
An Instrumentation Infrastructure for Grid Workflow
Applications ⋆

Bartosz Balis1, Hong-Linh Truong3, Marian Bubak1,2, Thomas Fahringer3,
Krzysztof Guzy1, Kuba Rozkwitalski2

1 Institute of Computer Science, AGH, Poland
{balis, bubak}@uci.agh.edu.pl,kubaroz@gmail.com

2 Academic Computer Centre – CYFRONET, Poland
3 Institute of Computer Science, University of Innsbruck, Austria

{truong,tf}@dps.uibk.ac.at

Abstract. Grid workflows are normally composed of multilingual applications.
Monitoring such multilingual workflows in the Grid requiresan instrumentation
infrastructure that is capable of dealing with workflow components implemented
in different programming languages. Moreover, Grid workflows introduce mul-
tiple levels of abstraction and all levels must be taken intoaccount in order to
understand the performance behaviour of the workflows. As a result, any instru-
mentation infrastructure for Grid workflows should assist the user/tool to conduct
the monitoring and analysis at multiple levels of abstraction. However, the instru-
mentation of multilingual workflows at different levels of abstraction should be
done in a unified way in an integrated environment, although it obviously employs
various techniques. This paper presents an novel instrumentation infrastructure
for Grid services that addresses the above-mentioned issues by supporting the
instrumentation of multilingual Grid workflows at multiplelevels of abstraction
using a unified, highly interoperable interface.
Keywords: grid, monitoring, instrumentation, legacy applications

1 Introduction

Grid workflows based on modern service-oriented architecture (SOA) are normally
multilingual, i.e. combine Java-based services with invocations of legacy code. Instru-
mentation of Grid workflows is a required step in order to collect monitoring data for
debugging or analyzing performance of Grid workflows. However, the monitoring of
multilingual applications in the Grid not only requires different instrumentation tech-
niques but also interactions between various services involved in the instrumentation
and monitoring have to use a well-defined, highly interoperable interface. Often these
requirements are conflicting and cannot be unified into a single framework. However,
while working with a Grid workflow, the user does not want to use different means to
instrument and monitor different pieces of his/her workfow.

This paper presents a novel instrumentation infrastructure for Grid services that ad-
dresses the above-mentioned issues by supporting the dynamically enabled instrumen-

⋆ The work described in this paper is supported by the EuropeanUnion through the IST-2002-
511385 project K-WfGrid.

tation of multilingual Grid workflows at multiple levels of abstraction using a unified,
highly interoperable interface.

The rest of this paper is organized as follows: Section 2 discusses concepts of in-
strumentation at multiple levels. Section 3 presents languages describing instrumented
applications and instrumentation requests. Section 4 details instrumentation techniques.
We present experiments in Section 5. Section 6 outlines the related work, followed by
a summary of the paper and an outlook to the future work in Section 7.

2 Multiple Levels of Instrumentation

Grid workflows, in our view, introduce multiple levels of abstraction includingwork-
flow, workflow region, activity, invoked applicatonandcode region[1]. To understand
the performance behaviour of Grid workflows, it necessitates to analyze and correlate
various performance metrics collected at these levels. Therefore, performance moni-
toring and analysis tools for Grid workflows have to operate at different levels and to
correlate performance metrics between these levels. To provide performance metrics at
workflow, workflow region and activity levels, the tools haveto conduct the monitoring
and measurement by instrumenting the enactment engine (EE)which is responsible for
executing workflows. On the other hand, for analyzing metrics at invoked applications
and code regions, the tools have to instrument invoked applications.

Our approach is that we apply static instrumentation techniques to the enactment
engine. For example, we can instrument the enactment engineby statically inserting
sensors into source code of EE in order to monitor execution behaviour of workflows
and workflow activities. For applications invoked within workflow activities, we apply
dynamically enabled instrumentation. That is the instrumentation is conducted before
the runtime and the measurement is dynamically enabled at runtime. Even though dy-
namically enabled instrumentation mostly supports measuring performance metrics of
program units and function calls, but not of arbitrary code regions, for Grid workflow
applications, we believe that measuring the performance ata level of program unit and
function call should be enough. Due to the complex and distributed nature of Grid work-
flows, we believe that when analyzing the performance of workflow applications, most
users are interested in observing the performance at the level of workflow, program unit
and function call, rather than at loop or statement levels. The invoked applications, e.g.,
Grid service operations or legacy scientific programs, are also diverse and can be multi-
lingual. Therefore, we must have a common infrastructure that allows us to instrument
such applications. While we could reuse existing instrumentation techniques, we have
to provide a common interface for performing the instrumentation of different types of
applications.

One of important goals of our work is to support various formsof legacy code
(libraries, forked jobs, parallel applications). Supporting legacy code is important, since
today most mature applications are written in Fortran, C or C++ and rather adapted to
the Grid than re-engineered to Java-based services.

3 Program Representations and Instrumentation Requests

As discussed in the previous section, the instrumentation system has to support multiple
levels of abstraction and to work with diverse and multilingual applications. Therefore,
we need various, quite different, instrumentation techniques, each suitable for a spe-
cific type of applications and abstraction level. Besides the detailed instrumentation
techniques, we must address interface between the instrumentation requestor and the
instrumentation system. The interface between them answers two basic questions: (1)
how the structure of multilingual applications are represented?, and (2) how the instru-
mentation requests are specified? The main desire in answering these questions is that
the requestor should treat different applications implemented in different languages us-
ing a unified means. To this end, we have to provide a neutral way to represent objects
to be instrumented and requests used to control the instrumentation. Our approach is to
use SIR [2] for representing applications and to develop XML-based instrumentation
requests based on that representation.

Standardized Intermediate Representation: We have developed an XML-based
representation named SIRWF (Standardized Intermediate Representation for Workflows)
to describe the structure of invoked applications of workflow activities; SIRWF is devel-
oped based on SIR [2]. The main objective is to express information of different types
of applications, which is required by instrumentation systems, using a single intermedi-
ate representation. The SIR represents most interesting information for instrumentation,
such as program units and functions, while shields low leveldetails of the application
from the user. SIRWF, a simplified version of SIR, currently can represent invoked ap-
plications and code regions (at program unit and function call levels) of workflows.

Workflow Instrumentation Request language (WIRL): Given application struc-
ture represented in SIRWF, we develop an XML-based languagefor specifying in-
strumentation requests named WIRL (Workflow Instrumentation Request Language).
WIRL, based on IRL [3], is an XML-based language. A WIRL request consists of ex-
periment context and instrumentation tasks. Experiment context (e.g., activity identifier,
application name, computational node, etc.) identifies applications to be instrumented
and includes information used to correlate monitoring datato the monitoring workflow.
Instrumentation tasks specify instrumentation operations. Examples of instrumentation
tasks can be a request for all instrumented functions withinan application, to enable
or disable an instrumented code, etc. The current requests include (1)ATTACH to
attach/prepare the instrumentation of a given application, (2) GETSIR to get SIR of
the application, (3)ENABLE to enable/instrument a code region, (4)DISABLE to dis-
able/deinstrument a code region, and (5)FINALIZE to finish the instrumentation.

Code region identifiers are obtained from the list of functions provided by the in-
strumentation system. In an instrumentation request, performance metrics as well as
user-defined events can be specified. Performance metrics are defined by the metric
ontology [1] while user-defined events include event names with associated event at-
tributes (names and values). For the instrumentation of user-defined events, the request
also allows the client to specify the location to which the event probes should be in-
serted, e.g., before or after a function call.

4 Instrumentation Infrastructure

Fig. 1 depicts a basic architecture in which entities involved in instrumentation and
monitoring of a sample workflow application are shown. In this figure, a workflow
enactment engineGWES(Grid Workflow Execution Service) [4] creates a workflow
activity (Activity 1) which in turn invokes an MPI application. GEMINI is the moni-
toring and instrumentation infrastructure which implements and adapts various instru-
mentation techniques and systems in a single and unified framework. GEMINI executes
instrumentation and data subscription requests and notifies subscribers about new data.
Portal is the user interface from which the user submits workflows, as well as controls
the instrumentation, performance monitoring and analysis. The figure puts emphasis on
how the events related to the execution of the workflow flow from various distributed
locations: GWES, an invoked application running in a workflow activity, and a legacy
MPI application. The framework needs to collect those pieces of data, correlate the
collected data, and present them to clients, e.g. in the portal.

Grid Workflow
Execution ServiceActivity 1

Host A Host B

ResourceID: Wf-1001-A1
Event: INIT

GEMINI

ResourceID: Wf-1001-A1
CoderegionID: mpi
Event: START_EXEC

MPI-0

Host C

MPI-1

Host D

MPI-3

MPI-2

ResourceID: Wf-1001-A1-mpi
CoderegionID: MPI_Send
MpiRank: 3
Event: START_EXEC

Host E

Portal

Subscribe
Wf-1001-A1 /
data flow

Grid Workflow
Execution ServiceActivity 1

Host A Host B

ResourceID: Wf-1001-A1
Event: INIT

GEMINI

ResourceID: Wf-1001-A1
CoderegionID: mpi
Event: START_EXEC

MPI-0

Host C

MPI-1

Host D

MPI-3

MPI-2

ResourceID: Wf-1001-A1-mpi
CoderegionID: MPI_Send
MpiRank: 3
Event: START_EXEC

Host E

PortalGrid Workflow
Execution ServiceActivity 1

Host A Host B

ResourceID: Wf-1001-A1
Event: INIT

GEMINI

ResourceID: Wf-1001-A1
CoderegionID: mpi
Event: START_EXEC

MPI-0

Host C

MPI-1

Host DHost D

MPI-3

MPI-2

ResourceID: Wf-1001-A1-mpi
CoderegionID: MPI_Send
MpiRank: 3
Event: START_EXEC

Host E

Portal

Subscribe
Wf-1001-A1 /
data flow

Fig. 1. Instrumentation framework architectuire

Fig. 2 presents the course of action in a basic instrumentation and monitoring sce-
nario (MPI part of the application being omitted for simplification). In this scenario,
after the user submits a workflow to GWES, GWES initializes the workflow, enacts the
consecutive activities and invokesinvoked applicationsperforming the task of activities.
GWES also sends some events to GEMINI concerning workflow status (not all shown
in the figure). Within GWES, every single workflow or activityinstance is associated
with a unique ID. When an invoked application of an activity instance is started, GWES
sends the unique ID of the activity instance to the invoked application (see section 4.2).
All IDs associated with activity instances can be obtained from GWES through the Por-
tal. When the invoked application starts its execution, it registers itself to GEMINI by
passing its unique ID. Meanwhile, by using the ID, the user can select invoked appli-
cations of interest and then request SIRWF of the selected invoked application in order

register(Wf_ID, Activity_ID)

Portal GWES

Invoked Application

GEMINI

submit Workflow

invoke service

sendIDs(Wf_ID, Activity_ID)

updateIDs(Wf_ID, Activity_ID)

SIRWF

getSIRWF(WF_ID, Activity_ID)

instrument(WIRL)

enableInstrumentation

event

push(MonitoringData)

subscribe(wf_ID, activity_ID, codeRegionID, dataType)

Initialize workflow

pushEvent("init")

pushEvent("running")

Fig. 2. Multiple levels of instrumentation scenario

to perform the monitoring and measurement. Based on the SIRWF, the user can select
code regions and specify interesting metrics to be evaluated. A WIRL request will be
created and sent to GEMINI which activates the measurement.In order to receive the
data, the user specifies a PDQS (Performance Data Query and Subscription) request
and sends it to GEMINI. When the execution of the invoked application reaches the
instrumentation code, events containing monitoring data are generated and monitoring
data is sent to GEMINI which in turn pushes the data to the subscriber (user).

4.1 Instrumentation at Multiple Levels of Abstraction

Instrumentation of Workflow Execution Service: Monitoring data at the level of
workflow, workflow region and activity can be obtained from the GWES. GWES con-
trols and executes the workflow and its activities so it can provide a number of events
relevant to the execution of workflows such as events indicating the workflow and ac-
tivity state changes (initiated, running, complete, etc.) Currently GWES is manually
instrumented by inserting sensors, which collect monitoring data, into the source code.
Applying only static instrumentation to GWES should be sufficient because only a few
places in the GWES code have to be instrumented and as the overhead of invoking the
probe functions is minimal, the instrumentation can be permanently installed and active.

Instrumentation of Invoked Applications and Code Regions of Java-based Ser-
vices: In doing this, we currently employ byte-code instrumentation techniques and
dynamically control the measurement process at runtime. Sensors are inserted into the
byte-code using the BCEL tool [5]. At the same time SIRWF is created and saved
with the class. Instrumented versions of classes are placedin different locations than
the original ones. Instrumentation of an individual code region is conditional. Dynamic

activation and deactivation of the instrumentation amounts to changing the value of
a condition variable at runtime.

Instrumentation of Invoked Applications and Code Regions of Legacy Code:
The possibility to use legacy code in services is twofold: (1) as legacy libraries invoked
by means of JNI (Java Native Interface) calls or (2) as legacyjobs submitted from
within a service. The first case can be handled in the same way as instrumentation of
code regions described in Section 4.1, only tools and libraries for legacy code have to
be developed. In the latter case, the legacy jobs invoked from services are often paral-
lel applications, for example computationally intensive simulations. In our framework,
monitoring of such applications will be handled by an external monitoring system, the
OCM-G [6]. To be integrated seamlessly with the GEMINI, OCM-G has to provide
SIRWF for legacy jobs, be able to handle WIRL-based instrumentation requests and
represent monitoring in GEMINI data representation. To this end, we have substan-
tially extended OCM-G, for example by introducing a SIRWF generation, and a GEM-
INI OCM-G-sensor for integrating OCM-G with GEMINI in termsof interfaces and
data representation. The detailed process of OCM-G adaptation, instrumentation, and
SIRWF generation for legacy programs is presented in [7].

Selection of Instrumentation Scope: A general problem in low-level monitoring
and instrumentation of applications is how to select the proper parts of the applications
to be instrumented and taken into account in monitoring. Theapplication usually con-
sists of hundreds of code units (classes, functions, files and libraries) of which many
are irrelevant for the user, since they are not part of application’s logic but belong to
external libraries, etc. This problem is valid both for Javaapplications and e.g. C ap-
plications. The method, which we currently employ, is to explicitly specify the subset
of code units (e.g. jars, classes or C-files) that are of interest and only those will be
instrumented and included in SIRWF.

4.2 Passing Correlation Identifier to Invoked Applications

Monitoring data concerning a single workflow is generated indistinct places, mainly
within GWES and invoked applications. In order to correlatethose different pieces of
data together, and to be able to correlate data requests withthe incoming monitoring
data, we need to associate the monitoring data with a unique ID, a ‘signature’. In our
case, this ID is the workflow and activity IDs, both generatedby GWES. Obviously
those IDs must also be passed to invoked applications which are web service operations.

This problem is a case of a more general issue of sendingexecution contextto
web services. However, Web services currently do not support any context information.
For pure, stateless web services, the only information passed to an invoked service is
via operation’s parameters. There are a few possibilities to pass context information,
as discussed in [8], for example: (a) by extending service’sinterface with additional
parameter for context information, (b) by extending the data model of the data passed
to a service, (c) by inserting additional information in SOAP header, and reading it from
within the service. An additional option is to use the state provided by a service, but this
only works for services that support state, e.g. WSRF-basedones.

We have used the SOAP-header approach, since it is transparent and does not re-
quire the involvement of services’ developers. Thus, when invoking services, GWES

inserts additional information to SOAP headers which is accessed in the services by
instrumentation initialization functions to obtain workflow and activity identifiers.

4.3 Organizing and Managing Monitoring Data

The instrumentation supports gathering monitoring data atmultiple levels; data col-
lected within an experiment (e.g., of a workflow) is determined through IDs. Currently
the framework does neither support merging data from different levels nor provide a
storage system managing that data, although part of monitoring data is temporarily
stored in distributed GEMINI monitoring services. The maingoal of the framework is
to support online performance monitoring and analysis so that the monitoring data is
just returned to clients (e.g., performance analysis services) via query or subscription
and the clients will analyze the monitoring data.

5 Experiment

We have implemented a prototype of our instrumentation infrastructure. The current im-
plementation supports, among others, generation of SIRWF,static insertion of probes
for Java and C applications, and dynamic control (activation/deactivation) of instru-
mentation based on SIRWF representation. In this section wepresent an experiment to
illustrate our concepts.

In our experiment, we use GWES to invoke a service for numerical integration.
The actual computation is done by a parallel MPI job invoked from the service which
performs a parallel adaptive integration algorithm. The monitoring and instrumentation
of the MPI application is realized by the OCM-G monitoring system which is integrated
with GEMINI, as described in [7].

In our experiment, we wanted to obtain an event trace showingthe consecutive
stages of execution of the workflow – from the GWES events to the execution of
code regions in the MPI application; we were interested in parts in which the actual
computation was performed. After the application has been started, it was suspended
so that required measurements could be set up from the beginning. The SIRWF ob-
tained for the invoked application is shown in Fig. 3 (a). Theexperiment sec-
tion identifies a particular runtime part of the workflow (e.g. an invoked application,
a legacy job). Within invoked applicationnumeric.pa integrate, a subroutine
namedmpi integrate. This subroutine actually invokes a legacy application writ-
ten in MPI. The legacy code consists of a function namedmain and other functions
such aseval andMPI Send. In the monitoring view, we are interested in monitoring
the following calling chain:mpi integrate → main → eval. Using informa-
tion in the SIRWF, we decide to instrument thenumeric.pa integrate invoked
application, themain functions and the calls toeval function in all MPI processes.
Part of the corresponding WIRL submitted to GEMINI is shown in Fig. 3. As GWES
is statically instrumented, events from GWES are always generated and reported to
GEMINI.

When the instrumentation has been set up, we send a subscription request to GEM-
INI to obtain all events related to the monitored workflow. Weshow the results in a form

<sirApp>
<experiment> ... </experiment>
<sir><unit type="subroutine"
name="numeric.pa_integrate">
<coderegion type="call" id="1">
<calee name="mpi_integrate"/>
</coderegion>

</unit>
<unit type="subroutine"

name="mpi_integrate">
<coderegion type="call" id="2">
<calee name="main"/>

</coderegion>
</unit>
<unit type="function" name="main">
<coderegion type="call" id="3">
<calee name="MPI_Send"/>

</coderegion>
...

<coderegion type="call" id="14">
<calee name="eval"/>

</coderegion>
...

</unit></sir>
</sirApp>

(a)

<wirl>
<request name="ENABLE">

<experiment>
<wfInstanceID>wf1</wfInstanceID>
<pu><activityID>wf1_a1</activityID>

<invokedAppId>wf1_a1_ia1
</invokedAppId>

</pu>
</experiment>
<task>
<coderegion name="main" id="2"/>
<coderegion name="eval" id="14"/>
<events location="BEFORE">

<event>
<eventname>BEGIN_EXEC</eventname>

</event>
</events>
<events location="AFTER">

<event>
<eventname>END_EXEC</eventname>

</event>
</events>

</task>
</request>

</wirl>

(b)

Fig. 3. Instrumentation: (a) SIRWF (simplified) and (b) WIRL (simplified)

 280 290 300 310 320 330 340

time[s]

workflow lifetime
activity lifetime
mpi job lifetime

(a)

 0

 1

 2

 3

 4

 5

 340.1 340.15 340.2 340.25 340.3 340.35

M
P

I r
an

k

time[s]

process lifetime
eval

(b)

Fig. 4. Monitoring results: (a) Workflow perspective (b) Legacy perspective

of bars representing the time span of different execution units. Fig. 4 (a) shows a com-
parison between the execution of the entire workflow, the single activity that has been
executed, and the MPI job executed from the activity. As we can see, the delay related
to workflow submission is enormous in comparison to the actual computation. Fig. 4
(b) uses a different scale to show the time breakdown for individual code regions inside
the MPI processes. Multiple calls to theeval function are due to the iterative process
of adaptive integration.

6 Related Work
Techniques like source code, binary or dynamic instrumentation are well-known and
widely used such as in TAU [9], Paradyn [10], Dyninst [11]. Many efforts have been
spent on Java byte-code and dynamic instrumentation, e.g.,[12–15]. The main aspect
in which our work differs from these tools is that we focus on developing extensible
and interoperable instrumentation interfaces, e.g. WIRL and SIRWF, for performance
measurement of Grid applications and on integrating various instrumentation mecha-
nisms for Grid applications. While the above-mentioned tools also target to large scale,
long-run applications, they support and are developed on high performance parallel sys-
tems where issues of heterogeneity, loosely integration, multilingual applications, and
interoperability are not centered points. PPerfGrid [16] geographically collects and ex-
changes performance data of parallel programs by using Gridservices but it does not
address the instrumentation and monitoring of Grid workflow-based applications. To
our best knowledge, there is no instrumentation infrastructure that supports multiple
levels of instrumentation for multilingual Grid workflows.

The APART working group proposes the SIR as a high level meansto describe
structure of applications to be instrumented by using XML [2]. However, APART SIR
represents only single applications, not workflows. We adopt SIR, simplifying and us-
ing it for our instrumentation. There are works on proposingXML-based requests for
instrumentation such as MIR[17] and MRI [18]. However, those requests are used for
instrumentation of individual invoked applications, rather than for workflows.

AKSUM tool supports dynamic instrumentation of distributed Java applications
[13]. The instrumentation also uses SIR and MIR. However, itneither supports Grid-
nor workflow-based applications. Moreover, the instrumentation is limited to Java code
only while our instrumentation supports legacy code (e.g.,C/Fortran) as well.

7 Conclusion and Future Work
The contribution of this paper is a novel framework for instrumentation of multilingual
and Grid-based workflows. The instrumentation and monitoring of complex, multilin-
gual, workflow of Grid services are handled seamlessly in an integrated system. By
employing GEMINI, the concepts of SIR and WIRL, and various instrumentation tech-
niques, we are able to provide a unified and comprehensive view on the execution of
workflow applications at various levels.

At the moment we have a working prototype of our infrastructure. We are working
on full integration of service-level and legacy-level instrumentation, full implementa-
tion of SIRWF, transparency of application monitoring, anda fully reliable passing of
workflow and activity IDs to all parts of the workflow application. Moreover, the scal-
ability and robustness of the system need to be evaluated.

References

1. Truong, H.L., Fahringer, T., Nerieri, F., Dustdar, S.: Performance Metrics and Ontology for
Describing Performance Data of Grid Workflows. In: Proceedings of IEEE International
Symposium on Cluster Computing and Grid 2005, 1st International Workshop on Grid Per-
formability, Cardiff, UK, IEEE Computer Society Press (2005)

2. Seragiotto, C., Truong, H.L., Fahringer, T., Mohr, B., Gerndt, M., Li, T.: Standardized Inter-
mediate Representation for Fortran, Java, C and C++ Programs. Technical report, Institute
for Software Science, University of Vienna (2004)

3. Truong, H.L., Fahringer, T.: SCALEA-G: a Unified Monitoring and Performance Analysis
System for the Grid. Scientific Programming12 (2004) 225–237 IOS Press.

4. Neubauer, F., Hoheisel, A., Geiler, J.: Workflow-based Grid Applications.22 (2006) 6–15
5. BCEL: Byte Code Engineering Library (2006) http://bcel.sourceforge.net.
6. Balis, B., Bubak, M., Radecki, M., Szepieniec, T., Wismüller, R.: Application Monitoring

in CrossGrid and Other Grid Project s. In: Grid Computing. Proc. Second European Across
Grids Conference, Nicosia, Cyprus, Springer (2004) 212–219

7. Baliś, B., Bubak, M., Guzy, K.: Fine-grained Instrumentation and Monitoring of Legacy
Applications in a Service-Oriented Environment. In: ICCS 2006, Reading, UK (2006)

8. Brydon, S., Kangath, S.: Web Service Context Information. (2005)
https://bpcatalog.dev.java.net/nonav/soa/ws-context/index.html.

9. Sheehan, T., Malony, A., Shende, S.: A runtime monitoringframework for tau profiling
system. In: Proceedings of the Third International Symposium on Computing in Object-
Oriented Parallel Environments(ISCOPE’s 99), San Franciso (1999)

10. Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R., Karavanic, K., Kunchitha-
padam, K., Newhall, T.: The Paradyn Parallel Performance Measurement Tool. IEEE Com-
puter28 (1995) 37–46

11. Buck, B., Hollingsworth, J.K.: An API for Runtime Code Patching. The International Journal
of High Performance Computing Applications14 (2000) 317–329

12. Guitart, J., Torres, J., Ayguad, E., Labarta, J.: Java instrumentation suite: Accurate analysis
of java threaded applications (2000)

13. Seragiotto, C., Fahringer, T.: Performance Analysis for Distributed and Parallel Java Pro-
grams. In: Proceedings of IEEE International Symposium on Cluster Computing and Grid
2005, Cardiff, UK, IEEE Computer Society Press (2005)

14. Factor, M., Schuster, A., Shagin, K.: Instrumentation of standard libraries in object-oriented
languages: the twin class hierarchy approach. In: OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, New York, NY, USA, ACM Press (2004) 288–300

15. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code. In: PLDI.
(2001) 168–179

16. Hoffman, J.J., Byrd, A., Mohror, K., Karavanic, K.L.: Pperfgrid: A grid services-based tool
for the exchange of heterogeneous parallel performance data. In: IPDPS, IEEE Computer
Society (2005)

17. Seragiotto, C., Truong, H.L., Fahringer, T., Mohr, B., Gerndt, M., Li, T.: Monitoring
and Instrumentation Requests for Fortran, Java, C and C++ Programs. Technical Report
AURORATR2004-17, Institute for Software Science, University of Vienna (2004)

18. Kereku, E., Gerndt, M.: The Monitoring Request Interface (MRI). In: 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006). (2006)

