On Utilizing Experiment Data Repository for Performance Analysis of Parallel Applications

<u>Hong-Linh Truong¹</u>, Thomas Fahringer²

¹Institute for Software Science, University of Vienna, Austria truong@par.univie.ac.at

² Institute of Computer Science, University of Innsbruck, Austria Thomas.Fahringer@uibk.ac.at

www.par.univie.ac.at/project/scalea

EURO-PAR 2003, Klagenfurt, August 26th, 2003

Outline

Motivation

►SCALEA

Experiment Data Repository

 Experiment-related Data
 Implementation Overview
 Experiment-related APIs

 Achievements

 Search and Filter Performance Data
 Multi-Experiment Analysis
 Tools Integration

Conclusions and Future Work

Motivation

The need to collect and archive performance data for

- Multi-experiment analysis
- Performance comparison
- Limitation on supporting code complexity:
 - Handle large-scale performance data
 - Basic search on performance data

Lack of capabilities to export, share, and exchange performance data and tools interoperation

SCALEA (SC01, Euro-ParO2, PVMMPIO2)

Experiment Data Repository

For comparing performance across experiments with large amounts of data

- Need to archive performance data
- Require a very strong and flexible database system
- Data repository is first step required by mining, knowledge discovery in performance data

>Experiment Data Repository:

- Stores information about application, source code, machine information, and performance data
- Associates performance results with source code and machine information
- Supports sophisticated analysis and easy integration with other tools

Performance Metric Catalog

>Why performance metric catalog:

- Documentation about metrics provided
- Help tools/users understanding and interpreting performance data

Performance metric has 4 properties

- unique name is a value that distinguishes this metric from all others
- data type describes data type of measurement which describes the value of the metric.
- measurement unit is the unit of measurement
- semantics (or well-defined meaning)

All metrics are stored in a catalog in experiment data repository

_	Performance Metric Catalog					
Metric Name	Data Type	Measurement Unit	Description			
WTIME	double	us	Wallclock time			
ODATA_L21	double	us	Overhead of data movement d	333		
ODATA_L32	double	us	Overhead of data movement d			
ODATA_SEND	double	us	Overhead of data movement d			
ODATA_RECV	double	us	Overhead of data movement d			
ODATA_PUT double		us	Overhead of data movement d.			
ODATA_GET	double	us	overhead of data movement d			
ODATA_P2P double		us	overhead of data movement d			
ODATA_COL double		us	Overhead of data movement d			
ODATA_FREAD double		us	Overhead of data movement d			
DATA_FWRITE double us		us	Overhead of data movement d	-		

Implementation Overview

Powering search and archive with great flexibility and robustness
 Relational database based on PostgreSQL

Taking advantages of portability and network capability

- All components written in Java
- Database connection powered by JDBC

Experiment-related Data APIs

Well-defined APIs for accessing data in Experiment Data Repository

Java implementation

public class ProcessingUnit {

```
private String computationalNode;
private int processID;
private int threadID;
...
public ProcessingUnit(String node, int process, int thread) {...}
...
}
```

Experiment-related Data APIs (const.)

```
public class RegionSummary
```

```
...
public PerformanceMetric[] getMetrics(){...}
public PerformanceMetric getMetric(String metricName){...}
...
}
```

```
public class ExperimentData {
```

. . .

```
DatabaseConnection connection;
```

```
...
public ProcessingUnit[] getProcessingUnits(Experiment e){...}
public RegionSummary[] getRegionSummaries(CodeRegion cr, Experiment
e){...}
public RegionSummary getRegionSummary(CodeRegion cr, ProcessingUnit
pu, Experiment e) {...}
public RegionSummary getRegionSummary(CodeRegion cr, Experiment
e,ProcessingUnit pu, RegionSummary parent) {...} public
RegionSummary[] getChildOfRegionSummary(RegionSummary rs){...}
public RegionSummary getParentOfRegionSummary(RegionSummary
rs){...}
```

Example of Using APIs

```
CodeRegion cr = new CodeRegion("IONIZE_MOVE");
Experiment e = new Experiment("9Nx4P,P4");
ProcessingUnit
    pu =new ProcessingUnit(``gsr402.vcpc.ac.at'',2,0);
```

```
ExperimentData
    ed = new ExperimentData(new DatabaseConnection(...));
RegionSummary rs = ed.getRegionSummary (cr,pu,e);
```

```
double overheadRatio=
  ((Double)overhead.getMetricValue()).doubleValue()/
      ((Double)wtime.getMetricValue()).doubleValue();
```

XML Data

- Facilitate information exchange between tools
- Allow tools interoperation in a uniform way
- With/without source code
- >Call-graph, selective metrics

Search and Filter Capabilities

 Existing problems:
 difficult to find interesting events via process time-lines, zooming, scrolling, call-graph -search and filter data based on files are not efficient, robust and fast

Search and filter data based relational database and SQL: flexibility and robustness

>We support generic search and filter

Search and Filter Capabilities

- SCALEA: Profile/Trace Analysis							
File	File						
Simple Search & Filter Result							
Experiment							
Application: Version: Experiment							
NBODY ▼ 1 ▼ 9Nx4P,P4 ▼							
Code Region							
CR_A							
CR_MPIOTHER							
Simple Metric Constraint Advanced Metric Constraint	Simple Metric Constraint Advanced Metric Constraint						
O Number call O Sub-Regions I Metric Comparison Operator Metric/Constant Boolean Operator							
TemporalOverheadMetrics.name='odata_recv' - 3000000 AND -							
	Add Remove						
Clauses of Conditions							
((TimingMetrics.name='wtime') AND (TimingMetrics.value > 5000000))							
AND ((TemporalOverheadMetrics.name='odata_recv') AND (TemporalOverheadMetrics.value > 3000000))							
Processing Unit							
Computational Nodes Processes Threads							
gsr404 v 1 v							
Search							

Search and Filter Capabilities (const.)

SCALEA: Profile/Trace Analysis									
File									
Simple Search & Filter Result									
	1SIS\$	CR SR_E_FIEI	LD, CR_MPISE	END, CR_MPIRE	ECV BEGIN				•
• 📑 gsr402	Send	ling and receiv	ing the E-field	border arrays					
• • • Process 2		te a serie d'écomo							
o- 📑 Thread 0		to -x and from -	+X						
Region 26(CR_A[SR_E_FIEL if (neighbours(mvid+1.1) ge.0) then									
Process 11 idown=neighbours(myid+1,1)							235		
$\frac{\nabla F_{\text{region 26(CR AISR E FIEl})}{\text{tag}=0}$									
call MPI_SEND(E_bd_down(1,1),3*Grid_y*Grid_z,									
Region 26(CR_A[SR_E_FIEL end if									
Process 29									
P □ Thread 0 if (neighbours(myid+1,2).ge.0) then									
iup=neighbours(myid+1,2)									
tag = 0									
	8	MPI DOU	BLE PRECISI	0N.	2114 <u>-</u> 27				
& iup,tag,MPI_COMM_VVORLD,status,ierr)									
		E_bd_up=E_k	d_down						-
Region 26(CR_A[SR_E_FIELD:653:723])									^
calls subs	stime	utime	wtime	L2_TCA	L2_TCM	odata_recv	odata_send	odata	oall_ident
800 4800	5800000 0	2080000.0	98967 <i>44</i> 0	1 1072560⊏7	1733747.0	9154480.0	569985 N	9724465 N	9724465.0
	3000000.0	2000000.0	3030744.0	1.1372303E7	1100141.0	3134400.0	303303.0	3724403.0	3724403.0
Region 26(CR_A[SR_E_FIELD:653:723])									
calls subs	stime	utime	wtime	L2_TCA	L2_TCM	odata_recv	odata_send	odata	oall_ident
		400000000	504 704 7 0	00700440	4450004.0	1700 170 0	050400.0	5050005 0	5959995 9
800 3200	3070000.0	1220000.0	5217817.0	68/U344.U	1459204.0	4/004/3.0	359422.0	5059895.0	5059895.0
									•

Search and Filter Capabilities (const.)
Defining an expression of performance metrics
Discretizing the expression into quantitative characteristics
Search based on selected quantitative characteristics

dvanced Metric Constrain	t
Expression	L2_TCM/L2_TCA
Name	L2CacheMissRatio
Condition	L2CacheMissRatio ≻ 0.7
Quantitative	Роог
Add	SendRatio->Average SendRatio->Poor
Remove	ReceiveRatio->Good ReceiveRatio->Average ReceiveRatio->Poor
Update	L2CacheMissRatio->Good L2CacheMissRatio->Average

Multi-Experiment Analysis

Many ways to specify what you want to analysis

- Experiments
- Code regions
- Performance metrics
- Statistic methods
- Various analyses
 - Performance comparison for different sets of experiments
 - Overhead analysis for multi-experiment
 - Performance speedup/improvement at both program and code region level

Select what to be analyzed

Different Sets of Experiments

Improvement/Speedup, Efficiency

System Information

	— SCALEA: Net	twork Selection					
	Cluster	- SCALEA: Network Analysis 🔹 🗔	- SCALE	A: Host Selection 🛛 🕗 📃			
	gescher	MPI Barrier Synchronization Cluster					
	Network	MPI Broadcast	naschar	naechar			
	FastEthernet	MDLD2D Planking Sand/Danaiya					
	Culart Class	MPI P2P Blocking Send/Receive		Host			
ĺ	Select Close	MPI P2P Nonblocking Send/Receive	gsr402	▼ .			
	1	MDI D2D Superanaue Seand/Iracu					
—		SCALEA: MPI Broadcast	Select	Close			
	▲Bandwidth(MB/s)	Message length=512(bytes)		01000			
		Message length=1024(bytes)	1	1			
8.8	+ •	Message lengtn=2048(bytes) Message length=4096(bytes)	- SCALEA: 0	Computational Node			
7.9		Message length=8192(bytes)	Hostname	gsr402			
	×		Host Aliases	gsr402			
7.0			Host Addresses	192.168.184.2			
6.1			System Model	Intel 698 MHz Pentium III			
5.2			Physical Memory	896 MB			
4.4			Virtual Memory	4.0 GB			
			Number of CPUs	4			
3.5			Cpu Type	Pentium III			
2.6			Cpu Speed	698 MHz			
1.7	+		Os Name	Linux			
0.8	1	· · · · · · · · · · · · · · · · · · ·	Os Version	2.4.19-PMC-SMP			
				Close			
	2	4 8 16 32 64 -					

Case 1: AKSUM

- VRL: http://www.par.univie.ac.at/project/aksum/
- Fahringer and Seragiotto, Jr. AKSUM employs SCALEA to:
 - instrument files given an arbitrary code region

- transfer application files to the repository
- transfer the data generated by the monitoring to the repository
- •use data provided by SCALEA for property analysis

Case 2: Performance Prophet

URL: http://www.par.univie.ac.at/project/pro phet/

- Fahringer, Pllana, and Testori
- PP is a performance modeling and prediction system
- > PP utilizes SCALEA to obtain timing parameters for application.
 - >PP uses performance data in XML format exported by SCALEA for automatic building of cost functions
 - Cost functions are used to develop a hybrid analytical and simulation model of the application

Conclusions and Future Work

Conclusions

- Design of experiment data repository for performance analysis tool
- Demonstration of achievements gaining when employing experiment data repository
- Data repository has increasingly supported the automation of performance analysis and optimization process

Ongoing work

- Working on simple and efficient way to search on performance data
- Applying automatic scalable analysis techniques
- Semantic representation of performance data

www.par.univie.ac.at/project/scalea