Performance Analysis for MPI Applications with
SCALEA *

Hong-Linh Truong!, Thomas Fahringer!
Michael Geissler?, Georg Madsen®

! Institute for Software Science, University of Vienna
Liechtensteinstr. 22, A-1090 Vienna, Austria
{truong,tf}@par.univie.ac.at
2 Photonics Institute, Technical University Vienna
Gusshausstrasse 27/387, A-1040 Vienna, Austria
geissler@tuwien.ac.at
3 Institute of Physical and Theoretical Chemistry, Technical University Vienna
Getreidemarkt 9/156,A-1060 Vienna, Austria

gmadsen@theochem.tuwien.ac.at

Published in Proc. of the 9th European PVM/MPI User’s Meeting (EuroPVMMPI 2002), Linz,
Austria, September 29th - October 2nd, 2002

Abstract. The performance of message passing programs can be chal-
lenging to comprehend. In previous work we have introduced SCALEA,
which is a performance instrumentation, measurement, analysis, and vi-
sualization tool for parallel and distributed programs. In this paper we
report on experiences with SCALEA for performance analysis of two re-
alistic MPI codes taken from laser physics and material science. SCALEA
has been used to automatically instrument - based on user provided di-
rectives - the source codes, to compute performance overheads, to relate
them to the source code, and to provide a range of performance dia-
grams in order to explain performance problems as part of a graphical
user interface. Multiple-experiment performance analysis allows to com-
pare and to evaluate the performance outcome of several experiments
which have been conducted on a SMP cluster architecture.

1 Introduction

Message passing serves as an effective programming technique for parallel ar-
chitectures and also enables the exploitation of coarse-grain parallelism on dis-
tributed computers as evidenced by the popularity of the Message Passing In-
terface (MPI).The performance of parallel and distributed message passing pro-
grams can be difficult to understand. In order to achieve reasonable performance
the programmer must be intimately familiar with many aspects of the appli-
cation design, software environment, and the target architecture. Performance
tools play a crucial role to support performance tuning of distributed and parallel
applications.

* This research is partially supported by the Austrian Science Fund as part of the
Aurora Project under contract SFBF1104.

We have developed SCALEA [11,10] which is a performance instrumentation,
measurement, analysis, and visualization tool for parallel and distributed pro-
grams that focuses on post-mortem and on-line performance analysis for Fortran
MPI, OpenMP, HPF, and mixed parallel programs. The approach supported by
SCALEA is that it seeks to explain the performance behavior of each program
by computing a variety of performance metrics based on a novel overhead classi-
fication [11,10] for MPI, OpenMP, HPF and mixed parallel programs. In order
to determine overheads, SCALEA divides the program sources into code regions
and locates whether the performance problems occur in those regions or not. A
highly flexible instrumentation and measurement system is provided which can
be controlled by program directives and command line options.

A data repository is employed in order to store performance data (raw per-
formance data and performance metrics) and information about performance
experiments (e.g. source codes, machine configuration, etc.) which alleviates the
association of performance information with experiments and the source code.
SCALEA also supports multiple-experiment performance analysis that allows
to compare and to evaluate the performance outcome of several experiments.
A graphical user interface is provided to view the performance at the level of
arbitrary code regions, processes and threads for single- and multi-experiments.

The rest of this paper is organized as follows: Related work is outlined in
Section 2. Section 3 presents an overview of SCALEA. Experiments that demon-
strate the usefulness of SCALEA are shown in Section 4, followed by conclusions
and future work in Section 5.

2 Related Work

Paradyn [7] uses dynamic instrumentation and searches for performance bot-
tlenecks based on a specification language. Performance analysis is done for
functions and function calls. SCALEA has a more flexible mechanism to control
the code regions for which performance metrics should be determined.

The Pablo toolkit[9] uses event tracing to develop performance tools for both
message passing and data parallel programs. It provides an instrumentation
interface that inserts user-specified instrumentation in the program. SCALEA
is more flexible to control what performance metrics should be determined for
which given code regions.

TAU [6] is a performance framework for instrumentation, measurement, and
analysis of parallel Fortran and C/C++ programs. TAU supports multiple tim-
ing and hardware metrics. However, TAU does not provide a similar flexible
mechanism as SCALEA to control instrumentation. SCALEA also provides more
high-level performance metrics (e.g. data movement and control of parallelism
overhead) than TAU.

Paraver [12] and VAMPIR [8] are performance analysis tools that also cover
MPI programs. They process trace files to compute various performance results
and provide a rich set of performance displays. SCALEA offers a larger set of

performance metrics and enables a more flexible mechanism to control instru-
mentation and measurements.

EXPERT (3] detects a range of performance properties for message passing,
OpenMP, and mixed programs. SCALEA provides a more flexible mechanism to
control instrumentation and measurement.

None of the above mentioned tools employ a data repository to organize and
store performance data based on which higher-level performance analysis can
be conducted. Moreover, these tools lack the support of multiple performance
experiment analysis and a flexible mechanism to control instrumentation (except
Paradyn) as provided by SCALEA.

3 SCALEA Overview

In this section we give a brief overview of SCALEA. For more details the reader
may refer to [11,10]. Figure 1 shows the architecture of SCALEA which con-
sists of several modules: SCALEA Instrumentation System, SCALEA Runtime
System, SCALEA Performance Analysis & Visualization System, and SCALEA
Performance Data Repository.

Diagram legend
OpenMP, MPI, HPF, (O dataprocessing
Hybrid Programs
Jre physical resource
data object

data repository

data flow
control flow
external input, control

SCALEA Instrumentation System

Inst

T
Control

Instrumented |~
Programs <
N

0/400Q

- N
N Instrumentation Y
Description File |1) [[=

Compilation

N

SCALEA Runtime System

SIS Instrumentation
Library: SISPROFILING

V)

Executable L -
Programs N
\
System Sensors N
SN
~
)\

SCALEA Sensor /A Performance
Manager Environment Analysis
Post-mortem, online)
EX
machine SCALEA Performance Analysis
& Visualization System

Fig. 1. Architecture of SCALEA

Performance
Data Repository

\
\
\
/
/
/

The SCALEA Instrumentation System(SIS) supports automatic instrumen-
tation of Fortran MPI, OpenMP, HPF, and mixed OpenMP/MPI programs. SIS
enables the user to select (by directives or command-line options) code regions
and performance metrics of interest.

Moreover, SCALEA offers an interface for other tools to traverse and anno-
tate the AST to specify code regions for which performance metrics should be
obtained. Based on pre-selected code regions and/or performance metrics, SIS
automatically analyzes source codes and inserts probes (instrumentation code)
in the code which will collect all relevant performance information during exe-
cution of the program on a target architecture.

The SCALEA runtime system supports profiling and tracing for parallel and
distributed applications, and sensors and sensor managers for capturing and
managing performance data of individual computing nodes of parallel and dis-
tributed machines. The SIS profiling and tracing library collects timing, event,
and counter information, as well as hardware parameters. Hardware parameters
are determined through an interface with the PAPI library [2]. Various interfaces
to other libraries such as TAU [6] are also supported.

The SCALEA Performance Analysis and Visualization module analyzes the
raw performance data — collected during program executed and stored in the
performance data repository — computes all user-requested performance metrics,
and visualizes them together with the input program. Besides single-experiment
analysis, SCALEA also supports multi-experiment performance analysis The
visualization engine provides a rich set of displays for performance metrics in
isolation or together with the source code.

SCALEA performance data repository holds relevant information about the
experiments conducted which includes raw performance data and metrics, source
code, machine information, etc.

4 Experiments

In order to evaluate the usefulness of SCALEA, we present two different experi-
ments covering a laser physics and a material science application that have been
conducted on a SMP cluster architecture with 16 SMP nodes (connected by
Fast-Ethernet 100Mbps and Myrinet) each of which comprises 4 Intel Pentium
IIT 700 MHz CPUs.

4.1 3D Particle-In-Cell (3DPIC)

The 3D Particle-In-Cell application [5] simulates the interaction of high inten-
sity ultrashort laser pulses with plasma in three dimensional geometry. This
application (3DPIC) has been implemented as a Fortran90/MPI code.

We conducted several experiments by varying the machine size and by select-
ing the MPICH communication library for Fast-Ethernet 100Mbps. The problem
size (3D geometry) has been fixed with 30 cells in x-direction (nnz_glob=30), 30
cells in y-direction (nny_glob=30), and 100 cells in z-direction (nnz_glob=100).
The simulation has been done for 800 time steps (itmaz=800).

Single Experiment Analysis Mode: SCALEA provides several analy-
ses (e.g. Load Imbalance Analysis, Inclusive/Exclusive Analysis, Metric Ratio
Analysis, Overhead Analysis, Summary Analysis) and diagrams to support per-
formance evaluation based on a single execution of a program. In the following
we just highlight some interesting results for a single experiment of the 3DPIC
code with 3 SMP nodes and 4 CPUs per node.

The Inclusive /Exclusive Analysis is used to determine the execution time
or overhead intensive code regions. The two lower-windows in Fig. 2 present the
inclusive wallclock times and the number of L2 cache accesses for sub-regions of
the subroutine MAIN executed by thread 0 in process 0 of SMP node gsr405.

The most time consuming region is IONIZE_MOVE because it is the most com-
putation intensive region in 3DPIC which modifies the position of the particles
by solving the equation of motion 4(mv) = ¢(E + ¥ x B) with a forth or-
der Runge-Kutta routine. The related source code of region IONIZE_MOVE is
shown in the upper-right window.

—~| SCALEA: Profile/Trace Analysis []l
File View Analysis Summary

18188 CR IGNIZE_MOVE, CR_MPISEND, CR_MFIRECY BEGIN

3 Inclusive/Exclusive Tree
@ 3 Experiment
© [osr40s
9 [Process 0
@ [Thread D
© [T Region 1{CR_P[RELATIVISTIC_PLASMA_PROPAGATIONMInC|=1.33287228E8;excl=156.0)
@ [Region 7(CR_SIMAININCI=1.20530084E8 ex =3 3924B45ET)
[Region 46(CR_A[IONIZE_MOVE](Incl=3.3875351E7,excl=3.3875351E7)
© [Region 48(CR_A[CAL_POWERD(Incl-8437697 ;2xcl=1324944.0)
[Region 13(CR_MPIRECY MPI_RECYDInci=6420159 Diexcl=84291 59.0)
[} Region 52(CR_MPIRECYMPI_RECVINCI=6214276.0;excl=6214276.0)
[} Region 76(CR_MPIRECY MPI_RECYIInci=6597099 D;excl=5537089.0)
© [Region 26(CR_AISR_E_FIELDIInci=5452599. 0/exci=310010.0)

I Modity active particles (onize and move): begin
L |

00 {_update=1,i_update_max
i=pn_updatei_update)

DOi=1,0_max

ifp_charge.eq.0) then L
if ((ua(l,2)ne.-1.0).and.(ag (i, 2).n2.299)) then |

= SCALEA: Inclusive Wallclock time for all children code regions | +|_=|scaLEA: Inclusive Level 2 total cachs accesses for all children col « | 1]

Region 46(CR_A[IONIZE_MOVE]) I, 5 307535267 Region 46(CR_ANIONIZE_MOVE]) T 1323046468

Region 48(CR_A[CAL_POWER]) - 8437697.0 Region 48(CR_A[CAL_POWER]) . 1.3817676E7

Region 13(CR_MPIRECVIMPIRECY) I 62201590 Region 26(CR_AISR_E_FIELD]) 1y 8166700.0

Region 52(CR_MPIRECVIMPL RECv)) I 6214276.0 Region 13(CR_MPIRECVIMPLRECV]) | 2500760.0

Region 76(CR_MPIRECVIMPI_RECV]) I 5597099.0 Region 52(CR_MPRECVIMPLRECV]) | 23722100

Region 26(CR_A[SR_E_FIELD]) Wl 51525000 Region 15(CR_MPIRECVIMPLRECV]) | 2371864.0

Region 57(CR_MPISEND[MPISEND) I 2470716.0 Region 64(CR_MPRECVIMPLRECV]) | 21910300

Region 64(CR_MPIRECVIMPI_RECV]) Wy 20919570 Region 76(CR_MPIRECVIMPI_RECV]) § 1508790.0

Region 15(CR_MPIRECVIMPI_RECV]) l 3724588.0 Region 8{CR_MPISEND[MPI_SEND[} K 1156218.0

Fig. 2. Inclusive/Exclusive analysis for sub-regions of the MAIN program

| 5caLEa Metric Ratio for stime/wtime | - | | = SCALEA Metric Ratio for L2_TCM/L2 TCA [-]]
0.85 - 0.7z
= 071
or | 0SB OE 08
0587 — —_— 0.48
043 [. 0.36
028 | el 0.24
0.4 —| 0T o | 0.12
0.0 — 00 [
¥ ¥ @ B8 8 =& E E T 5 5 8
TR RR §2gd¢g:3
R E R B E B o == B R B
-2 2 2 8 B o2 B EE S
a2 & 2 5 B = = & = 5 B =
o U =) e o = (=) 1 [=3 = - =
¥ g & £ & = 5 B = = =
| & BB B E & 2 E
o B g & = B B g g
s = E =] = el & & - 1
k g 2 5 g s
2} Q o) -
dI q‘
-4 -4
g g

Fig. 3. Metric ratios for important code regions

The Metric Ratio Analysis of SCALEA is then used to examine vari-
ous important metric ratios (e.g. cache miss ratio, system time/wall clock time,
floating point instructions per second, etc.) of code region instance(s) in one ex-
periment. Figure 3 shows the most critical system time/wall clock time and L2
cache misses/L2 cache accesses ratios together with the corresponding code re-
gions. The code regions CAL_POWER,SET_FIELD_PAR_BACK, SR_E_FIELD,
and PARTICLE_LOAD imply a high system time/wall clock time ratio due
to expensive MPI constructs (included in system time). Both ratios are rather
low for region IONIZE_MOVE because this region represents the computational
part without any communication (mostly user time). The code region PARTI-
CLE_LOAD shows a very high L2 cache misses/L2 cache accesses ratio because

it initializes all particles in the 3D volume without accessing it again (little cache
reuse).

The Overhead Analysis is used to investigate performance overheads for
an experiment based on a overhead classification [11,10]. In Fig. 4, SCALEA’s
Region-To-Overhead analysis (see the left-most window) examines the overheads
of the code region instance with number 1 (thread 0, process 0, node gsr405)
which corresponds to the main program. The main program is dominated by
the data movement overhead (see the lower-left window) which can be further
refined to the overhead associated with send and receive operations. We then use
the Quverhead-To-Region analysis to inspect regions that cause receive overhead
for thread 0, process 0, and node gsr405 (see the Overhead-To-Region window in
Fig. 4). The largest portion of the receive overhead in subroutine MAIN is found
in region CAL_POWER (7.11 seconds out of 43.85 seconds execution time).

= SCALEA: Reglon-To—Ousrhead B |
File Data View :

@ [Dynarric calltree = ;,MS:ZDFQ
® [Experiment | |!8IS% CR CR_P,CR_S,CR_MPISTARTUP
@ [osra05 call MPLINIT(err)
§ T1ProcessD call MPL_COMM_RANK(MPI_COMM_WORLD, ryid, ier)
@ T Threadn call MPI_COMM_SIZE(MFI_COMM_WORLD, numprocs, lerr)

@ [0 Region {{CR_PRELATIVISTIC_PLASK S _noa
[} Region S(CR_MPISTARTUP[MP|_F 1=

@ [Region 7(CR_S[MAIN] File Data View

[} Region B(CR_SIPARALLEL_INIT):

SCALEA: Overhead-To-Region I

YT SO TR

periment else =
[} Region 4(CR_MPIGTHERMPI_CON | garans Fower=Power
D Region 3{CR_MPIOTHERMPI_COME 9 Process 0 Power=0.0

Region 2(CR_MPISTARTUPIMPI_IM rea do 126=1 nurnproce 1
@ £ Thread 0

@ CIFProcess 3 @ O (send=7198611.0) call MPI_REGV(Fower(1, 1), 3"nop,
@ T Thread © [Region 1(CR_PIRELATIVISTIC_PLASMA_PROPAGATION]) (send & MPI_DOUBLE PRECISION,
© 1 Region 1(CR_PIRELATIISTIC_PLASH, @ O (reoy = 4.2955812E7) & 126,tag,MPI_COMM_WORLD, stati
[} Region 5(CR_MPISTARTUPMPLF @ [Region 1(CR_PIRELATIVISTIC_FLASMA_PROPAGATION](recy

Power=Powerl+Power
end do

@ [0 Region 7(CR_SIMAIN](recy = 4 385581267
[Region B0(CR_MPIRECY(MPI_RECV irecy = 4677.0)
[} Region 66(CR_MPIRECYIMPI_RECV](recy = 482562.0)
[Region 56(CR_MPIRECVIMFI_RECV]{recy = 225661.0)

© [Sub Overhead Tree
9 [Detail overhead: Ident=6.2812335E7

f=itdt

«
I\
@ [data movement=5.1055423E7 @7 Region 48(CR_AICAL_POWER(recy = 71127530 wiite (7 (15017 7))t d15 (P owerD (1
[Send=7183511.0 [y Region 78(CR_MPIRECYMPI_RECV]irecy = 1553450.0) write (8,(1591 7. 7)1 101 015, (P owerd (2,
[Recv=4 385581267 [Region 76(CR_MFIRECY[MFI_RECV]irecy = 5597089.0; write (9,(15917.7)3 1 d15 (Power (3,
[synehronisation=0.0 [Region 68(CR_MPIRECY[MPI_RECV]recy = 472087.0)
@ 7 Control of Par=1.2756862E7 [y Region 64(CR_MPIRECY[MPI_RECV]recy = 4091937.0; E:ﬂ”“’f"
[Wipi initinai=1 .27 5688 2E7 [} Region 54(CR_MPIRECVIMPI_REGV](recy = 331509.0) 15155 ENDCR
(CR_MPIRECY[MPI_RECV]recy = 621 4276.0) |

@ T3 Add. Computation =50.0 [Region 52
[Extra 0 o

(4TI

ICa

power. end

Fig. 4. Overhead-To-Region and Region-To-Overhead analysis

An Execution Summary Analysis has been employed to examine the
impact of communication on the execution time of the entire program. Fig-
ure 5 and 6 depict the ezecution time summary for the experiment executed
with 3 SMP nodes and with 1 SMP node (4 processors per node), respectively.
In the top window of Fig. 5 each pie represents one SMP node and each pie
slice value corresponds to the average value across all processes of an SMP
node (min/max/average values can be selected). By clicking onto an SMP pie,
SCALEA displays a detailed summary for all processes in this node in the three
lower windows of Fig. 5. Each pie is broken down into time spent in MPI rou-
tines and the remainder. Clearly, SCALEA indicates the dramatic increase of
communication time when increasing number of SMP nodes. The MPI portion
of the overall execution time corresponds approximately to 8.5% for the single
SMP node version which raises to approximately 46% for 3 SMP-nodes. The
experiments are based on a smaller problem size. Therefore, the communication
to execution time ratio is rather high.

6.4%) - o I (46.01%%)

909)
gsra13

-12%) .41%%)
Process 0: 1.33287228E8(us) Process 3. 1.20771298E8(us) |Process 1: 1.32005466E8{us) Process 4: 1.286257 13E8{us)| Process 20 1. JDQZHQEH(MSD Process & 1.27481718E8(us)

(45.8%%) (44.33%) (44.70%) (40.96%4) 42.71%)
-2%) 17%) 21%%) 14%4) '88%4) 99%6)

Process 6: 1.26341142E8{us) Process 9: 1.22010484E8{us) |pracess 7: 1.25195362E8(us) Process 10: 1.21765265E8(... |Process 8: 1.24051476E8(us)Process 11: 1.20621062E8(...

Fig. 5. Execution time summary for an experiment with 3 SMP-nodes

[—|scalEs: Average & |
il gend

il 1(8.494%%) 1($.129%) 1(9.465%) 1{9.084%) 107 zsg%) [el

o W %) 0) o 0) ¢l 0) [EiOther |
h gsr403 Process 0; 2.37888487E8(us) Process 1: 2.36709385E8{us) Process Z 2.35560305E8{us) Process 3 2.34420383E8(us)

Fig. 6. Execution time summary for an experiment with 1 SMP-node

Multiple Experiment Analysis Mode: SCALEA provides various op-
tions to support multiple experiment performance analyses which can be ap-
plied to single or multiple region(s) ranging for single statements to the entire
program.

Figure 7 visualizes the execution time and speedup/improvement of the entire
3DPIC application, respectively. With increasing machine sizes, also the system
time raises (close to the user time for 25 CPUs) due to extensive communication.

T ==
Time(s) o— Wallclock time Speedupimprovement Shesdupimprovement
o Usertime
626.8 —a— Systenitime 5.1
565.9 46
§03.1 41
440.2 36
377.3 30
EITY 25
2615 20
1886 15
1257 10
62.8 05
R —
Experiments Experiments
£ 3 § & 3 B 3 = 8 §E 5 3 g 5
Z = z = Z £ 2 . g B z 3 E
£ H

Fig. 7. Overall execution time and speedup/improvement for 3DPIC. 1Nz/P means 1
SMP node with 4 processors (in case of 7Nx4P only 25 processors are used)

Overall, 3DPIC doesn’t scale well for the problem size considered because
of the poor communication behavior (see Fig. 8) and also due to control of
parallelism (for instance, initialization and finalization MPI operations).

= SCALEA; Overhead Table | -]t
Experiments | 1Mx1P | ARbdP I 3h3P I 3hbcdP I 4P | TrxdaPm | ANz 4P
Data rrovernent | 0 15.634 48,628 51.055] 55.087| 56557 50.614
Synchronization | 0] 0] 0] 0] 0 il]
|Control of parallelism | 0.027] 3506/ §.257 12,757 17.386) 28.025] 4142
Loss of Parallelism | [l 0 0 0 [0| [
Additional Overhead | 0] 0 0 0 0.001] 0] [
 Total identified overhead 0.027| 19.340 58.185 63.812 72.483| 84.581 110.034
Total execution fime(s) 628.676/ 237.8928 143,476 133.287 121,73 120,021 134.267

Fig. 8. Performance overheads of the 3DPIC application. Note that total and uniden-
tified overhead are missing as no sequential code version is available for the 3DPIC.

4.2 LAPWO

LAPWO [1] is a material science program that calculates the effective potential
of the Kohn-Sham eigen-value problem. LAPWO0 has been implemented as a
Fortran90 MPI code.

In [11] we described some results based on

: . . —|__ SCALEA Multiple Sets of Experiments analysis | -] 1]
a single problem size and a fixed communica- T o
] . . — & CH_P4, 0ims.
tion library and target machine network. In o P
. 599.4 e el P4, loms
this section, we outline some additional per- e GM.72Atoms

5394

formance analyses for different machine and | ...
problem sizes (36 and 72 atoms) with two dif- | e
ferent networks. The overall execution times | **
provided by SCALEA’s Multi-Set Experi- z:z;
ment Analysis are shown in Fig. 9. The first | .,
observation is that changing the communica- | s \\._.“_‘
tion library and communication network from | **
MPICH CH_P4 to MPICH GM does not lead v
to a performance improvement of the paral-
lel LAPWO version. The second observation
is that we cannot achieve better performance .
by varying the number of processors from 12 with 36 and 72 atoms. CH-P4,
. GM means that MPICH has been
to 16 anfi 20 to 24 processors for. the experi- used for CH_P4 (for Fast-Ethernet
ments with 32 atoms, or by varying the pro- 100Mbps) and Myrinet, respec-
cessor number from 20 to 24 processors for the tjyely.
72 atom experiment. In order to explain this
behavior we concentrate on the experiment with 36 atoms. Figure 10 visualizes
the execution times for the most computational intensive code regions of LAPW0
supported by Multiple Region Analysis. The execution times of these code
regions remain almost constant although the number of processors is increased
from 12 to 24 and from 20 to 24. The LAPWO code exposes a load balancing
problem for 16, 20, and 24 processors. Moreover, code regions FFT_REANO,
FFT_REAN3, and FFT_REAN4 are executed sequentially as shown in Fig. 10.
These code regions cause a large of loss of parallelism overhead (see Fig. 11).
In summary, LAPWO scales poorly due to load imbalances and a large loss
of parallelism overhead caused by the lack of parallelizing the FFT_REANO,
FFT_REAN3, and FFT_REAN4 code regions. In order to improve the perfor-
mance of this application, these code regions must be parallelized as well.

Fig. 9. Execution time of LAPW0

= SCALEA: Multiple Region Analysis 5 = SCALEA: Speedup/Improvement [
Waliclock tane(sh —4— CR_OTHERSEO[FFT_REAN3] Sneedupimprovement e Sneedupimprovement
—4— CR_OTHERSEOQ[FFT_REANO]
281 - CR_A[CAL_CP_INSIDE_SPHERES] 19
= 3¢ CR_A[CAL_COULOMB_RMT] 17
i —sp— CR_A[CA_COULOME INTERSTITIAL_POTENTIAL] | o
0 —— CR_A[CA_MULTIPOLMENTS] 13
= CR_OTHERSEQ[FFT_REAN4] £
168 11
14.0 09
1.2 07
84 0.5
56 03
28 01
Experiments Experimants
g g g A g i S = = & & &
y Ny 5y s by Ny
z z = E £ z 3 z x z i 3
E & = Ed & z = N b 3 S =

Fig.10. Execution time of computationally intensive code regions.
1Nz4P,P4,36 means 1 SMP node with 4 processors using MPICH CH_P4
and the problem size is 36 atoms.

= SCALEA: Overhead Tabla EE
Experiments | MxdPP436 | INdPP435 | 3MkdPP436 | AMdPPAIE | SPdPP4IE | BR4PP43E

Data rmoverment 0904, 0933 2562 2436 1.809| 2740
Synchronization il o il o il 0
Control of parallelism 3030 4743 5270 6510
Loss of Parallelism 16368] 16722 16 066

head 25,333
ntified owerhead 16911
Total verhead 52245
Total execution time(s) 69962

Fig. 11. Performance overheads for LAPWO.

5 Conclusions and Future Work

In this paper, we briefly gave an overview of SCALEA, and then described two
different experiments with a laser physics and a material science code to examine
the usefulness of our performance analysis approach.

Based on the flexible instrumentation mechanism and the code region per-
formance analysis, SCALEA could determine the performance overheads that
imply performance problems and relate them back to the code regions that
cause them. SCALEA stores the collected performance data for all experiments
in a data repository based on which a single- or multi-experiment analysis is
conducted. This feature enables SCALEA to examine the scaling behavior of
parallel and distributed programs. A rich set of performance diagrams is sup-
ported to filter performance data and to restrict performance analysis to relevant
metrics and code regions.

SCALEA is part of the ASKALON performance tool set for cluster and Grid
architectures [4] which comprises various other tools including an automatic bot-
tleneck analysis, performance experiment and parameter study, and performance
prediction tool. We are currently extending SCALEA for online monitoring of
Grid applications and infrastructures.

References

1.

10.

11.

12.

P. Blaha, K. Schwarz, and J. Luitz. WIEN97, Full-potential, linearized augmented
plane wave package for calculating crystal properties. Institute of Technical Elec-
trochemistry, Vienna University of Technology, Vienna, Austria, ISBN 3-9501031-
0-4, 1999.

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In Proceeding SC’2000, November 2000.

F. Wolf and B. Mohr. Automatic Performance Analysis of SMP Cluster Applica-
tions. Technical Report Tech. Rep. IB 2001-05, Research Center Juelich, 2001.

T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H.-L. Truong.
ASKALON - A Programming Environment and Tool Set for Cluster and Grid
Computing. www.par.univie.ac.at/project/askalon, Institute for Software Science,
University of Vienna.

M. Geissler. Interaction of High Intensity Ultrashort Laser Pulses with Plasmas.
PhD thesis, Vienna University of Technology, 2001.

Allen Malony and Sameer Shende. Performance technology for complex parallel
and distributed systems. In In G. Kotsis and P. Kacsuk (Eds.), Third Interna-
tional Austrian/Hungarian Workshop on Distributed and Parallel Systems (DAP-
SYS 2000), pages 37-46. Kluwer Academic Publishers, Sept. 2000.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The paradyn parallel performance measure-
ment tool. IEEE Computer, 28(11):37-46, November 1995.

W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR:
Visualization and analysis of MPI resources. Supercomputer, 12(1):69-80, January
1996.

D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and
L. F. Tavera. Scalable Performance Analysis: The Pablo Performance Analysis
Environment. In Proc. Scalable Parallel Libraries Conf., pages 104-113. IEEE
Computer Society, 1993.

Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis
Tool for Distributed and Parallel Program. In 8th International Europar Confer-
ence(EBuroPar 2002), Lecture Notes in Computer Science, Paderborn, Germany,
August 2002. Springer-Verlag.

Hong-Linh Truong, Thomas Fahringer, Georg Madsen, Allen D. Malony, Hans
Moritsch, and Sameer Shende. On Using SCALEA for Performance Analysis of
Distributed and Parallel Programs. In Proceeding of the 9th IEEE/ACM High-
Performance Networking and Computing Conference (SC’2001), Denver, USA,
November 2001.

T. Cortes V. Pillet, J. Labarta and S. Girona. Paraver: A tool to visualize and
analyze parallel code. In WoTUG-18, pages 17-31, Manchester, April 1995.

