proc. NSF Workshop on Workflow and Process Automation in Information
Systems: State-of-the-Art and Future Directions. Athens, Georgia.

44. Welch, V., F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke: 2003, ‘Security for Grid Services’. In: 12th IEEE
International Symposium on High Performance Distributed Computing (HPDC’03).
Seattle, Washington, pp. 48–57.

45. Zanikolas, S. and R. Sakellariou: 2005, ‘A Taxonomy of Grid Monitoring Systems’.
Future Generation Computing Systems 21(1), 163–188.

truong-jogc.tex; 5/04/2005; 11:25; p.28

