Soft Computing Approach to Performance Analysis of
Parallel and Distributed Programs *

Hong-Linh Truong and Thomas Fahringer

Institute for Computer Science, University of Innsbruck
Technikerstrasse 21A, A-6020 Innsbruck, Austria
{truong, tf }@Ips. ui bk. ac. at

Abstract. This paper describes a novel approach to performance analysis for
parallel and distributed systems that is based on soft computing. We untod
the concept of performance score representing the performémoele regions

that is based on fuzzy logic. We propose techniques for fuzzy-hgeséarmance
classification. A novel high-level query language is designed to stfposearch

for performance problems by using linguistic expressions. We desarfazzy-
based bottleneck search, a performance similarity measure for egibes and
experiment factors, and performance similarity analysis. Our apprémcuses

on the support of making soft decisions on evaluation, classificatiancls@nd
analysis of the performance of parallel and distributed programs.

1 Introduction

Recently, performance analysis community has focused waloj@ng performance
tools for parallel and distributed programs that are capabsupporting semi-automatic
performance analysis, dealing with large performance slets, and analyzing multi-
ple experiments. However the development of automatic atedligent performance
analysis is still at an early stage. Current techniques istieg performance analy-
sis tools have mainly been used to process the performarnadtad are in the form
of precise numerical data. Firstly, these techniques avegply exact analysis meth-
ods that result in hard conclusions about performance ctaistics of applications.
Secondly, existing performance tools interact with the tis®ugh complex numerical
values and visualizations which are not easily understgoth® user. Thirdly, in the
real world we largely rely on domain expertise and user-ol&y inputs as parameters
to control the performance analysis and tuning. Such eiggesind inputs may be inex-
act and uncertain. However, existing performance toolsaleupport the specification
and the control of approximate and inexact parameters i @aalysis techniques, in
other words, these tools do not provide a mechanism to mdkdesgsions.

The recent emergingoft computind1], however, presents another way for evalu-
ating and analyzing data that is based on the concepdftfinexact, uncertaintysoft
computing aims to support imprecision, uncertainty andaamate reasoning [1].

* The work described in this paper is supported in part by the Austrian Gciéand as part
of the Aurora Project under contract SFBF1104 and by the Eurogaam through the IST-
2002-511385 project K-WfGrid.

In this paper we present a new approach to the performandgsantnat we call
thesoft performance analysiin this approach, well known soft computing techniques
such as fuzzy logic (FL), machine learning (ML) concept, #mel combination of FL
and ML are studied and developed for performance analygsu@ilel and distributed
programs. We introduce the concepts of performance scarpenfiormance similarity
measure. Employing these concepts, we develop severaksbftiques and methods
for performance analysis such as fuzzy-based performdassification, performance
search, similarity analysis, etc.

The rest of this paper is organized as follows. Section drmglthe so-called soft
performance analysis. Section 3 presents a few prelineisaWe introduce the con-
cept of performance score and performance similarity nredausection 4 and Section
5, respectively. We describe soft techniques for perfomaamalysis including fuzzy-
based performance classification, query language, fuagg bottleneck search and
performance similarity analysis in Section 6. Section tukses the related work. Sec-
tion 8 gives conclusions and the future work.

2 Soft Performance Analysis

Existing performance analysis tools are basetlamd computing model that is based on
binary logic and crisp systems. For example, to classifypérormance performance
analysis tools normally usecharacteristic functionThat is, given a performance met-
ric and a set operformance characteristic terne.g., poor, mediumand good each
term represents a performance class and is associated détfa @et, the performance
of a code region is classified according to characteristingeby using a characteristic
function. However, such classification is in binary forng.ea performance of the code
region is eithegoodor not, because the hard computing model does not acceptimpr
cision and uncertainty. Since approximate search, cleaign and reasoning are not
possible, the cycle of finding performance patterns in aelaet of performance data
has been lengthened because, in the real world, the boesdatween performance
classes, performance search constraints, etc., are rRolyckeen, thus, exact methods
may not yield the expected results. Moreover, current témisis on supporting the
performance analysis through statistical graphics whiemat well suited for process-
ing large performance datasets. In practice, both perfocadata and expertise used in
performance analysis domain can be uncertain. For examgilee case of performance
classification, performance of code regions is classifiemignod but depending on the
degree ofyoodthe performance of code regions can be considerdittlagyood, fairly
goodor very good When we are not sure about performance data and expertise, we
may accept some degrees of uncertainty and approximate emalysis techniques.

To address the above-mentioned issues, we investigaterpenfice analysis tech-
nigues that are based on soft computing. The soft perforenanalysis we propose aims
to develop techniques for performance tools that can (fpekuseful performance in-
formation from large, dynamic and multi-relational perfance measurement sources,
(ii) support the specification and control of approximated arexact parameters, com-
mands and requests in existing performance analysis taotk(iii) interact with the
user through high level notions and concepts expressedgniitic expressions.

We outline the approach as follows. Firstly, fuzzy logic Jfan help representing
and normalizing quantitative data. We can reprepentormance scoref metric val-
ues by using fuzzy set (FS). By employing the concept of perémce scores, we can
develop several techniques that support soft, inexact aedrtainty in performance
analysis. The application of FL theory also involves theagg of linguistic variables
and the use of linguistic variables is particular usefultf@ end-user because humans
employ mostly words in computing, as presented in the caneEpomputing with
words [2]. Therefore, by using FL, performance tools carvigiwa way to perform the
analysis and to interpret performance results with lindgiterms. Secondly, when pro-
cessing large and diverse performance data, informationtgderformance summaries,
similarities and differences of data items in that data bezmore important as we can-
not examine each data items in detail. Similarity measuntertigues can be exploited to
reveal the performance similarities and differences. Mihteques [3] can be utilized
to discover patterns in very large performance datasetsxample, machine learning
is combined with fuzzy computing to provide fuzzy clusteriior performance data.
Due to the space limit, this paper presents only a few poihtgsioapproach, focusing
on FL and performance similarity techniques. More detadaff performance analysis
can be found in [4].

3 Preliminaries

3.1 Performance Experiment Data

A program contains a set of instrumented code regions. ieaiace data collected in
each experiment of the program is organized infeformance experiment datAn
experiment is associated with a set of processing unitso&gssing unipu is a triple
(n,p, t) wheren, p andt¢ are computational node, process identifier and threadiident
fier, respectively. A region summary is used to store performance metric records of
executions of a code regia@n in a processing unju. A performance metric recoygn

is represented as a tuple:, v) wherem is the metric name andis the metric value.
We denoters(m) as the value of performance metricstored in region summans.

We use performance data obtained from experiments of trogeaR applications
named 3DPIC (MPI program), LAPWO (MPI program) and STOMMELix@d OpenMP
and MPI program). All experiments are conducted on a cluftéCPU SMP nodes us-
ing MPICH library for Fast-Ethernet 100Mbps and Myrinet.

3.2 Representing Performance Characteristics under Fuzzlyogic Theory

An F'S is used to map metric values onto membership values in trgerfanl]. An
F'S is expressed as a set of ordered pit$ = {(v, u(v))|v € U} wherep(v) is the
membership function determining the degree of membershig andU is the uni-
verse of discourse af. Letv be a metric value with the universal of discoutseU is
characterized by a given setpérformance characteristic term® = {t1,t2, -, t,};
performance characteristic terms are linguistic termé sgpoor, mediumand high.
Eacht; is associated with a membership functjosiv) which determines the member-
ship ofv in ¢;. v can be classified according to these termsnédifier(e.g.slightly) is

an operation that modifies a performance characteristit erg.bottleneck The mod-
ification results in a new fuzzy set represented by a new pi{eg slightly bottleneck
In our experiments, we use the NRC-IIT FuzzyJ Toolkit [5]fiazzy computing.

4 Performance Score

When evaluating and comparing performance of code regiors masting perfor-
mance tools are normally based on quantitative measurerakms and do not employ
quantization or normalization techniques to evaluate ipleltmetrics. We present the
concept ofperformance scoravhich is used to evaluate the performance of a code re-
gion within a base, e.g. the parent code region or the whalgram. The concept is
based on (i) a set of selected performance metrics chairactethe performance of the
code region, and (ii) a weight set representing the sigmieaf performance metrics.
Given a code regionr, letrs be the region summary of with a set ofn performance
metrics{m1, ma, - - -, m, }. Suppose the number of performance metrics measured is
the same for every code regions. can be represented in dimensional space. Let

v; = rs(m;) be the value of metrien; in rs and lets; be a score that represents the
performance of s with respect to metrien;. We computes; as follows

Si = Ui(vi)vﬂi(v) : [07 V’"h‘,] - [07 1] (1)

wherep;(v) is the membership function determining the performancees@ndV,,,,

is the maximum observed value of;. V,,,, is dependent on the level of code region
analysis. For example, if we analyze performance scores with its parentrsp,,cn:

as the baséd/,,,, = rsparent(m;).

The value ofs; is in the rangd0, 1]; 0 means the lowest score, 1 means the highest
score. A higher performance score might be used to imply henigerformance or to
indicate a lower significant impact. The exact semantick®#alue of the performance
score is defined by the specific implementation. As a resetfppmance scores can be
used in various contexts such as to indicate (i) a significapact level: the higher a
performance score is, the higher impact the code regioronés), a severity, the higher
a performance score is, the more severe the core region ése Hie several ways to
selectu(v), depending on the specific analysis and approximate moeédl I$he most
simple way is to define the membership functioas(v;) = 7#- which assumes that
the score is based on linear model. We can choose trapezfﬁinncﬁon, Z-function,
triangle, etc., and tool-defined function fofv).

Eachrs is associated with a vector of performance scafeBlowever, we may
only select a subset af as metrics to represent the performance of the code region.
Like quantitative measurement values, we can compare twjorpgance scores of two
different metrics. However, because performance scoees@malized values, we can
aggregate performance scoresf rs into a single score by using the overall weighted
average (OWA) operator. Ldtsy, so,- -, s, } be performance scores of andWW =
{wy,wq,---,wy,} be the set of weightay; is a weight factor associated with metric
m;. The aggregate performance scorefonay be computed as follows

OWA(3) = % @)

For the sake of simplicity, normally; € (0,1) and>"" , w; = 1. OWA score is
particular useful for support of decision making in perfarme analysis and tuning
because very often we have to decide which are the focusemet the code regions
that should be tuned and optimized in order to achieve afygtéormance. Hence we
use the notatiofm;, w;) to denotem; with its associated weight;.

We use performance score in ranking analysis, fuzzy C-mehussering, fuzzy
rules, and similarity analysis. The former three analysesavered in [4].

5 Performance Similarity Measure

Most existing performance tools employ numerous displays,, process time-lines
and histograms, to compare performance measurements smaliz¢ that measure-
ments. Those displays are crucial but the user has to obdendisplays and perceive
the similarity and the difference among these values. M@a¥gat is difficult to com-
pare multivariate data through visualization. We propost¢hods to compute theer-
formance similarity measumghich can be used as a metric to indicate the performance
similarity among code regions and among experiment fadtansnally, leto; ando; be
objects, a similarity measure is a functiginn(o;, 0;) — [0, 1] that compares; with o,
where 0 denotes complete dissimilarity and 1 denotes caegpimilarity. Performance
similarity measure can help uncovering similar/dissimdarformance patterns among
code regions, e.g., for making decisions in dynamic peréorce tuning [6].

5.1 Similarity Measure for Code Regions

Letrs; andrs; be region summaries ef. Lets;; ands;; be performance score of;
andrs; with respect to metrien;, respectively. We use Equation 1 to compsgeand
s;1. The performance similarity measwén,;(rs;, rs;) is defined as follows

n

simij(rsi, ’I“Sj) =1- dij,dij = Z (|37,l — Sjl|2) (3)
=1

whered;; is the distance measure between andrs;; d;; is computed based on Eu-
clidean distance. Note that we can use other distance éng;te.g., Minkowski, Man-
hattan, Correlation and Chi-square, and can use weigldriaassociated with metrics.
To determine the performance similarity among executidnsde regions across
a set of experiments, we use Equation 3 to measure the penfieesimilarity. Given a
code regiorer and a set of experimen{g,, ez, - - - , e, }. Letrs; be region summary of
cr in experiment;. We compute similarity measuegm(rsy, rs;), i : 2 — n by using
various membership functions. Given metri¢, when determining performance score,
the maximum observed valug,, is obtained frome; which is the base experiment.

5.2 Similarity Measure for Experiment Factors

Experiment factors which can be controllable, e.g. probdéra, the number of CPUs
and communication libraries, or uncontrollable such as QB&ge, have significant im-
pact on the performance of the applications. Without cargig the similarity between

experiment factors, it is difficult to explain cases in whtble performance of code re-
gions is not similar because the experiment factors canfferatit. Therefore, initially
we try to address this problem by measuring similarity betweontrollable factors.

Let sim¢(e;, ;) be similarity measure for factgf between experiments ande;.
Given a set of controllable factols = {f1, f2, -, fn}, Similarity measure is com-
puted for each factof; € F. There is no common way to computén s as a control-
lable factor and its role depend on each experiment. Thectingeof our analysis is to
find out the relationship between the performance simjlarfithe code regionssim,
(e.g.sim(rs;, rs;)), andsimy,. Naturally we expect that the similarity measures of the
controllable factors of two experiments and the similanitgasures of the performance
of these experiments behave in a similar fashion, e.g. iftmgrollable factors are very
similar then the performance of experiments should be viemjas.

6 Soft Techniques for Performance Analysis

6.1 Performance Classification

Performance classification classifies the performanceddé cegions according to per-
formance characteristic terms. Formally, given a metriagevaand a set of performance
characteristic term® = {¢;,t2, - -, ¢, }, v are classified according to that terms. In ex-
isting performance tools, the classification gives a bimasglt:v belongs to only one
t; € T, with no degree of membership. Conversely, the fuzzy-bakeskification de-
termines the degree to whietfits into¢;, forall ¢; € T

To classify performance of code regions, we firstly define tao$gerformance
metric terms for each performance metricby partitioning the universal of discourse
of metricm into segments and each segment is described by a performmeatde term
which is associated with a FS. Performance characteresting can be defined based
on training data. After membership functions are deterdhitiee membership degree
of v is computed based on quantitative valuef m.

To demonstrate this analy- |, ‘ ‘ ‘ ‘
sis, we classify code regions of | "
3DPIC application executed on
4 processors according to per-
formance characteristic termsé

06

T = {low,medium,high} T
representing the L2 cache miss ™[
ratio. Three FSs Z-function, °c PR or s os 1

L2 cache miss ratio

trapezoid and S-function are o
associated withlow, medium Fig.1. Performance characteristic termow,

and high term, respectively, as medium, higtwith their associated fuzzy sets.

shown in Figure 1. We then conduct the classification withnadelected code regions.
Figure 2 presents the result with five selected code regmshown in Figure 2, the
code regionPARTI CLE_LQAD hashigh L2 cache miss ratio. However, code region
CAL _POAER is member of botthow andmedium

New performance characteristic terms can also be built byb@oing existing ones
with modifiers. For example, we can classify code region®uing tovery lowL2

— Performance Classification for L2_TCM/L2_TCA | B |_|
Code Region | Classes |
Region 18.PARTICLE_LOAD[CR_AT91:328] high{degree=0.937)
Region 26:5R_E_FIELD[CR_A:BA3:723] mediurmidegree="1/
Region 46:10MZE_MOVE[CR_AN 281:1788] low{degree=0.732)f
Region 47:SET_FIELD_PAR_BACK[CR_A1794:1928] medium{degree=0.545)1
JRegion 48:CAL_POWER[CR_A:2244:2323] lowddegree=0.007)medium{degree=0.28)

Fig. 2. Membership in{low, medium, high L2 cache miss ratio for selected code regions of
3DPIC.

cache miss ratio; the terneryis a fuzzy modifier. The use of modifiers allows us to
extend and enhance the description of performance chasdictéerms.

6.2 Fuzzy Query for Performance Search

The fuzzy-based approach offers the possibility of seafcheoformance data with
words. Fuzzy-based search that uses linguistic expreshias been widely employed
in database systems, information retrieval, etc., butmekisting performance tools.
We propose a fuzzy_based<5tatement): : =(Expr)| (Statement) OR (Expr)
query language for se_:arch of perz Eapr) - =(Term) | (Eapr) AND (Term)
formance data. Queries are CONPp o) . =(METRIC i § (F_Expr))

structed based on fuzzy modifiers, _.
AND and OR operators, and per- Fig. 3. Top-level syntax of PERFQL.

formance characteristic terms. Figure 3 presents the a@egl-lsyntax of our PER-
FQL (Performance Query Language based on fuzzy lod&TRI C is a metric
name or ametric expressionA metric expression consists of operands and, *,

|/ arithmetic operators; operands are metric nantesdrzpr describes the syntax of
generic linguistic expressions (see [5] for the syntax)eSEhexpressions are con-
structed from performance characteristic terms and maslifieor example, the fol-
lowing query can be used to find code regions which have higkchaek time and
poor L2 cache miss ratio{wt i me i s H GH.EXECUTI ONTI ME) AND (Z2TCM s
POOR.CACHE M SS)" , where H GH.EXECUTI ON_TI ME and POOR_.CACHE_M SS
are performance characteristic terms.

PERFQL allows the user to easily define queries for searclerdépnance data by
using words, not numerical expressions. Thus, it is easg tolderstood and interpreted
by the user. Moreover, fuzzy-based queries enable appat&isearch thus interesting
performance data which is slightly less or greater than tisg condition can be easily
obtained.

6.3 Fuzzy Approach to Bottleneck Search

There are several tools supporting bottleneck search,[@,8]. These tools, however,
support crisp-based searching as the search is conducteltebking crisp threshold.
Given a performance metric, a threshold is pre-defined. rigutine search, the per-
formance metric is evaluated against the threshold, andh e performance metric

exceeds the threshold, a bottleneck is assumed to exist ootie region. There are two
drawbacks of current crisp search strategy. Firstly, tecbedoes not give the degree
of severity of the bottleneck, e.gxtremelyor slightly bottleneck. Secondly, there is no
support to specify inexact bottleneck search statemets asnegligible bottleneck
These statements are important as the threshold, by naturat, an exact value.

We propose fuzzy-based botl-3

tleneck search that addresses thef o v ot iy et
above'mentioned draWbaCkS- Flg' = = = Fuzzy “negligible bottleneck" membership function
ure 4 outlines the fuzzy-based 1 N

bottleneck search. Given a thresh- HA g

old, we can use FSs to represent I\

the severity of bottleneck and ,' “

the negligible bottleneck range ° L e\ ® >

besides the FS representing the Bottoneck Upper bound Metric Value
bottleneck threshold. For exam-

ple, in Figure 4 we define a Pi- Fig. 4. Fuzzy vs crisp bottleneck search.

function FS used to check the

negligible (close to) bottleneck points and S-function Eedito check the severity
of bottleneck. When searching the bottleneck points, theevaf metric used in bottle-
neck search is evaluated against these FSs. Not only we cate lbottleneck points as
usual but also we can provide the severity of bottleneck,aaadble to find negligible
bottleneck points.

—| Fuzzy—based Search [-1=
CodeRegion | L2 TCMIL2Z_TCA | Botileneck
FARTICLE_LOAD 0.949/242344418835 |Medium (degree=0.502)/High (degree=0 448)

(a) Without negligible bottleneck search

— Fuzzy—based Search I
CodeRegion | L2_TCML2_TCA | Bottleneck |
WPI_SEND 0.6550124665722567 |Negligible (degree=0.1)/

APARTICLE_LOAD |0.9497242344418835 Medium (degree=0.502)High (dearee=0.493)7 |4

(b) With negligible bottleneck search
Fig. 5. Example of fuzzy-based bottleneck search.

Very simply, to show advantage of fuzzy-based bottleneckcte we experience
with 3DPIC code to locate code regions that may have L2 cactesa problems. Sup-
pose a code region whose L2 cache miss ratio exceeds 0.7 tenbok. In the first
case we use a set of performance characteristic t&rms{low, medium, high} rep-
resenting the severity of the bottleneck. Three differanty sets Z-function with range
[0.7,0.8], Pi-function with rangg0.75, 0.95] and S-function with rang@.9, 1] are asso-
ciated withlow, mediumandhighterm, respectively. We apply this search with 3DPIC

code executed with 4 processes and we find that there is orlpaitieneck as shown

in Figure 5(a). The bottleneck falls into both classediumandhigh, as shown in Fig-
ure 5(a). Since we are not certain about the threshold weleéétd use another triangle
FS with parametef0.65, 0.7,0.75) to describe close area of the pre-defined bottleneck
threshold. The result is that we find another code regionesepted in Figure 5(b).

6.4 Similarity Analysis

We have implemented similarity analysis for all region susmies of a given code re-
gion in one experiment, and for region summaries of a setletss code regions in a
single or multiple experiment(s).

— SCALEA: Similarity Analysis =
CodeRegion/Experiment | 2McaP.P4.36 | Zx4P.GM 36 | 3Nx4PP436 | 3NxdP,GM36 | 3NxdPP472 | 3MxP,GM 72
0.996] 0.638 0.635] 0.625] 0.625]
0.986] 0.629 0.636] 0.597] 0.597]
0.999] 0.63 0.631 0.597] 0.597]
0.982 0.632 0.639] 0.588] 0.508]
0.997 1 0.997 0.981 0.981
0.994 1 1 0.536] 0.756;
0.993 1 1 0.497 0.479

Region ZCA_MULTIPOLMENTSICR_A:256.506]

Region 3CA_GOULOME_INTERSTTIAL_POTENTIALICR_A 536:668]
Region +CAL_COULOME_RMTICR_A:835:668]

Region 5:CAL_CP_INSIDE_SPHERESICR_A678:772]

Region 5FFT_REAND[CR_OTHERSEQ 881887

Region 7FFT_REANZ(CR_OTHERSEQ 680 651]

JReaion GFFT_REANY_CRICR_OTHERSEQ:A15517]

Fig. 6. Similarity analysis for LAWPO. We use@wt i ne, 1.0) to compute similarity mea-

sure. Experimen2Nx4P, P4, 36 is selected as the baseNx4P means 1 SMP node with 4
processorsP4 and GM correspond to MPICH CHP4 and Myrinet, respectively. The problem
size is either 36 or 72 atoms. Distance measure is based on Euclide#iarfunc

Figure 6 presents an example of using similarity analysextomine selected code
regions in 6 experiments. The first observation is that thifopmance of code region
FFT_REANO in the last 5 experiments is almost complete similar to thst @ixperi-
ment. The performance ¢fFT_REAN3, FFT_REAM is almost similar in the first 4
experiments. This suggests that the performance of theteeregions is not affected
by changes of number of processors, communication lilgaeieen problem sizes (in
case ofFFT_REANQ). All code regions have similar performance in the first twe e
periments, suggesting the use of Myrinet does not increass merformance. This is
confirmed by many cases in which communication librariegldferent but the perfor-
mance is very similar.

Table 1 shows an example of
parameters of controllable fac- |Factor |Fuzzy Set Range |Factor Category|
tors. Table 2 presents the resultatoms | linear [0,72] problem size
of an example in which similar- |[CPU |S-function] [0,64] machine
ity is measured for code region |networkS-functior|[0,158.20] communication
CA_MULTI POLMENTS in 6 ex-
periments of LAPWO by using Table 1. Parameters for controllable factors.
parameters in Table 1. Performance score of the code regibased on S-function
and distance measure is based on Euclidean function. In sas&s, communication
factor has very little impact on the performance, e.g., #ivork between the first and
the second experiment is quite dissimilar while other fectre very similar, but the
performance is very similar. A similar result obtained if @eamine the fifth and sixth

experiments. The CPU factor has significant impact on sorsesc&.g., factors of the
third experiment are the same as those of the first experjrageg¢pt that CPU factors
are slightly different. However, the performance of theeoggion is quite different.

Experiments 2Nx4P,|2Nx4P3Nx4P,|3Nx4P, 3Nx4P,3Nx4P,
P4,36|GM,36| P4,36|GM,36| P4,72|GM,72
STMf,,0m. ({atoms,3) 1 1 1 1 0.5 0.5

simyepy ({(CPU,1)) 1 1]0.95310.95310.95310.9531
simyg, ... ({(network,1})] 1 0.1519 1 |0.1519 1 |0.1519
sime ({(wtime,1)}) 1 0.996| 0.638| 0.635| 0.625| 0.625
Table 2. Example of similarity analysis with experiment factors @& MULTI POLMENTS re-
gion in 6 experiments. The first experiment is selected as the base.

7 Related work

FL has been used in performance monitoring of parallel astlibuted programs, e.g.
performance contracts [9], but has not been exploited ia daglysis techniques, e.g.
performance classification, of existing performance tools

APART introduces the concept of performance property [ba} tharacterizes a
specific negative performance behavior of code regions.edew performance prop-
erty is associated with a single performance metric. A parémce property cannot rep-
resent a set of performance metrics. There is no conceptightveperator associated
with performance properties. Also, our performance sceteased on FL that allows
the representation of fuzzy concepts sucmearandvery. Performance score can be
computed based on linear and non-linear model with varioambership functions.

Toward high-level scalable and intelligent analysis, sifésation based on machine
learning has been used for classifying performance cheristits of communication in
parallel programs [11]. Ahl and Vetter used multivariatatistical techniques on hard-
ware performance metrics to characterize the system [1@jeder, they do not deal
with cases of multiple variables with different scales armiight factors. In [13], statisti-
cal analysis is used to study different (controllable ancbitrollable) factors that affect
the mapping process of scientific computing algorithms t@aded architectures.

In [14] dispersion statistics is used to characterize thd imbalance by measuring
the dissimilarity of performance metrics; metrics are nalized by measuring devia-
tion from a mean value of a data set. Our similarity measubased on fuzzy-based
performance scores and is applied to not only code regioralfm experiment factors.

In [6], historical data is used to improved automatic tungiygtems. Performance
score, similarity measure and fuzzy rules are fitted welbfescribing parameters and
for improving decision making in performance tuning.

8 Conclusion and Future Work

This paper proposes a hew approach to performance andlgsis based on soft com-
puting. On the one hand, soft performance analysis tecbriguovide flexible, scal-

able and intelligent techniques for analyzing and comggatfie performance of com-
plex parallel and distributed applications. On the otherdhahey interact with the user
through high level notions. We complement existing work aodtribute flexible and
convenient methods to deal with uncertainty in the perforceaanalysis, e.g. fuzzy-
based bottleneck search, and to conduct the analysis iothedf high level notions,
e.g. fuzzy-based search query. Still the soft performanedyais approach is just at an
early stage, we believe it is a promising solution to prowdft, scalable and intelligent
methods for automatic performance analysis.

Our future work is to study the application of soft perforroamnalysis for dynamic
performance tuning. Our proposed techniques could beaptdithe performance anal-
ysis of large-scale complex dynamic Grid environments oickvhesources and their
usage are unpredictable, performance data collected termsmore imprecision and
uncertainty. Moreover, performance similarity can be useahalyze and compare di-
verse Grid resources. Linguistic variables and fuzzy roéesbe used in specifying and
controlling service level agreements (SLAS) in the Grid.

References

1. Zadeh, L.A.: Fuzzy logic, neural networks, and soft comput@gmmun. ACM37 (1994)
77-84

2. Zadeh, L.A.: Fuzzy Logic = Computing with Words. |IEEE Transaaion Fuzzy Systems
4(1996) 103-111

3. Mitchell, T.M.: Machine Learning. McGraw Hill, New York, US (1997)

4. Truong, H.L.: Novel Techniques and Methods for Performadeasurement, Analysis
and Monitoring of Cluster and Grid Applications. PhD thesis, TU WIEN, Aas{2005)
http://dps.uibk.ac.ditiong/publications/linh-diss.pdf.

5. FuzzyJ Toolkit: http://ai.iit.nrc.ca/IRublic/fuzzy/fuzzyJToolkit.html (2004)

6. Chung, I.H., Hollingsworth, J.K.: Using Information from Priorf&to Improve Automated
Tuning Systems. In: ACM/IEEE SC2004, Pittsburgh, PA (2004)

7. Cain, H.W., Miller, B.P., Wylie, B.J.: A Callgraph-Based Searchat®yy for Automated
Performance Diagnosis. In: Euro-Par 2000 Parallel Proces@6g0)] 108—-122

8. Fahringer, T., Seragiotto, C.: Aksum: A performance analysisaoparallel and distributed
applications. Performance Analysis and Grid Computing (2003)

9. Vraalsen, F.,, Aydt, R.A., Mendes, C.L., Reed, D.A.: Perfamoe contracts: Predicting and
monitoring grid application behavior. In: Proceedings of GRID 2001ui® LNCS 2242.,
Denver, Colorado, Springer-Verlag (2001) 154-165

10. Fahringer, T., Gerndt, M., Mohr, B., Wolf, F., Riley, G.&ff; J.: Knowledge Specification
for Automatic Performance Analysis. Technical report, APART Waglgnoup (2001)

11. Vetter, J.: Performance analysis of distributed applications usitognatic classification of
communication inefficiencies. In: Conference Proceedings of thé R@érnational Confer-
ence on Supercomputing, Santa Fe, New Mexico, ACM SIGARCH (2R05)254

12. Ahn, D.H., Vetter, J.S.: Scalable Analysis Techniques for Miaropssor Performance
Counter Metrics. In: IEEE/ACM SC’2002, Baltimore, Maryland (2002)

13. Santiago, N.G., Rover, D.T., Rodriguez, D.: A Statistical Apphofor the Analysis of
the Relation Between Low-Level Performance Information, the Codd,the Environ-
ment. In: Proceedings of 2002 International Conference on PaRathekssing Workshops
(ICPPW’'02), Vancouver, B.C., Canada, IEEE Computer Societg$¢2002) 282—

14. Calzarossa, M., Massari, L., Tessera, D.: A methodology ttsvautomatic performance
analysis of parallel applications. Parallel Com@@(2004) 211-223

