An Instrumentation Infrastructure for Grid Workflow
Applications *

Bartosz Bali$, Hong-Linh Truong, Marian Bubak:2, Thomas Fahringér
Krzysztof Guzy, Kuba Rozkwitalski

! |nstitute of Computer Science, AGH, Poland
{bal i s, bubak}@ici.agh. edu. pl, kubaroz@mail.com
2 Academic Computer Centre — CYFRONET, Poland
3 Institute of Computer Science, University of Innsbruck s&ia
{truong, tf }@lps. ui bk. ac. at

Abstract. Grid workflows are normally composed of multilingual applions.
Monitoring such multilingual workflows in the Grid requiras instrumentation
infrastructure that is capable of dealing with workflow campnts implemented
in different programming languages. Moreover, Grid wonkBantroduce mul-
tiple levels of abstraction and all levels must be taken adoount in order to
understand the performance behaviour of the workflows. Assalt, any instru-
mentation infrastructure for Grid workflows should asdist iser/tool to conduct
the monitoring and analysis at multiple levels of abstmactHowever, the instru-
mentation of multilingual workflows at different levels dbstraction should be
done in a unified way in an integrated environment, althotighviously employs
various techniques. This paper presents an novel instriati@m infrastructure
for Grid services that addresses the above-mentionedsidgusupporting the
instrumentation of multilingual Grid workflows at multiplevels of abstraction
using a unified, highly interoperable interface.

Keywords: grid, monitoring, instrumentation, legacy applications

1 Introduction

Grid workflows based on modern service-oriented architec(8OA) are normally
multilingual, i.e. combine Java-based services with imtmns of legacy code. Instru-
mentation of Grid workflows is a required step in order to @ctimonitoring data for
debugging or analyzing performance of Grid workflows. Hogrethe monitoring of
multilingual applications in the Grid not only requiresfdifent instrumentation tech-
niques but also interactions between various servicedvieddn the instrumentation
and monitoring have to use a well-defined, highly interopkrinterface. Often these
requirements are conflicting and cannot be unified into alsifigmework. However,
while working with a Grid workflow, the user does not want te@ ukfferent means to
instrument and monitor different pieces of his/her workfow

This paper presents a novel instrumentation infrastredaurGrid services that ad-
dresses the above-mentioned issues by supporting the dyadgnenabled instrumen-

* The work described in this paper is supported by the Europeaon through the IST-2002-
511385 project K-WfGrid.

tation of multilingual Grid workflows at multiple levels obatraction using a unified,
highly interoperable interface.

The rest of this paper is organized as follows: Section 2udises concepts of in-
strumentation at multiple levels. Section 3 presents lagga describing instrumented
applications and instrumentation requests. Section 4lgl@tatrumentation techniques.
We present experiments in Section 5. Section 6 outlinesefa¢ed work, followed by
a summary of the paper and an outlook to the future work ini@eat

2 Multiple Levels of Instrumentation

Grid workflows, in our view, introduce multiple levels of d@tetion includingwork-
flow, workflow region, activity, invoked applicatandcode regior1]. To understand
the performance behaviour of Grid workflows, it necessitéeanalyze and correlate
various performance metrics collected at these levelsrefbee, performance moni-
toring and analysis tools for Grid workflows have to operdatdiffierent levels and to
correlate performance metrics between these levels. Mde@erformance metrics at
workflow, workflow region and activity levels, the tools haeeconduct the monitoring
and measurement by instrumenting the enactment engineNEER is responsible for
executing workflows. On the other hand, for analyzing mstaitinvoked applications
and code regions, the tools have to instrument invoked egains.

Our approach is that we apply static instrumentation teples to the enactment
engine. For example, we can instrument the enactment ebgirsgatically inserting
sensors into source code of EE in order to monitor executidrabiour of workflows
and workflow activities. For applications invoked within ekflow activities, we apply
dynamically enabled instrumentation. That is the instmiaton is conducted before
the runtime and the measurement is dynamically enablechéibre. Even though dy-
namically enabled instrumentation mostly supports meéagyrerformance metrics of
program units and function calls, but not of arbitrary coegions, for Grid workflow
applications, we believe that measuring the performanadetel of program unit and
function call should be enough. Due to the complex and disteid nature of Grid work-
flows, we believe that when analyzing the performance of flmrkapplications, most
users are interested in observing the performance at takdéworkflow, program unit
and function call, rather than at loop or statement levéig ifivoked applications, e.g.,
Grid service operations or legacy scientific programs, E@diverse and can be multi-
lingual. Therefore, we must have a common infrastructuaédliows us to instrument
such applications. While we could reuse existing instrutaéon technigues, we have
to provide a common interface for performing the instruragéioh of different types of
applications.

One of important goals of our work is to support various forofidegacy code
(libraries, forked jobs, parallel applications). Suppagtiegacy code is important, since
today most mature applications are written in Fortran, C &+ @nd rather adapted to
the Grid than re-engineered to Java-based services.

3 Program Representations and Instrumentation Requests

As discussed in the previous section, the instrumentagistes has to support multiple

levels of abstraction and to work with diverse and multiliabapplications. Therefore,

we need various, quite different, instrumentation techegj each suitable for a spe-
cific type of applications and abstraction level. Besides ditailed instrumentation

techniques, we must address interface between the insttativen requestor and the
instrumentation system. The interface between them asswer basic questions: (1)

how the structure of multilingual applications are repraged?, and (2) how the instru-

mentation requests are specified? The main desire in amg\lese questions is that
the requestor should treat different applications impletee in different languages us-
ing a unified means. To this end, we have to provide a neutnateveepresent objects

to be instrumented and requests used to control the instriati@n. Our approach is to

use SIR [2] for representing applications and to develop Xibdlsed instrumentation

requests based on that representation.

Standardized Intermediate Representation\We have developed an XML-based
representation named SIRWF (Standardized IntermedigteeRentation for Workflows)
to describe the structure of invoked applications of workféativities; SIRWF is devel-
oped based on SIR [2]. The main objective is to express irdtion of different types
of applications, which is required by instrumentation eys$, using a single intermedi-
ate representation. The SIR represents most interesfimgriation for instrumentation,
such as program units and functions, while shields low leeghils of the application
from the user. SIRWF, a simplified version of SIR, currentiyp cepresent invoked ap-
plications and code regions (at program unit and functidiiezels) of workflows.

Workflow Instrumentation Request language (WIRL): Given application struc-
ture represented in SIRWF, we develop an XML-based langt@gspecifying in-
strumentation requests named WIRL (Workflow InstrumeataRequest Language).
WIRL, based on IRL [3], is an XML-based language. A WIRL regueonsists of ex-
periment context and instrumentation tasks. Experimemtest (e.g., activity identifier,
application name, computational node, etc.) identifiediegons to be instrumented
and includes information used to correlate monitoring tathe monitoring workflow.
Instrumentation tasks specify instrumentation operati@xamples of instrumentation
tasks can be a request for all instrumented functions wihimpplication, to enable
or disable an instrumented code, etc. The current requeshsde (1)ATTACH to
attach/prepare the instrumentation of a given applicai®@hGETSI R to get SIR of
the application, (3ENABLE to enable/instrument a code region, PHSABLE to dis-
able/deinstrument a code region, andE6NAL| ZE to finish the instrumentation.

Code region identifiers are obtained from the list of furresigprovided by the in-
strumentation system. In an instrumentation requestppagnce metrics as well as
user-defined events can be specified. Performance metdcdefined by the metric
ontology [1] while user-defined events include event namiéis associated event at-
tributes (names and values). For the instrumentation ofdesined events, the request
also allows the client to specify the location to which themvprobes should be in-
serted, e.g., before or after a function call.

4 Instrumentation Infrastructure

Fig. 1 depicts a basic architecture in which entities inedhn instrumentation and
monitoring of a sample workflow application are shown. Irstfigure, a workflow
enactment engin&WES(Grid Workflow Execution Service) [4] creates a workflow
activity (Activity 1) which in turn invokes an MPI applicath. GEMINI is the moni-
toring and instrumentation infrastructure which implensesnd adapts various instru-
mentation techniques and systems in a single and unifiectirank. GEMINI executes
instrumentation and data subscription requests and reogifibscribers about new data.
Portal is the user interface from which the user submits workflowsyall as controls
the instrumentation, performance monitoring and analy$is figure puts emphasis on
how the events related to the execution of the workflow flomrfnarious distributed
locations: GWES, an invoked application running in a wonkflactivity, and a legacy
MPI application. The framework needs to collect those @eafedata, correlate the
collected data, and present them to clients, e.qg. in thaport

¢ ~ S
HostA I~~ Host B N Host £
¥ \\ <
Sa AN

Subscribe

ResourcelD: Wf-1001-A1 ResourcelD: Wf-1001-Al Wf-1001-A1 /
CoderegionID: mpi Event: INIT data flow
Event: START_EXEC ~<

ResourcelD: Wf-1001-Al-mpi
Host C Host D CoderegionID: MPI_Send
MpiRank: 3

Event: START_EXEC

Fig. 1. Instrumentation framework architectuire

Fig. 2 presents the course of action in a basic instrumemtathd monitoring sce-
nario (MPI part of the application being omitted for simglétion). In this scenario,
after the user submits a workflow to GWES, GWES initializeswlorkflow, enacts the
consecutive activities and invokiesoked applicationperforming the task of activities.
GWES also sends some events to GEMINI concerning workflotusi@ot all shown
in the figure). Within GWES, every single workflow or activitystance is associated
with a unique ID. When an invoked application of an activitgtance is started, GWES
sends the unique ID of the activity instance to the invokgaliagtion (see section 4.2).
All IDs associated with activity instances can be obtaimedhfGWES through the Por-
tal. When the invoked application starts its executionedfisters itself to GEMINI by
passing its unique ID. Meanwhile, by using the ID, the user s@lect invoked appli-
cations of interest and then request SIRWF of the selectedkaud application in order

submit Workflow]

— —
[}

ITI > Initialize workflow
pushEvent("init")
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
1

invoke service
Invoked

pushEvent("running")
'

sendIDs(Wf_ID, Activity_ID)]
1
] | register(Wf_ID, Activity _ID)

updatelDs(Wf_ID, Activity_ID)

[S
|
1

T

[}

[}

[}

[}

[}

[}

[}

[}

[}

:

=]

.
z
EXRY]
'3
HE
E
z

44

subscribe(wf_ID, activity_ID, codeRegionID, dataType)

event

+

|

1
push(MonitoringData) Lrl

T

N

G-

Fig. 2. Multiple levels of instrumentation scenario

to perform the monitoring and measurement. Based on the B)JRW user can select
code regions and specify interesting metrics to be evalu&aVIRL request will be
created and sent to GEMINI which activates the measurertrentder to receive the
data, the user specifies a PDQS (Performance Data Query drsdriftion) request
and sends it to GEMINI. When the execution of the invoked iapgibn reaches the
instrumentation code, events containing monitoring dedaganerated and monitoring
data is sent to GEMINI which in turn pushes the data to theilosr (user).

4.1 Instrumentation at Multiple Levels of Abstraction

Instrumentation of Workflow Execution Service: Monitoring data at the level of
workflow, workflow region and activity can be obtained frone ®WES. GWES con-
trols and executes the workflow and its activities so it cavigie a number of events
relevant to the execution of workflows such as events inigigahe workflow and ac-
tivity state changesdir{itiated, running, completeetc.) Currently GWES is manually
instrumented by inserting sensors, which collect monigpdata, into the source code.
Applying only static instrumentation to GWES should be sidfit because only a few
places in the GWES code have to be instrumented and as thieeakof invoking the
probe functions is minimal, the instrumentation can be @eremtly installed and active.
Instrumentation of Invoked Applications and Code Regions 6Java-based Ser-
vices In doing this, we currently employ byte-code instrumeotatechniques and
dynamically control the measurement process at runtimes@s are inserted into the
byte-code using the BCEL tool [5]. At the same time SIRWF isated and saved
with the class. Instrumented versions of classes are placdifferent locations than
the original ones. Instrumentation of an individual codgioa is conditional. Dynamic

activation and deactivation of the instrumentation amsuatchanging the value of
a condition variable at runtime.

Instrumentation of Invoked Applications and Code Regions & Legacy Code
The possibility to use legacy code in services is twofoldlad legacy libraries invoked
by means of JNI (Java Native Interface) calls or (2) as legabg submitted from
within a service. The first case can be handled in the same sasaumentation of
code regions described in Section 4.1, only tools and liesdor legacy code have to
be developed. In the latter case, the legacy jobs invoked &ervices are often paral-
lel applications, for example computationally intensiiredations. In our framework,
monitoring of such applications will be handled by an exé¢monitoring system, the
OCM-G [6]. To be integrated seamlessly with the GEMINI, O@Jhas to provide
SIRWF for legacy jobs, be able to handle WIRL-based instmtatén requests and
represent monitoring in GEMINI data representation. Te #md, we have substan-
tially extended OCM-G, for example by introducing a SIRWertion, and a GEM-
INI OCM-G-sensor for integrating OCM-G with GEMINI in terntf interfaces and
data representation. The detailed process of OCM-G adaptatstrumentation, and
SIRWF generation for legacy programs is presented in [7].

Selection of Instrumentation ScopeA general problem in low-level monitoring
and instrumentation of applications is how to select theergarts of the applications
to be instrumented and taken into account in monitoring. dpy@ication usually con-
sists of hundreds of code units (classes, functions, filesliararies) of which many
are irrelevant for the user, since they are not part of apptin’s logic but belong to
external libraries, etc. This problem is valid both for Jaygplications and e.g. C ap-
plications. The method, which we currently employ, is toleity specify the subset
of code units (e.g. jars, classes or C-files) that are of ésteand only those will be
instrumented and included in SIRWF.

4.2 Passing Correlation Identifier to Invoked Applications

Monitoring data concerning a single workflow is generatedistinct places, mainly
within GWES and invoked applications. In order to correlditese different pieces of
data together, and to be able to correlate data requestghwitincoming monitoring
data, we need to associate the monitoring data with a unigue Isignature’. In our
case, this ID is the workflow and activity IDs, both generdbdgdGWES. Obviously
those IDs must also be passed to invoked applications whiclveb service operations.

This problem is a case of a more general issue of sengkegution contexto
web services. However, Web services currently do not sugpgrcontext information.
For pure, stateless web services, the only informationgubts an invoked service is
via operation’s parameters. There are a few possibilibggass context information,
as discussed in [8], for example: (a) by extending servit#&rface with additional
parameter for context information, (b) by extending theadabdel of the data passed
to a service, (c) by inserting additional information in S®Reader, and reading it from
within the service. An additional option is to use the statevwled by a service, but this
only works for services that support state, e.g. WSRF-based.

We have used the SOAP-header approach, since it is tramszare does not re-
quire the involvement of services’ developers. Thus, wheoking services, GWES

inserts additional information to SOAP headers which iseased in the services by
instrumentation initialization functions to obtain woikfl and activity identifiers.

4.3 Organizing and Managing Monitoring Data

The instrumentation supports gathering monitoring datemaitiple levels; data col-
lected within an experiment (e.g., of a workflow) is deteretithrough IDs. Currently
the framework does neither support merging data from diffetevels nor provide a
storage system managing that data, although part of morgtatata is temporarily
stored in distributed GEMINI monitoring services. The mgoal of the framework is
to support online performance monitoring and analysis ab tthe monitoring data is
just returned to clients (e.g., performance analysis sesyivia query or subscription
and the clients will analyze the monitoring data.

5 Experiment

We have implemented a prototype of our instrumentatiomstfucture. The currentim-
plementation supports, among others, generation of SIRfdEc insertion of probes
for Java and C applications, and dynamic control (activétieactivation) of instru-

mentation based on SIRWF representation. In this sectiopresent an experiment to
illustrate our concepts.

In our experiment, we use GWES to invoke a service for nurakiidegration.
The actual computation is done by a parallel MPI job invokearf the service which
performs a parallel adaptive integration algorithm. Thenitaying and instrumentation
of the MPI application is realized by the OCM-G monitoring®m which is integrated
with GEMINI, as described in [7].

In our experiment, we wanted to obtain an event trace showiagconsecutive
stages of execution of the workflow — from the GWES events & ekecution of
code regions in the MPI application; we were interested irispia which the actual
computation was performed. After the application has béaresl, it was suspended
so that required measurements could be set up from the bieginfhe SIRWF ob-
tained for the invoked application is shown in Fig. 3 (a). Téwperi nent sec-
tion identifies a particular runtime part of the workflow (eag invoked application,
a legacy job). Within invoked applicatiomurer i c. pa_i nt egr at e, a subroutine
namednpi _i nt egr at e. This subroutine actually invokes a legacy applicatiort-wri
ten in MPI. The legacy code consists of a function nammdn and other functions
such aeval andMPI _Send. In the monitoring view, we are interested in monitoring
the following calling chainnpi _i nt egrate — nmain — eval . Using informa-
tion in the SIRWF, we decide to instrument thener i c. pa.i nt egr at e invoked
application, tharai n functions and the calls teval function in all MPI processes.
Part of the corresponding WIRL submitted to GEMINI is showrfig. 3. As GWES
is statically instrumented, events from GWES are alwaysgged and reported to
GEMINI.

When the instrumentation has been set up, we send a substrigtuest to GEM-
INI to obtain all events related to the monitored workflow. St#®w the results in a form

<si r App> <wrl>
<experiment> ... </experinent> <request name="ENABLE">
<sir><unit type="subroutine" <experi ment >
nanme="nuneri c. pa_i ntegrate"> <wf | nst ancel D>wf 1</ wf | nst ancel D>
<coderegion type="call" id="1"> <pu><activityl D>wf1_al</activityl D>
<cal ee name="npi _integrate"/> <i nvokedAppl d>wf 1_al_ial
</ coder egi on> </ i nvokedAppl d>
</ uni t> </ pu>
<unit type="subroutine" </ experi nent >
name="npi _i ntegrate"> <t ask>
<coderegi on type="cal I " id="2"> <coder egi on name="main" id="2"/>
<cal ee name="main"/> <coder egi on name="eval " id="14"/>
</ coder egi on> <events | ocati on="BEFORE">
</ uni t> <event >
<unit type="function" nane="main"> <event name>BEG N_EXEC</ event name>
<coderegi on type="cal I " id="3"> </ event >
<cal ee nanme="MrI _Send"/ > </ event s>
</ coder egi on> <events | ocati on="AFTER'>
. <event >
<coderegi on type="cal |l " id="14"> <event name>END_EXEC</ event name>
<cal ee nane="eval "/ > </ event >
</ coder egi on> </ event s>
S </task>
</unit></sir> </ request>
</ sirApp> </wirl>
(a) (b)

Fig. 3. Instrumentation: (a) SIRWF (simplified) and (b) WIRL (sirfigld)

workflow lifetime - I—_—- process lifetime m—_—_“
activity lifetime eval
mpi job lfetime m—.

MPI rank

[
280 290 300 310 320 330 340 340.1 340.15 3402 340.25 3403 340.35
timels] time(s]

(a) (b)

Fig. 4. Monitoring results: (a) Workflow perspective (b) Legacygmrctive

of bars representing the time span of different executidtsuRig. 4 (a) shows a com-
parison between the execution of the entire workflow, thglsiactivity that has been
executed, and the MPI job executed from the activity. As wesee, the delay related
to workflow submission is enormous in comparison to the dcomputation. Fig. 4
(b) uses a different scale to show the time breakdown foriddal code regions inside
the MPI processes. Multiple calls to teeal function are due to the iterative process
of adaptive integration.

6 Related Work

Techniques like source code, binary or dynamic instruniemtare well-known and

widely used such as in TAU [9], Paradyn [10], Dyninst [11]. ieefforts have been
spent on Java byte-code and dynamic instrumentation,[#23-15]. The main aspect
in which our work differs from these tools is that we focus @veloping extensible

and interoperable instrumentation interfaces, e.g. WIRd &IRWF, for performance
measurement of Grid applications and on integrating varingtrumentation mecha-
nisms for Grid applications. While the above-mentionedgaadso target to large scale,
long-run applications, they support and are developedgimerformance parallel sys-
tems where issues of heterogeneity, loosely integratiantiingual applications, and

interoperability are not centered points. PPerfGrid [1&jgraphically collects and ex-
changes performance data of parallel programs by using<eridces but it does not
address the instrumentation and monitoring of Grid workflmaged applications. To
our best knowledge, there is no instrumentation infrastinecthat supports multiple
levels of instrumentation for multilingual Grid workflows.

The APART working group proposes the SIR as a high level méarescribe
structure of applications to be instrumented by using XML Fowever, APART SIR
represents only single applications, not workflows. We a&R, simplifying and us-
ing it for our instrumentation. There are works on proposiML-based requests for
instrumentation such as MIR[17] and MRI [18]. However, thosquests are used for
instrumentation of individual invoked applications, ratlthan for workflows.

AKSUM tool supports dynamic instrumentation of distribditdava applications
[13]. The instrumentation also uses SIR and MIR. Howevargither supports Grid-
nor workflow-based applications. Moreover, the instruragan is limited to Java code
only while our instrumentation supports legacy code (€4-prtran) as well.

7 Conclusion and Future Work

The contribution of this paper is a novel framework for instentation of multilingual
and Grid-based workflows. The instrumentation and momitpaf complex, multilin-
gual, workflow of Grid services are handled seamlessly inndegrated system. By
employing GEMINI, the concepts of SIR and WIRL, and varioustiumentation tech-
niques, we are able to provide a unified and comprehensive atiethe execution of
workflow applications at various levels.

At the moment we have a working prototype of our infrastruet¥Ve are working
on full integration of service-level and legacy-level mshentation, full implementa-
tion of SIRWF, transparency of application monitoring, anfllly reliable passing of
workflow and activity IDs to all parts of the workflow appligat. Moreover, the scal-
ability and robustness of the system need to be evaluated.

References

1. Truong, H.L., Fahringer, T., Nerieri, F., Dustdar, S.rfBenance Metrics and Ontology for
Describing Performance Data of Grid Workflows. In: Procegdiof IEEE International
Symposium on Cluster Computing and Grid 2005, 1st Inteonati\Workshop on Grid Per-
formability, Cardiff, UK, IEEE Computer Society Press (300

(20

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Seragiotto, C., Truong, H.L., Fahringer, T., Mohr, B.y@#, M., Li, T.: Standardized Inter-
mediate Representation for Fortran, Java, C and C++ Pragrdechnical report, Institute
for Software Science, University of Vienna (2004)

. Truong, H.L., Fahringer, T.. SCALEA-G: a Unified Monitog and Performance Analysis
System for the Grid. Scientific Programmitg (2004) 225-237 10S Press.

. Neubauer, F., Hoheisel, A., Geiler, J.: Workflow-base @pplications.22 (2006) 6-15

. BCEL: Byte Code Engineering Library (2006) http://bselrceforge.net.

. Balis, B., Bubak, M., Radecki, M., Szepieniec, T., Widlei R.: Application Monitoring
in CrossGrid and Other Grid Project s. In: Grid Computinghd®Second European Across
Grids Conference, Nicosia, Cyprus, Springer (2004) 219-21

. Balis, B., Bubak, M., Guzy, K.: Fine-grained Instrumaiin and Monitoring of Legacy
Applications in a Service-Oriented Environment. In: ICA®&, Reading, UK (2006)

. Brydon, S., Kangath, S.: Web Service Context Information (2005)
https://bpcatalog.dev.java.net/nonav/soa/ws-cofibebex. html.

. Sheehan, T., Malony, A., Shende, S.: A runtime monitofiagnework for tau profiling

system. In: Proceedings of the Third International Sympason Computing in Object-

Oriented Parallel Environments(ISCOPE’s 99), San Frandi899)

Miller, B., Callaghan, M., Cargille, J., Hollingsworth, Irvin, R., Karavanic, K., Kunchitha-

padam, K., Newhall, T.: The Paradyn Parallel Performancasdeement Tool. IEEE Com-

puter28 (1995) 37-46

Buck, B., Hollingsworth, J.K.: An API for Runtime CodetBtaing. The International Journal

of High Performance Computing Applicatiotd (2000) 317-329

Guitart, J., Torres, J., Ayguad, E., Labarta, J.: Jasaumentation suite: Accurate analysis

of java threaded applications (2000)

Seragiotto, C., Fahringer, T.. Performance Analysisistributed and Parallel Java Pro-

grams. In: Proceedings of IEEE International Symposium ust€r Computing and Grid

2005, Cardiff, UK, IEEE Computer Society Press (2005)

Factor, M., Schuster, A., Shagin, K.: Instrumentatibstandard libraries in object-oriented

languages: the twin class hierarchy approach. In: OOPSUKA Fdoceedings of the 19th

annual ACM SIGPLAN conference on Object-oriented programgmsystems, languages,

and applications, New York, NY, USA, ACM Press (2004) 2883-30

Arnold, M., Ryder, B.G.: A framework for reducing the toinstrumented code. In: PLDI.

(2001) 168-179

Hoffman, J.J., Byrd, A., Mohror, K., Karavanic, K.L.: &fgrid: A grid services-based tool

for the exchange of heterogeneous parallel performanee dat IPDPS, IEEE Computer

Society (2005)

Seragiotto, C., Truong, H.L., Fahringer, T., Mohr, Ber@dt, M., Li, T.. Monitoring

and Instrumentation Requests for Fortran, Java, C and Cegréns. Technical Report

AURORATR2004-17, Institute for Software Science, Univigref Vienna (2004)

Kereku, E., Gerndt, M.: The Monitoring Request IntegfdMRI). In: 20th International

Parallel and Distributed Processing Symposium (IPDPS 2@R606)

