
K-WfGrid Distributed Monitoring and Performance Analysis Services for
Workflows in the Grid ∗

Hong-Linh Truong, Peter Brunner, Thomas Fahringer, Francesco Nerieri, Robert Samborski
Institute of Computer Science, University of Innsbruck, Austria

Email: {truong, brunner, tf, nero, robert}@dps.uibk.ac.at

Bartosz Baliś, Marian Bubak, Kuba Rozkwitalski
Institute of Computer Science, AGH, Poland

Email: {balis, bubak}@uci.agh.edu.pl, kubaroz@gmail.com

Abstract

Grid workflows for e-science are complex and prone to
failures. However, there is a lack of performance monitor-
ing and analysis tools for supporting the user as well as
workflow middleware to monitor and understand the per-
formance of complex interactions among Grid applications,
middleware and resources involved in workflow executions.
In this paper, we present a novel integrated environment
which supports online performance monitoring and analy-
sis of service-oriented workflows. Performance monitoring
and analysis of Grid workflows and infrastructure is con-
ducted through a Web portal. Performance overheads of
Grid workflows are analyzed in a systematic way, and per-
formance problems can be detected during runtime. More-
over, we present several languages that alleviate the in-
teraction among performance monitoring and analysis ser-
vices and their clients. Our system has been integrated into
the K-WfGrid knowledge-based workflow system. It plays
a key role in supporting the user and developer to analyze
their workflows and in providing performance knowledge
for constructing and executing workflows.

1 Introduction

Recently, Grid workflows have been increasingly used
for solving large scale problems in e-science, e.g., biology,
molecular science, astrophysics and environmental simula-
tions. Therefore, many workflow systems have been de-
veloped for e-science, as surveyed in [18]. However, the
work on developing workflow systems for e-science is still
at early stages as most efforts are spent on developing work-

∗The work described in this paper is supported by the EuropeanUnion
through the IST-2002-511385 project K-WfGrid.

flow languages and execution environments. Users and de-
velopers still have to do a daunting task when developing
and executing Grid workflows due to the lack of supporting
tools, notably performance monitoring and analysis tools.

High complexity is inherent in Grid systems, thus requir-
ing performance monitoring and analysis tools to monitor
and capture relevant monitoring data at multiple levels of
abstraction and to provide insights into the performance of
Grid applications and resources as well as their interactions.
Monitoring and analysis tools not only assist users to verify
and validate the execution of their workflows, and to decide
when to steer their applications, but also provide insight-
ful, detailed information about Grid services and resources
to resource management, workflow scheduling, workflow
construction and execution tools.

In this paper, we present the implementation of a novel
monitoring and performance analysis system for workflows
in the K-WfGrid project [3]. The K-WfGrid distributed
monitoring and analysis environment integrates various
services for performance instrumentation, monitoring and
analysis of Grid workflows into a single system. It provides
a single Web portal for the user to conduct any performance
monitoring and analysis tasks. Moreover, we also introduce
languages that alleviate the interaction among various ser-
vices and clients involved in performance monitoring and
analysis. Using these languages, any clients can easily ob-
tain monitoring data, specifying performance problems and
retrieving performance results.

The rest of this paper is organized as follows: Section
2 discusses the motivation and contribution of the paper.
Section 3 presents the architecture of the distributed perfor-
mance monitoring and analysis system. Performance mon-
itoring is discussed in Section 4, followed by performance
search techniques presented in Section 5. The monitoring
and analysis portal is described in Section 6. We present
experiments in Section 7. Section 8 discusses related work

1



and Section 9 summarizes the paper.

2 Motivation and Contribution

Our work is motivated by the challenges of perfor-
mance monitoring and analysis of hierarchical concepts
of Grid/Web services-based workflows. We observed that
workflows imply multiple levels of abstraction, ranging
from workflow, workflow region, workflow activity to in-
voked application and code region. Therefore, depending
on which level we want to examine, the performance mon-
itoring and analysis tool for Grid workflows has to use dif-
ferent techniques to deal with different types of services
because Grid workflows for e-science are commonly com-
posed of different applications and are executed on differ-
ent computational services. Moreover, the execution of
Grid workflows is dynamic, involves many services and re-
sources, implies complex dependencies, and normally lasts
a long time. Therefore, techniques to monitor, analyze and
detect performance problems during runtime are important.
In addition, just for monitoring and analyzing performance
of Grid workflows, various services have to be developed
and deployed in different Grid sites. But these services have
to be integrated with each other and to serve many different
types of clients such as end-users and Grid middleware. As
a result, the services must provide well-defined, extensible
interfaces and data representation to facilitate the service
interoperability and integration in the Grid.

This paper tackles the above-mentioned challenges. The
main contributions of this paper are (i) the design and im-
plementation of a comprehensive, unified, extensible per-
formance monitoring and analysis of Web services-based
workflows; (ii) novel request representations alleviate the
interaction between performance services and their clients;
and (iii) performance of Grid workflows is systematically
analyzed according to a classification of workflow over-
heads, and performance problems can be detected online
by interpreting performance metrics at runtime.

3 Integrated Architecture for Workflow Per-
formance Monitoring and Analysis

Figure 1 depicts the architecture of performance mon-
itoring and analysis services in K-WfGrid that includes
GEMINI, DIPAS (DIstributed Performance Analysis Ser-
vice) Gateway, and DIPAS Portal. GEMINI is responsible
for monitoring workflows executed by GWES (Grid Work-
flow Execution Service) [6] which supports Petri-net based
workflow representations. GEMINI instruments GWES
and Grid services, capturing the execution status of work-
flows and Grid services as well as Grid resources. The
monitoring data provided by GEMINI is used by DIPAS

Figure 1. The K-WfGrid performance monitor-
ing and analysis system

Gateways which determine workflow overheads and per-
formance problems. Moreover, monitoring data can also
be processed and visualized at DIPAS Portal because we
apply various other performance monitoring and analysis
techniques to Grid workflows during runtime. In the latter
case, monitoring data is processed by an applet in the portal
and by portlets/portlet services. Both GEMINI and DIPAS
Gateways consist of many components/services which are
distributed on various Grid sites.

GEMINI and DIPAS use GOM (Grid Organizational
Memory) [15] to publish and search information about
monitoring data of workflows. Since the monitoring and
analysis is conducted through a web portal, DIPAS Portal,
which interacts with, requests and retrieves data from many
services, e.g., GEMINI and GWES, a set of replicated DI-
PAS Gateways is also responsible for shielding all the com-
plex interactions from the portal to other services. In this
case, DIPAS Gateways handle requests from the portal and
forward the requests to corresponding services, and act as a
proxy from which the portal can retrieve the requested data.

4 Instrumentation and Online Monitoring

4.1 Instrumentation

GEMINI consists of (i) an instrumentation system to
control the performance measurement, and (ii) application
sensors to collect monitoring data and to deliver the data
to the monitoring service. GEMINI supports dynamically
enabled instrumentation of Grid workflow applications:

• Activity-level monitoring: to instrument and monitor
invoked applications, which perform the real task of
workflow activities, and code regions within invoked

2



applications. In this level, the instrumentation is cur-
rently done before the execution of applications but the
measurement is dynamically activated at runtime.

• Workflow-level monitoring: to statically instrument
GWES and to monitor workflow executions. This pro-
vides monitoring data for analyzing performance of
workflows, workflow regions and workflow activities.

Since the instrumentation involves several services and
multilingual applications, we have to develop a neutral
means to allow different clients to understand the struc-
ture of applications, to select code regions of interest, and
to control the instrumentation of multilingual applications.
Our approach is that we use XML-based representations for
describing application structures and specifying instrumen-
tation requests. Detailed instrumentation techniques and
control mechanism can be found in [8].

4.2 Publishing and Retrieving Monitoring
Data

GEMINI collects monitoring data from various sources.
To ensure that many clients and services can seamlessly
process and utilize various monitoring data types of dif-
ferent monitored resources as well as to increase the dis-
semination of monitoring data, all monitoring data is rep-
resented in XML format. In order for the client to locate
monitoring services which provide monitoring data, GEM-
INI publishes information about available monitoring data
into GOM, an ontology-based knowledge repository. Infor-
mation about monitoring data is described in OWL (Web
Ontology Language) and OWL-based information is pub-
lished into GOM. From GOM, any client knows to which
GEMINI service it should contact in order to obtain the
monitoring data. From ontological descriptions, any client
can build requests which are sent to GEMINI in order to
retrieve the monitoring data.

We have developed a generic performance data query
and subscription (PDQS) language for querying and sub-
scribing various types of monitoring data. Figure 2
shows the schema of PDQS. Basically, every monitor-
ing data type and monitored resource is associated with a
uniquedataTypeIDandresourceID, respectively. Based on
that, the client can specify PDQS requests which include
(dataTypeID,resourceID)together with other information
like XPath-based data filters (denoted bydataFilter) and
subscription time (denoted bysubscriptionTime). A PDQS
request can be used toqueryor subscribethe same monitor-
ing data type of various resources.

PDQS requests can be built based on pub-
lished information in GOM. For example, Fig-
ure 3(a) presents an OWL description for work-
flow events of the workflow whose workflow ID is

Figure 2. Performance data query and sub-
scription (PDQS) language visualized with
the XMLSpy tool

truong 810cf130-eb24-11da-8ebd-a46bfd552
90e. Figure 3(b) presents a PDQS request used to get
all workflow events generated during the workflow’s
execution.

5 Performance Search for Workflows

One of the goals of DIPAS Gateways in Figure 1 is
to search for performance problems and to inform clients
about detected problems. In order to search for perfor-
mance problems, we have developed a novel classification
of performance overheads for workflows that includes mid-
dleware overheads (e.g., due to scheduling or resource man-
agement), loss of parallelism overheads (e.g., due to load
imbalance), etc. The performance of K-WGrid workflows
is systematically analyzed according to that classification.
Based on performance overheads, we define performance
severity as the ratio of performance overheads to the total
execution time. Performance severity indicates the impor-
tance of a performance overhead with respect to the perfor-
mance of the workflow. Performance problems can then be
determined based on conditions established on the basis of
appropriate performance metrics (for example, overheads
and severities), and their thresholds. Given a predefined
threshold for a performance metric, a performance prob-
lem occurs when the value of the metric is greater than the
threshold. During the execution of the workflow, any clients
of DIPAS can specify requests to obtain performance over-
heads, severities and problems.

To simplify the interaction between clients and DI-
PASGateways, we design a novel workflow analy-
sis request language (WARL) which is used to spec-
ify analysis requests. Figure 4 presents the cur-

3



<dg:DataObject rdf:ID="MD1148476305524_DO">
<dg:contains>

<dg:MonitoringData rdf:ID="MD1148476305524">
<dg:hasDataType rdf:datatype="...">wfa.event</dg:hasDataType>
<dg:ofResource rdf:datatype="..."
>truong_810cf130-eb24-11da-8ebd-a46bfd55290e
</dg:ofResource>
<dg:validFrom rdf:datatype="...">1148476305524</dg:validFrom>
<dg:validTo rdf:datatype="...">0</dg:validTo>

</dg:MonitoringData>
</dg:contains>

<dg:isStoredIn rdf:resource="http://gom.kwfgrid.net/gom/ontology/
ServiceRegistry/CMN#MSa6240bba-3c48-4cc6-ad31-648e9b60124b"/>

</dg:DataObject>

(a)

<?xml version="1.0"?>
<pdqs xmlns="http://net.kwfgrid/dr/pdqs">

<dataTypeID>wfa.event</dataTypeID>
<resourceID>truong_810cf130-eb24-
11da-8ebd-a46bfd55290e</resourceID>
<subscriptionTime>

<from>0</from>
<to>0</to>

</subscriptionTime>
</pdqs>

(b)

Figure 3. Example of (a) OWL description (simplified) and (b) corresponding PDQS

Figure 4. Workflow analysis request language
(WARL) visualized with the XMLSpy tool

rent version of WARL. A WARL request includes
three parts: constraints (elementconstraint, type
WARLConstraint), performance metrics to be ana-
lyzed (elementanalyze, type WARLAnalyze), and
performance conditions (elementperfProblemSpecs,
type WARLPerfProblemSpecs). Constraints include
information about hierarchical workflow concepts (e.g.,
Workflow andActivity) to be analyzed and their prop-
erties (e.g., the name ofActivity). Each concept is iden-
tified by a name and a type: the name indicates the identi-
fier of the concept in the workflow description, e.g. activity
name, while the type determines whether the concept is a
workflow or an activity or a code region, etc. A WARL
analyze request specifies a list of performance overheads
that should be analyzed and provided. Performance prob-
lems can be checked by specifying a set of performance
conditions, each condition includes a metric name, an oper-
ator (e.g., greater than or less than), and a value (e.g., indi-
cating a threshold). Given WARL requests, the performance

<?xml version="1.0" encoding="UTF-8"?>
<warl>
<constraint>

<startTime>0</startTime><endTime>0</endTime>
<workflowID>truong_3d6c4330-eb2a-11da-8ebd-a46bfd55290e
</workflowID>
<concepts>
<concept name="truong_3d6c4330-eb2a-11da-

8ebd-a46bfd55290e" type="Workflow"/>
<concept name="computeStartZonePolyg"

type="Activity"/>
<concept name="computeEndZonePolyg" type="Activity"/>
<concept name="computeStartNodes" type="Activity"/>
</concepts>

</constraint>
<analyze>

<metric>LoadIm</metric><metric>TotalOverhead</metric>
<metric>QueuingTimeSeverity</metric>

</analyze>
<perfProblemSpecs>
<perfProblemSpec><metric>SynDelaySeverity</metric>

<operator>GE</operator><value>0.2</value>
</perfProblemSpec>
<perfProblemSpec><metric>QueuingTimeSeverity</metric>

<operator>GE</operator><value>0.1</value>
</perfProblemSpec>

</perfProblemSpecs>
</warl>

Figure 5. Examples of WARL request for ob-
taining performance overheads and specify-
ing performance conditions

analysis service will conduct corresponding analyses and
send to the requesters the analysis result described in XML.
Figure 5 presents an example of a WARL request which is
used to analyze performance metrics and performance prob-
lems of three activitiescomputeStartZonePolyg,
computeEndZonePolyg, computeStartNodes
and the workflowtruong 3d6c4330-eb2a-11da-8e
bd-a46bfd55290e.

6 Integrated Performance Monitoring and
Analysis Portal

In K-WfGrid, the user conducts performance monitoring
and analysis through a Web portal. All features for mon-

4



Figure 6. Workflow performance monitoring and analysis port al.

itoring and analyzing the performance of Grid workflows
as well as Grid resources are integrated into DIPAS Por-
tal, thus providing a unique place for the user to carry out
any monitoring and analysis tasks. In the portal, the user
basically can (i) conduct the online monitoring of the exe-
cution of workflows together with Grid resources on which
the Grid services are executed, (ii) request the analysis ser-
vice to determine the overhead associated with workflows,
and (iii) control the instrumentation and measurement pro-
cess of Grid services. Currently, the DIPAS Portal includes:

• a set of portlets that allows the user to configure the
monitoring service, to select existing monitored re-
sources, to specify PDQS requests, and to query and/or
subscribe monitoring data and events.

• a Java applet for conducting performance visualization
and analysis of Grid workflows.

Figure 6, for example, depicts our performance monitor-
ing and analysis portal for Grid workflows. From the portal
the user can select existing workflows, currently being ex-
ecuted by or submitted to GWES, and start the monitoring
and analysis. The workflow representation is shown in the
left-pane whereas online execution progress of the work-
flow and its activities, together with performance metrics,
are shown in the right-pane. During runtime, the user can
conduct any analysis by selecting activities or activity in-
stances and features in the menu. For example, the user can

examine the execution phase of the whole workflow or per-
formance metrics of activities/instances. Performance anal-
ysis of completed workflows is also supported.

7 Experiments

We have implemented our prototype and integrated it
into the K-WfGrid system. Monitoring and analysis ser-
vices are WSRF-based, powered by GT4 [10], whereas
the portal is based on Gridsphere [11]. However, the
dynamically-enabled instrumentation GUI has not been in-
tegrated into the portal. In this section, we present a few se-
lected experiments conducted through the portal to demon-
strate the usefulness of our tool.

7.1 Infrastructure Monitoring

Figure 7 presents an example of using DIPAS Por-
tal to monitor a QoS parameter ofAvailability
of K-WfGrid services. The portalData Query and
Subscription provides interfaces for selecting moni-
tored resources, specifying PDQS requests, and perform-
ing data query and subscription. In the portalDisplay
Data, the performance status of monitored resources is vi-
sualized and updated over the time. For example, the portal
Display Data shows an example about the availability
of GOM.

5



Figure 7. Example of monitoring availability of K-WfGrid se rvices

7.2 Workflow Performance Monitoring
and Analysis

Our experimental workflow is a K-WfGrid pilot applica-
tion named CTM (Coordinated Traffic Management) work-
flow, developed by Softeco Sismat S.p.A. This workflow is
used to compute emissions for the main pollutants in an ur-
ban area. Figure 8 presents the CTM workflow visualized
in DIPAS Portal using the K-WfGrid GWUI (Grid work-
flow user interface) library. In CTM, the topology of the ur-
ban area, divided into different zones, is described in.NET
file. Moreover, an origin/destination zone matrix with traf-
fic flows data per different vehicle types is provided. Based
on that the CTM will compute the emission. Currently,
Web services of the CTM are deployed in Innsbruck and
Genoa. In our experiments, GWES is a centralized service
deployed in Innsbruck whereas GOM is a distributed ser-
vice deployed in a cluster in Cracow, Poland. We deploy
DIPAS Portal, DIPAS Gateway and GEMINI on different
machines in Innsbruck.

Through the portal the user can observe the execution
of the CTM. When the execution of an activity changes
status, the color of the outer rectangle enclosing the ac-
tivity node in the visualization of workflow representa-
tion will be changed accordingly. For example, in Fig-
ure 8, the execution of most activities, except activity
generateSVGFile, arecompleted. Figure 9 shows
the execution trace of activity instances of the CTM. The
tree in left-pane shows performance metrics associated
with an instance of activitycomputeEndZonePolyg
which takes a large portion of processing time. The
window Load Imbalance shows that the load balance
among instances of activitycomputerSSSP is poor. The
scheduler decides to invoke more service operations on a
Genoa machine,grid02.softeco.it than that on a
machine in Innsbruck,kwfgrid.dps.uibk.ac.at, as
shown in the windowDistribution of Activity
Instances. Overall only two activities named
computeSSSP and computeEndZonePolyz domi-

nate the execution time, as presented in the window
Execution Phaseswhich displays summarized execu-
tion time of phases for individual activities.

During runtime, we can obtain performance overheads
and problems of workflows. In Figure 10, the window
Overhead Analysis shows an instance of the over-
head tree which is updated when the performance search
produces new results whereas the windowPerformance
Problems Analysis displays any performance prob-
lems detected based on severities and thresholds, identified
by user-defined specifications of performance conditions.

8 Related Work

Many techniques have been introduced to study quality
of service and performance models and to monitor the ex-
ecution of business Web services and workflows [14, 9, 7].
The WebLogic Process Integrator [5] allows the user to ex-
amine status of workflow instances. However, its monitor
is limited to the activity level. Web Service Navigator [16]
provides visualization techniques for Web service based ap-
plications. ARM defines means for obtaining monitoring
data of business transactions through instrumentation [12].
However, ARM agents are monitoring sensors that could
be integrated into our framework. Performance search and
analysis at multiple levels of abstraction are not supported
in the business domain.

In the Grid domain, there is a lack of monitoring and
analysis tools for workflows of Grid/Web services. P-
GRADE [13] supports tracing of workflow applications. In
contrast to K-WfGrid, it does not support cyclic and Web
service-based workflows. Taverna Workbench [17] also
monitors status of activities within Grid workflows, but pro-
vides information in simple tables. The OntoGrid project
[4] uses knowledge gained from monitoring data to debug
workflows, but not to monitor and analyze the performance.
The ASKALON [1] and the K-WfGrid share many monitor-
ing and analysis methods and concepts in common. How-
ever, performance analysis techniques in ASKALON sup-

6



Figure 8. The CTM workflow representation visualized in DIPA S Portal

port workflows of C/Fortran-based scientific applications.
K-WfGrid performance monitoring and analysis services

differ from these tools in many aspects. Firstly, our services
are WSRF-based services. Most existing performance mon-
itoring and analysis tools for workflows are limited to the
activity level and do not support the selection of abstrac-
tion levels to which the analysis should be limited. Existing
performance analysis tools for workflows neither provide
a systematic classification of overheads nor support online
detection of performance problems, and are not integrated
with infrastructure monitoring and analysis.

9 Conclusions and Future Work

In this paper, we have presented a novel unified and ex-
tensible system for performance monitoring and analysis of
Grid workflows. We have described a prototype and demon-
strated the usefulness of our system. The main contribu-
tions of the paper are centered on novel techniques to sup-
port performance monitoring and analysis of multilingual
workflow-based applications at multiple levels. Although
designed for the K-WfGrid workflow system, the perfor-
mance framework presented in this paper is interoperable
and extensible, and can easily be adapted to any other work-

flow systems, e.g, those supporting BPEL [2].
Currently, the dynamically enabled instrumentation has

not been fully achieved and we are working on integrating
it into our system. We plan to store performance results into
GOM for conducting multiple-experiment analysis.

References

[1] ASKALON: Grid Application Development and Computing
Environment, http://www.askalon.org.

[2] Business Process Execution Language for Web Services,
http://www-128.ibm.com/developerworks/library/specifica
tion/ws-bpel/.

[3] K-WF Grid Project. http://www.kwfgrid.net.
[4] Ontogrid project, http://www.ontogrid.net.
[5] WebLogic Process Integrator Overview,

http://edocs.beasys.com/wlpi/wlpi11/studio/index.htm.
[6] Grid Workflow Execution Service (GWES),

http://www.gridworkflow.org/kwfgrid/gwes/docs/, 2006.
[7] A. F. Abate, A. Esposito, N. Grieco, and G. Nota. Workflow

performance evaluation through wpql. InProceedings of the
14th international conference on Software engineering and
knowledge engineering, pages 489–495. ACM Press, 2002.

[8] B. Balis, H.-L. Truong, M. Bubak, T. Fahringer, K. Guzy,
and K. Rozkwitalski. An Instrumentation Infrastructure for
Grid Workflow Applications. InInternational Symposium

7



Figure 9. Execution trace of activity instances in the CTM wo rkflow

Figure 10. Online analysis of performance
overheads and problems

on Grid Computing, High-Performance and Distributed Ap-
plications (GADA06), LNCS, 2-3 November 2006.

[9] J. Cardoso, A. P. Sheth, and J. A. Miller. Workflow quality
of service. In K. Kosanke, R. Jochem, J. G. Nell, and A. O.
Bas, editors,ICEIMT, volume 236 ofIFIP Conference Pro-
ceedings, pages 303–311. Kluwer, 2002.

[10] Globus Project. http://www.globus.org.
[11] GridSphere Portal Framework. http://www.gridsphere.org.
[12] M. W. Johnson. Monitoring and diagnosing applications

with arm 4.0. In Int. CMG Conference, pages 473–484.
Computer Measurement Group, 2004.

[13] P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki,
Z. Balaton, and G. Gombas. P-GRADE: a Grid Program-
ming Environment.Journal of Grid Computing, 1(2):171–
197, 2003.

[14] K.-H. Kim and C. A. Ellis. Performance analytic models and
analyses for workflow architectures.Information Systems
Frontiers, 3(3):339–355, 2001.

[15] B. Kryza, M. Majewska, R. Slota, and J. Kitowski. Unifying
grid metadata representations through ontologies. InProc.
of the 6th Intl. Conf. on Parallel Processing and Applied
Mathematics PPAM’2005, volume 3911 ofLNCS, Poznan,
Poland, 11-14 September 2006. Springer.

[16] W. D. Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F.
Morar. Web services navigator: Visualizing the execution of
web services.IBM Systems Journal, 44(4):821–846, 2005.

[17] Taverna, http://taverna.sourceforge.net/, 2006.
[18] J. Yu and R. Buyya. A taxonomy of scientific workflow

systems for grid computing.SIGMOD Rec., 34(3):44–49,
2005.

8


