
Programming, Provisioning and
Governing IoT Cloud Systems

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Stefan Nastic, BSc.
Matrikelnummer 0527493

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Schahram Dustdar

Zweitbetreuung: Priv.-Doz. Dr. Hong-Linh Truong

Diese Dissertation haben begutachtet:

Univ. Prof. Dr. Schahram Dustdar Univ. Prof. Dr. Uwe Zdun

Wien, 15. April 2016
Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Programming, Provisioning and
Governing IoT Cloud Systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Stefan Nastic, BSc.
Registration Number 0527493

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Schahram Dustdar

Second advisor: Priv.-Doz. Dr. Hong-Linh Truong

The dissertation has been reviewed by:

Univ. Prof. Dr. Schahram Dustdar Univ. Prof. Dr. Uwe Zdun

Vienna, 15th April, 2016
Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

I dedicate this thesis to my mother and my father.

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Stefan Nastic, BSc.
Rüdigergasse 6/6, 1050 Vienna, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. April 2016
Stefan Nastic

vii

Acknowledgements

This PhD thesis marks the end of almost a decade long journey of my academic education
in Computer Science. In spite many ups and downs, it was most of all a fun journey that
largely shaped me into the man I am today – determined, strong in my beliefs, but open
minded to new challenges and for the rest of my life an explorer. The work I have done
would never be possible without a profound support of many people and now, looking
back, I realize that this is not an achievement of a single person, but a result of caring
and supporting environment of people who have all contributed in their own ways.

First and foremost, I would like to express my gratitude to Prof. Schahram Dustdar,
my mentor and my friend, who patiently guided me throughout the entire thesis. I
am thankful to Dr. Hong-Linh Truong for the endless discussions and an enjoyable
collaboration. I want to thank Porf. Frank Leymann for reviewing and helping improve
this thesis. Also, I am most grateful to Prof. Uwe Zdun for serving as the examiner of
the thesis. Moreover, I am grateful to my coworkers from the Distributed Systems Group
for providing a highly productive and pleasant working environment. I would also like to
express my gratitude to my colleges from Pacific Controls Cloud Computing Lab, for
giving me the opportunity to apply my research in cutting edge industrial environment,
as well as the fellow researchers from H2020 U-Test project, for the inspired discussions
and wonderful collaboration.

Special thanks are reserved for my friends, with whom I have shared so many enjoyable
and memorable moments, for always finding a way to help me see the brighter side and
for making me a better person. Finally and most importantly my deepest and sincerest
thanks are dedicated to my family for their wholehearted love, endless support and
everything they have done for me that cannot be put into words. My success will always
be your success!

Stefan Nastic
Vienna, April 2016

The work conducted during the course of this thesis has been funded by Pacific
Controls Cloud Computing Lab (PC3L), which is a joint lab between Pacific Controls
L.L.C., Dubai and the Distributed Systems Group, TU Wien and; by EU Horizon 2020
Programme U-Test project, under grant agreement 645463.

ix

Kurzfassung

In den letzten Jahren konvergieren Cloud Computing und das Internet der Dinge (IoT)
immer stärker und schaffen große, geographisch verteilte Systeme. Solche IoT Cloud
Systeme haben die Verbreitung von verschiedenen Anwendungen gefördert. Der drin-
gende Bedarf an Volumen, Geschwindigkeit, die Vielfalt von IoT-Daten und schnellere
Übertragung von geschäftskritischen Entscheidungen an den Rand der Infrastruktur zu
ermöglichen waren die haupt Antriebe dafür. Die Vorteile von IoT Cloud sind zweifellos
erkennbar. Jedoch, werden sie von einer Reihe von Herausforderungen begleitet. Eine
davon ist das Programmieren von IoT Cloud Anwendungen. Gründe dafür sind die
Verarbeitung großer Menge von IoT-Daten, die großen Anzahl von Domainabhängigen
IoT Steuerungen und die komplexen Abhängigkeiten zwischen der Anwendungslogik und
der Eigenschaften neuer Infrastrukturen. In IoT Cloud Systemen ist eine traditionelle
Provisionierung aufgrund der Dynamic, Heterogenität, Umfangs und geographischer
Verteilung von IoT Cloud kaum möglich ist. Bei der traditionellen Provisionierung wird
implizit davon ausgegangen, dass das IoT-Gerät vor Ort verfügbar ist und eine manuelle
Interaktion möglich. Schließlich ist IoT Cloud ein integraler Bestandteil der bestehenden
Geschäftsmodelle und Wegbereiter für neue Geschäftsmöglichkeiten. Dies erfordert eine
systematische Vorgehensweise in IoT Cloud Governance, die bisher unterentwickelt blieb.

Diese Dissertation entwickelt ein reiches Ökosystem, das neue Modelle, Frameworks
und Werkzeuge umfasst, die eine erleichterte Programmierung, Provisionierung und
Governance von IoT Cloud Systemen ermöglichen. Zuerst wird ein umfassendes Pro-
grammierungsframework eingeführt, dass die Programmierung auf ein deutlich höheres
Abstraktion-Niveau hebt und eine einfachere und intuitivere Entwicklung von IoT Cloud
Anwendungen ermöglicht. Andererseits, stellt das Framework ein flexibles Programmier-
Modell, dass speziell auf ressourcenbeschränkte IoT-Geräte zugeschnitten ist und zur
Unterstützung von Domain Experte vorgesehen ist. Zweitens werden ein Provisionie-
rungsmodell und Middleware eingeführt, die unter anderem folgendes anbieten: i) Me-
chanismen für die Ressourcen Abstraktion und anwendungsspezifische Anpassungen;
ii) Unterstützung für die automatisierte Provisionierung von IoT Cloud Ressourcen,
Anwendungskomponenten und Konfigurationsmodelle, in einer logisch-zentralisierten Art
und Weise, durch Middleware verwaltete APIs; iii) Flexible Provisionierungs-Modelle,
die auf Nachfrage Verbrauch von beiden IoT und Cloud Ressourcen unterstützen. Schluß-
endlich stellt diese Dissertation GovOps vor – ein neuartiges Governance-Modell für
die IoT Cloud Systemen. Dieses ermöglicht die nahtlose Ausrichtung von High-Level

xi

Governance-Zielen mit ausführbaren Operations-Prozessen und unterstützt GovOps
Manager: i) Zeitkonsistente Governance-Prozesse in die IoT Cloud Systemen zu imple-
mentieren; ii) Unsicherheit- und Elastizität-bewusste Govenrnacestrategien zu entwicklen.
Die vorgesttelten Ansätze wurden evaluiert basierend auf der realen Welt Fahrzeugflotte-
und Gebäudemanagementsysteme.

Abstract

Over the recent years, cloud computing and the Internet of Things (IoT) have been
converging ever stronger, sparking creation of large-scale, geographically distributed
systems. Such IoT Cloud systems have fostered proliferation of various applications,
driven by an urgent need to respond to volume, velocity and variety of IoT data, but also
to enable timely propagation of business-crucial decisions to the edge of the infrastructure.
The benefits of IoT Cloud are undoubtable, but they are also accompanied with a number
of challenges. Programming IoT Cloud applications is challenging due to the need to
handle large volumes of IoT data in a nontrivial manner, plethora of domain-dependent
IoT controls and, inherently complex dependencies between application business logic and
novel infrastructure features. Because of dynamicity, heterogeneity, scale and geographical
distribution of IoT Cloud, traditional provisioning approaches, which implicitly assume
on-site presence or manual interactions with IoT devices are hardly feasible in this novel
landscape. Finally, IoT Cloud systems are becoming an integral part of existing business
models and key enabler for new business opportunities. This calls for systematic approach
to IoT Cloud governance, which to date remains largely underdeveloped.

This doctoral thesis contributes a rich ecosystem comprising novel models, frameworks
and tools, intended to facilitate programming, provisioning and governing IoT Cloud
systems. First, a comprehensive programming framework is introduced, which raises
the level of programming abstraction, enabling easier and more intuitive development of
cloud-centric IoT Cloud applications. On the other side, it provides a flexible program-
ming model, specifically tailored for resource-constrained IoT devices, which is intended
to support domain expert developers. Second, a provisioning model and middleware are
introduced, which among other, offer: i) Light-weight mechanisms for resource abstrac-
tion and application-specific customizations; ii) Support for automated provisioning of
IoT Cloud resources, application components and configuration models in a logically
centralized manner through middleware managed APIs and; iii) Flexible provisioning
models, supporting on-demand consumption of both IoT and Cloud resources. Finally,
the thesis introduces GovOps – a novel governance model for IoT Cloud systems. It
enables seamless alignment of high-level governance objectives with executable operations
processes and supports GovOps managers to: i) Implement time-consistent governance
processes for IoT Cloud systems and; ii) Develop uncertainty- and elasticity-aware gov-
ernance strategies. The proposed approaches have been evaluated based on real-world
Fleet- and Building Management Systems.

xiii

Contents

Acknowledgements ix

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xviii

List of Listings xx

List of Publications xxi

1 Introduction 1
1.1 Problem Statement . 3
1.2 Scientific Contributions . 8
1.3 Organization of the Thesis . 14

2 Case Study & Background 17
2.1 Case Study Scenarios . 17
2.2 Background . 20

I Programming IoT Cloud Systems 25

3 A High-Level Programming Model for Cloud-centric IoT Cloud Ap-
plications 29
3.1 Motivation and Research Challenges . 30
3.2 Design Requirements and Overview of PatRICIA Framework 32
3.3 Intent-based Programing Model for IoT Cloud Applications 36
3.4 Evaluation & Prototype Implementation 43
3.5 Conclusion . 46

xv

4 A Programming Model for Resource-constrained IoT Cloud Edge
Devices 47
4.1 Overview of DRACO Framework . 48
4.2 Data and Control Points: A Programming Model for Edge Devices 50
4.3 Main Runtime Mechanisms of the DRACO Framework 55
4.4 Evaluation & Prototype Implementation 58
4.5 Conclusion . 62

5 A Unifying Programming Framework andMethodology for Everything-
as-Code in IoT Cloud Systems 63
5.1 Motivation and Research Challenges . 65
5.2 The SDG-Pro Framework and Development Methodology for IoT Cloud

Applications . 66
5.3 SDG-Pro’s Programming Model . 71
5.4 SDG-Pro’s Runtime Mechanisms . 76
5.5 Evaluation . 79
5.6 Conclusion . 86

II Provisioning IoT Cloud Systems 89

6 Provisioning Software-defined IoT Cloud Systems 93
6.1 Motivation . 94
6.2 Main Building Blocks of Software-defined IoT Systems 97
6.3 Main Techniques for Provisioning Software-defined IoT Cloud Systems . . 103
6.4 Evaluation & Prototype Implementation 105
6.5 Conclusion . 110

7 A Middleware Infrastructure for Utility-based Provisioning of IoT
Cloud Systems 113
7.1 Motivation & Research Challenges . 114
7.2 IoT Cloud Provisioning Middleware . 117
7.3 Runtime Mechanisms for Multi-level Provisioning in IoT Cloud 124
7.4 Evaluation . 129
7.5 Conclusion . 136

IIIGoverning IoT Cloud Systems 137

8 GovOps: A Methodology and a Runtime Framework for Governance
in Large-scale IoT Cloud Systems 141
8.1 Motivation . 143
8.2 GovOps – A Novel Methodology for Governance and Operations in IoT

Cloud Systems . 145

8.3 A reference model for GovOps methodology 150
8.4 rtGovOps – A Runtime Framework for GovOps in Large-scale IoT Cloud

Systems . 152
8.5 Main Runtime Mechanism of the rtGovOps Framework 157
8.6 Evaluation & Prototype Implementation 163
8.7 Conclusion . 169

9 Governing Elastic IoT Cloud Systems under Uncertainty 171
9.1 Motivation & Research Challenges . 172
9.2 The U-GovOps framework . 175
9.3 A DSL for Developing Uncertainty- and Elasticity-aware Governance

Strategies . 177
9.4 U-GovOps Runtime Mechanisms for Mitigating Governance Uncertainties 181
9.5 Evaluation . 183
9.6 Conclusion . 187

10 Related work 189
10.1 Programming Support for IoT Cloud applications 189
10.2 Provisioning Approaches in IoT Cloud . 191
10.3 IoT Cloud Governance . 193

11 Conclusion & Research Outlook 195
11.1 Summary of Contributions . 195
11.2 Revisiting Research Questions . 198
11.3 Future Work . 201

Bibliography 203

A A Taxonomy of Infrastructure-level Uncertainties in CPS 217

B GovOps Policy Language BNF 229

List of Figures

1.1 Overview of IoT Cloud Systems Architecture. 4

2.1 Fleet Management System . 18
2.2 The Building Management System. 20
2.3 Different visions and approaches to the Internet of Things. 21
2.4 High-level overview of cloud computing. 23

3.1 Example FMS IoT Cloud application. 31
3.2 PatRICIA architecture overview. 34
3.3 Intent structure. 38
3.4 Simplified UML diagram of application structure. 41
3.5 Intent delivery time for different IntentScope sizes. 46

4.1 DRACO high-level architecture overview. 49
4.2 Simplified UML diagram of Data and Control Points. 52
4.3 Simplified UML data model. 54
4.4 VirtualBuffers lifecycle overview. 56
4.5 Information flow of a sensory reading. 57
4.6 Testbed gateway for Data and Control Points. 59
4.7 CUP consumption of the example logging application (LogApp). 60
4.8 Memory usage of the example logging application (LogApp). 60
4.9 CUP consumption of the example actuation application (ActApp). 61
4.10 Memory usage of the example actuation application (ActApp). 61

5.1 Overview of FMS architecture and deployment. 64
5.2 Most important steps in development methodology for software-defined IoT

Cloud systems (partial view). 68
5.3 Overview of SDG-Pro’s architecture and main artifacts of IoT Cloud applications. 69
5.4 High-level overview of IoT Cloud application structure. 71
5.5 Overview of software-defined gateway structure. 73
5.6 Governance capability package structure. 75

6.1 Summary of main principles and enablers of software-defined IoT Cloud systems. 98
6.2 Main enablers of software-defined IoT cloud systems 99

xviii

6.3 Conceptual model of software-defined IoT units. 100
6.4 Simplified model of software-defined IoT units structure. 102
6.5 Example classification of atomic software-defined IoT units. 102
6.6 Automated composition of software-defined IoT units. 104
6.7 Framework architecture overview. 106
6.8 Topological structure of FMS vehicle tracking unit (a screen shot). 108

7.1 Overview of Software-defined IoT Cloud Infrastructure. 115
7.2 Architecture overview of the provisioning middleware. 118
7.3 Software-defined gateway architecture. 119
7.4 Artifacts package structure. 120
7.5 Simplified UML diagram of Virtual Buffers Deamon. 122
7.6 Runtime execution of a provisioning workflow. 126
7.7 An example of our gateways for Building Management Systems. 130
7.8 CPU consumption of the VirtualBuffersDeamon. 131
7.9 Memory consumption of the VirtualBuffersDeamon. 132
7.10 CPU consumption of the ProvisioningDeamon. 133
7.11 Memory consumption of the ProvisioningDeamon. 134
7.12 Average execution time of provisioning workflow for JAPP application. 135
7.13 Average execution time of provisioning workflow for SAPP application. 135

8.1 Overview of FMS infrastructure. 144
8.2 GovOps in relation to IoT Cloud governance and operations. 145
8.3 Simplified UML diagram of GovOps model for IoT Cloud governance. 150
8.4 Overview of rtGovOps architecture and deployment. 153
8.5 Overview of capability package structure. 154
8.6 Overview of the governance agent architecture. 156
8.7 Execution of an operational governance process. 158
8.8 Example execution of operational governance process in the FMS. 165
8.9 Capabilities first invocation. 166
8.10 Average invocation time of capabilities on a governance scope. 167
8.11 Average capability provisioning duration (push-based strategy). 168

9.1 Taxonomy for IoT cloud infrastructure uncertainties. 173
9.2 Overview of U-GovOps architecture. 176
9.3 Execution flow for isolated actuations. 183
9.4 Error rates for governance scopes due to missing data. 186
9.5 Lost actuations rates for isolated actuations. 187

List of Listings

3.1 Example usage of MonitorIntent and GlobalScope. 39
3.2 Example usage of ControlIntent and custom IntentScope. 39
3.3 Core Intent API operators. 40
3.4 Example IoT Cloud application. 45
4.1 A DataPoint with callback handler. 54
4.2 Custom configuration of DataPoints. 55
5.1 Example MonitorIntent. 72
5.2 Example ControlIntent. 72
5.3 Example usage of data points. 72
5.4 Example of software-defined gateway prototype. 74
5.5 Example of provisioning DSL and APIs usage. 74
5.6 Examples of operational governance APIs. 76
5.7 Example governance scope. 76
5.8 Example governance policy. 76
5.9 Remote monitoring of fleet’s energy consumption. 80
5.10 Scheduled maintenance check. 81
5.11 Logging diagnostics data locally. 82
5.12 Device service for energy fault detection. 83
5.13 Creating a software-defined gateway. 83
5.14 Configuring application dependencies. 84
5.15 Example emergency operational governance process. 85
6.1 Partial TOSCA-like complex unit description. 109
6.2 Run list for software-defined gateway. 109
6.3 Chef recipe for adding the MQTT protocol. 110
8.1 Examples of capabilities and rtGovOps APIs. 161
9.1 Example governance scope. 178
9.2 Example of an isolated actuation with uncertainty considerations. 179
9.3 Example elasticity actuations with uncertainty considerations. 180
9.4 Example PMA governance policy. 184

xx

List of Publications

Parts of the work presented in this dissertation were published in the following publications.
For a full publication list of the author please refer to his website1.

1. Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. SDG-Pro: A Program-
ming Framework for Software-Defined IoT Cloud Gateways. Springer, Journal of
Internet Services and Applications 2015, 6:21.

2. Stefan Nastic, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar. Govern-
ing Elastic IoT Cloud Systems under Uncertainty. The 7th International Conference
on Cloud Computing Technology and Science (CloudCom 2015), 30 November - 3
December, 2015, Vancouver, Canada.

3. Stefan Nastic, Michael Vögler, Christian Inzinger, Hong-Linh Truong, and Schahram
Dustdar. rtGovOps: A Runtime Framework for Governance in Large-scale Software-
defined IoT Cloud Systems. The 3rd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, Mar 30 – Apr 3, 2015, San Francisco,
CA, USA. (Selected among the 3 best papers.)

4. Stefan Nastic, Christian Inzinger, Hong-Linh Truong, and Schahram Dustdar.
GovOps: The Missing Link for Governance in Software-defined IoT Cloud Systems.
The 10th International Workshop on Engineering Service Oriented Applications
(WESOA’14) in conjunction with ICSOC 2014, 3. November 2014, Paris, France.

5. Stefan Nastic, Sanjin Sehic, Le-Duc Hung, Hong-Linh Truong, and Schahram
Dustdar. Provisioning Software-defined IoT Cloud Systems. The 2nd International
Conference on Future Internet of Things and Cloud (FiCloud-2014), August 27-29,
2014, Barcelona, Spain.

6. Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram
Dustdar. PatRICIA - A Novel Programming Model for IoT Applications on
Cloud Platforms. International Conference on Service Oriented Computing and
Applications (SOCA 2013), December 16-18, 2013, Hawaii, USA.

1http://dsg.tuwien.ac.at/staff/snastic

xxi

7. Michael Vögler, Johannes M. Schleicher, Christian Inzinger, Stefan Nastic, Sanjin
Sehic, and Schahram Dustdar. LEONORE – Large-Scale Provisioning of Resource-
Constrained IoT Deployments. The 9th IEEE International Symposium on Service-
Oriented System Engineering (SOSE 2015), March 30 - April 3, 2015, San Francisco
Bay, USA.

8. Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. A Middleware Infrastruc-
ture for Utility-based Provisioning of IoT Cloud Systems. The First IEEE/ACM
Symposium on Edge Computing, October 27-28, 2016, Washington DC, USA. (In
review).

9. Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. Data and Control Points:
A Programming Model for Resource-constrained IoT Cloud Edge Devices. IEEE
International Conference on Systems, Man, and Cybernetics (SMC 2016), October
9-12, 2016, Budapest, Hungary. (In review).

CHAPTER 1
Introduction

Recent advances in the Internet of Things (IoT) have provided solid foundations for a
global infrastructure of networked physical entities, able to monitor and control their
physical status and the surrounding environment, as well as to expose themselves via data
streams and services over the Internet [82]. Over the last decade, cloud computing has
put itself forward as one of the most important paradigms for delivering and consuming
digital resources [6, 90], mainly due to utility-driven, on-demand nature of cloud offerings,
which allow customers to elastically provision the exact type and amount of resources
needed for a given task at a given time.

Over the recent years, cloud computing and the IoT have been converging ever
stronger, sparking creation of very large-scale, geographically distributed systems. These
emerging systems are generally categorized as IoT Cloud systems1. Such systems extend
the traditional cloud computing systems beyond the data centers and cloud services to
include a variety of edge IoT devices such as sensors and sensory gateways. On the one
side, these systems utilize the IoT infrastructure resources to deliver novel value-added
services, which leverage data from different sensor devices and enable timely propagation
of decisions, crucial for business operation, to the edge of the infrastructure. On the other
side, IoT Cloud systems utilize cloud’s theoretically unlimited resources, e.g., compute and
storage, to enhance traditionally resource-constrained IoT devices as well as to support
the rising demand for complex analytics of large volumes of data generated by the IoT.
Moreover, IoT Cloud systems represent an important landmark in a paradigm shift from
single-purpose, closed Machine-to-Machine (M2M) systems to an open ecosystem, in
which numerous stakeholders interact in order to deliver and consume large pools of IoT
Cloud resources and capabilities as well as to develop diverse IoT Cloud applications.
Therefore, the novel IoT Cloud systems denote a convergence of IoT and Cloud beyond

1In this thesis we will mostly use the term IoT Cloud systems/applications. However, depending on
geographical region, particular research focus or even type of organization, this term is synonymously
used with Cyber-physical Systems (CPS), Mobile Cloud systems and Cloud of Things.

1

1. Introduction

on a mere technological level, e.g., computation offloading [29, 85] or data staging [42, 3],
thus calling for development of novel engineering, management and business models that
are specifically tailored for the new landscape. However, this fully fledged convergence
can only be achieved by looking beyond traditional IoT or Cloud approaches, to also
consider advanced engineering and operations approaches such as software-defined [87]
and DevOps [40], which offer a novel perspective on programming, provisioning and
governing the IoT Cloud systems.

The emerging IoT Cloud systems enable the Internet to connect previously unreachable
areas of production chains, public sector and other spheres of our society. They create a
whole new set of services, augmented by leveraging new data and capabilities provided
by the IoT. Such systems offer numerous advantages and create new opportunities to
the variety of the involved stakeholders in terms of optimizing key tasks of their existing
business process as well as allowing for new types of business models and cross-domain
applications. However, due to diversity, complexity and scale of IoT Cloud systems,
elasticity requirements regarding novel IoT Cloud resources, demand for fine-grained
consumption and customization of the IoT Cloud infrastructure, as well as the need to
handle large volumes of data in a nontrivial manner, the IoT Cloud systems create a
plethora of challenges for system designers, developers and operations managers. To
date, the development of IoT cloud systems and applications mostly involves composing
device-level services into complex control sequences and data processing schemes, which
makes the development process a highly challenging task and potentially limits the
programming scale of such applications on IoT Cloud platforms. Concrete abstractions,
programming models and runtime mechanisms, which enable efficient, more intuitive
and scalable development of IoT Cloud applications remain largely underdeveloped.
Currently in such systems, domain-specific application requirements drive the design
of all system components and determine most technical choices ranging from hardware
devices to application behaviors. This typically results in vertically closed systems in
which hardware, network, middleware and applications are tightly coupled together
and in the best case scenario devices or services, provided by different stakeholders
are integrated through proprietaries APIs, connectors and protocols. Consequently
application development process can hardly be opened to the large number of application
designers and developers inhabiting the IoT Cloud ecosystem. Furthermore, until now
the IoT Cloud infrastructure resource have been mostly provided as coarse-grained, rigid
packages. The infrastructure components and software libraries are specifically tailored
for the problem at hand and do not allow for flexible customization and provisioning
of the individual resource components or runtime topologies. This “siloed approach”
inherently hinders self-service, utility-oriented consumption of the IoT resources at a
finer granularity levels, thus calling for a systematic approach to enable provisioning
and governance of IoT cloud resources and capabilities. What is more, due to variety of
involved stakeholder, as well as dynamicity, heterogeneity and geographical distribution
of IoT Cloud, traditional provisioning and governance approaches are hardly feasible
in practice. This is mostly because they implicitly make assumptions, such as physical
on-site presence, manual logging into devices, understanding device’s specificities, etc.,

2

1.1. Problem Statement

which are difficult, if not impossible, to achieve in IoT Cloud systems. In spite of this,
models, techniques and tools, which provide programmatic, conceptually centralized view
on system provisioning and runtime governance are largely missing.

1.1 Problem Statement
The emerging IoT Cloud systems create numerous opportunities for a multitude of diverse
stakeholders. However, such opportunities are accompanied with the aforementioned
challenges, which open a broad field of research problems to be addressed. To narrow
down and clearly define the scope of the thesis, this section describes a detailed problem
statement. Firstly, in order to clarify the problem domain and its context, Section 1.1.1
outlines the most relevant concepts that are the main research subject of this thesis and
gives a more detailed description of IoT Cloud systems. Secondly, Section 1.1.2 elicits
key research questions, addressed in this thesis.

1.1.1 Problem context

The main aim of this work is to provide an ecosystem (comprising novel models, frame-
works, tools and middleware) in order to facilitate the key tasks of application lifecycle,
namely development (programming), provisioning and governance, in the context of
emerging IoT Cloud systems. In this thesis, we define end-to-end provisioning in a
broader sense [149], particularity involving a set of activities performed by developers
and operations managers to prepare (infrastructure) resources and system/application
artifacts, bringing an application to a state where it is usable for the end user, but also
to guarantee continuous enforcement of such sate, e.g., in case of baseline deviations.
Software governance serves as an umbrella term, encompassing a variety of management
and controlling activities, risk management and regulatory or legal compliance measures
imposed by high-level business objectives. In this thesis, we mainly focus on one par-
ticular subset of software governance, namely operational runtime governance (similar
to [133, 70]), which deals with mapping the business objectives to concrete operational
processes and enforcing such objectives through the operational processes during applica-
tion runtime. At this point, it is also worth mentioning that testing, although one of the
crucial tasks in the software development lifecycle, is out of the scope of this thesis, but
it is a substantial part of our current research effort in the field of IoT Cloud systems.

Although there have been many attempts to define IoT Cloud systems [3, 160, 46, 134],
there is still no general and commonly accepted definition of IoT Cloud systems neither in
research nor in industry communities. In order to reach a common view on the problem
domain, in the following IoT Cloud systems are described in more detail. Figure 1.1
shows a high-level architecture of IoT Cloud systems, that is adopted in this thesis, and
depicts the key stakeholders. The bottom layer represents the Physical infrastructure,
which comprises a variety of edge devices (e.g., sensors and gateways), network elements
(routers and switches) and large data centers. In reality, the physical infrastructure is not
flat and follows a hierarchical structure, where sensors and actuators are connected to the

3

1. Introduction

data centers via gateways, which are intermediary nodes that mediate the communication,
but also provide (constrained) computational and storage resources. The communication
between the Edge and the data centers is realized over heterogeneous networks which
include wired, wireless and cellular communication channels. Moreover, contrary to the
Cloud, IoT Cloud infrastructure is highly-decentralized and distributed among multiple
geographical regions and organizations. As opposed to traditional cyber-physical and IoT
systems, one of the distinguishing features of IoT Cloud systems is the Infrastructure
virtualization layer. A number of existing approaches deal with the Edge devices
virtualization and management, exposing them to the upper layers on different levels
of abstraction. Most prominent approaches are centered around the Unikernels and
kernel-supported virtualization such as Linux Containers (LXCs) or focus on higher-
level data integration. The latter usually rely on semantic techniques and ontologies
to mediate communication with heterogeneous edge-devices and integrate multitude of
data formats, exposing them as event streams to the upper layers. The Middleware
platform is the key part and in general its main responsibility is to provide a uniform
representation of the underlying (virtual) infrastructure resources, enable management
of such resources and accommodate applications with a runtime environment. This
layer needs to provide mechanisms and tools for infrastructure provisioning, managing
configuration models, deployment of application artifacts, as well as for governing the
IoT Cloud applications and resources during the runtime. Finally, the Applications

Middleware platform

Physical infrastructure

IoT Cloud applications

Configuration and provisioning
m
odels

Markets/repositories
‐ service dicovery and

repository
‐ device discovery

‐ tools
‐ Configuration models

repo

IoT Cloud
environment

Data center

ActuatorsSensors Physical gateways

Control sequencesMonitoring data processing

Virtualized infrastructure and device management middleware layer

Infrastructure virtualization and communication layer

D
evice m

anagem
ent

and orchestration

Virtual gateways
Virtual
sensors

Communication
protocol

‐Api mngmnt
‐ESB

‐domain
libraries and

models

Network
elements

Elastic pools of
VMs and containers

Stakeholders

Business
stakeholders

Operations
managers

Developers/
Engineers

Domain experts

Figure 1.1: Overview of IoT Cloud Systems Architecture.

4

1.1. Problem Statement

layer should provide programming models, capable to cater to different needs of the
involved stakeholders (e.g., developers and domain experts), which is crucial in order to
enable seamless development of IoT Cloud applications. With respect to the component
presented in Figure 1.1, the work presented in this thesis mainly focuses on the Middleware
platform and the development support for IoT Cloud applications.

1.1.2 Main research questions

The challenges identified in the beginning of this chapter serve as general motivation for
the research conducted during the course of this thesis. Specifically, this work in detail
addresses the following key research questions:

Q1: What is a suitable programming model and methodology for developing novel IoT
Cloud applications in an efficient, scalable and generic manner?
The recent emergence of IoT Cloud systems has fostered proliferation of various
application types mainly driven by urgent need to respond to volume, velocity and
variety of data generated by IoT Cloud. In this thesis we mainly focus on one particular,
yet general enough type of applications, i.e., reactive IoT Cloud applications2. In a
very broad sense, such applications can be characterized by receiving (monitoring)
information, e.g., sensory data, and as a response performing a sequence of (control)
actions, e.g., on the physical entities (cf. Figure 1.1). However, independent of the
particular application type, the aforementioned properties of IoT Cloud significantly
impact application development process. Firstly, the development context of IoT cloud
applications has grown beyond writing custom business logic components (e.g., services)
that can be executed anywhere and requires considering capabilities and properties of
the involved IoT devices. The main reasons for this are complex and strong dependence
of the application business logic on specific capabilities of the underlying devices, novel
resource features that need to be considered such as device location, and heterogeneity of
the utilized IoT Cloud resources. In spite of this, the IoT cloud applications need to be
generic, in the sense that their business logic needs to be expressed independently of the
low-level device properties. Secondly, IoT Cloud applications execute in very dynamic,
heterogeneous environments and interact with hundreds or thousands of both physical
and virtual (Cloud) entities. Therefore, handling the data delivered by these entities,
and controlling such entities in a scalable manner is another challenge for developers
of IoT Cloud applications. This is mainly because they need to be able to dynamically
identify the scope of application’s actions, depending on the task at hand, which is in
contrast to the majority of contemporary approaches that require explicit interactions
with individual devices. Thirdly, due to variety of involved stakeholders (e.g., domain
experts, high-level business logic developers and operations managers), who are usually
dispersed across different teams or organizations, a suitable programming model should
provide different logical views on the application development process, while retaining

2In this thesis the term IoT Cloud applications is used to refer to reactive IoT Cloud applications,
unless otherwise stated.

5

1. Introduction

a uniform view on the application artifacts. Unfortunately, developers currently lack
suitable programming abstractions to deal with such concerns in a unified manner,
from early stages of application development.

Q2: Which provisioning models, techniques and tools can be applied to enable on-demand,
self-service provisioning of IoT Cloud resources at fine granularity?

When facing large-scale systems with heterogeneous, dynamic and geographically
distributed resource pool, efficacy of provisioning models, mechanisms and tools plays
a crucial role. With the rise of cloud computing, we have witnessed numerous benefits
of self-service, utility-oriented resource consumption models, in terms of more flexible
and cheaper IT operations [90, 23]. Since cloud is a one of the key constituents of
IoT Cloud, it is natural to expect that these flagship properties of cloud computing
are inherited by IoT Cloud as well. Unfortunately, this is still not the case and as
a consequence, in many situation we are facing IoT and Cloud systems, which are
rather task-specific hybrids, instead of native IoT Cloud systems. Currently in such
systems, domain-specific application requirements drive the design of all system com-
ponents and determine most technical choices, ranging from hardware components
to application behavior, thus the IoT Cloud infrastructure is still consumed as a
rigid, single-purpose “utility”. Also from technical perspective, cloud computing has
provided many advances in both infrastructure, platform and application provisioning
(stipulating development of novel provisioning approaches, mechanisms and tools),
but due to inherently different nature of IoT Cloud (cf. Section 1.1.1) many of these
concepts cannot be simply “reused” for IoT Cloud systems. Over the last years, this
has lead to a large body of work in both academia and industry [134, 160, 3, 43],
which has provided solid foundations (especially on the lower-levels, e.g., hardware
virtualization or network management) for IoT Cloud provisioning. However many
challenges, both conceptual and engineering, still remain. One of the main concerns
a is genuine lack of provisioning models, specifically tailored to treat both Edge and
Cloud resources in a unified manner and enable uniform interactions with large pool of
IoT Cloud resources, e.g., via well-defined APIs. To date, the IoT Cloud infrastructure
resources are mostly provided as coarse-grained, rigid packages. The infrastructure
components and software libraries are specifically tailored for the problem-at-hand and
do not allow for flexible customization of individual resource components or runtime
topologies. This requires rethinking existing support for representing infrastructure
resources, managing their configuration and deployment models as well as composing
low-level resource components into usable infrastructures, capable to support novel
business logic requirements. The issue is further exacerbated due to strong dependen-
cies of the business logic on infrastructure resource capabilities, as discussed above,
that prevent consuming IoT Cloud infrastructure as traditionally generic compute or
storage resources. Unfortunately, this is only one part of the problem, because existing
provisioning support, in terms of available tools and frameworks, discriminates against
inherent properties of IoT Cloud infrastructures such as heterogeneity, geographical dis-
tribution, and the sheer scale of such infrastructures. System integrators and operations

6

1.1. Problem Statement

managers have to rely on provisional solutions, which require combining multitude of
provisioning techniques such as manual, script- and service-based provisioning. Many
of these approaches blindly assume physical on-site presence or manual logging into
edge devices, making them hardly feasible in practice. Therefore, suitable provisioning
and deployment framework needs to provide elastic and scalable provisioning solutions,
which can automate provisioning tasks to a large extent, while taking into account
resource-constrained nature of the edge devices. The provisioning tools need to provide
a logically centralized view on IoT Cloud infrastructure, which is crucial for realizing
consistent infrastructure base-line across the entire IoT Cloud and for coping with
highly distributed nature of such infrastructures.

Q3: Which models, techniques and tools are required to achieve structured and systematic
IoT Cloud governance?
Wide and ever-stronger growing application area of IoT Cloud systems, e.g., in the
context of smart cities, has lead to stronger interplay and entanglement among variety
of diverse stakeholders (both business and technical). Various domains increasingly rely
on IoT Cloud resources and capabilities to optimize their key business tasks, improve
efficiency of processes and quality of life. As a consequence, IoT Cloud systems are
becoming an integral part of many existing business models and a key enabler for
new business opportunities and cross-domain applications. This has spurred numerous
governance initiatives and approaches that deal with safety issues, legal, compliance,
and data privacy concerns [44, 51, 152], mainly due to their potential impact on the
multitude of the involved stakeholders. Unfortunately, vast majority of contemporary
approaches draw a hard line between high-level governance objectives (that mainly
concern business stakeholders) and operations processes, which concern technical
stakeholders such as operations managers that need to implement concrete operations
processes, conforming to the high-level governance objectives. Therefore, at the moment
there is a wide gap between different stakeholders involved in governing IoT Cloud
systems, increasing the risk of lost requirements or causing over-regulated systems,
potentially incurring higher operation costs or limiting business opportunities. For
example, according to Gartner [57]: “Through 2015, 80% of outages impacting mission-
critical services will be caused by people and process issues...”. Moreover, current
approaches in IoT governance usually addresses the Internet part of the IoT, e.g, in
the context of the Future Internet services3, while operations processes mostly deal
with Things (e.g, [32]) as additional resources that need to be operated. Governance
objectives (law, compliance, etc.) are not easily mapped to operations processes (e.g.,
configuring sensory data streams or adding/removing devices) and, in practice, bridging
the gap between governance and operations management of IoT cloud systems poses a
significant challenge for the involved stakeholders, mainly due to the large number of
such stakeholders, novel requirements and regulations for shared IoT Cloud resources
and their geographical distribution, usually across different areas of jurisdiction. What
is more, even with perfectly aligned governance objectives, designing and realizing

3http://ec.europa.eu/digital-agenda/en/internet-things

7

1. Introduction

operational governance processes [133, 70], posses a significant challenge. Due to
dynamicity, heterogeneity, geographical distribution, and the large scale of IoT cloud
systems, traditional approaches to realize even basic operational governance processes
are hardly feasible in practice. This is mostly because such approaches implicitly
make assumptions such as traditional interaction patterns with novel resource types
and perfect understanding of underlying infrastructure, at the same time neglecting
numerous uncertainties inherently present in the IoT Cloud systems, caused by novel
interactions of IoT elements, network elements, cloud resources and humans. Therefore,
due to a lack of systematic approaches for operational governance in IoT Cloud
systems, operations managers currently have to rely on ad-hoc solutions to deal with
the characteristics and complexity of IoT cloud systems when performing operational
governance processes. Moreover, supporting models, tools and mechanisms for runtime
governance of IoT cloud systems remain largely undeveloped, thus putting much of
the burden on operations managers to perform operational governance processes in
practice.

1.2 Scientific Contributions

The main goal of this thesis is to respond to the previously identified research challenges
by presenting the most important results of our research in the emerging field of IoT
Cloud systems. Generally, the conducted research has lead to development of novel
models, techniques and components of a general framework for developing, provisioning
and governing IoT Cloud systems and applications. Concretely, the main contributions
of this thesis include:

C1: Programming models, middleware and methodology for developing IoT Cloud appli-
cations

The first contribution of this thesis deals with conceptualizing and implementing
programming models and middleware, specifically tailored to cater to the novel re-
quirements and challenges imposed by IoT Cloud applications. Due to significant
network, compute and storage requirements, the IoT Cloud applications are bound
to utilize all the available infrastructure resources ranging from large data centers to
the constrained IoT devices, e.g., gateways. Thus, the main driving force behind this
contribution was to provide a set of programming abstractions and runtime mechanisms
that enable more efficient, scalable and intuitive development of generic IoT Cloud
applications, which seamlessly utilize both the Edge and the Cloud. Moreover, to
account for the variety of involved stakeholders and the complexity of software stack,
ranging from embedded devices development to high-level IoT Cloud applications,
our approach is designed in such manner to provide multiple logical views on the
application development process, while retaining a uniform view (in code) on the
produced application artifacts. More specifically, this contribution comprises: a) A
programming model and a runtime for IoT Cloud gateways and domain libraries (Data

8

1.2. Scientific Contributions

and Control Points); b) A higher level programming model and a middleware for IoT
Cloud applications (Intents and IntentScopes); c) A unifying programming framework
for IoT Cloud systems, based on everything-as-code paradigm. This contribution has
been originally published in [106, 107, 109].

The first part of this contribution introduces support for programming IoT Cloud
gateways, which reside at the edge. This generally involves developing common monitor
and control tasks. For example, monitor tasks can include processing, correlation and
local filtering of sensory data streams. These tasks are main constituents of domain
libraries that form the cornerstone for building higher-level (cloud) services, as we
describe subsequently. To enable development of such monitor and control tasks,
we propose two main abstractions, which are exposed to developers, namely Data-
and Control Points. Generally, they represent low-level data and control channels
to the sensors/actuators in an abstract manner and mediate the communication
with the connected devices (e.g., digital, serial or IP-based), by implementing the
necessary communication protocols, e.g., I2C, CAN or SOX/DASP. Compared to
numerous other approaches that address similar issues [5, 16, 28, 1, 41, 66, 69, 131],
with the Data- and Control Points we put a special focus on enabling customization,
flexible configuration and virtually exclusive access to underlying device channels,
which are still not fully addressed in the literature. To this end, the supporting
middleware provides mechanisms which act as multiplexers of the data and control
channels, thus enabling the device services to have their own view of and define custom
configurations for such channels, e.g., sensor poll rates or data stream filters. Finally,
by providing an illusion of an exclusive access to the underlying devices, our middleware
supports execution of multiple applications within a single IoT gateway. The second
part of this contribution mainly addresses development and execution of the cloud
counterpart of IoT Cloud applications, e.g., cloud services. Introduced programming
model defines high-level programming constructs and operators, which raise the level
of programming abstraction, enabling developers to implement IoT Cloud applications
without worrying about the specifics of diverse underlying edge devices. The core of
this programming model revolves around the notion of Intent and IntentScope. Intents
are high-level representation of the aforementioned monitor and control tasks. They
allow the developers to communicate to the supporting middleware what needs to
be done, instead of worrying how the underlying devices will perform a specific task,
effectively shielding the developers from the complexity of IoT controls and complex
data processing schemes. By supporting dynamic binding of the intents and tasks,
the underlying middleware supports development of loosely coupled applications that
are independent of the specific task implementation and guarantees stability (e.g.,
backward compatibility) of developed applications. The IntentScope is an abstraction,
which represents a group of physical entities that share some common properties, e.g.,
context. Our programming model introduces a number of operators, which enable the
developers to define/refine IntentScopes. IntentScopes allow for dynamically delimiting
the scope of applications actions, without manually referencing individual physical
entities. This is one of the key preconditions to achieve development of generic IoT

9

1. Introduction

Cloud applications in a scalable manner. Whereas the Data- and Control Points are
mainly intended for domain experts, this programming model offers a different logical
view on the application development process and is mainly meant to be used by the
developers of higher-level business logic. However, these benefits come at a cost, i.e.,
at this level we trade flexibility and expressiveness for a scalable, more intuitive and
efficient programming of IoT Cloud applications. Finally, as the third part of this
contribution, we have developed a comprehensive programming framework for IoT
Cloud applications. The main goal of this framework is to address the growth (in
scope and complexity) of the application development context, by providing a unified,
programmatic view for the entire development process (everything as code). To this
end, besides enabling application business logic development, the framework introduces
additional support for programmatic application provisioning and governance. The
framework encapsulates most important aspects of IoT Cloud applications provisioning
and governance, exposing them to the developers in terms of uniform APIs and light-
weight provisioning and governance DSLs. By providing a systematic and structured
support for everything-as-code paradigm our framework makes the entire application
development process more traceable and easily auditable, but also enables exploiting
proven and well-known technologies, e.g., source control or configuration management
systems, during the entire application lifecycle. It is important to mention that this
contribution mainly focuses on application-level support for programmatic provisioning
and governance, but it utilizes the provisioning and governance models for IoT Cloud,
which are subject of other contributions of this thesis. We describe them in more detail
subsequently. The proposed programing models and middleware have been validated
and evaluated on a set of real-life applications, in domains of building management
system and vehicle management system4.

C2: Provisioning model and a middleware infrastructure for provisioning IoT Cloud
systems.
In the second contribution of this thesis the focus is shifted from application-level
support to IoT Cloud Middleware Platform, in order to address the lack of adequate
conceptual and tooling support for IoT Cloud provisioning. The conceptual model (cf.
Figure 1.1) of IoT Cloud systems is based on a layered architecture, which assumes a
middleware platform to expose the underlying infrastructure in a unified manner, which
can be customized and configured to support execution of application business logic.
However, this is still not the case, mainly because in IoT Cloud systems, in addition
to Cloud, Edge devices (e.g., gateways) are also first-class execution environments,
which are still largely underutilized and mainly integrated with the Cloud in an ad-hoc
fashion. This contribution is mainly driven by a stringent need: To enable refactoring
of the underlying infrastructure into finer-grained resource components whose behavior
can be defined in software; To provide conceptually unified representation of both Edge

4The applications and their requirements are derived from a case study that was conducted in
collaboration with our industry partners within P3CL lab. The main outcomes of the case study are
presented in Section 2.

10

1.2. Scientific Contributions

and Cloud resources; As well as to enable automated and scalable management of IoT
Cloud infrastructures and their configuration models in a logically centralized fashion.
To this end, we build on existing hardware virtualization approaches such as OS-
level virtualization and kernel-supported virtualization, and infrastructure automation
solutions, i.e., Infrastructure-as-Code (IaC), and explore how advance engineering
approaches, most notably software-defined principles, can be adapted and applied in
the context of IoT Cloud. The main parts of this contribution include: a) A unified
provisioning model and framework support for logically centralized provisioning of IoT
Cloud systems; b) A middleware infrastructure for utility-based provisioning of IoT
Cloud systems. This contribution has been originally published in [105, 146, 108].

The first part of this contribution introduces a conceptual model of software-defined
IoT Cloud systems and a preliminary implementation of supporting provisioning
framework. The core concept of the model model are software-defined IoT units,
i.e., within our model the IoT Cloud resources (e.g., virtual sensors), their runtime
environments (e.g., gateways) and capabilities (e.g., communication protocols or data
point controllers) are described as software-defined IoT units. Such units are used
to encapsulate the IoT Cloud resources and abstract their provisioning in software.
To this end, the software-defined IoT units expose well-defined APIs and they can
be composed at different levels, creating virtualized runtime infrastructures for IoT
Cloud applications. To technically realize our unit model we introduce a concept
of unit prototypes. The unit prototypes are hosted in the IoT Cloud and enriched
with provisioning capabilities (delivered by framework’s provisioning agents), that
allow them to be dynamically configured, interconnected, deployed and controlled.
In our work, we do not introduce novel virtualization solutions, but rely on proven
technologies, namely kernel-supported virtualization and inversion of control concepts
to provide generic unit prototypes. The unit prototypes along with a number of example
software-defined IoT units are implemented and provided as stock components within
the provisioning framework. The framework also provides mechanisms to support
automated composition of the software-defined IoT units and centralized management
of infrastructure configuration models, thus enabling flexible customizations and
simplifying the provisioning of IoT Cloud infrastructures. The second part of this
contribution conceptually extends and technically refines our provisioning model and
framework, by introducing a middleware infrastructure for provisioning IoT Cloud
systems. Its main objective is to provide a comprehensive support for scalable, multi-
level provisioning of IoT Cloud systems, in order to support execution of provisioning
processes that are based on the aforementioned provisioning model. The middleware
comprises a cloud-based provisioning controller and edge-based provisioning agents and
deamons. The controller architecture and the provisioning mechanisms are specifically
tailored to account for the large-scale of IoT Cloud, but also for the resource-constrained
nature of Edge devices. To this end, the middleware controller supports elastically
scalable execution of the provisioning processes and the light-weight provisioning
agents and deamons enable virtualizing compute resources of edge devices, as well as
provide support execution of local installation and configuration directives that are

11

1. Introduction

specified within the provisioning processes. The main mechanisms of the middleware
include: i) A light-weight mechanism for resource abstraction (software-defined
gateway), which allow for application-specific customizations of IoT Cloud resources.
ii) Support for automated provisioning and management of infrastructure resources,
application components and configuration models; in a uniform, logically centralized
manner through middleware-managed APIs; iii) Extensible and flexible provisioning
models, which support on-demand consumption of the Edge-device resources. The main
advantage of our middleware is reflected in facilitating on-demand, self-service resource
consumption by providing flexible provisioning models and support for uniform, logically
centralized provisioning of Edge devices, application artifacts and their configuration
models. Our middleware also enables application-specific customization of Edge devices
through software-defined gateways and well-defined APIs, while preserving the benefits
of proven virtualization techniques. We experimentally show that our middleware
enables scalable execution of provisioning tasks across relatively large IoT Cloud
resource pool and at the same time its overhead in terms of resource consumption is
suitable for resource-constrained devices. Generally, the second contribution of this
thesis lays a cornerstone towards realizing our vision of utility-based provisioning of
IoT Cloud systems. To validate and evaluate our approach we have developed an
IoT Cloud infrastructure and installed it in our department. It comprises 15 physical
gateways (based on Raspberry Pi5) and around 4000 virtualized gateways, deployed in
our local OpenStack6 cloud. The cloud-based part of testbed relies on Linux Containers
(LXC), which are used to virtualize and mimic physical gateways based on a snapshot
of a real-world gateway, developed by our industry partners.

C3: GovOps model and a runtime framework for automated governance of IoT Cloud
systems.
The third contribution of this thesis introduces GovOps (Governance and Operations) –
a novel methodology and framework for governing IoT Cloud systems. GovOps’ primary
focus is on enabling design, implementation and execution of operational governance
processes ([133, 70]), which represent a subset of general IoT Cloud governance, and
deal with enforcing high-level governance objectives through operations processes at
runtime. The main incentive for introducing GovOps is to bring business stakeholders
and operations managers closer together, in order to make a step forward in bridging
the gap between governance objectives (e.g., standards and regulations) and operations
processes. Conceptually, the main objective of GovOps is twofold. On the one side it
aims to enable seamless integration and alignment of high-level governance objectives
and strategies with executable operations processes, by incorporating the key aspects of
both high-level governance and operations management from early designing stages. On
the other side, it strives to support performing operational governance processes for IoT
Cloud systems in such manner they are feasible in practice, considering the previously-
described challenges. To this end, three main parts constitute this contribution:

5https://www.raspberrypi.org/
6https://www.openstack.org/

12

1.2. Scientific Contributions

a) A GovOps methodology and a reference model for operational governance processes;
b) A GovOps runtime framework for operational governance processes; and c) An
uncertainty extension for GovOps framework and a DSL for developing uncertainty-
and elasticity-aware GovOps processes. This contribution has been originally published
in [104, 110, 103]

As the first part of this contribution we introduce a methodology for developing
GovOps strategies, its main design principles, concepts and roles. Conceptually,
GovOps reference model builds on the previously introduced software-defined IoT
units and introduces fundamental elements for developing operational governance
processes (GovOps processes). Within GovOps model, the main building blocks of
the GovOps processes are governance capabilities. They represent operations which
can be applied on IoT Cloud resources, e.g., query current version of a software,
dynamically change communication protocol, and spin-up a virtual gateway. These
operations manipulate IoT Cloud resources in order to put IoT Cloud system into a
specific (target) state, that conforms with governance objectives. Furthermore, we
outline the main steps of GovOps design process and introduce a novel role, GovOps
manager, who is responsible to guide and manage designing the GovOps processes,
because in practice it is very difficult, risky, and ultimately very costly to adhere to
the traditional organizational silos that strictly separate business stakeholders from
operations managers. The second part of this contribution introduces a runtime
framework for implementing and executing the GovOps processes. The main aim of
the GovOps framework is to provide logically centralized point of governance, i.e., to
enable conceptually centralized interaction with an IoT Cloud system and provide a
unified view on the system’s governance capabilities through framework’s governance
controller, while retaining fine-grained control over the IoT Cloud resources (e.g.,
gateways) through the governance capabilities. Further, by introducing light-weight
governance agents, our framework strives to provide a higher degree of autonomy to
the underlying devices and enable automated execution of GovOps processes, making
them easily enforceable and repeatable across large-scale resource pool. Generally,
the framework supports GovOps managers to handle two main tasks. First, the
GovOps framework enables dynamic, on-demand injection of capabilities into IoT
cloud resources, and supports coordinating the dynamic profiles of these resources
at runtime. Second, our framework allows for runtime management of governance
capabilities throughout their entire lifecycle that, among other things, includes remote
capability invocation and managing dynamic APIs, which are exposed to users. By
providing suitable runtime mechanism, GovOps framework supports the key steps of
the aforementioned tasks to be performed transparently to GovOps managers and the
GovOps processes. The only thing that such processes observe are API calls and the
corresponding responses. At this point it is important to mention that, from technical
perspective, GovOps does not make any assumptions about the implementation of
the GovOps processes, in the sense that such processes can be realized as business
processes (e.g., using BPMN), via a Domain Specific Language (DSL), or even as
dedicated governance applications or services. In addition, GovOps does not impose

13

1. Introduction

any constraints on formalizing high-level governance objectives. To this end, there is an
abundance of governance models and accountability frameworks, such as the 3P [128],
CMMI [2] or COBIT [63], that conceptually complement GovOps to support managing
governance objectives and coordinating decision making processes. Finally, the third
part of the contribution introduces an uncertainty extension for the GovOps framework.
To this end, we define a DSL to support development of uncertainty- and elasticity-
aware GovOps processes, together with supporting runtime mechanisms for uncertainty
mitigation. To achieve elasticity-awareness of GovOps processes, the introduced DSL
exposes typical elasticity controls at the level of GovOps processes. For this purpose,
we have refined and extended rSYBL [34], which is a cloud-based, muliti-level elasticity
controller and integrated it with the GovOps controller. The presented DSL supports
uncertainty-awareness in GovOps processes by providing language constructs that
enable configuring and parameterizing such processes with uncertainty information.
Inspired by the well-established fault, error, failure classification [10] and the general
belief model [122], we have developed an uncertainty taxonomy for IoT Cloud systems.
Based on this taxonomy we have derived a set of uncertainty families, which are
used to systematically classify uncertainties, analyze their effects on typical GovOps
processes and enable deriving requirements, actions and configuration models needed
for streamlining the uncertainty management. Finally, to approach the intrinsic
bootstraping problem in the uncertainty management, we have provided comprehensive
runtime mitigation mechanisms for two most relevant uncertainty families, related to
data quality (incomplete and missing data) and actuation dependability aspects of
GovOps processes. The GovOps approach and its feasibility to govern large-scale IoT
Cloud systems is evaluated on the aforementioned testbed that was developed as a part
of the second contribution. In the experiments we have used the real-life applications,
developed for the purposes of the first contribution (C1), together with their governance
objectives and requirements derived in the aforementioned case study4.

1.3 Organization of the Thesis
This dissertation includes the contributions from original research papers that were
published during the author’s doctoral studies. The individual contributions have been
re-worked, extended and presented in a unified context.

The reminder of the thesis is organized as follows: Chapter 2 presents the background
information and a case study, which introduces two motivating scenarios used throughout
the thesis. Chapters 3 to 9 introduce the main contributions of this thesis. These chapters
are further divided into three parts. Part I (chapters 3-5) deals with programming IoT
Cloud systems. Chapter 3 introduces a high-level programming model and a runtime for
developing cloud-centric IoT Cloud applications. Chapter 4 introduces a programming
model and a runtime for resource-constrained Edge devices, e.g., gateways. In Chapter 5,
we introduce a unifying programming framework for IoT Cloud systems, based on
everything-as-code paradigm. Part II (Chapter 6 and Chapter 7) deals with provisioning
IoT Cloud systems. Chapter 6 introduces a unified provisioning model (based on software-

14

1.3. Organization of the Thesis

defined principles) and a framework support for logically centralized provisioning of IoT
Cloud systems. In Chapter 7, we introduce a middleware infrastructure for utility-based
provisioning of IoT Cloud systems. Part III (Chapter 8 and Chapter 9) deals with
governing IoT Cloud systems. Chapter 8 introduces GovOps – a methodology and a
reference model for operational governance processes in IoT Cloud systems. The same
chapter also also presents a runtime GovOps framework for implementing and executing
operational governance processes in large-scale IoT Cloud systems. In Chapter 9, we
introduce an uncertainty extension for GovOps, which provides a declarative policy
language and a runtime for developing uncertainty- and elasticity-aware governance
processes. Finally, Chapter 11 concludes the thesis with a reflection on the main research
questions and an outlook of the future research.

15

CHAPTER 2
Case Study & Background

2.1 Case Study Scenarios
To better motivate our work and ground the previously-described research questions (cf.
Chapter 1) in realistic IoT Cloud systems, we conducted a detailed case study in Pacific
Controls Cloud Computing Lab1 (PC3L). The case study was carried on in a tight
collaboration with our industry partners2 and its main aim was to provide a detailed
analysis of the major development, operations and governance tasks in real life IoT Cloud
systems and applications. Further, the case study has elicited the main requirements
for such tasks and identified concrete research challenges that currently hinder realizing
those tasks in practice.

This section presents two scenarios in the context of IoT Cloud that were the main
outcomes of our case study. These scenarios are referred to throughout the thesis where
they are discussed in more detail. Subsequently, we give a brief overview of the main
features and requirements of two real life systems: Fleet Management System (FMS)
and Building Management System (BMS), which are the core of our scenarios. In the
subsequent chapters, we analyze these systems from different perspectives, depending on a
concrete research challenges that are emphasized and addressed in the respective chapters,
as well as highlight design and implementation details of the relevant (sub)systems and
applications3.

2.1.1 Fleet Management System (FMS)

Fleet Management System (FMS) is a real life IoT Cloud system responsible for managing
fleets of zero-emission, electric vehicles deployed worldwide (cf. Figure 2.1). For our

1http://pcccl.infosys.tuwien.ac.at/
2http://pacificcontrols.net/
3Some of the proprietary algorithms are only described on a high-level, to protect business information.

17

2. Case Study & Background

Fire

Figure 2.1: The Fleet Management System4.

discussion the most important functionality of the FMS is management of the electric
vehicles on different golf courses. In general, the FMS supports the involved stakeholders
(described in the following) to remotely manage the fleet vehicles dispersed among
numerous golf courses in different parts of the world in order to optimize tasks, crucial
for their respective business processes.

Electric vehicle information systems consist of on-board gateways and software
platforms that are tightly coupled with the vehicles and their usage scenario – mainly
as golf cars. The on-board gateway interfaces the underlying vehicle assets via different
protocols such as LIN5), CAN6 (engine) or OBC7 (charger) and provides execution
runtime for features such as: a) vehicle maintenance (fault history, battery health,
crash history, and engine diagnostics), b) vehicle tracking (position, driving history,
and geo-fencing), c) vehicle info (charging status, odometer, serial number, and service
notification), d) set-up (club-specific information, maps, and fleet information). For
legacy cars that are not equipped with such gateways, a device acting as a CAN-IP
bridge is used (e.g, Teltonika FM53008). In this case FMS hosts virtual gateways on the
cloud that execute the aforementioned services on behalf of the vehicles.

These vehicles communicate with the Cloud via 3G or Wi-Fi networks (via local
hot spots) to exchange telematic and diagnostic data. On the Cloud, FMS provides
different applications and services to manage this data, as well as to respond to changes in
vehicle operation and environment in terms of performing control actions on the physical
assets (e.g., vehicles) or generating notifications in near realtime. Examples of cloud
services and applications include: a) Near realtime vehicle status: location, driving
direction, speed, vehicle fault alarms; b) Remote diagnostics: equipment status, battery

4Figure 2.1 and Figure 2.2 are obtained for our industry partner’s website. URL:http://www.
pacificcontrols.net/.

5http://cs-group.de/fileadmin/media/Documents/LIN_Specification_Package_2.
2A.pdf

6http://kvaser.com/software/7330130980914/V1/can2spec.pdf
7http://gptechgroup.com/pdf/OBC-353.pdf
8http://teltonika.lt/en/pages/view/?id=1024

18

http://www.pacificcontrols.net/
http://www.pacificcontrols.net/
http://cs-group.de/fileadmin/media/Documents/LIN_Specification_Package_2.2A.pdf
http://cs-group.de/fileadmin/media/Documents/LIN_Specification_Package_2.2A.pdf
http://kvaser.com/software/7330130980914/V1/can2spec.pdf
http://gptechgroup.com/pdf/OBC-353.pdf
http://teltonika.lt/en/pages/view/?id=1024

2.1. Case Study Scenarios

health and timely maintenance reminders; c) Remote control: overriding on-board vehicle
control system in case of emergency or theft, e.g. to prevent a car to leave a golf-course;
d) Batch configuration and software updates: remotely configure course maps, course
information and software feature set for a fleet, applying software updates, and installing
new value-added services to a large number of cars; e) Fleet upkeep: service history and
fleet usage patterns.

The FMS is currently used by the following three types of stakeholders: vehicle
manufacturers, distributors, and golf course managers. These stakeholders have different
business models. For example, when a manufacturer only leases vehicles to customers,
they are interested in the status and upkeep of the complete fleet, will perform regular
maintenance, as well as monitor crashes and battery health. Golf course managers are
mostly interested in vehicle security to prevent misuse and ensure safety on the golf
course (e.g., using geofencing features). In general, the stakeholders rely on the FMS
and its services to optimize their respective business tasks. Therefore, they also have
different requirements in terms of applications, resource provisioning and general system
governance requirements. We discuss the FMS in more detail in Chapter 3, Chapter 5
and Chapter 8.

2.1.2 Building Management System (BMS)

Building Management System (BMS) is an IoT Cloud control system for buildings, which
enables remote monitoring and controlling of buildings’ mechanical and electrical assets
and equipment such as HVAC, lighting, elevators, pluming and fire alarm systems (cf.
Figure 2.2). In general, it connects the buildings’ assets to a cloud-based platform,
which provides applications for centralized management of such assets. Some of the core
features of the BMS include managing the environment temperature, CO2 emission and
humidity within a building, as well as optimizing the building’s energy consumption
and handling predictive maintenance. For example, the climate control services are
responsible to control the production of heating and cooling, managing air distribution
systems throughout the building, and locally controlling the air mixture to achieve the
desired environment temperature. Country to the FMS, the BMS is less dynamic and
has a smaller degree of geographical distribution. In spite this, it is a large scale systems
that supports operating several thousands buildings.

The BMS relies on hierarchical IoT Cloud infrastructure in which the building sensors
are connected to gateways (intermediary nodes installed throughout the buildings) via
wired or wireless communication channels. These gateways are mainly based on Sedona9

or NiagaraAX10 Edge devices and they provide constrained execution environments for
light-weight BMS device services. The upstream communication with the cloud platform

9http://sedonadev.org/
10http://niagaraax.com/

19

http://sedonadev.org/
http://niagaraax.com/

2. Case Study & Background

Fire water tank

Gas leakage sensor

Fire alarms

Elevators

HVAC water pumps

Equipment diagnostics

Figure 2.2: The Building Management System.

is realized via ModBus11, BACnet12, CoAP13 or MQTT14 protocols and the collected
sensory data is either polled periodically from the gateways (during routine checks) and
analyzed by cloud services off-line or the gateways push the data (alarms) to the cloud,
e.g., in case of emergency such as fire.

For safety-critical services, e.g., alarm handling, timely processing of the events and
the availability of the BMS play a crucial role. While for such safety-critical services
real-time delivery and processing is essential, for services such as HVAC controller, cost
reduction is more important. Due to the multiplicity of the involved stakeholders such
as building managers, building owners, residents and civil service authorities, the BMS
needs to allow for flexible runtime customizations (in terms of resources provisioning
and governance) in order to exactly meet the stakeholder’s functional or compliance
requirements. This largely depends on the problem at hand and availability or accessibility
of the assets, as well as desired system’s non-functional properties. We discuss the BMS
in more detail in Chapter 6 and Chapter 9.

2.2 Background
In this section, we provide an overview of the well-established models, concepts and
technologies, which were used as groundwork for the work presented in this thesis. We
mainly focus on the most important background research and industrial advances in the
areas of cloud computing, Internet of Things, software-defined systems and DevOps.

11http://modbus.org/specs.php
12http://bacnet.org/Bibliography/EC-9-97/EC-9-97.html
13http://tools.ietf.org/html/rfc7252
14http://mqtt.org/documentation

20

http://modbus.org/specs.php
http://bacnet.org/Bibliography/EC-9-97/EC-9-97.html
http://tools.ietf.org/html/rfc7252
http://mqtt.org/documentation

2.2. Background

Internet of Thing

The term Internet of Things (IoT) has been originally coined by Kevin Ashton in 1999 to
refer to a global network of Internet-connected objects attached with a Radio Frequency
Identification (RFID) chips. Since then the definition and application field of IoT has
significantly expanded to offer connectivity of devices and services that goes beyond
traditional machine-to-machine (M2M) [68] and covers variety of applications and domains,
including smart homes [75, 26], smart healthcare [46, 21], smart transportation [65, 86],
smart grids [159, 20], and eventually smart cities [161, 67, 102]. The Global Standards
Initiative on Internet of Things (IoT-GSI) gives a definition of IoT: “... as a global
infrastructure for the information society, enabling advanced services by interconnecting
(physical and virtual) things based on existing and evolving interoperable information and
communication technologies.” [73]

Recent advances in the IoT have provided solid foundations for a global infrastructure
of networked physical entities, able to monitor and control their physical status and
the surrounding environment, as well as to expose themselves via data streams and
services over the Internet [82]. Such vast IoT infrastructure enables novel applications
and systems to utilize IoT resources in order to deliver novel value-added services, which
leverage data from different sensor devices or enable timely propagation of decisions,
crucial for business operation to the edge of the infrastructure, resulting in improved
efficiency, accuracy and economic benefit [144, 145, 96, 31].

194 According to the authors of [7], RFID still stands at the
195 forefront of the technologies driving the vision. This a con-
196 sequence of the RFID maturity, low cost, and strong sup-
197 port from the business community. However, they state
198 that a wide portfolio of device, network, and service tech-
199 nologies will eventually build up the IoT. Near Field Com-
200 munications (NFC) and Wireless Sensor and Actuator
201 Networks (WSAN) together with RFID are recognized as
202 ‘‘the atomic components that will link the real world with
203 the digital world”. It is also worth recalling that major pro-
204 jects are being carried out with the aim of developing rel-
205 evant platforms, such as the WISP (Wireless Identification
206 and Sensing Platforms) project.
207 The one in [7] is not the only ‘‘Things oriented” vision
208 clearly speaking of something going beyond RFID. Another
209 one has been proposed by the United Nations, which, dur-
210 ing the 2005 Tunis meeting, predicted the advent of IoT. A
211 UN Report states that a new era of ubiquity is coming
212 where humans may become the minority as generators
213 and receivers of traffic and changes brought about by the
214 Internet will be dwarfed by those prompted by the net-
215 working of everyday objects [8].
216 Similarly, other relevant institutions have stressed the
217 concept that IoT has primarily to be focused on the
218 ‘‘Things” and that the road to its full deployment has
219 to start from the augmentation in the Things’ intelli-
220 gence. This is why a concept that emerged aside IoT is
221 the spime, defined as an object that can be tracked
222 through space and time throughout its lifetime and that
223 will be sustainable, enhanceable, and uniquely identifi-
224 able [9]. Although quite theoretical, the spime definition
225 finds some real-world implementations in so called
226 Smart Items. These are a sort of sensors not only

227equipped with usual wireless communication, memory,
228and elaboration capabilities, but also with new poten-
229tials. Autonomous and proactive behavior, context
230awareness, collaborative communications and elabora-
231tion are just some required capabilities.
232The definitions above paved the way to the ITU vision of
233the IoT, according to which: ‘‘from anytime, anyplace con-
234nectivity for anyone, we will now have connectivity for
235anything” [10]. A similar vision is available from docu-
236ments and communications of the European Commission,
237in which the most recurrent definition of IoT involves
238‘‘Things having identities and virtual personalities operat-
239ing in smart spaces using intelligent interfaces to connect
240and communicate within social, environmental, and user
241contexts” [3].
242An IoT vision statement, which goes well beyond a mere
243‘‘RFID centric” approach, is also proposed by the consor-
244tium CASAGRAS [11]. Its members focus on ‘‘a world where
245things can automatically communicate to computers and
246each other providing services to the benefit of the human
247kind”. CASAGRAS consortium (i) proposes a vision of IoT
248as a global infrastructure which connects both virtual
249and physical generic objects and (ii) highlights the impor-
250tance of including existing and evolving Internet and net-
251work developments in this vision. In this sense, IoT
252becomes the natural enabling architecture for the deploy-
253ment of independent federated services and applications,
254characterized by a high degree of autonomous data cap-
255ture, event transfer, network connectivity and
256interoperability.
257This definition plays the role of trait d’union between
258what we referred to as a ‘‘Things oriented” vision and an
259‘‘Internet oriented” vision.

RFID

UID

Spimes

Smart Items

Everyday
objects

Wireless
Sensorsand
Actuators

WISP

“Internet”-oriented
visions

“Things”-
oriented visions

“Semantic”-oriented
visions

INTERNET
OF

THINGS

Connectivity
for anything

Communicating
things

Semantic
Technologies

Smart
Semantic

Middleware

Reasoning
over data

Semantic execution
environments

IPSO (IP for
Smart

Objects)

Internet 0

Web of
Things

NFC

Fig. 1. ‘‘Internet of Things” paradigm as a result of the convergence of different visions.

L. Atzori et al. / Computer Networks xxx (2010) xxx–xxx 3

COMPNW 4247 No. of Pages 19, Model 3G

31 May 2010

Please cite this article in press as: L. Atzori et al., The Internet of Things: A survey, Comput. Netw. (2010), doi:10.1016/
j.comnet.2010.05.010

Figure 2.3: Different visions and approaches to the Internet of Things (taken from [9]).

Wide application area and numerous benefits of IoT have spurred various research
and industrial efforts exploring the IoT. This has resulted in a number of different

21

2. Case Study & Background

approaches and visions to realize systems which utilize the capabilities and data provided
by the IoT (cf. Figure 2.3). For example, emphasizing on network aspects of IoT
different approaches have provided a wide variety of communication protocols, which
support diverse communication patterns (e.g., message-based, REST-like, mash-up and
opportunistic networks) among the connected things, usually optimized for a specific
problem or application domain. Further, thing-centric approaches address some of the
crucial issues such as uniquely identifying the connected IoT devices and abstracting the
things, e.g., via SOA-based techniques. Although mainly industry-driven, a number of
approaches sharing the things-centric vision have developed different IoT gateways. Such
gateways are an integral part of the global IoT infrastructure and are mainly used to
connect the low-level devices (sensors and actuators) to the Internet, but also to provide
(constrained) processing and storage resources for IoT applications. Mainly focusing on
exploiting the Big Data, generated by the IoT, a large body of work has recently emerged.
It has resulted in a variety of approaches to mediate the heterogeneous data formats,
analyze and reason over the IoT data, e.g., by utilizing semantic-based techniques and
large-scale data processing frameworks.

The work presented in this thesis does not adopt any of the proposed visions per
se, instead it relies and builds on different approaches/enablers (models, protocols and
frameworks) to address common problems related to programming, provisioning and
governance of systems/applications that utilize the IoT.

Cloud Computing

Over the last decade, cloud computing has put itself forward as one of the most important
paradigms for delivering and consuming digital resources [6, 90], mainly due to utility-
driven, on-demand nature of cloud offerings, which allow customers to elastically provision
the exact type and amount of resources needed for a given task at a given time. The
National Institute of Standards and Technology (NIST) defines cloud computing as
follows: “Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” [121].

One of the most important features of cloud computing is reflected in its support for
utility-based delivery and consumption of digital resources. Therefore, cloud computing
generally refers to a broader (business) model instead of a concrete technology stack
supporting this paradigm. In spite of this, over the recent years a general, high-level view
on the cloud computing has emerged, involving three core “layers”: Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS), as shown
in Figure 2.4.

The IaaS is the lowest of the aforementioned layers and it offers the most flexible
usage of Cloud resources. Generally, it enables dynamic provisioning of compute, storage
and network resources. One of the first and still predominant public offerings of IaaS is

22

2.2. Background

 Cloud Application
 (e.g. SaaS)

Cloud Software Environment
(e.g. PaaS)

Firmware / Hardware (HaaS)

Software Kernel

Cloud Software Infrastructure

Computational

Resources (IaaS)

Storage

(DaaS)

Communications

(CaaS)

Fig. 1. Our Proposed Cloud Computing Ontology: depicted as five layers, with three constituents to the cloud infrastructure layer. The
layered figure represents the inter-dependency and composability between the different layers in the cloud.

applications are two of the major issues in this model,
and they are currently avoided by the use of lenient
service level agreements (SLA). Furthermore, coping
with outages is a realm that users and providers of
SaaS have to tackle, especially with possible network
outage and system failures. Additionally, the integration
of legacy applications and the migration of the users’
data to the cloud is another matter that is also slowing
the adoption ofSaaS. Before they can persuade users to
migrate from desktop applications to cloud applications,
cloud applications’ providers need to address end-users’
concerns about security and safety of storing confidential
data on the cloud, users authentication and authorization,
up-time and performance, as well as data backup and
disaster recovery and provide reliable SLAs for their
cloud applications.

B. Cloud Software Environment Layer

The second layer in our proposed cloud ontology is
the cloud software environment layer (also dubbed the
software platform layer). The users of this layer are cloud
applications’ developers, implementing their applications
for and deploying them on the cloud. The providers of
the cloud software environments supply the developers
with a programming-language-level environment with
a set of well-defined APIs to facilitate the interaction
between the environments and the cloud applications,
as well as to accelerate the deployment and support the
scalability needed of those cloud applications. The ser-
vice provided by cloud systems in this layer is commonly
referred to asPlatform as a Service (PaaS). One example

of systems in this category is Google’s App Engine [5],
which provides a python runtime environment and APIs
for applications to interact with Google’s cloud run-
time environment. Another example is SalesForce Apex
language [9] that allows the developers of the cloud
applications to design, along with their applications’
logic, their page layout, workflow, and customer reports.

Developers reap several benefits from developing their
cloud application for a cloud programming environment,
including automatic scaling and load balancing, as well
as integration with other services (e.g. authentication
services, email services, user interface) provided to them
through thePaaS-provider. In such a way, much of the
overhead of developing cloud applications is alleviated
and is handled at the environment level. Furthermore,
developers have the ability to integrate other services
to their applications on-demand. This in turn makes the
cloud application development a less complicated task,
accelerates the deployment time and minimizes the logic
faults in the application. In this respect, a Hadoop [10]
deployment on the cloud would be considered a cloud
software environment, as it provides its applications’
developers with a programming environment, i.e. map
reduce framework for the cloud. Similarly, Yahoo’s
Pig [11], a high-level language to enable processing
of very large files on the hadoop environment may be
viewed as an open-source implementation of the cloud
platform layer. As such, cloud software environments
facilitate the process of the development of cloud ap-
plications.

4

Figure 2.4: High-level overview of cloud computing. (taken from [158]).

Amazon’s Elastic Compute Cloud15. There is also a number of open source IaaS solutions
such as OpenStack16 which can be for example utilized as private IaaS. Independent of
the usage model, virtualization technologies such as Xen [15], VMWare ESX [147] or
KVM [79], play the crucial role, by supporting multiple VM’s to concurrently execute on
a single host, transparent to the users and applications. This is achieved by isolating
each VM’s kernel, filesystem, network stack, as well as other OS parts. Recently more
light-weight kernel-supported vitalization solutions have been receiving a lot of attention.
This solutions (usually called containers) share the same kernel and filesystem, but offer
isolated namespaces as well as limit and isolate resource usage such as CPU and memory.
Popular container “execution environments” include Linux Containers (LXC), Virtuozzo
and Linux V-Server. Also a number of container management and orchestration solutions
exist such as Docker and Cloud Foundry Warden to name just a few. The PaaS builds
on IaaS and it usually offers a higher-level support such as middleware, application
execution environments, application monitoring facilities and platform customizations
as services. Some of the currently popular PaaS offerings are Salesforce17 and Heroku18.
Finally, the SaaS provides applications and services to the end users. Examples of SaaS
include Googe Apps and Netflix. For the work presented in this thesis IaaS techniques
and solutions play the most important role.

Software-defined Environments and DevOps

Traditionally, in a narrow sense software defined is a term used to refer to software-
defined networking (SDN). SDN is a networking approach intended to support network
administrators to abstract and manage the network elements (e.g, switches and routers)

15http://aws.amazon.com/ec2/
16https://www.openstack.org/
17http://www.salesforce.com/
18http://www.heroku.com/

23

2. Case Study & Background

through high-level functions such as APIs [112]. General, idea behind the SDN is to
separate the (possibly centralized) decision logic describing where the data packets are
sent (control plane) from the actual mechanisms that deliver (forward) the data packets
(data plane) [80, 78, 76, 81]. Most popular current implementations of SDN protocols
are OpenFlow [97], ForCES [45] and OpenDaylight Platform19.

Recently different approaches have emerged exploiting and extending software defined
concepts to facilitate utilization and management of the pooled sets of shared resources,
e.g., software-defined storage [140] and software-defined data centers [37]. The work
presented in this thesis mainly exploits the general idea of software-defined environments
aiming to enable refactoring the large-scale IoT Cloud resource pools and enable their
provisioning and governance programmatically in software through well-defined APIs. To
this end, in Part II of this thesis we elicit concrete design principles of software-defined
IoT Cloud systems together with the main technical enablers to enable and support such
principles.

The aforementioned tendency to abstract the infrastructure resources and enable
their programmatic management is not only addressed in the cloud computing and
software defined circles. DevOps is a relatively novel practice which aims to apply general
principles of software engineering in order to facilitate the development of automation
logic for provisioning, deploying, configuring, and upgrading system’s infrastructure
resources [48, 130, 99, 127]. DevOps, however, mainly focuses on providing tools and
frameworks which would enable easier management of infrastructure components and
configuration models. Some of the currently most popular DevOps tools revolve abound
the notion of Infrastructure-as-Code (IaC) and include Chef20, Puppet21. Finally, DevOps
is more than a set of automation tools and it is sometimes reffed to as DevOps culture
that aims to bring development and operations teams closer together through increased
collaboration, shared responsibility and no silos approach [99, 127]. These concepts server
as foundations for our governance approach in IoT Cloud systems, which is presented in
Part III of this thesis.

19https://www.opendaylight.org/
20http://www.chef.io/chef/
21http://puppetlabs.com/

24

Part I

Programming IoT Cloud Systems

25

Preface
Recent emergence of IoT Cloud systems has fostered proliferation of various applications
mainly driven by urgent need to respond to volume, velocity and variety of data generated
by IoT Cloud, but also to enable timely propagation of actuation decisions, crucial
for business operation, to the Edge of the infrastructure. However, due to the diversity,
heterogeneity and scale of IoT Cloud systems, the need to handle large volumes of IoT data
in a nontrivial manner, and the plethora of domain-dependent IoT controls, programming
IoT Cloud applications remains a great challenge. The issue is further exacerbated due to
inherently complex dependencies between application business logic and the underlying IoT
Cloud infrastructure capabilities, which currently need to be explicitly considered during
application development. Unfortunately, most of the contemporary solutions focus on low-
level data and device integration, mainly aiming to support device-level development and
domain experts. Such approaches provide only rudimentary support to account for diverse
requirements coming from a variety of involved developer roles, leading to provisional
solutions and heterogeneous application artifacts, which are “stitched up" into IoT Cloud
applications.

The first part of this thesis aims to respond to the first main research question:
“What is a suitable programming model and methodology for developing novel IoT Cloud
applications in an efficient, scalable and generic manner?". The main driving force behind
the contributions presented in this part of the thesis is to provide a set of programming
abstractions and runtime mechanisms that enable more efficient, scalable and intuitive
development of generic IoT Cloud applications, which seamlessly utilize both the Edge
and the Cloud. Moreover, to account for the variety of involved stakeholders and the
complexity of software stack, ranging from embedded devices development to high-level IoT
Cloud application artifacts, our approach is designed in such manner to provide multiple
logical views on the application development process, while retaining a uniform view (in
code) on the produced application artifacts. To this end, in Chapter 3, we introduce
PatRICIA – a novel programming model, which defines high-level programming constructs
(MonitorIntents, ControlIntents and IntentScopes) that raise the level of programming
abstraction, enabling developers to implement IoT Cloud applications without worrying
about the specifics of diverse underlying Edge devices. Chapter 4, introduces Data- and
Control-Points, which provide a different logical view on application development process
and are mainly intended to support domain experts in developing common monitor and
control tasks for IoT Cloud gateways, which reside at the Edge. Finally, in Chapter 5, we
introduce SDG-Pro, which is a unifying programming framework for IoT Cloud, based on
everything-as-code paradigm. The SDG-Pro framework combines Intents with Data- and
Control-Points to provide a uniform support for application business logic development.
In order to enable everything as code, it provides additional development support for
programmatic provisioning and governance of IoT cloud systems, unifying it with the
support of application business logic.

CHAPTER 3
A High-Level Programming
Model for Cloud-centric IoT

Cloud Applications

Advances in the Internet of Things have provided a global infrastructure of networked
physical entities, able to monitor and control their physical status and surrounding
environment, as well as to expose themselves via data streams and services over the
network [9, 82, 96]. Various enterprise systems, e.g., smart building management system
[119] and smart healthcare[60], utilize IoT applications to optimize key tasks of their
business processes. Recently, cloud computing has become the key enabler for large-scale
IoT systems. Researchers (e.g., [134, 64, 160]) recognize the benefits of exploiting cloud
computing for IoT systems, as it could offer better solutions to support IoT applications in
terms of device virtualization, provisioning of virtual sensors and actuators, and providing
suitable execution infrastructure for resource-intensive IoT applications. However, to
enable the development of IoT Cloud applications, we need high-level abstractions and
mechanisms, which support scalable and efficient programming with diverse device services
and raw data streams on cloud platforms. There are several approaches, which rely on
service-oriented computing (SOC) principles to abstract device data- and actuation-points,
e.g., [62]. They deal with heterogeneous devices by enabling direct, service-based access
to devices and provide mechanisms for service discovery, provisioning and management.
However, their support is usually restricted to the device-level services. Recently, several
interesting attempts to apply cloud computing technologies in large-scale IoT systems
have emerged, e.g., [160, 134]. They mostly focus on data and device integration by
utilizing cloud infrastructure and virtualizing individual sensors and actuators as services
in the cloud. Although these approaches help simplify the development of the IoT
Cloud applications, the development process mostly involves composing these device-level
services into admissible control sequences or data processing schemes, which makes the

29

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

development of such applications highly complex, and potentially limits the programming
scale. Concrete abstractions and mechanisms, which enable efficient, more intuitive and
scalable development of IoT Cloud applications still remain underdeveloped.

In this chapter we present PatRICIA – a novel programming model for IoT applications
on cloud platforms. PatRICIA defines high-level programming constructs (Intents and
IntentScopes) and operators, which encapsulate domain-specific knowledge (domain model
and behavior) and raise the level of programming abstraction, enabling developers to
implement IoT Cloud applications without worrying about the complexity of low-level
device services and raw sensory data streams. We demonstrate, based on a real-life
applications, how our programming model enables easier, efficient and more intuitive
development of IoT Cloud applications.

The remainder of the chapter is organized as follows. In Section 3.1, we present the
motivating scenario and the key research challenges. Section 3.2 outlines the PatRICIA
framework and Section 3.3 presents the programming model. Section 3.4 describes the
implementation and evaluation of our system. Finally, Section 3.5 presents final remarks
and concludes the chapter.

3.1 Motivation and Research Challenges

3.1.1 Scenario

Let us consider our real-life FMS scenario, described in Chapter 2, form an application
perspective, i.e., in this chapter we analyze FMS applications, mainly focusing on different
aspects of such applications in terms of required development support to realize them in
practice.

In general, the FMS applications are characterized by a reactive behavior. They
receive some (monitoring) information, e.g., a change in vehicles’ operation and, as a
response, perform (control) actions on the vehicles. Figure 3.1 visualizes general, high-
level architecture of FMS IoT Cloud applications. We notice that applications define
custom business logic, but can utilize similar monitor and control tasks and need to
apply them on dynamically defined scopes to manage the entities in a scalable manner.
Therefore, these tasks can be modeled and represented, in such a manner to enable
their reuse across different IoT Cloud applications. Typically, these applications monitor
vehicle’s status like maintenance and fault history, battery health, engine status, location,
tire pressure and so forth. For example, one of FMS applications needs to determine if a
vehicle is consuming more energy compared to other vehicles in the fleet, i.e., to detect
high energy fault. To this end, we can utilize power- and odometer from fleet vehicles
and correlate this information in order to detect the fault. Further, our applications
react to changes, e.g., in vehicle operation, by taking appropriate actions. For example,
if an energy fault is detected the application can decide to notify the driver and the golf
course manager via available devices, e.g., a smartphone or to put the vehicle in a reduced

30

3.1. Motivation and Research Challenges

Application

External
Service

Entity
layer

Virtual.
Service layer

Task scope

Cloud platform

Device
Service

Logical scope

Complex
Device

Physical Layer

Services layer

Application layer

IoT Middleware

Sensor

Application

Service

Device
Service

Device
Service

Device
Service

Monitoring Block

Controlling Block

Sensor SensorSensor

Actuator Actuator

External
Service Device

Service

Device
Service

Complex
Device

Service

Device
Service

Service

Container configuration points

Runtime container

Custom
policy

Custom
policy

Customization suport

RC-1 RC-2
RC-3

Domain-specific knowledge (e.g. Vehicle tracking)
(domain drivers)

Programming model

Controlling process

Monitoring task
(query)

A
p

p
lic

at
io

n

Intent

poll

notify

Send

Event

Domain expertApplication developer

Application

Make it clear this is one application

Application

Application

(We assume data points and device-services are
exposed as a service, e.g., WS, REST (CoAP, sMAP), MQTT, etc.)

Event processing graph

P
h

ys
ic

a
l

La
ye

r

C
lo

u
d

 p
la

tf
o

rm

C
lo

u
d

 la
ye

r

IoT Middleware

Sensor

Service

External
Service

Device
Service

Device
Service

Monitoring
Block Controlling Block

Sensor Sensor

Actuator Actuator

External
Service Device

Service

Device
Service

Complex
Device

Service

Device
Service

Service

Customization suport

(RC-3)

Application

(We assume data points and device-services are
exposed as a service, e.g., WS, DPWS, REST (CoAP, sMAP), MQTT, etc.)

P
h

ys
ic

a
l

La
ye

r

Sensor

Service

External
Service

Device
Service

Device
Service

Monitoring
Block Controlling Block

Sensor Sensor

ActuatorActuator

External
Service

Device
Service

Device
Service

Complex
Device

Service

Device
Service

Service

Application

Cloud Platform
Problem this means services are not in the cloud

Network layer

Physical layer

Application
layer

Device
Service

Sensor
Actuator Complex

Device

Monitor task Control task

Device
Service

External
Service

Sensor Sensor

Task scope

Device
Service

Device
Service

Device
ServiceDevice

Service

Complex
Device

Actuator

External
Service

Virtualization
(service) layer Device

Service

Network layer (IP-based, ZigBee, 6LoWPAN, etc.)

Physical layer

Application
layer

Device
Service

Sensor Actuator
Complex
Device

Monitor task Control task

Device
Service

External
Service

Sensor Sensor

Device
Service

Device
Service

Device
ServiceDevice

Service

Complex
Device

Actuator

Task scope
Vehicle 13 Vehicle 7

Vehicle 58

Task scope
Vehicle 13 Vehicle 7

Vehicle 58

Entity
layer

C
lo

u
d

 p
la

tf
o

rm

Virtualization
(service) layer

Device
Service

Network layer (IP-based, ZigBee, 6LoWPAN, etc.)

Physical layer

Device
Service

Sens. Act.

Monitor task

External
Service

Sens.

Device
Service

Device
Service

Act.

Scope
Vehicle 13 Vehicle 7

Vehicle 58

Scope
Vehicle 13

Vehicle 58

Application
business

logic

Control task

Complex
Device

Application

Entity
layer

C
lo

u
d

 p
la

tf
o

rm

Virtualization
(service) layer

Device
Service

Network layer (IP-based, ZigBee, 6LoWPAN, etc.)

Physical layer

Device
Service

Sens. Act.

Monitor task

External
Service

Sens.

Device
Service

Device
Service

Act.

Scope

Vehicle 13 Vehicle 7

Vehicle 58 Vehicle 7

Application
business

logic

Control task

Complex
Device

Figure 3.1: Example FMS IoT Cloud application.

energy mode, by setting speed, RPM and transmission limits, and wait for the vehicle to
return to the base where it can be further examined.

To perform the above-mentioned tasks, among other things, the FMS applications
require complex and expensive analytics and have high demand on storage and communi-
cation resources. Because these applications connect to and deal with a large number
of vehicles, which are distributed across different golf courses, they must be able to
handle vast amounts of data efficiently and need to have a global view of the distributed
fleet. To support these requirements, it is natural to execute these applications in the
cloud, as it has capabilities to connect, provide access, and a unified global view of the
geographically distributed fleet. The applications are envisioned to run continuously,
but they can be elasticaly scaled down in off-peek times, e.g., during the night, when
most of the vehicles remain dormant. In this case, the elastic nature of the cloud can
provide advantages in terms of cost reductions and greener IoT computing, e.g., because
of reduced energy consumption. Due to the multiplicity of the involved stakeholders with
diverse requirements and business models (cf. Chapter 2), FMS applications need to
support different and customizable usage experiences. Also here the cloud computing is
essential, as it potentially offers new, possibly cross- domain, application opportunities
and enables flexible business and usage models. Therefore, in this context, the cloud
plays a crucial role, as existing enterprise-specific platforms are hardly capable to meet
all of these requirements.

3.1.2 Research Challenges

We show that most of the current approaches (cf. Chapter 10) that support the de-
velopment of IoT applications deal with device and data integration and focus mostly

31

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

on the Device virtualization layer or the layers below (cf. Figure 3.1), thus, applica-
tion developers have to deal with much of the complexity, diversity and scale of IoT
Cloud applications. We identify several challenges regarding the development of such
applications:

• RC1 – Developers need to work with raw sensory data streams and write complex
queries and event processing schemes (monitor tasks), from scratch. This largely
requires them, among other things, to be knowledgeable about individual device
specifics, data formats and communication protocols. However, such assumptions are
hard to meet in the face of large-scale systems comprising variety of heterogeneous
Edge devices.

• RC2 – A developer needs a good knowledge about diverse low-level device services
and implications of invoking these atomic services, to be able to establish correct
dependencies between them and compose them into admissible control sequences
(control tasks).

• RC3 – The IoT Cloud applications execute in very dynamic environments and interact
with hundreds or thousands of physical entities. Therefore, monitoring and controlling
these entities in a scalable manner is another challenge for developers of IoT Cloud
applications, because these applications need to be able to dynamically identify the
scope of their actions, depending on the task-at-hand.

• RC4 – Finally, due to dynamicity of environments, diversity of devices, ad hoc require-
ments of diverse stakeholders, and hardware or network failures, developing security-,
privacy-, safety-, cost- and quality-aware IoT Cloud applications is a very challenging
task without adequate runtime mechanisms to support it.

3.2 Design Requirements and Overview of PatRICIA
Framework

3.2.1 Main Design Requirements

Contemporary cloud techniques, e.g., virtualization, elastic scaling, resource and tenant
management play a crucial role in highly dynamic and heterogeneous IoT systems.
Although, they enable us to virtualize and connect vast amounts of devices, provide a
unified view on IoT infrastructure and offer theoretically unlimited processing and storage
capabilities, we still need to reduce the complexity and enable scalable development of
IoT applications. Therefore, this requires rethinking the existing application development
and execution models.

The main aim of the PatRICIA (PRogramming Intent-based Cloud-scale IoT
Applications) framework is to define an ecosystem, which provides an end-to-end solution
for IoT Cloud applications. This includes providing a programming model and develop-
ment tools, as well as cloud-based application execution platform. The core idea of the

32

3.2. Design Requirements and Overview of PatRICIA Framework

PatRICIA is to enable development of value-added IoT applications, which are executed
and provisioned on cloud platforms but leverage data from different sensor devices and
enable timely propagation of decisions, crucial for business operation, to the Edge of the
infrastructure.

Programming IoT Cloud applications requires different skills and backgrounds, e.g.,
working with low-level hardware, developing enterprise applications and having knowledge
about the domain of interest. Therefore, our framework needs to provide different logical
views on the development process and enable different developer roles to coherently
encapsulate their expertise and focus their development effort. We noticed that most of
the tasks performed by the applications are generic, in the sense, they capture knowledge
and industrial best practices in the domain. Therefore, they need to be represented as
generic components that can be easily reused. To enable working with these generic tasks
in a cloud-scale manner, we need to enable automatic task instantiation for developer-
defined scopes, e.g., a golf course or the fleet. To keep our programming model stable
and easily extensible, we need to enable late runtime binding of the tasks, i.e., decouple
task representation from the implementation of its behavior.

Different runtime mechanisms are needed to enable the applications to adapt to
changes in quality and costs but also to guarantee safety and security for both users
and devices. Further, we need to provide code-distribution techniques, which will allow
IoT Cloud applications to utilize the edge of the infrastructure (e.g., gateways) as
the additional resources, e.g., processing and storage. Application deployment and
infrastructure administration need to become fully automated, due to the scale of IoT
systems and because domain-specific verticals are increasingly becoming refactored,
enabling development of cross-domain IoT Cloud applications. Therefore, the major
requirements for our framework include:

1. Providing a programming model to raise the level of programming abstraction by
decoupling domain knowledge implementation from its representation and usage.

2. Providing a cloud-based application execution environment and the supporting
runtime mechanisms.

3. Providing development tools, such as testing and staging environments to fully
support application development lifecycle.

4. Policy-based automation to enable development of security-, privacy-, safety-, cost-
and quality-aware applications.

In this chapter, we focus primarily on the requirements 1 and 2 and present the design
and evaluation of the components to support them.

33

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

Runtime systems

RuntimeContainer

API support mechanisms

configure

Programming model

Runtime
container

API operators

Domain library

Domain library

Runtime container

Programming elements

Device APIs and communication protocols (CoAP, sMAP, DPWS, WebServices, RESTfull services,
Middleware specific, etc.)

Domain-specific knowledge (e.g. Vehicle tracking)
(domain drivers)

Programming model

Controlling process

Monitoring task
(query)

A
p

p
lic

at
io

n

pollnotify send

MonitoringCompponent

Domain expertApplication developer

Monitoring task

(a) Platform’s architecture

Component registry service

Realational and nosql databases

IntentEventTemplate

Sync/async event

Done/Failed

Component selector service

Application

MonitoringComponent

ControllingComponent

(b) Domain library

Component management service

Domain expert

ControllingComponent

Application developer

Component
registry

Messaging infrastructure

registry query

Request instance instantiate

Configuration (mapping) Service

Metadata
Filters: Specified as a set of supported
EventTemplates
Mapping conditions: Supported vehicle (device) family

// Specifies code executed on creation of instance
onCreate(Configuration conf ...) { … }

// Runs data streams processing logic (processing graph)
onStart() { … }

// Called on instance passivation
onStop() { … }

Lifecycle hooks

// Used to notify consumer application
onProcessingFinished(Event e) { … }

Communication interface

Metadata

Filters: Specified as a set of supported
Intents
Mapping conditions: Supported vehicle (device) family
Configuration: Default device service parameters

// Specifies code executed on creation of component
onCreate(Configuration conf ...) { … }

// Runs a sequence of actuation steps
onProcessIntent() { … }

// Called on instance passivation
onStop() { … }

Lifecycle hooks

// Used to notify application about the result of actuation
onActuationComplete() { … }

Communication interface

instantiate

Runtime container

Programming elements

Device APIs and communication protocols (CoAP, sMAP, DPWS, WebServices, RESTfull
services, Middleware specific, etc.)

pollnotify send

IntentEventTemplate

Sync/async event

Done/Failed

Component selector service

Application

MonitoringComponent

ControllingComponent

Domain expert

Application developer

Component
registry

Messaging infrastructure

query

Request instance manges

manages

Component
Registry
Service

Component
management

service

Domain
library

NoSql
database

Runtime
container

Programming elements

Device APIs and communication protocols (CoAP, sMAP,
DPWS, WS, REST,etc.)

pollnotify send

IntentEventTemplate

Sync/async event

Done/Failed

Component selector service

Application

MonitoringComponent

ControllingComponent

Domain
expert

Application developer

Component
registry

Messaging infrastructure

query

Request instance manges

manages

Component
Registry
Service

Component
management

service

Domain
library

NoSql
database

App.
management

User
manager

C
o

n
ta

in
er

co

n
fi

gu
ra

ti
o

n
 a

n
d

m

an
ag

e
m

e
n

t

Core services

Persistence layer
Device-services layer

App.
performance

monitor

Policy
management

Security

C
o

n
n

ec
to

r

C
o

n
n

ec
to

r

C
o

n
n

ec
to

r

Service mapping

Device manager Service discovery Logger Device monitor

Container
monitor

Development tools

Testing
environment

Profiling

Distrib. and
licensing

Data quality
assurance

Device communication layer

Sync/async event

Done/Failed/BufferedComponentSelector

MonitoringComponent

ControllingComponent

Domain
expert

Application
developer

Compon-
ent

registry

Messaging service

query

request instance

inst.

Registry service

ComponentManager

NoSql
database

A
pp

lic
at

io
n

M

an
ag

e
r

C
o

nt
ai

n
e

r
M

an
a

ge
r

Core services

Persistence layer

Device-services layer

Policy
management

Security

C
o

n
n

ec
to

r

Service mappingDevice manager Service discovery LoggerDevice monitor

ExecutionManager

Development tools

Testing
environment

Profiling

Licensing

Offline data
analysis

Safety &
Security

C
o

n
n

ec
to

r

C
o

n
n

ec
to

r

Business
Process

Modeling

1:1

Headers

1:1

Data

Intent

Id = “1”

Data management

CCTV

IDE

Programming elements

pollnotify send

Application

Intent
configure

delimit

define

ScopeManager

TaskScope

C
o

n
n

e
ct

o
r

instantiate

TransactionManger

SmartPhone

C
o

n
n

ec
to

r

Runtime container

API operators

Domain library

Device communication layer

sync/async
event

done/failed/
buffered

Component
Selector

MonitorTask

ControlTask
Domain
expert

Task
reg.

Messaging service

query

request
instance

Registry
service

Component
Manager

NoSql
DB

Application
Manager

Container
Manager

Core services

Persistence
layer

Device-services layer

Po
lic

y
m

an
ag

em
en

t

C
o

nn
e

ct

Service
mapping

Device
manager

Service
discovery

Execution
Manager

Development
tools

Testing

Licensing

Safety &
Security

Data
management

CCTV

IDE

Application

Intent

define

ScopeManager

instantiate

Transaction
Manger

SmartP
hone

Application
developer

C
o

nn
e

ct

C
o

n
n

ec
t

C
o

n
n

ec
t

Application
layer

External
Service

Entity
layer

C
lo

u
d

 p
la

tf
o

rm

Virtualization
(service) layer Device

Service

Network layer (IP-based, ZigBee, 6LoWPAN, etc.)

Physical layer

Device

Service

Sensor Actuator
Complex
Device

Monitor task

Device
Service

External
Service

Sensor Sensor

Device
Service

Device
Service

Device
ServiceDevice

Service

Complex
Device

Actuator

Task scope
Vehicle 13 Vehicle 7

Vehicle 58

Task scope
Vehicle 13 Vehicle 7

Vehicle 58

Application
business

logic

Control task

transaction

carcar

Task scope

configure
Prog. model

API operators

Domain library

Device communication layer

sync/async
event

done/failed/
buffered

Task
Selector

MonitorTask

ControlTask

Domain
expertTask

reg.

C
om

m
u

ni
ca

ti
o

n
In

fr
as

tr
u

ct
ur

e

Library
Manager

Task
Manager

NoSQL
DB

A
pp

lic
at

io
n

M
an

ag
er

C
o

n
ta

in
e

r
M

a
na

ge
r

CoreServices

Persistence
layer

Device-services layer

Service
Mapping

Device
Manager

Service
Discovery

Execution
Manager

D
ev

e
lo

p
m

en
t

su
p

p
o

rt
 la

y
er

Data
management

Application

Intent

define

ScopeManager

Transaction
Manger

SmartPhone

Car

Scope
Application
developer

MonitorTask

MonitorTask

ControlTask

D
at

a
&

 d
ev

ic
e

in
te

gr
. l

a
ye

r
Cl

o
u

d
 r

u
n

ti
m

e
sy

st
em

s
la

ye
r

Task
Registry

Task
Registry

Relation. DB

P
h

ys
ic

al
la

ye
r

sync/async
event

done/failed/
buffered

C

CCTV

CCTV Smartphone

NoSQL DB

Figure 3.2: PatRICIA architecture overview.

3.2.2 PatRICIA Architecture and Multiple Logical Views on
Application Development Process

Figure 3.2 gives an overview of PatRICIA’s architecture. Our framework architecture is
based on SOA design principles which enable flexible, adaptable and evolvable architecture.
The modularity of the framework enables extending the current prototype with future
concepts and allows flexible configuring and scaling of individual components atop cloud
infrastructure.

Development support layer contains development tools, which are needed to support

34

3.2. Design Requirements and Overview of PatRICIA Framework

application development lifecycle and enable provisioning of IoT Cloud applications.
The programming model is the most important component of this layer as it enables
development of IoT Cloud applications. ApplicationManager is responsible for application
configuration, deployment and licensing. Also, this layer integrates a testing environment
for the IoT Cloud applications.

Cloud runtime systems layer includes the RuntimeContainer, which implements
supporting mechanisms for our programming model and provides an execution environ-
ment for the applications. The ExecutionManager is responsible to monitor applications
and the RuntimeContainer, and provide mechanisms to elastically scale them during
runtime. The CoreServices contain a variety of runtime mechanisms and services which
are needed by the PatRICIA framework. For example, the ContainerManager is used
to configure the RuntimeContainer and deploy different policies. Further, the Policy
management component provides mechanisms to specify and enforce these policies, e.g.,
costs, privacy, security and safety. The TaskRegistry is used to store task templates and
their metadata. The Data management component provides storage, manipulation and
analytics mechanisms for the sensory data. It also provides a data quality assurance
service, accessible to the runtime container to perform data quality checks.

Data and device integration layer includes Device-services layer, which is the IoT
device virtualization and management layer of the PatRICIA framework and it underpins
monitor and control tasks. It contains Device communication layer that implements
different connectors, which encapsulate device-specific APIs, communication protocol and
enable device-cloud connectivity. The ServiceMapping component wraps a physical device
and exposes it as a service which defines push, poll, pub and sub methods, providing
a communication interface with the devices. DeviceManager is responsible for device
management, e.g., to detect newly connected devices. The ServiceDiscovery component
enables discovering and registering device-services. Finally, Persistence layer contains
NoSQL and relational database, which are used to store the sensory data and other
information, needed by the PatRICIA framework.

At this point it is important to note that the PatRICIA framework defines two
logical views on the development process of IoT Cloud applications. Conceptually, it
provides support for both domain expert and high-level application developer roles. In
the rest of this chapter, however, we mostly focus on the support provided to high-level
application developers (Figure 3.2 top-left), by introducing a programming model, a
cloud-based application execution environment and prototype implementation of a vehicle
management domain library. Domain experts (Figure 3.2 right-hand side) use Data- and
Control-Points (an extension of the PatRICIA framework presented in Chapter 4) to
define a domain model and common monitor and control tasks, which form the domain
libraries.

35

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

3.3 Intent-based Programing Model for IoT Cloud
Applications

3.3.1 Main Programming Constructs and Operators

Our programming model defines constructs and operators, used by developers, to write
IoT Cloud applications. They enable the developers to work with predefined control and
monitor tasks that are provided in the domain library. A control task is any permissible
sequence of actuating steps which can be used to control physical devices. Further, a
monitor task includes processing, correlation and analysis of sensory data streams to
provide meaningful information about the state changes of the underlying environment.
The domain libraries are discussed in more detail in Chapter 4.

At application level, PatRICIA provides explicit representation of these tasks via
Intents, i.e., developers write Intents to configure and invoke the tasks. When a task is
invoked, it is automatically instantiated for the supplied IntentScope. Developers use
IntentScope to delimit the range of an Intent. For example, a developer might want to
code the expression: "stop all vehicles on hole 1". In this case, "stop" is the desired Intent,
which needs to be applied on a IntentScope that encompasses all vehicles with the location
property "hole 1". In our programming model Intent and IntentScope are first-class
entities. This means that they can be stored in variables, used in expressions and passed
as parameters to functions. Generally, they enable developers to work with common,
predefined concepts, without worrying about their implementation in the underlying
environment.

IntentScope

IntentScope is an abstraction, which represents a group of physical entities (e.g., vehicles),
which share some common properties, e.g., context. More precisely, it is a set of
software entities on the cloud platform, which virtualize corresponding physical entities.
Thus, IntentScopes are determined on the cloud platform, but they enable developers to
dynamically delimit physical entities on which an Intent will have an effect. In reality
there are infinitely many scopes, which can be defined by the applications and can
include hundreds of diverse, geographically distributed vehicles. Therefore, we provide
mechanisms to dynamically define and work with IntentScopes on the cloud platform.

To define an IntentScope developers specify properties, which need to be satisfied by
the physical entities to be included in the scope. For example, IntentScopes can be defined
based on a behavior, e.g., "all vehicles exceeding speed limit", a state ("all vehicles with
low battery") or a static feature ("all vehicles with a price over ..."). To enable IntentScope
bootstrapping, we provide a special type of IntentScope, which is called GlobalScope. It
defines the maximal scope for an application and usually contains all physical entities
administered by a stakeholder at the given time. Therefore, it is reasonable to assume that
the GlobalScope is slow-changing over time and it can be configured by a user, e.g., a golf
course manager. In PatRICIA the GlobalScope is represented as a global variable, which

36

3.3. Intent-based Programing Model for IoT Cloud Applications

can be directly referenced by an application. Contrary, the minimal IntentScope, which
can be referenced by an application is a single entity. Our programming model allows
IntentScopes to be defined explicitly and implicitly. To explicitly define an IntentScope, a
developer can manually add the entities to the scope by specifying their Ids. Implicit
definition of the scope is usually performed by recursively pruning the GobalScope and/or
combining two or more IntentScopes.

Formally, we use the well-known set theory to define IntentScope as a finite, countable
set of entities (set elements). The GlobalScope represents the universal set, denoted as
Smax, therefore, ∀S(S ⊆ Smax), where S is an IntentScope, must hold. Further, for each
entity E in the system general membership relation ∀E(E ∈ S|S ⊆ Smax), must hold.
The Smin is a unit set which contains a single entity. Further, empty IntentScope (∅) is
not defined in our programming model, thus applying an Intent on it results in an error.
Finally, a necessary condition for an IntentScope to be valid is: IntentScope is valid iff it
is a set S, such that S ⊆ Smax ∧ S 6= ∅ holds. Equation 3.1 to 3.7 show how to define or
refine an IntentScope.

S = Smin (3.1)
S = Smax (3.2)
S = ⊆cond A, where A is a valid IntentScope (3.3)
S = A ∪B, where A and B are valid IntentScopes (3.4)
S = A ∩B, where A and B are valid IntentScopes (3.5)
S = A \B, where A and B are valid IntentScopes (3.6)

(3.7)

The most interesting operator is ⊆cond A. It is used to find a subset (S) of a set A,
which satisfies some condition, i.e., E ∈ S | E ∈ A ∧ cond(E) = True. In this context
cond can be True or False depending if an entity satisfies specified property, e.g., if it
displays "EnergyFault". To define the cond developers can use any monitor task defined
in our domain library and need to provide a parametrized condition expression, e.g, "En-
ergyFault==True". Further, we provide the common operations on sets, i.e., ∪,∩ and \,
which have their traditional meaning.

By introducing IntentSopes at the application level, we enable development of IoT
Cloud applications in a scalable manner by shielding the developers from directly refer-
encing the vast number of diverse physical entities and enabling them to dynamically
delimit the range of Intents. Therefore, IntentScopes address the RC3.

Intent

Intent is a data structure that describes a specific task which can be performed in
a physical environment. In reality, Intents are processed and executed on the cloud
platform, but enable monitoring and controlling of the physical environments. Based on
the information contained in an Intent, a suitable task is dynamically selected, instantiated

37

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

Prog. mod. constructs and API (partly)

Prog. Mod. Constructs and API

«abstract»Component Application

0..1 *

MonitoringTask
ControlProcess Policy

Event

produces

Intent

supports

Rule

0..1

*

EnvironmentalVariable
0..1

*

SyncOperator

Poll operation

Binding

Monitor

has

ServiceDescription

-dependency 0..*

0..*

Parameter

has

mappedTo

Query

Binding

has

«abstract»Component

MonitoringTask
ControlTask

Event

produces
Intent

supports

EventTemplate

supports

Config

0..*

0..*

ProcessingGraph

DataNode

ProcessingNode

-End1 1

-End2 *

-End11
-End2*

0..*

0..*

Filter0..1

*

MappingCondition

0..*

0..*

ActuationProcess

Or

Sequence

-End1 1

-End2 *

-End11
-End2*

0..*

0..*

Join

-End1

1

-End2 *

Intent Header

Permissions

1:1

Data

Costs ContextPayload

Config. Params.

Attribute

Static Dynamic

1:n
1:n

Id

has

DeviceId

DeviceFamily

QoS

EventTemplate Header Permissions1:1

Payload Config. Parameters Attribute

1:n 1:nId

has

DeviceIdDeviceFamily

DataQuality

Event

describes

+onCreate()
+onStart()
+onStop()

«abstract»Component

supports

0..*

1

0..1
*

0..*
1

Filter

Mapping

Configuration

EventTemplate

Event

Intent

provides

supports

Primitive

send

notify poll

+onCreate(in c : Context)
+onAppStart()
+onAppExit()

«abstract»Application

use

«datatype»
Context

+onProcDone(in e : Event)

MonitoringTask

+onActuationDone()

ControlTask

Container managed

define

define

receive

+onCreate(in c : Config)
+onStart()
+onStop()

«abstract»Component

0..*

1

0..1
*

0..*

1

Filter

Mapping

Config

Event

Intent

provides Operator

sendnotify poll

+onCreate(in c : Context)
+onAppStart()
+onAppExit()

«abstract»Application

use

+onProcessingDone(in e : Event)

MonitorTask

+onActuationDone()

ControlTask

define

receive

Container managed components

supports

supports

Intent

Data

Costs Constraints PayloadConfig. Params.

Attribute

1:n1:n

Idhas

Quality

Headers provide basic info for
container to process intent. They
are used to route messages to
devices, determine static scope

Security

EventTemplate Header Name1:1

Payload

Config. Parameters

Attribute

1:n
1:n

Id has

Value

Quality

Event

describes

Privacy

Costs

Header

1:1

Name Value

E.g. context based
E.g. scope

Intent

1:n

1:n

Id

has 1:n

IntentScope
set

define

delimit

Attribute

Config. Param.

Payload

Security

Cost

Quality

Privacy

Value
Key

Header

Attribute

Data

ComponentInstance1

MonitorTask

MonitorTask

Interface3

appliedOn

IntentScope

*

1..*

1..*

0..*

0..*

Behavior

Context

Static feature

IntentScope

n:n

Physical entity

Property

requires

has

Behavior

Context

Static feature

Physical entity

Task

represents

Figure 3.3: Intent structure.

and executed on the cloud platform. Our framework translates the Intent into a sequence
of actuation or data processing steps and maps them on the underlying physical devices
(cf. Section 3.3.3). Depending on the task’s nature, we distinguish two different types
of Intents: ControlIntent and MonitorIntent. ControlIntents enable applications to
provision, operate and manage the low-level components. They abstract the underlying
devices and provide a high-level representation of their functionality. MonitorIntents are
used by applications to subscribe for events from the underlying environment and to
obtain and provision devices’ context.

Figure 3.3 shows the Intent structure and its most relevant parts. Each Intent
contains an id, used to correlate invocation response with it or apply additional actions
on it. Additionally, it contains a set of headers, which specify meta information needed
to process the Intent and bind it with a suitable task during the runtime. Among other
things, headers carry intent’s name and a reference to an IntentScope. Further, an
Intent can contain a set of attributes, which provide information, such as costs, quality,
privacy or security requirements. They describe the Intent to more detail and are used
by the runtime to select the best matching task instance in case there are multiple
implementations supporting the Intent. Finally, Intent can contain data, which is used to
configure the tasks and devices or supply additional payload, e.g., a notification message.

To perform an IoT control or to subscribe for relevant events, developers only need to
define and configure Intents. This allow them to communicate to the system what needs
to be done, instead of worrying how the underlying devices will perform the specific task.
Additionally, by supporting dynamic binding of the tasks, we enable development of
loosely coupled applications that are independent of the specific task implementation
and guaranty stability (e.g., backward compatibility) and enable extensibility of our
programming model. Therefore, Intents shield the developers from the complexity of IoT
controls and complex data processing, as well as from the diversity of IoT devices and
physical environments, addressing research challenges RC1& RC2 .

Coupling Intents with IntentScopes

To enable runtime coupling of Intents and IntentScopes we need to fully define a va-
lidity of IntentScopes. First, we examine applicability of an Intent on Smin (see Sec-
tion 3.3.1). Obviously, this comes down to applying the Intent on an entity. Therefore,

38

3.3. Intent-based Programing Model for IoT Cloud Applications

apply(I, Smin) = apply(I, E)|E ∈ Smin, where I is an Intent. Further, apply(I, E) is
true if an Intent can be instantiated for the entity and it is determined by the system at
runtime, by examining the mapping and filter conditions (see Section 3.3.3). Therefore,
we can apply an Intent on Smin iff we can apply it on the entity E. Further, because each
set Sn can be defined as union of unit sets (Si

min), Sn =
⋃n

1 Si
min, we observe applying

an Intent can be defined recursively, i.e, apply(I, Sn) ≡
∧n

1 apply(I, Si
min). Therefore, we

can apply an Intent on an IntentScope if we can apply it on its all subsets.

1 Intent eFault = Intent.newMIntent("EnergyFault");
2 //monitor whole fleet
3 eFault.setScope(IntentScope.getGlobal());
4 notify(energyFault,this);//invoke task
5 //callback function called on event arrival
6 public void onEvent(Event e){//perform some action}

Listing 3.1: Example usage of MonitorIntent and GlobalScope.

1 //Define IntentScope with eFault (defined in the listing above)
2 IntentScope cs = delimit(IntentScope.getGlobal(),Cond.isTrue(eFault));
3 //Define and configure Intent
4 Intent eCons = Intent.newCIntent("ReduceEnergy");
5 eCons.setScope(cs);//set intent scope
6 eCons.set("speed").value("5");
7 eCons.set("RPM").value("1100");
8 send(eCons); //invoke task

Listing 3.2: Example usage of ControlIntent and custom IntentScope.

Now we can show concrete examples of Intent and IntentScope. Listing 3.1 depicts a
MonitorIntent used to monitor energy consumption and detect potential "EnergyFault"
for each vehicle in the fleet. Listing 3.2 gives an example of ControlIntent usage. It
shows how to define an IntentScope for all vehicles displaying "EnergyFault" and sends
"ReduceEnergy" ControlIntent to all of them to set the speed limit to 5km/h and to limit
engine to 1100 rpm.

Intent operators

Since Intent is a passive data structure, we need to provide developers with operators to
work with the Intents. These operators encapsulate mechanisms to select, instantiate and
execute underlying tasks, based on the input Intent. Consequently, instead of dealing with
the individual tasks, a developer is presented with a unified interfaces to communicate
with the runtime systems. To this end, PatRICIA APIs are divided into three categories:
core, system and utility operators. In the following, we only present the core operators,
shown in Listing 3.3.

The send primitive is used to communicate and execute a ControlIntent. It accepts
the ControlIntent as an argument and returns done if the ControlIntent was executed

39

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

1 send(in ci:ControlIntent,out r:Result)

2 notify(in mi:MonitorIntent,in o:CallBackObj)

3 poll(in mi:MonitorIntent,out el:List<Event>)

4 delimit(in s:IntentScope,in c:Cond,out so:IntentScope)

Listing 3.3: Core Intent API operators.

successfully, failed if it is currently impossible to execute the ControlIntent and buffered if
the underlying device is currently busy. When the send operator is invoked the container
first selects suitable tasks to execute the ControlIntent by using intent headers. The task
list is further filtered, based on intent attributes, e.g., quality requirements. Here, we use
best-effort to find the best matching task implementation. Further, the selected task is
configured with Intent’s configuration parameters and a payload. Subsequently, the task
is instantiated for each entity and finally executed (see Section 3.3.3).

The core operators notify and poll are used to support working with the Monitor-
Intents. The operator notify is used by an application to subscribe for events, which are
asynchronously delivered to the application. It requires two arguments: a MonitorIntent,
used to match the appropriate monitor task and a reference to a callback object, which
gets notified when a new instance of an event becomes available. The poll is used to
synchronously check the status of the environment, i.e., it will block application’s main
thread if the required event is currently unavailable. It also requires a MonitorIntent as
an argument and returns an event (or null) as a result.

The delimit operator is API equivalent of ⊆cond, defined in Section 3.3.1. It is used
to define an IntentScope with entities, which satisfy a certain condition. Usually, when
an application wants to determine the IntentScope, it will start by invoking delimit on
the GlobalScope and further refine it by recursively applying this operator and/or using
other operators defined in Section 3.3.1.

3.3.2 Application Structure and Lifecycle

Figure 3.4 depicts a simplified UML diagram showing the structure of our applications.
Application structure is defined via onCreate, onAppStart and onAppExit methods,
which represent hooks used by the runtime to manage applications lifecycle. The
onCreate method represents application entry point. It provides the application with
runtime Context, which provides global information about the application environment.
After initialization completion, the container invokes onAppStart, which contains
application’s business logic and from this point on the application is ready to use
programing model constructs. Finally, before the application ends, the container invokes
onAppExit method. This method is used to perform "house keeping", e.g., close any
open connections and release any direct references to tasks. From developer’s point of
view applications are single-threaded and only the main thread is visible to the developer.

40

3.3. Intent-based Programing Model for IoT Cloud Applications

Therefore, the container takes the responsibility to spawn and manage new threads for
each task in the system. This significantly eases application development and enables
clear separation of application and task lifecycle management.

Task (see Figure 3.4) is defined as an abstract class, which captures general concepts
of MonitorTask/ControlTask and represents the main building block for domain libraries.
The Task contains metadata, used by the container to bind an Intent with the Task
at runtime. Metadata contains Filters, Mappings, Config and Attributes. The Filter
specifies a list of Intents, supported by the task. The Mapping provides information about
supported entity types, e.g., vehicle family. The Config contains a default configuration of
the task. Finally, Attributes provide additional information about the task, e.g., provided
data quality. Further, Tasks also have a lifecycle, which is managed by the runtime
container. To this end, Tasks provide hooks which are used to initialize (onCreate),
activate (onStart) and stop (onStop) the task. The onCreate contains custom code
to initialize a Task. The onStart, contains processing logic or a sequence of actuation
steps. This is the core part of each Task, as it contains the specific domain logic, which
is executed when an Intent invokes the Task. We don’t define how Tasks implement the
domain logic. For example, monitoring tasks can utilize an event processing framework
to implement data processing, but conceptually Tasks are technology independent.
When onStart exits, one of the communication methods (onProcessingDone or
onActuationDone) is invoked in order to send response to the application. Finally,

Programming model constructs and operators (partial)

+onCreate(in c : Config)
+onStart()
+onStop()

«abstract»Component

0..*

1

0..1
*

0..*

1

Filter

Mapping

Config

EventTemplate

Event

Intent

provides

Primitive

send

notify poll

+onCreate(in c : Context)
+onAppStart()
+onAppExit()

«abstract»Application

use

+onProcDone(in e : Event)

MonitoringTask

+onActuationDone()

ControlTask

define

define
receive

Prog. mod. constructs and API (partly)

Container managed components

supports

supports

+onCreate(in c : Config)
+onStart()
+onStop()

«abstract»Task

Filter

Mapping

Config

Event

Intent

Operator

notifysend poll

+onCreate(in c : Context)
+onAppStart()
+onAppExit()

«abstract»Application

uses

+onProcessingDone(in e : Event)

MonitorTask

+onActuationDone()

ControlTask

defines

receives

Container managed components

supports

supports IntentScope
appliedOn

defines

delimit

Attribute

*

1..*

1..*

0..*

0..* provides

Figure 3.4: Simplified UML diagram of application structure.

41

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

when a Task instance is no longer needed the container invokes the onStop method.

3.3.3 Runtime Support

The RuntimeContainer (see Figure 3.2) provides an execution environment for the IoT
Cloud applications. To this end, it implements mechanisms to manage Tasks and their
lifecycle and to dynamically bind Intents with Tasks. Further, it provides interfaces
to register new Tasks and mediates the communication between the applications and
domain libraries.

Intent selection, instantiation and execution

When an application submits a new Intent, the RuntimeContainer first routes it to the
TaskSelector, which matches intent headers with Task’s filters and mappings to find Tasks
which provide the Intent implementation. Afterwards, the TaskSelector reads the required
(Intent) and promised (Task) attributes and compares them to find the best matching task.
Attributes are represented as feature vectors and a multi-dimensional utility function,
based on the Hamming distance, is used to perform the matching. Further, TaskSelector
requests a Task instance, by providing its description to the ScopeManager, which checks
the validity of the coupling and if it is valid, forwards it to the TaskManager or otherwise
marks the Intent as failed. The TaskManager instantiates the Task via reflections and
configures it with intent’s data. Finally, it triggers the onCreate method on all task
instances, to execute any custom initialization code and onStart to trigger the execution
of the task logic. In Chapter 4, we provide more detailed information on tasks creation
and their runtime management.

Intent delivery mechanism

Intents are used to invoke Tasks. They are processed and executed on the cloud platform,
but interact with underlying devices. To perform an Intent, PatRICIA instantiates the
corresponding Task for an entity. It is the responsibility of Tasks to map the Intent
to the low-level device services. To this end, in the current prototype they utilize
Devices-services layer and implement required monitor/control logic.

The CommunicationInfrastructure (cf. Figure 3.2) is a communication backbone of
our RuntimeContainer. It is used to transport Intents and events between applications
and the Tasks. To enable loose coupling between the applications and the domain library
tasks it follows pub/sub paradigm. Furthermore, because Intents contain information
needed to process and route them, the CommunicationInfrastructure must be able to
understand Intent headers. Therefore, the communication is performed via a partial
content-based pub/sub model.

For example, currently our domain library provides implementations of Tasks per
vehicle family. Each vehicle has a unique Id, which is used to define a messaging topic.
All the communication between our library’s Tasks and the vehicle is performed via

42

3.4. Evaluation & Prototype Implementation

this topic. The ServiceMapping component provides the communication interface and
Device communication layer provides the required connector (a message broker) to
communicate with the physical environment. Naturally, as our Tasks are technology
independent, domain libraries can use other mechanisms (connectors) to map the Tasks
on the underlying devices.

Runtime coupling of Intents with IntentScopes

ScopeManager implements the IntentScope API. It defines a global reference to the
GlobalScope and implements operators to work with scopes. GlobalScope is a singleton,
which is initialized with all devices found in the tenant’s database. For storing device
meta information PatRICIA uses relational databases in the Persistence layer. To
determine temporary changes in the GlobalScope, e.g., devices gone offline, ScopeManager
communicates with the DeviceManager, which implements the Last Will and Testament
(LWT) pattern to detect device failure and adapt the GlobalScope accordingly.

To support the delimit operator ScopeManager provides functionality to evalu-
ate the condition expressions and initiates selection, instantiation and execution of a
MonitorIntent, to obtain the value of the specified property (see Section 3.3.1). Finally,
it provides runtime checks to apply an Intent on IntentScope. To do this, when an
IntentScope is added to an Intent, the ScopeManager resolves the scope and checks if
there are suitable Tasks to support this Intent for each entity in the scope by comparing
task filters and mappings, with intent headers (name, Id, entities types, etc.).

3.4 Evaluation & Prototype Implementation

3.4.1 Prototype Implementation

The PatRICIA framework is implemented in the Java programming language and it is
based on WSO2 Stratos[155], which is an open source, full-fledged PaaS solution stack
that provides many customizable services, such as identity management, monitoring,
logging and multi-tenancy support, necessary for the PatRICIA implementation. The
Persistence layer relies on a MySQL database to store relational data, e.g., device meta
information, and key/value storage (Apache Cassandra [4]) for storing NoSQL sensory
data. The PatRICIA chooses how to store the data, depending on its nature. For
example, user data, device meta information, etc. is relational and usually requires
immediate consistency, thus relational database is used. Contrary, our sensory data
is write-intensive and eventual consistency is sufficient most of the times, because
the analysis is mostly performed off-line, e.g., by submitting map/reduce jobs. The
CommunicationInfrastructure in our RuntimeContainer is based on Mosquitto MQTT-
Broker1 and it is used to mediate the communication between the applications and domain
library Tasks. This allows PatRICIA to leverage existing, proven technologies, which
provide content-based pub/sub communication between the components, decoupling

1http://mosquitto.org

43

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

them and making our programming model higly extensible. The communication is
topic-based and the TaskSelector uses message selectors to route Intents/events between
the applications and the Tasks. We use message properties to model Intent headers and
realize the content-based communication. Currently, at the application level we support
XML and JSON (attribute/value) representation of the Intents. To enable IntentScope
bootstrapping ScopeManager defines a global singleton reference to the GlobalScope. It is
initialized by querying MySQL database and updated when the DeviceManager receives
an update from the broker.

Prototype implementation of the Domain library contains a set of Tasks, which
support Intents used to develop our applications. The task implementations are out
of scope of this chapter and they are presented in Chapter 4. Library tasks rely on
the Device communication layer to communicate with the vehicles. It contains its own
message broker and connectors (one per vehicle family) to mediate the communication.
Library tasks communicate with the vehicles over MQTT topic, identified via the vehicle
Id. MQTT [114] is a lightweight M2M pub/sub messaging transport, which is a standard
for communication with the IoT devices. To implement the connectors we used Protocol
Buffers [58]. The communication protocol with the vehicles defines a set of vehicle control
and status messages, which are marshaled and transported between the vehicles and
the applications by the Device-services layer. To this end, each vehicle gateway hosts a
MQTT client, which translates the protocol messages for a specific task.

3.4.2 Evaluation

Example application implementation

We now show how PatRICIA’s programming model is used to implement the real-world
IoT Cloud application (see Section 3.1) and use traditional programming model evaluation
criteria to validate its feasibility. The complete source code of the application is shown
in Listing 3.4. Considering readability and simplicity, we notice that a developer uses
intuitive high-level abstractions (Intent and IntentScope) to write IoT applications, instead
of dealing with low-level device-services. Further PatRICIA also provides improvements
regarding reusability and more efficient development. For example, a developer can
easily code monitoring of specific fleet vehicles, which fulfill some criteria (lines 7-11).
Although, we limit the expressiveness to a certain extent, a developer can still easily and
intuitively express many common behaviors of could-scale IoT applications (lines 16-19).
Finally, extensibility of our programming model is guaranteed by deferring the Intent-Task
binding to the runtime. This enables adding new concepts (Intents and Tasks) to the
model without modifying the existing ones and at the same time guaranties the backward
compatibility of the applications. Therefore, PatRICIA reduces the complexity and enables
developers to cope with the diversity and the scale of the IoT Cloud applications.

44

3.4. Evaluation & Prototype Implementation

1 public class ExampleApplication extends Application{
2 private Container cont;
3 public void onCreate(Context c){
4 this.cont = c.getContainerRef();
5 }
6 public void onAppStart(){
7 IntentScope s = cont.delimit(IntentScope.getGlobal(),
8 Cond.greaterThan("price", "5000"));
9 Intent eFault = Intent.newMIntent("EnergyFault");

10 eFault.setScope(s);
11 cont.notify(eFault, this);//sub. to event
12 IntentScope controlS = cont.delimit(s,Cond.isTrue(eFault));
13 performIntent(controlS);
14 }
15 private void performIntent(IntentScope ts){
16 //define Intent and use default configuration
17 Intent eCons = Intent.newCIntent("ReduceEnergy");
18 eCons.setScope(ts);//set task scope
19 cont.send(eCons); //send to all vehicles in ts
20 }
21 public void onEvent(Event e){
22 performIntent(IntentScope.create(e.getEntityId()));
23 }
24 public void onAppExit(){//nothing to do here}
25 }

Listing 3.4: Example IoT Cloud application.

Experiment results

In order to evaluate how our PatRICIA framework behaves in a large-scale setup (hundreds
of Edge devices), we created a virtualized IoT Cloud testbed based on CoreOS2. In our
testbed we use Docker containers to virtualize and mimic physical gateways in the cloud.
These containers are based on a snapshot of a real-world gateway, developed by our
industry partners. Additionally, we have implemented a simple MonitorTask that relies
on simulated (real-life replayed) sensory readings to perform rudimentary data processing
in the virtualized gateways and deliver the events to a cloud-based application.

For the subsequent experiments we deployed a CoreOS cluster on our local OpenStack
cloud. The cluster consists of 4 CoreOS 444.4.0 VMs (with 4 VCPUs and 7GB of RAM),
each running approximately 150 Docker containers. The MonitorTask is preinstalled in
the containers. The PatRICIA framework and the cloud-based application are deployed
on an Ubuntu 14.04 VM (with 2VCPUs and 3GB of RAM).

Figure 3.5 show the performance of PatRICIA’s intent delivery mechanism (cf. Sec-
tion 3.3.3), based on 5 repetitions of the experiment. It is worth mentioning that the
execution times shown in the figure represent the full lifecycle of an Intent execution, i.e.,
Intent, IntentScope and MonitorTask instantiation, Intent delivery to the devices(tasks),
as well as execution time of the task and results delivery. Figure 3.5 illustrates a scatter
plot of the individual experiment runs for different sizes of the IntentScope, which ranged

2http://coreos.com/

45

3. A High-Level Programming Model for Cloud-centric IoT Cloud Applications

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500 550

Ti
m

e
[s

]

IntentScope Size [No. of devices]

Intent Delivery & Task Execution - Scatter Plot

 Trend line

Figure 3.5: Intent delivery time for different IntentScope sizes.

from 50 to 500 gateways. The main purpose of the experiments was to show the scalability
of our framework’s core runtime services. To this end, the figure also plots a trend line,
extrapolated from the individual test runs, based on linear regression. We observe that
the intent matching algorithm and the delivery mechanism scale linearly with the size of
IntentScopes, which indicates eventually consistent execution of the Intents for relatively
large number of devices. Finally, it is important to note that the actual duration of Intent
execution largely depends on the nature of the underlying task (i.e., problem-at-hand)
and the overhead of PatRICIA’s runtime was statistically negligible.

3.5 Conclusion
In this chapter, we introduced the PatRICIA framework for programming IoT Cloud
applications. We discussed how our framework offers two logical views on the develop-
ment process of IoT Cloud applications, in order to provide programming support for
multiple developer roles. In this chapter we mainly focused on the development support
provided to high-level application developers. To this end, we presented PatRICIA’s
main programming abstractions: Intents and IntentScopes, together with a set of runtime
mechanisms to support such high-level developers in dealing with the complexity and
diversity of IoT Cloud systems, as well as to enable development of IoT applications in a
cloud-scale manner. The set of proposed concepts is not exhaustive, but is sufficient to
express many common behaviors of IoT Cloud applications. However, this additional
level of abstraction comes at cost and as discussed PatRICIA’s programming model
trades flexibility for a scalable, more intuitive and efficient programming of the IoT Cloud
applications. Since this behavior might be a limitation for some application develop-
ers (e.g, domain experts), in Chapter 4, we introduce an extension to the PatRICIA
framework that offers more flexibility.

46

CHAPTER 4
A Programming Model for

Resource-constrained IoT Cloud
Edge Devices

In Chapter 3, we introduced a high-level programming model for IoT Cloud applications.
We discussed the suitability of PatRICIA programming model for developers of cloud-
centric application business logic, but also its limitations in terms of reduced flexibility
and expressiveness. Moreover, we mentioned that PatRICIA offers two distinct views
on the application development process. However, in Chapter 3 we mostly focused on
two main programming abstractions (Intents and IntentScopes), tacitly assuming that
the Intent counterparts, i.e., monitor and control tasks are readily available. Therefore,
the main motivation for the work presented in this chapter is to provide a suitable
development support (withstanding the previous limitations, but providing a suitable
level of abstraction) for domain expert developers, who are mostly concerned with
developing light-weight, low-level applications and components that execute in Edge
devices. We refer to such components monitor and control tasks.

Recent advances in Edge computing have resulted in numerous approaches in terms
of programming frameworks and middleware for developing application business logic
suitable for resource-constrained IoT devices such as sensory gateways. However, such
approaches mainly focus on hiding the heterogeneity of data sources (e.g., sensors) [28, 1,
41, 66, 69, 131], defining data processing schemes [28, 131], and dealing with mobility [28,
66, 41], privacy [69] and scalability [66, 131]. In spite these and other approaches that
address similar issues, e.g., on communication protocols level [55] or by utilizing SOA
principles [39, 62], enabling virtually exclusive access to the underlying devices, e.g.,
field bus sensors and supporting flexible application-specific customizations for such
devices are still not fully addressed in the literature. This inherently prevents utilizing
the Edge devices as generic execution environments that can be potentially shared by

47

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

multiple IoT Cloud applications. Still in large-scale IoT Cloud systems, leveraging the
computational resources of the Edge devices is especially important, as their currently
untapped processing capabilities can be used to optimize IoT Cloud applications by
making edge devices first-class execution environments, i.e., by moving parts of application
logic away from cloud platforms towards the edge of IoT Cloud infrastructure.

In this chapter we introduce Data- and Control Points programming model – an
extension of the PatRICIA framework (cf. Chapter 3) that provides a set of programming
abstractions for developing common monitor and control tasks. The Data- and Control
Points represent low-level channels to the sensors/actuators in an abstract manner and
mediate the communication with the connected devices, e.g., digital, serial or IP-based.
The supporting framework provides mechanisms which act as multiplexers of the data
and control channels, thus enabling the device services to have their own view of and
define custom configurations for such channels, e.g., sensor poll rates, data units or data
stream filters. By providing an illusion of an exclusive access to the underlying devices,
our framework supports execution of multiple applications within a single Edge device.

The remainder of the chapter is structured as follows: In Section 4.1 we outline the
framework architecture; Section 4.2 introduces the Data and Control Points and presents
the main concepts of the programming model; In Section 4.3, we describe the main
runtime mechanisms of the edge-devices framework. Finally, Section 4.5 concludes this
chapter.

4.1 Overview of DRACO Framework
The main aim of DRACO (Data And Control pOints) framework is to facilitate the
development of common monitor and control tasks in IoT Cloud systems. These task are
the main building blocks of edge-device applications/services and the main constituents
of reusable domain libraries. Generally, such libraries form the cornerstone for building
higher-level cloud-centric IoT Cloud applications. To support domain experts in develop-
ing such domain libraries, comprising reusable monitor and control tasks, our framework
provides a programming model and a set of runtime mechanisms, which constitute Edge
device runtime. To this end, DRACO offers support to allow for virtually exclusive access
to the underlying devices and enables flexible customizations of such devices. This means
that the applications can have their “own view” of and precisely define the behavior of
low-level devices. In Section 4.2, we describe DRACO’s application-level support in more
detail.

Figure 4.1 shows a high-level overview of the DRACO framework. In general, our
framework follows a layered architecture and runs inside resource constrained Edge device,
enabling local execution of device-level applications. In a broader sense it acts as an
interlayer between low-level devices such as sensors and actuators and the high-level
services which are executed on cloud platforms. The main layers of DRACO framework
include: i) Edge device middleware layer, ii) Application layer and iii) Cloud connectivity
layer. In the following we briefly describe each of these layers.

48

4.1. Overview of DRACO Framework

Edge device

Physical devices and field bus layer

Cloud platform

Communication Protocols Library

Applications Runtime Container

Runtime Services

Data and Control Points

Drivers and Com. Protocols

Cl
ou

d
co
nn

ec
tiv
ity

la
ye
r

Ap
pl
ic
at
io
n
la
ye
r

Ed
ge

 d
ev
ic
e

m
id
dl
ew

ar
e
la
ye
r Configuration

Models

File system

NoSQL database

Co
nn

ec
tiv

ity
 M

an
ag
er

Di
re
ct
 p
in

N
et
w
or
k

Fi
el
d
bu

s

Co
m
m
un

ic
at
io
n

Bu
s

W
id
e
Ar
ea

ne

tw
or
k

Ce
llu
la
r

ne
tw

or
k

Figure 4.1: DRACO high-level architecture overview.

Starting from bottom up, the Edge device middleware layer is generally responsible
to mediate communication with the underlying physical devices, maintain configuration
models and provide and execution runtime for the monitor and control tasks. To enable
communication with the physical devices this layer provides Drivers and Com. Protocols
component. Its main responsibility is to provide the supporting driver implementations,
which enable direct communication with the devices, e.g., via general purpose IO (GPIO)
pins, field bus communications over protocols such as I2C or ModBus, or communication
over IP-based networks. Th Edge device middleware layer also provides Configuration
Models repositories such as light-weight NoSQL database. The configuration models are
stored locally in the device and among other things they specify how the underlying
devices are connected. For example, in case of direct pin connection such models
contain meta-data such as pin class (e.g., analog in), name and hardware-related data,
e.g., multiplexer addresses or value correction constants. Finally, the Runtime Services
constitute the tasks execution runtime and provide the sporting runtime mechanisms for
Data and Control Points. This component is discussed in more detail in Section 4.3.

The next layer is the Application layer and its main purpose is to provide application
development and execution support. The crucial part of this layer is the Data and
Control Points component. It provides concrete implementation our programming model’s

49

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

abstractions and APIs, which are used by domain expert developers, as we describe in
more detail subsequently. Further, the Applications Runtime Container, provides an
execution runtime for the Edge-device applications. It is important to mention that the
DRACO framework does not impose many limitations regarding the application model.
For example, such applications can be based on OSGi container or even stand alone
applications. In the current prototype, we rely on a striped-down JVM (based on Oracle
Compact Profiles) to run the programming model, thus the framework only requires the
application runtime to be JVM compatible.

The Connectivity Manager is a cross cutting component (between the Application layer
and Cloud connectivity layer), which provides a flexible mechanisms for the Edge-device
applications and services to communicate with the cloud. The Connectivity Manager
relies on the Communication Protocols Library to offer a set of higher-level communication
protocols such as CoAP or MQTT to the applications. It supports the applications to
dynamically configure and utilize the available protocols, without having to dela with the
low-level implementation details. In this chapter we do not discuss the Cloud connectivity
layer to more detail, since it is out of scope of DRACO framework, but we provide a more
detailed discussion about it in Chapter 7. In the remainder of this chapter, we mainly
focus on describing Data and Control Points, which is the programming model provided
by the DRACO framework, together with its major supporting runtime mechanisms.

4.2 Data and Control Points: A Programming Model for
Edge Devices

The main purpose of the Data and Control points is to support domain expert developers
to implement the light-weight monitor and control tasks, which are executed in edge
devices. Generally, a control task is any permissible sequence of actuating steps which
can be used to control physical devices, via the actuators they expose. Further, a
monitor task includes processing, correlation and analysis of sensory data streams to
provide meaningful information about the state changes of the underlying devices or the
surrounding environment.

In our framework we envision two distinct usage patterns for the Data and Control
Points and the aforementioned tasks. First, they can be used to develop “stand alone”
edge-device applications, which do not necessarily depend on the cloud. An example
of such application would be a logging application that reads sensory data and stores
it locally at device side, e.g., in a light-weight database. In this case, the tasks behave
similarly to application services. Second, they can be used to develop domain libraries.
In this context a domain library contains a set of reusable tasks that are responsible
to encapsulate domain-specific knowledge, most notably domain model and common
behaviors, in a reusable manner. For example, a building automation expert developer
could develop such a library to facilitate development of higher-level functionality for
building management systems.

50

4.2. Data and Control Points: A Programming Model for Edge Devices

4.2.1 Main programming abstractions and application model

Data and Control Points represent and enable management of data and control channels
(e.g., device drivers) to the low-level sensors/actuators in an abstract manner. Generally,
they mediate the communication with the connected devices (e.g., digital, serial or
IP-based), enable application-specific customizations of the channels and also implement
communication protocols for the connected devices, e.g., Modbus, CAN or I2C.

Figure 4.2 shows a simplified UML diagram of the main components of our program-
ming model. From the figure we notice that the EdgeApplication contains multiple Tasks.
Further such tasks can have multiple DCPoints associated with them. The DCPoint is an
abstract class which provides main operators and lifecycle management hooks for the Data
and Control Points. Both DataPoints and ControlPoints inherit from this component
and encapsulate the specialized behavior for reading sensory data (DataPoints) and
preforming the actuations (ControlPoints). In general, DCPoints allow the developers to
perform concurrent reads and writs, regardless of whether the low-level drivers support
sequential or concurrent reads and writes. This means, in case of DataPoints, it is possible
for multiple applications to read (receive updates from) the same sensor simultaneously,
by configuring and instantiating their own DataPoints. In this way the applications have
an impression of exclusive usage of the available devices. Another important feature
of DCPoints is that they enable developers to configure custom behavior of underlying
devices. For this purpose each DCPoint can have a ConfigurationModel associated with
it. For example, an application can configure sensor poll rates, activate a low-pass filter
for an analog sensory input or configure unit and type of data instances in the stream.
However, there are physical limitation, which need to be considered, such as a sensor
might sample data at a different rate then specified in the ConfigurationModel for the
DataPoint abstracting the sensor. The most important case is when the poll interval
specified by an application is shorter than sensor’s minimum interval. In this case the
corresponding DataPoint issues a warning to the application (e.g., not supported config-
uration), but it resends the last available reading, given the configuration, until a new
fresh reading is available. This enables developers to handle such situation dynamically,
while allowing the applications to run without runtime interrupts.

The most important concept supporting the DCPoints are the VirtualBuffers, which
are provided and managed by our framework. Our framework supports M to N mappings
between the DCPoints and the VrtualBuffers. In general, such buffers enable virtualized
access to and custom configurations of underlying sensors and actuators. They act as
multiplexers of the data and control channels, thus enabling the device applications to
have their own view of and define custom configurations for such channels. To this end, the
VitualBuffers wrap the DeviceDrivers and share a common behavior with them, inherited
through the Component Interface. For example, they can be initialized, shutdown and
released. Both buffers and drivers lifecycle are managed by the VirtualBuffersManager.

The DeviceDrivers Package contains a set of driver implementations. For readability
purposes, in the figure we only show the component for I2C protocol, but each implemen-

51

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

M
ai
n
pr
og
ra
m
m
in
g
m
od

el
 c
on

st
ru
ct
s

Fr
am

ew
or
k
m
an
ag
ed

 c
om

po
ne

nt
s (
pa
rt
ia
l v
ie
w
)

Vi
rt
ua
lB
uf
fe
rs

M
an
ag
er

G
at
he

re
r

Vi
rt
ua
lB
uf
fe
r

I2
CD

riv
er
Im

pl

w
ra
ps

Ad
ap
te
rC
ha
in

Ad
ap
te
r

<<
In
te
rf
ac
e>
>

De
vi
ce
Dr
iv
er

isS
ui
ta
bl
e(
)

im
pl
em

en
ts

Ap
pl
ic
at
io
n

in
iti
al
iz
e(
)

sh
ut
Do

w
n(
)

isB
es
tC
ho

ic
e(
)

ge
tA
llP
or
tD
es
cr
ip
to
rs
()

ge
tP
or
t(
)

se
tP
or
t(
po

rt
De

sc
rip

to
r,
va
lu
e)

Po
rt

se
ts

Po
rt
Co

nf
ig

ha
s

ha
s

<<
Ab

st
ra
ct
>>

Ta
sk

M
on

ito
rT
as
k

Co
nt
ro
lT
as
k

Fi
lte

r

Co
nf
ig
ur
at
io
n

M
od

el

M
ap
pi
ng

Da
ta
Po

in
t

Co
nt
ro
lP
oi
nt

w
rit
e(
da
ta
In
st
an
ce
)

ha
s

<<
Ab

st
ra
ct
>>

DC
Po

in
t

co
nt
ai
ns

<<
In
te
rf
ac
e>
>

Co
m
po

ne
nt

in
iti
al
iz
e(
)

sh
ut
Do

w
n(
)

re
le
as
e(
)

co
nf
ig
ur
e

on
N
ew

In
st
an

ce
(d
at
aI
ns
ta
nc
e)

re
ad
()

re
le
as
e(
)

m
an
ag
es

cr
ea
te
Bu

ffe
r

re
ad
Ba

tc
h(
tim

eW
in
do

w
)

cr
ea
te
Bu

ffe
r(
co
nf
ig
ur
at
io
nM

od
el
)

in
iti
al
iz
e(
)

Fi
gu

re
4.
2:

Si
m
pl
ifi
ed

U
M
L
di
ag

ra
m

of
D
at
a
an

d
C
on

tr
ol

Po
in
ts
.

52

4.2. Data and Control Points: A Programming Model for Edge Devices

tation follows similar principle. It contains a set of Ports, which is a framework internal
representation of devices attached to the bus. Such Ports are dynamically instantiated
by the VirtualBuffersManager at device bootup during driver initialization phase, based
on the provided PortConfig. At the moment, PortConfig is specified as a JSON file that
contains the meta-data such as port class (e.g., analog in), name and hardware-related
data, e.g., multiplexer address or value correction constants. A limitation of the current
prototype implementation is that it does not support dynamic device reconfiguration,
meaning that if low-level configurations change the framework runtime servicers must be
restarted.

Moreover, a virtual buffer references a set of Gatherers and can contain an optional
AdapterChain. Generally, a gatherer is a higher level representation of a port. For
example, in case of a sensing device (DataPoint) the gatherer represents the most resent
value of the hardware interface. The principle for ControlPoints is similar to the one
for the sensing devices. The only difference is that in case of actuation request the
gatherers act as serializes instead of observers. However, due to possible conflicts, things
are more complex here. At the moment we only provide a rudimentary priority-based
conflict resolutions where different ControlPoints can have different priorities. To support
application-specific configurations such as sensor poll rate, filters or scalers, each virtual
buffer can have an AdapterChain. Adapter chains reference different Adapters, which
are specified and parametrized via DCPoint’s ConfigurationModel. For example, a raw
sensing value is passed through such adapter chain before being delivered to a DataPoint.
However, as discussed above, the adapters cannot account for physical limitations such
as sensor resolution or refresh rate.

4.2.2 Application data model

Besides supporting development of monitor and control tasks the Data and Control
Point enable the domain expert developers to define a custom application data model.
Figure 4.3 depicts a simplified UML data model of the DCPoints. It can be seen as a
meta model that enables applications to define a custom data (domain) model. This is
especially important for defining groups of DCPoints that represent some logical entity
in the physical environment. For example, this model can be used to describe a complex
device, which contains multiple sensors or an application-specific domain model entity,
e.g., room. To this end, the DataInstance acts as a wrapper of a sensory reading (value)
and enriches it with additional information such as timestamp. Moreover, the DataType
enables defining custom data instances types. It extends the built-in Java types and
provides additional information about the data instance such as its unit (e.g., Kelvin).
In this context, the most important feature provided by our framework is the support
for complex data types and complex data instances. A complex type is represented as
a record, hence it consists of named fields that have again have a type associated with
them. Similarly, a complex data instance is a combination of simple data instances and it
additionally provides a processing hook, which allows the developers to specify additional
filters or aggregations of the data instances. For example, it could contain a functionality

53

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

to compute an average of the requested sensory readings. However, in such cases, it is
developer’s responsibility to deal with the instances compatibility, e.g., their units. More
importantly our framework provides support for synchronizing the individual readings
within a complex data instance. Therefore, developers only need to declare a complex
instance and the framework takes care of collecting the relevant readings from multiple
streams and delivering the complex instance to the application when it is fully initialized
or updated.

Main programming model constructsFramework managed components (partial view)

VirtualBuffers
Manager

Gatherer

VirtualBuffer

I2CDriverImpl

wraps

AdapterChainAdapter

<<Interface>>

DeviceDriver

isSuitable()
implements

EdgeApplication

initialize()
shutDown()

isBestChoice()
getAllPortDescriptors()
getPort()
setPort(portDescriptor, value)

Port

sets

PortConfig

has

has

<<Abstract>>

Task

MonitorTask

ControlTask

Filter

Configuration
Model

Mapping

DataPoint ControlPoint

write(dataInstance)

has

<<Abstract>>

DCPoint

contains

<<Interface>>

Component

initialize()
shutDown()
release()

configure

onNewInstance(dataInstance)

read()

release()

manages

createBuffer

readBatch(timeWindow)

createBuffer(configurationModel)
initialize()

<<Abstract>>

DCPoint

‐type:DataType

‐metaData:Map[String, String]

<<Abstract>>

DataType

SipleDataType

‐config:ConfigurationModel

‐dataInstance:DataInstance

<<Abstract>>

DataInstance

‐sate:Enum

SipleDataInstance ComplexDataInstance

‐value:Array[SimpleDataInstance)]‐value:java.lang.Object

‐timestamp:Long

ComplexDataType

‐type:Array[(Id, SimpleDataType)]‐type:java.lang.Class
‐Unit:Enum

processingOperator()

Figure 4.3: Simplified UML data model.

4.2.3 Application-level programming constructs

Listing 4.1, gives a general example of how developers define a DataPoint. It shows a
data point with one stream of simple data instances that represent, e.g., vehicle’s tire
speed, based on the required sensor properties. By default the data points are configured
to asynchronously push the data to the applications at a specific rate, which can be

1 DataPoint dataPoint = new DataPoint();

2 // Query available buffers
3 Collection<BufferDescription> availableBuffers
4 = dataPoint.queryBuffers(new SensorProps(...));

5 // Assign the buffers to the data point
6 dataPoint.assign(availableBuffers.get(0));
7 dataPoint.setPollRate(300);
8 dataPoint.addCallback(this);

9 // Event handler
10 void onNewInstance(DataInstance di){
11 ...
12 }

Listing 4.1: A DataPoint with callback handler.

54

4.3. Main Runtime Mechanisms of the DRACO Framework

configured as shown in the example. The application defines a call-back handler, which
contains some data processing logic, e.g., based of complex event processing techniques.
Additionally, the data and control points offer a read operator that can be used to
sequentially (or in batch) read a set of instances from a stream, e.g., in order to perform
more complex stream processing operations.

1 //Configure a custom data channel
2 BufferConfig bc = new BufferConfig("voltage_in");
3 bc.setClass(BufferClass.SENSOR);
4 bc.getAdapterChain().add(new ScalingAdapter(0.0,100.0,10.0));
5 bc.getAdapterChain().add(new LowpassFilter(0.30));
6 BufferManager.create("lowpass-scaled", bc);

7 //Define diagnostics model
8 DataPoint diagnostics = DataPoint.newComplexInst("lowpass-scaled","voltage_in");
9 DataInstance di = diagnostics.read();

10 //Log the diagnostics data locally
11 ...

Listing 4.2: Custom configuration of DataPoints.

Listing 4.2 shows a more complex example of a custom data point, together with a
simple diagnostics data model. The diagnostic data contains raw engine voltage readings
and scaled voltage readings with low-pass filter, e.g., possibly indicating that something
is taking the power away from the motor. The listing shows how to define a custom
(partial) configuration for the data point. In this case, we define a scaling adapter and a
filter, which are added to data point’s adapter chain, as shown in lines 2-6. After creating
a custom data point (virtual sensor) (line 8) application can treat this sensor as any
other sensor. Finally, the example shows how to synchronously read a data instance from
the newly created virtual sensor. Storing the data is omitted for readability purposes.

4.3 Main Runtime Mechanisms of the DRACO
Framework

In this section, we present the most important mechanisms provided by the DRACO’s
RuntimeServices (cf. Figure 4.1) in order to provice runtime support for the Data and
Control Points. We mainly focus on describing the DCPoints and VirtualBuffers lifecycle,
as well as on discussing the main information flow within the DRACO framework.

4.3.1 Lifecycle of Data and Control Points

In the DRACO framework both the DCPoints and the VirtualBuffers have clearly defined
lifecycles, which are entangled and mainly share a common behavior. For example,
when a DCPoint is created it is associated with one or more VirtualBuffers, as shown in
Figure 4.2 and if this DCPoint is released the corresponding buffers are also automatically
released by the framework (given that no other DCPoint is referencing them). The main

55

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

difference in lifecycle management of these components is that the DCPoints are mainly
managed by applications (cf. Figure 4.2 right-hand side), while the DRACO framework
manages the VirtualsBuffers and their dependencies (cf. Figure 4.2 left-hand side).

Figure 4.4 illustrates the main phases of the VirtualBuffers lifecycle. Depending on
the configuration a VirtualBufer is initialized either when a device is connected or when
explicitly requested by a DCPoint. The initialization phase includes allocating a buffer
instance, creating a corresponding Gatherer and performing configuration directives,
specified in the DCPoint configuration model. The latter usually includes creating an
adapter chain with corresponding scalers, filters and adapters. This part is automatically
handled by the RuntimeServices and it happens transparently to the applications. After
the initialization is complete the buffer transitions to the Ready state.

Generally, when in the Ready state VirtualBuffers are discoverable and can be queried
by the applications via the DCPoint APIs. Also at this point the corresponding Gatherer
is automatically started by the framework and it starts gathering the data from the
underlying device or in case of a ControlPoint it is ready to receive serialization requests.
After a DCPoint obtains a reference to the buffer it can decide to start it (e.g., to open
a data stream) or the buffer is automatically started by the framework if the callback
object is provided.

Ready

Running Fault

initialize

startstop

update

error

release

release

Figure 4.4: VirtualBuffers lifecycle overview.

After a successful start both the VirtualBuffer and the DCPoint are in the Running
state. In this state the DCPoint receives periodic updates from the underlying buffer or
it explicitly reads the buffer state via the read operator, i.e., sets a new state via the
write operator. Finally, there are two ways to release a DCPoint/VirtualBuffer. An a

56

4.3. Main Runtime Mechanisms of the DRACO Framework

pplication can manually stop and release them after it has finished using the DCPoint or
in case an error occurs, e.g, device disconnected, the VirtualBuffer is moved to a Fault
state. When it the Fault state the buffer notifies the DCPoint about the error after which
it is automatically released by the framework.

4.3.2 Main Information flow

Figure 4.5 shows the main steps of the information flow within the DRACO framework.
For readability purposes, the figure only illustrates the information flow of a sensory
reading (DataPoint), but the framework behaves in a similar fashion for the ControlPoins,
with a main difference that the direction of the information flow is reversed.

Pyhisical
device

Driver

Runtime
services

Programming
model

Application
business logic

Sensor

Raw/physical value

Driver

Measured value

Gatherer

Sensor value

Adapter Chain

Buffer value

DataPoint

DP value

DataInstance

Figure 4.5: Information flow of a sensory reading.

When an application requests a sensory reading, initially the raw physical value, e.g.

57

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

temperature is measured by a sensor that is connected to the Edge device, e.g., via a
field-bus (e.g., RS422, CAN, etc). The raw value enters the framework through a driver.
The driver handles the protocol on the field-bus and acquires the measured value from
the sensor. In most cases the measured value is a linear function that is applied on the
raw value, i.e., on a stream of bits and it scales the raw value between 0% and100% of
the measurement range (provided in the PortConfiguration, cf. Figure 4.2). Next, the
measured value has to be formatted to a common framework internal format, which is
independent of the used driver. This is performed by the Gatherer and by default it
formats the sensor value as a double. At this stage the sensor reading is formatted as
a sensor value, which is universal understood by the framework. In the next steps the
sensor value is propagated and processed through the AdapterChain, i.e., the framework
applies application-specific adapters and filters on it. This transforms the sensor value
resulting in a buffer value that is delivered to a DCPoint. Finally, the DCPoints creates
a DataInstance with the required format, unit and type (cf. Figure 4.3) and delivers it
to the calling application.

4.4 Evaluation & Prototype Implementation

4.4.1 Prototype Implementation

The current prototype is implemented in Java programming language (based on Java SE
Embedded). The framework is designed to run on a stripped-down JVM and for this
purpose we have created a lightweight compact profile JVM runtime specifically tailored
for constrained devices. The complete source code and supplement materials providing
more details about current framework implementation are publicly available in Git Hub1.

4.4.2 Experiments

Test bed Gateway and Experiments Setup

In order to evaluate our DRACO framework, we built a test physical gateway (cf.
Figure 4.6). The getaway is based on Raspberry Pi 2, with ARMv7 CUP and 1Gb
of RAM. They run Raspbian Linux 8 (based on Debian “Jessi”) on Linux Kernel 4.1.
Further it contains a serial I2C bus system, which is used to attach the test sensors (5
digital inputs and 6 analog inputs, which are used to simulate changes in sensor readings)
and actuators (8 light-emitting diodes (LED)).

In this chapter we mainly focus on evaluating our framework regarding its resources
usage in order to validate its suitability for resource-constrained Edge devices. To
this end we have developed several edge applications, which are also available in the
aforementioned Git Hub repository. The qualitative evaluation of our programming
model is discussed in detail in Chapter 5.

1http://github.com/tuwiendsg/SoftwareDefinedGateways

58

4.4. Evaluation & Prototype Implementation

Figure 4.6: Testbed gateway for Data and Control Points.

4.4.3 Experiments Results

For the evaluation purposes we have developed two applications. First application
(LogApp) runs inside the test bed gateway, collecting all the sensory inputs (both analog
and digital), logging them locally and displaying the changes in sensors readings on
stdout. It defines several tenths of the Data Points, which have different configurations
such as scaling adapters and filters for the connected sensors. It also logs the raw sensory
readings. Second application (ActApp) is also running in the gateway and its main
purpose is to demonstrate different actuations, based on the changes in sensory readings.
For this purpose it creates several Data Points (actuation triggers) and also several
Control Points, which are responsible to perform actuations, i.e., in this case turning
on/off the LEDs.

Figure 4.7 and Figure 4.8 show memory and CPU usage of the LogApp. Initially
(Figure 4.7) we notice that the DRACO framework consumes below 5% of the CPU when
no applications are running. The first spike in CPU consumption happens when the
LogApp application is started. The reason for this is that at this point the application
instantiates its Data Points and requests the framework to allocate the corresponding
VirtualBuffers, AdapterChains, etc. This is also reflected in Figure 4.8, where we observe
an increase in RAM of around 1Mb. After this point in time the application is running
(processing and logging the changes in the sensory readings). These changes are simulated
by manually adjusting the analog inputs, i.e., by alternating the digital switches. In
general, the application is mostly consuming less then 10% of CPU and its memory
usage is fairly stable (with only minimal increase mainly due to created data instances).
The smaller spikes in CPU usage represent noticeable changes in sensory readings (e.g.,

59

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 C

o
n

su
m

p
ti

o
n

 [%
]

Time [s]

LogApp - CUP Consumption

Figure 4.7: CUP consumption of the example logging application (LogApp).

11,750

11,950

12,150

12,350

12,550

12,750

12,950

R
A

M
 C

o
n

su
m

p
ti

o
n

 [
K

b
]

Time [s]

LogApp - Memory Consumption

Figure 4.8: Memory usage of the example logging application (LogApp).

several knobs are rotated). However, even when all the knobs are affected, effectively
forcing all the buffers to perform their individual data processing actions, the CPU usage
remains below 20%. Moreover, the increased CPU usage is temporary and both the
application and the framework quickly return to normal resource usage. Similar things
can be observed in Figure 4.8, as the memory usage during the observation time remains
below 13Mb. Therefore, we notice that even for applications which use relatively large
number of Data Points the resource consumption can be seen as acceptable for Edge
devices.

Similar results can be observed in Figure 4.9 and Figure 4.10, where we show the
performance of the ActApp, which besides the Data Points also utilizes the Control

60

4.4. Evaluation & Prototype Implementation

0

5

10

15

20

25

C
P

U
 C

o
n

su
m

p
ti

o
n

 [%
]

Time[s]

ActApp - CPU Consumption

Figure 4.9: CUP consumption of the example actuation application (ActApp).

11,700

11,720

11,740

11,760

11,780

11,800

11,820

11,840

11,860

11,880

11,900

R
A

M
 C

o
n

su
m

p
ti

o
n

 [
K

b
]

Time[s]

ActApp - Memory Consumption

Figure 4.10: Memory usage of the example actuation application (ActApp).

Points. The main differences are reflected in the overall smaller memory consumption
(below 12Mb) and slightly higher CPU spikes. The main reason for the former is that
ActApp instantiate smaller amount of Data Points. The latter is mainly due to the
fact that the changes in sensory readings trigger actuations, which also require some
processing to be done by the framework, such as serializing the Control Points instances.
Also here the changes in sensor inputs were manually simulated by the test sensor knobs
and switches. We notice that the general behavior of the Control Points can be seen as
satisfactory.

Finally, it is worth noticing that for the both experiments the memory and CPU
usage was measured on the process level (i.e., entire JVM). Also, albeit small, in both

61

4. A Programming Model for Resource-constrained IoT Cloud Edge Devices

cases we notice a constant increase in memory usage. This is generally not a desired
behavior (e.g., since it can indicate a memory leak). In this case, however, the reason for
such behavior is that the figures do not show the garbage collection of old data instances.
Additionally, when an application exits it releases all its resources. This can be seen in
the first couple of seconds in Figure 4.8, where we stopped another application before
starting the LogApp.

4.5 Conclusion
In this chapter, we introduced Data and Control Points, a programming model for
resource-constrained Edge devices. The main aim of the presented framework is to
facilitate development of light-weight, edge-centric applications as well as domain-specific
libraries that contain reusable, generic monitor and control tasks and domain models.
We discussed how our programming model complements the high-level programming
abstractions (cf. Chapter 3), by providing development support for domain expert
developers. We presented the main features of the supporting DRACO framework:
providing a virtually exclusive access to the connected sensors and actuator; enabling
application-specific view on such devices; and supporting flexible customizations of the
low-level sensing and actuating channels. Finally, we demonstrated feasibility of our
proof-of-concept prototype and suitability of its runtime mechanism for the Edge devices,
in terms of optimized and relatively small resource consumption.

62

CHAPTER 5
A Unifying Programming

Framework and Methodology for
Everything-as-Code in IoT Cloud

Systems

Emerging IoT Cloud systems extend the traditional cloud computing systems beyond the
data centers and cloud services to include a variety of edge IoT devices such as sensors and
sensory gateways. Such systems utilize the IoT infrastructure resources to deliver novel
value-added services, which leverage data from different sensor devices or enable timely
propagation of decisions, crucial for business operation, to the edge of the infrastructure.
On the other side, IoT Cloud systems utilize cloud’s theoretically unlimited resources,
e.g., compute and storage, to enhance traditionally resource constrained IoT devices.

In order to enable development of IoT Cloud systems, existing research and industry
have produced numerous infrastructure, platform and software services [160, 134, 29,
139, 39, 129]. These advances set a cornerstone for proliferation of (unified) IoT Cloud
platforms and infrastructures, which offer a myriad of IoT Cloud capabilities and resources.
One of the promising approaches to facilitate development of IoT Cloud applications are
software-defined IoT Cloud systems. As thoroughly discussed in Part II of this thesis, we
introduce a conceptual model for software-defined IoT Cloud and supporting middleware,
in order to facilitate utility-oriented delivery of the IoT Cloud resources and enable
automated and logically centralized provisioning of the geographically distributed IoT
Cloud infrastructure. Generally, the software-defined IoT Cloud systems abstract from
low-level resources (e.g., hardware) and enable their programmatic management through
well-defined APIs. They allow for refactoring the underlying IoT Cloud infrastructure into
finer-grained resource components whose functionality can be (re)defined in software, e.g.,

63

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

C
lo
u
d

(d
at
a
ce
n
te
r)

Ed
ge
 d
ev
ic
es
 a
n
d
 s
er
vi
ce
s

Vehicle

VG3

Gateway (G1)

VG... VGn

VG2

G4 G...

GnP
h
ys
ic
al

ga
te
w
ay
s

G6
G5

CAN‐IP bridge devices

Service
G2

This sends a wrong message, since people will think that we wirtualize gaeways

Legacy car

(VG1)
Virtual gateway

Service
ServiceServiceServices

ServiceServiceServices

G3

FMS

Vehicles on‐board devices

Sensors, actuators and control points

Software‐defined gateways

Device
services

ServiceComm.
protocols

Operating system

CAN‐IP
bridge devices

Vehicles
on‐board devices

Sensors and actuators

Software‐defined
gateways

The Edge

Software‐defined
gateways

Batch analytics
(e.g., HDFS+Pangool)

NoSQL Database
(e.g., Cassandra)

Realtime
analytics

Serving
layer

The Cloud

Batch views

Realtime
views

Control
services

Monitor tasks

MQ Broker
(e.g., Kafka)

CEP
(e.g., Storm)

App. business logic
(e.g., cloud and
device services)

Operational
governance logic

Infrastructure provisioning logic

Data and Control Points

Gateway prototypes

Intents and IntentScopes Governance and
infrastructure APIs

Provisioning library API

Develop/select
IoT units

Develop custom
business logic

Develop
provisioning logic

Develop runtime
governance logic

E.g., user
feedback

Persistence
layer

Units
repository

Device Communication Mediator

Tasks
repository

Device services
(e.g., monitor and control

tasks)

Software‐defined
gateways

Virtual application
topologies

Operational
governance processes

Data and control
points

Gateway
prototypes

Intents and
IntentScopes

Governance and
infrastructure APIs

Task
Selector

Scope
Coordinator

Task
Manager

Intents runtime container

Runtime support

IoT units controller

DeploymentMngr. ProvisioningMngr.

Capability
Manager

DeviceManager GatewayCoordinator

API Manager

IoT units management layer

APIMediator
Capability
Invoker

Operational governance layer

R
ep

o
si
to
ry
 C
o
n
n
e
ct
o
rs

C
o
m
m
u
n
ic
at
io
n
B
u
s

Programming
abstractionsApplication artifacts

Governance
capabilities
repository

Software‐defined gateway

Cloud communication protocols

Service runtime

Data & Control Points

Se
rv
ic
e

Provisioning
agent

Monitoring
manager

Governance
agent

Se
rv
ic
e

Se
rv
ic
e

...

Capability Package

CapabilityId
(name+version)

Executable
(e.g.,binary, sh)

Provisioning
directives

Config. model

Meta‐info.

Install

Uninstall

Mapping model

HW requirements

Runtime dependencies

APIs

Software‐defined
 gateway

governs

Figure 5.1: Overview of FMS architecture and deployment.

applications, thus enabling more efficient resource utilization and simplifying management
of the IoT Cloud systems. However, most of the contemporary approaches dealing with
IoT Cloud are intended for platform/infrastructure providers and operations managers.
Therefore, from the developer’s perspective there is a lack of structured, holistic approach
to support development of the IoT Cloud systems and applications.

In this chapter we introduce SDG-Pro – a novel programing framework for software-
defined IoT Cloud systems, as the final part of the first contribution of this thesis. It
provides a unified, programmatic view for the entire development process (everything
as code) of IoT Cloud applications, thus making it more traceable and auditable. This
chapter substantially extends and refines our previous work presented in Chapter 3 and
Chapter 4. The SDG-Pro framework builds on the previously introduced concepts (Intents,
IntentScopes, Data- and Control Points) and extends them by introducing comprehensive
programming support for unified development, provisioning and governance of IoT Cloud
applications. This chapter mainly focuses on application-level support, i.e., programmatic
provisioning and governance of IoT Cloud applications. Comprehensive provisioning and
governance support for IoT Cloud systems are thoroughly discussed respectively in Part
II and Part III of this thesis.

The remainder of the chapter is structured as follows. In Section 5.1, we describe a
motivating scenario and main research challenges; Section 5.2 gives an overview of the
development methodology and outlines the design of the SDG-Pro framework; Section 5.3
presents the framework’s programming model; In Section 5.4, we outline SDP-Pro’s
runtime support; Section 5.5 presents our experiments; Finally, Section 5.6 concludes the
chapter.

64

5.1. Motivation and Research Challenges

5.1 Motivation and Research Challenges

5.1.1 Scenario

Let us consider our real-life FMS scenario (cf. Chapter 2) form a different perspective.
In Chapter 3, we approached the FMS exclusively from application perspective, i.e., we
mainly focused on concrete examples of FMS applications, tacitly assuming that the
main application elements (e.g., monitor tasks) are deployed and readily available in the
Edge devices. In this chapter, we adopt a more general view on the FMS, approaching it
from a perspective of a holistic system.

Figure 5.1 gives a high-level overview of the common elements in FMS’s architecture
and deployment. For readability purposes, we only show the common propagation of
the sensory data within the FMS (depicted with arrows) and omit control actions. The
FMS runs atop a complex IoT Cloud infrastructure, which includes a variety of IoT
Cloud resources. It is a large-scale, geographically distributed system that has nontrivial
deployment topologies. The FMS deployment topologies span across the entire IoT Cloud
infrastructure, i.e., from large data centers to the edge of the network, resulting in complex
dependencies among the business logic services, but also between such services and the
underlying infrastructure. Therefore, during application development, developers need to
consider numerous infrastructure resources and their properties such as availability of
sensors, devices ownership and their location.

The FMS applications perform a variety of analytics and are mostly characterized by
a reactive behavior. They receive (monitoring) data, e.g., a change in vehicles’ operation
and, as a response, perform (control) actions. Such monitoring and control tasks (cf.
Chapter 4) are executing in heterogeneous, dynamic FMS environment and interact with
many geographically distributed vehicles and their low-level capabilities, e.g., engine
control points. Further, FMS applications have different requirements regarding cloud
communication protocols. For example, the fault alarms need to be pushed to the
services, e.g, via MQ Telemetry Transport (MQTT) and vehicle’s diagnostics should
be synchronously accessed via RESTful protocols such as Constrained Application
Protocol (CoAP) or Simple Measurement and Actuation Profile (sMAP). Therefore, from
the developers perspective such tasks and capabilities need to be decoupled from the
underlying physical infrastructure, but also easily specified, provisioned and managed
programmatically (as code), without worrying about the complexity of low-level device
services, communication channels and raw sensory data streams.

The currently limited development support regarding the FMS requirements and
features (as discussed in Chapter 10), renders the development of its applications a
complex task. Consequently, system designers and application developers face numerous
challenges to develop IoT Cloud applications.

65

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

5.1.2 Research challenges

RC-1 – The development context of IoT Cloud applications has grown beyond writing
custom business logic (e.g., services) components to also considering the involved IoT
devices (e.g., their capabilities) as well as the deployment and provisioning of such
services across the IoT Cloud infrastructure. The main reasons for this are complex and
strong dependence of the business logic on the underlying devices (and their specific
capabilities), novel (resource) features that need to be considered, such as device
location and the heterogeneity of the utilized IoT Cloud resources. Unfortunately,
developers currently lack suitable programming abstractions to deal with such concerns
in a unified manner, from early stages of development.

RC-2 – IoT Cloud applications execute in very dynamic, heterogeneous environments
and interact with hundreds or thousands of physical entities. Therefore, monitoring
and controlling these entities in a scalable manner is another challenge for developers
of IoT applications, mainly because they need to dynamically identify the scope of
application’s actions, depending on the task at hand, but also express its business logic
independently of the low-level device capabilities.

RC-3 – The IoT Cloud applications mostly rely on common physical infrastructure.
However, IoT Cloud infrastructure resources are mostly provided as coarse-grained,
rigid packages. The infrastructure components and software libraries are specifically
tailored for the problem at hand and do not allow for flexible customization and
provisioning of individual resource components or runtime topologies. This inherently
hinders self-service, utility-oriented delivery and consumption of IoT Cloud resources
at fine granularity levels.

RC-4 – Due to dynamicity, heterogeneity and geographical distribution of IoT Cloud,
traditional provisioning and governance approaches are hardly feasible in practice.
This is mostly because they implicitly make assumptions, such as physical on-site
presence, manual logging into devices, understanding device’s specificities, etc., which
are difficult, if not impossible, to achieve in IoT Cloud systems. In spite of this,
techniques and abstractions, which provide a programmatic, conceptually centralized
view on system provisioning and runtime governance are largely missing.

In the rest of the chapter, we introduce our SDG-Pro framework and focus on describing
and evaluating its unifying programming model for IoT Cloud applications.

5.2 The SDG-Pro Framework and Development
Methodology for IoT Cloud Applications

The main aim of our SDG-Pro (Software-Defined Gateways Programing framework)1 is
to provide programming support for IoT Cloud application developers, which offers a

1Software-defined gateways are thoroughly discussed in Part II of this thesis.

66

5.2. The SDG-Pro Framework and Development Methodology for IoT Cloud Applications

set of adequate programming abstractions to facilitate overcoming the aforementioned
challenges. To this end, SDG-Pro, enables expressing application’s provisioning, gover-
nance and business logic programmatically, in a uniform manner. By raising the level
of programming abstraction, SDG-Pro reduces the complexity of application develop-
ment, makes the development process traceable and auditable and improves efficacy and
scalability of application development.

SDG-Pro’s programming model is designed to enforce the main design principles of
software-defined IoT Cloud systems (presented in Part II of this thesis) at application
level, from the early development stages. It adopts development methodology we proposed
in [71], extending it to provide programming abstractions that facilitate entire development
lifecycle of the essential application artifacts.

5.2.1 Main Design Principles and Development Methodology for IoT
Cloud Applications

Software-defined IoT Cloud systems are thoroughly discussed in Part II of this thesis. In
the following, we give a brief overview of such systems and introduce their main concepts,
relevant for the discussion in this chapter. Generally, software-defined IoT Cloud systems
comprise a set of resource components, provided by IoT Cloud infrastructure, which can
be provisioned and governed at runtime. Such resources (e.g., sensory data streams), their
runtime environments (e.g., gateways) and capabilities (e.g., communication protocols and
data point controllers) are described as software-defined IoT units. The software-defined
gateways (cf. Figure 5.1) are a special type of such units and they are the main building
blocks of IoT Cloud infrastructure, e.g., similar to VMs in cloud computing. In our
conceptual design of software-defined IoT Cloud systems, such gateways abstract resource
provisioning and governance through well-defined APIs and they can be composed at
different levels, creating virtual runtime topologies for IoT Cloud applications. This
enables opening up the traditional infrastructure silos and moving one step higher in
the abstraction, i.e., effectively making applications independent of the underlying rigid
infrastructure. The main design principles of software-defined IoT systems include:

Everything as code – All the concerns, i.e., application business logic, but also IoT
Cloud resources provisioning and runtime governance, should be expressed program-
matically in a unified manner, as a part of the application’s logic (code).

Scalable development – The programming abstractions exposed to the developers
need to support scalable application development, i.e., shield the developers from
dealing with the concerns such as manually referencing individual devices or managing
the low-level data and control channels.

API Encapsulation – IoT Cloud resources and capabilities are encapsulated in well-
defined APIs, to provide a uniform view on accessing functionality and configurations
of IoT Cloud infrastructure.

67

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

C
lo
u
d

(d
at
a
ce
n
te
r)

Ed
ge
 d
ev
ic
es
 a
n
d
 s
er
vi
ce
s

Vehicle

VG3

Gateway (G1)

VG... VGn

VG2

G4 G...

GnP
h
ys
ic
al

ga
te
w
ay
s

G6
G5

CAN‐IP bridge devices

Service
G2

This sends a wrong message, since people will think that we wirtualize gaeways

Legacy car

(VG1)
Virtual gateway

Service
ServiceServiceServices

ServiceServiceServices

G3

FMS

Vehicles on‐board devices

Sensors, actuators and control points

Software‐defined gateways

Device
services

ServiceComm.
protocols

Operating system

CAN‐IP
bridge devices

Vehicles
on‐board devices

Sensors and actuators

Software‐defined
gateways

The Edge

Software‐defined
gateways

Batch analytics
(e.g., HDFS+Pangool)

NoSQL Database
(e.g., Cassandra)

Realtime
analytics

Serving
layer

The Cloud

Batch views

Realtime
views

Control
services

Monitor tasks

MQ Broker
(e.g., Kafka)

CEP
(e.g., Storm)

App. business logic
(e.g., cloud and
device services)

Operational
governance logic

Infrastructure provisioning logic

Data and Control Points

Gateway prototypes

Intents and IntentScopes Governance and
infrastructure APIs

Provisioning library API

Select
IoT units

Develop
custom business logic

Develop
provisioning logic

Develop runtime
governance logic

e.g., user feedback

Persistence
layer

Units
repository

Device Communication Mediator

Tasks
repository

Device services
(e.g., monitor and control

tasks)

Software‐defined
gateways

Virtual application
topologies

Operational
governance processes

Data and control
points

Gateway
prototypes

Intents and
IntentScopes

Governance and
infrastructure APIs

Task
Selector

Scope
Coordinator

Task
Manager

Intents runtime container

Runtime support

IoT units controller

DeploymentMngr. ProvisioningMngr.

Capability
Manager

DeviceManager GatewayCoordinator

API Manager

IoT units management layer

APIMediator
Capability
Invoker

Operational governance layer

R
ep

o
si
to
ry
 C
o
n
n
e
ct
o
rs

C
o
m
m
u
n
ic
at
io
n
B
u
s

Programming
abstractionsApplication artifacts

Governance
capabilities
repository

Software‐defined gateway

Cloud communication protocols

Service runtime

Data & Control Points

Se
rv
ic
e

Provisioning
agent

Monitoring
manager

Governance
agent

Se
rv
ic
e

Se
rv
ic
e

...

Capability Package

CapabilityId
(name+version)

Executable
(e.g.,binary, sh)

Provisioning
directives

Config. model

Meta‐info.

Install

Uninstall

Mapping model

HW requirements

Runtime dependencies

APIs

Software‐defined
 gateway

governs

Figure 5.2: Most important steps in development methodology for software-defined IoT
Cloud systems (partial view).

Declarative provisioning – The units are specified declaratively and their functionality
is defined programmatically in software, using well-defined API and available, familiar
software libraries.

Central point of operation – Enable conceptually centralized (API) interaction with
the software-defined IoT Cloud system to allow for a unified view on the system’s
operations and governance capabilities (available at runtime), without worrying about
low-level infrastructure details.

Automation – Main provisioning and governance processes need to be automated in
order to enable dynamic, on-demand configuring and operating the software-defined
IoT Cloud systems, without manually interacting with IoT devices (e.g., logging in the
gateways).

As proposed in [71], building IoT Cloud systems includes creating and/or selecting
suitable software-defined IoT units, provisioning and composing more complex units
and building custom business logic components. This (iterative) development process
is structured along four main phases (cf. Figure 5.2): i) Initially, developers need to
design and implement the software-defined IoT units or obtain them form a third-party,
e.g., in a market-like fashion. Among other things the IoT units support execution
of the light-weight device services (monitor and control tasks), i.e., from the software
engineering perspective they encapsulate such tasks, comprising domain libraries; ii) Next,
the developers need to design and provision the required application topologies. This
process includes implementing the dependencies among the business logic services, but
also between such services and the underlying infrastructure; iii) Building custom business
logic components mainly involves developing device services and implementing reactive

68

5.2. The SDG-Pro Framework and Development Methodology for IoT Cloud Applications

Pe
rs
ist
en

ce

la
ye
r

Io
T
cl
ou

d
in
fr
as
tr
uc
tu
re
 m

an
ag
em

en
t l
ay
er

Io
T
un

its

Pr
og
ra
m
m
in
g
su
pp

or
t

So
ft
w
ar
e‐
de

fin
ed

 g
at
ew

ay

Cl
ou

d
co
ne

ct
iv
ity

SD
 g
at
ew

ay
 m

dd
le
w
ar
e

Da
ta
 &
 c
on

tr
ol
 p
oi
nt
s

Ap
p/

G
bo

t
Ap

p/
G
bo

t
Ap

p/
G
bo

t

Pr
ov
isi
on

in
g

ag
en

t

M
on

ito
rin

g
m
an
ag
er

D
ire

ct
 in

pu
t d

ev
ic
e,
 C
AN

, M
od

Bu
s,
 L
on

W
or
ks
 ..
.

Cl
ou

d
pl
at
fo
rm

D
riv

er
s
la
ye
r

O
EM

 s
pe

ci
fic
 A
PI

O
pe

ra
tin

g
Sy
st
em

 (s
er
vi
ce
s .
..)

G
ov
er
na
nc
e

ag
en

t

 G
ov
er
na

nc
e
co
nt
ro
lle
r (
Cl
ou

d‐
ba
se
d)

APIManager

Ca
pa
bi
lit
y

In
vo
ke
r

ScopeCoordinator

So
ft
w
ar
e‐
de

fin
ed

ga
te
w
ay
 (d

ev
ic
e‐
si
de

)

Cloud connectivity

De
vi
ce

Pr
of
ile
r

Pr
ov
isi
on

in
g

Ag
en

t

G
ov
er
na
nc
e

Ag
en

t

Capability

...
De

pl
oy
m
en

t
M
an

ag
er

Im
ag
e

Bu
ild
er

D
ep

en
de

nc
y

M
an

ag
er

Re
po

si
to
ry
 C
on

ne
ct
or

AP
I

M
ed

ia
to
r

Pr
of
ile

M
an

ag
er

Capability

Capability

In
te
nt
s

Sc
op

es
Da

ta
 &
 c
on

tr
ol

po
in
ts

In
fr
as
tr
uc
t.

AP
Is

So
ft
w
ar
e‐
de

fin
ed

ga
te
w
ay

So
ft
w
ar
e‐
de

fin
ed

ga
te
w
ay

So
ft
w
ar
e‐
de

fin
ed

ga
te
w
ay

...U
ni
t

pr
ot
ot
yp
es

Ta
sk

Se
le
ct
or

Sc
op

e
Co

or
di
na
to
r

Ta
sk

M
an

ag
er

Co
m
m
un

ic
at
io
nB

us

AP
I M

an
ag
er

In
te
nt
 ru

nt
im
e
co
nt
ai
ne

r

Io
T
un

its
 c
on

tr
ol
le
r

U
ni
ts

re
po

si
to
ry

Repository Connectors

De
pl
oy
m
en

t
M
an

ag
er

Pr
ov
isi
on

in
g

M
an

ag
er

G
ov
er
na
nc
e

M
an

ag
er

De
vi
ce
M
an
ag
er

Cl
us
te
rC
oo

rd
in
at
or

De
vi
ce
 C
om

m
un

ic
at
io
n
M
ed

ia
to
r

IoT units
Manager

Ta
sk
s

re
po

si
to
ry

De
vi
ce
 se

rv
ic
es

(e
.g
.,
m
on

ito
r a

nd
 c
on

tr
ol

ta
sk
s)

So
ft
w
ar
e‐
de

fin
ed

ga
te
w
ay
s

Vi
rt
ua

l a
pp

lic
at
io
n

to
po

lo
gi
es

O
pe

ra
tio

na
l

go
ve
rn
an

ce
 p
ro
ce
ss
es

Da
ta
 a
nd

 c
on

tr
ol

po
in
ts

G
at
ew

ay

pr
ot
ot
yp
es

In
te
nt
s a

nd

In
te
nt
Sc
op

es

G
ov
er
na
nc
e
an
d

in
fr
as
tr
uc
tu
re
 A
PI
s

Ta
sk

Se
le
ct
or

Sc
op

e
Co

or
di
na
to
r

Ta
sk

M
an

ag
er

In
te
nt
s r
un

tim
e
co
nt
ai
ne

r

Ru
nt
im

e
su
pp

or
t

Io
T
un

its
 c
on

tr
ol
le
r

De
pl
oy
m
en

tM
ng
r.

Pr
ov
isi
on

in
gM

ng
r.

Ca
pa
bi
lit
y

M
an

ag
er

De
vi
ce
M
an
ag
er

G
at
ew

ay
Co

or
di
na

to
r

AP
I M

an
ag
er

Io
T
un

its
 m

an
ag
em

en
t l
ay
er

AP
IM

ed
ia
to
r

Ca
pa
bi
lit
y

In
vo
ke
r

O
pe

ra
tio

na
l g
ov
er
na
nc
e
la
ye
r

Repository Connectors
CommunicationBus

Pr
og
ra
m
m
in
g

ab
st
ra
ct
io
ns

Ap
pl
ic
at
io
n
ar
tif
ac
ts

G
ov
er
na
nc
e

ca
pa
bi
lit
ie
s

re
po

si
to
ry

Fi
gu

re
5.
3:

O
ve
rv
ie
w

of
SD

G
-P

ro
’s

ar
ch
ite

ct
ur
e
an

d
m
ai
n
ar
tif
ac
ts

of
Io
T

C
lo
ud

ap
pl
ic
at
io
ns
.

69

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

business logic (e.g., cloud services) around the device services; iv) Finally, the developers
implement operational governance logic for managing the IoT units during application
runtime. The operational governance is discussed in Part III of this thesis. In this chapter
we mainly focus on the application-level support for operational governance processes.

5.2.2 SDG-Pro architecture overview

Generally, the SDG-Pro framework is distributed across the clouds, i.e., large data
centers, and “small" IoT devices, e.g., physical gateways or cloudlets. It is designed
based on the microservices architecture, which among other things enables evolvable and
fault-tolerant system, while allowing for flexible management and scaling of individual
components. Figure 5.3 gives a high-level overview of SDG-Pro’s architecture and main
IoT Cloud application artifacts. These artifacts can be seen as executables produced
by the aforementioned development methodology. To support the development of such
artifacts our framework provides a set of programming abstractions (depicted as gray
components in Figure 5.3 and described later in Section 5.3) and runtime support
mechanisms (Section 5.4).

The runtime mechanisms are part of the SDG-Pro’s Runtime support (cf. Figure 5.3),
which underpins the programming abstractions exposed to the developers, i.e., provides
an execution environment for IoT Cloud applications. It takes over a set of responsibilities
such as placement of the software-defined gateways, their runtime migration and elasticity
control, infrastructure topology management and application scope coordination. By
doing so, it does most of “heavy lifting" on behalf of the applications, thus supporting
the developers to easier cope with the diversity and geographical distribution of the IoT
Cloud and enabling better utilization of the numerous edge devices.

Internally, our framework’s runtime support comprises several microservices, which can
be grouped into: APIManager, IoT units management layer, Intents runtime container and
Operational governance layer. The APIManager exposes governance capabilities and the
low-level data and control channels from the IoT Cloud infrastructure to the applications
via well-defined APIs and handles all API calls from such applications. The IoT units
management layer provides mechanisms and agents to support instantiating, provisioning
and deploying software-defined gateways programmatically and on-demand. The Intents
runtime container is responsible to handle incoming application requests (Intents) and
select, instantiate and invoke device services (tasks), based on the information provided in
the intents. It also enables applications to dynamically delimit the scopes of their actions,
by providing support for IntentScopes resolution. Finally, the Operational governance
layer supports execution of the governance processes by enabling remote invocation of
governance capabilities and mapping of API calls on underlying devices via governance
agents. The SDG-Pro’s runtime support is discussed in more details in Section 5.4. In
continuation, we first present SDG-Pro’s programming model.

70

5.3. SDG-Pro’s Programming Model

App. business logic
(e.g., cloud and
device services)

Operational
governance logic

Application provisioning logicM
on

ito
rr
in
g

su
pp

po
rt

Data and Control Points

Gateway prototypes

Intents and IntentScopes Governance
DSL and APIs

Provisioning DSL and APIs

Figure 5.4: High-level overview of IoT Cloud application structure.

5.3 SDG-Pro’s Programming Model

5.3.1 Structure of IoT Cloud applications

The main purpose of our programming model is to provide a programmatic view on
the whole application ecosystem, i.e., the full stack from the infrastructure to software
components and services. The main principle behind our programming model is everything
as code. This includes providing support for writing IoT Cloud applications’ business
logic, as well as representing the underlying infrastructure components (e.g., gateways)
at the application level and enabling developers to programmatically determine their
deployment and provisioning. Generally, this principle denotes that all the concerns, i.e.,
application business logic, but also resource (i.e., software-defined gateways) management
of an IoT Cloud application, should be expressed as a part of the application’s logic
(code) in a unified manner. Among other things, this includes representing the underlying
infrastructure components (e.g., gateways) at the application level and enabling their
provisioning and runtime governance through well-defined APIs. Figure 5.4 shows a
component diagram with the logical structure of IoT Cloud applications. The main
components of such application include: custom business logic components (e.g., cloud
services and device services); resource provisioning and deployment logic (custom or stock
component provisioning); and operational governance logic.

5.3.2 Programming support for business logic services

In SDG-Pro we distinguish between two types of business logic services: device-level
services and cloud services. The device-level services are executed in IoT devices and
implement control and monitor tasks. For example, a monitoring task includes processing,
correlation and analysis of sensory data streams. To support task development, the
SDG-Pro framework provides Data and Control points (cf. Chapter 4). The cloud services
usually define virtual service topologies by referencing the aforementioned tasks. At
the application level, we provide explicit representation of these tasks via Intents, i.e.,

71

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

developers write Intents to dynamically configure and invoke the tasks (cf. Chapter 3).
Further, developers use IntentScopes to delimit the range of an Intent. For example, a
developer might want to code the expression: “stop all vehicles on golf course X". In
this case, “stop" is the desired Intent, which needs to be applied on an IntentScope that
encompasses all vehicles with the location property “golf course X".

Since these concepts are described in detail in Chapter 3 and Chapter 4, as a reminder,
in this section we only show example usage of the main programming abstractions provided
by SDG-Pro to support development of business logic services in a uniform manner.
Listings 5.1 and 5.2 show example usage of Intents and IntentScopes. Listing 5.3, gives a
general example of how to define a data point. It shows a data point with one stream
of simple data instances that represent, e.g., vehicle’s tire speed, based on the required
sensor properties.

1 Intent eFault = Intent.newMIntent("EnergyFault");
2 //monitor whole fleet
3 eFault.setScope(IntentScope.getGlobal());
4 notify(eFault,this);//invoke task
5 //callback function called on event arrival
6 public void onEvent(Event e){//perform some action}

Listing 5.1: Example MonitorIntent.

1 IntentScope cs = delimit(IntentScope.getGlobal(),
2 Cond.isTrue(eFault)); //eFault defined in Listing1
3 Intent eCons = Intent.newCIntent("ReduceEnergy");
4 eCons.setScope(cs);//set intent scope
5 eCons.set("speed").value("5");
6 eCons.set("RPM").value("1100");
7 send(eCons); //invoke task

Listing 5.2: Example ControlIntent.

1 DataPoint dataPoint = new DataPoint();
2 // Query available buffers
3 Collection<BufferDescription> availableBuffers
4 = dataPoint.queryBuffers(new SensorProps(...));
5 // Assign the buffers to the data point
6 dataPoint.assign(availableBuffers.get(0));
7 dataPoint.setPollRate(5);

Listing 5.3: Example usage of data points.

5.3.3 Programmatic application provisioning

The most important abstraction for provisioning IoT Cloud applications is the software-
defined gateway. In our programming model software-defined gateways are treated as

72

5.3. SDG-Pro’s Programming Model

Software‐defined gateway

Cloud communication protocols

Service runtime

Data & Control Points

Se
rv
ic
e

Provisioning
agent

Governance
manager

Monitoring
manager

Direct input device, CAN, ModBus, LonWorks ...

Cloud platform

Drivers layer
OEM specific API

Operating System (services ...)

Governance
agent

Se
rv
ic
e

Se
rv
ic
e

...

Figure 5.5: Overview of software-defined gateway structure.

first-class citizens. This allows the developers to specify, manipulate and manage the IoT
Cloud infrastructure resources and application artifacts programmatically from within
the application logic.

Generally, provisioning part of the application logic is used to programmatically specify
the infrastructure and artifact dependencies, i.e., the state of the infrastructure required
by the business logic services to execute correctly. To this end, our framework supports the
developers to perform two main tasks. First, the developers can programmatically define
the software-defined gateways and specify their internal structure, i.e., they customize
it with application-specific artifacts and services. Second, our framework supports the
developers to deploy such gateways atop IoT Cloud (e.g., data centers or physical IoT
gateways) form within the application logic. Therefore, provisioning logic is specified
in software enabling the infrastructure dependencies and requirements to be defined
dynamically, in code.

Figure 5.5 shows the typical structure of a software-defined gateway. We notice two
important properties of software-defined gateways. First, to technically realize software-
defined gateways SDG-Pro offers gateway prototypes. These are resource containers,
used to bootstrap more complex, higher-level gateway functionality. Generally, they
are hosted atop IoT Cloud and enriched with functional, provisioning and governance
capabilities, which are exposed via well-defined APIs. Currently, our framework supports
software-defined gateways based on kernel supported virtualization, but virtualization
choices do not pose any limitations, because, by utilizing the well-defined API, our
gateway prototypes can be dynamically configured, provisioned, interconnected, deployed,
and controlled. Second, developers use the software-defined gateways to programmatically
provision and deploy required application services, but also to configure an execution
environment for such services. Therefore, by utilizing the provisioning APIs, developers
can customize the software-defined gateways to exactly meet the application’s functional

73

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

requirements. For example (Figure 5.5), they can dynamically configure a specific cloud
communication protocol, e.g., CoAP or MQTT, select services runtime, e.g., Sedona VM
or configure data and control points, e.g., based on Modbus.

In order to provision a software-defined gateway, initially the developers need to
specify the software defined gateway prototypes. Listing 5.4 illustrates how the gate-
way prototypes are programmatically defined with our framework. In this example, a
software-defined gateway is created from a gateway prototype, based on BusyBox. In
the background the framework creates a Linux container and installs the provisioning
and governance agents on it (more details about this process are given in Section 5.4).
In general, the agents expose the provisioning APIs, which are activated and available
at that point. Afterwards, a developer provides a configuration model for the gateway.
In this example the gateway is configured to be deployed on a specific host by setting
the “host address". In case it is not set the framework uses the deployment class to
determine the gateway placement. Finally, the developer specifies the class that contains
the internal provisioning logic.

1 //Define and configure a gateway
2 SDGateway gateway
3 = UnitsController.create(GType.BUSYBOX);
4 gateway.setId("gateway-X");
5 gateway.setHost("http://host_address");
6 gateway.setMetaData(Deployment.class);
7 gateway.addConfigClass(Provisioning.class);

Listing 5.4: Example of software-defined gateway prototype.

Listing 5.5 illustrates our framework’s support for dynamic provisioning of such
gateways. The gateway provisioning logic contains the directives to internally provision
the gateway, e.g., to install and configure device services, cloud communication libraries
and data and control points. To this end, developers can use the framework’s provisioning
support, which comprises infrastructure provisioning APIs (provided by the provisioning
agents) and a provisioning DSL containing a number of functions that facilitate provi-
sioning of the software-defined gateways. In this example, we show how to provision a
gateway with Sedona runtime.

1 String dest = ".../G2021/svm";
2 provisioner.CreateDirIfMissing(dest);
3 provisioner.CopyToDir("sedona-vm-1.2.28/svm", dest);
4 provisioner.setPermissions(dest, "a+x");

Listing 5.5: Example of provisioning DSL and APIs usage.

74

5.3. SDG-Pro’s Programming Model

Capability Package

CapabilityId
(name+version)

Executable
(e.g.,binary, sh)

Provisioning
directives

Config. model

Meta‐info.

Install
Uninstall

Mapping model

HW requirements
Runtime dependencies

APIs
Software‐defined

IoT unit (e.g., gateway)

governs

Figure 5.6: Governance capability package structure.

5.3.4 Programmatic application governance

After an application is provisioned and deployed, a new set of runtime concerns emerges,
e.g., dynamically reconfiguring sensor update rates or elastically scaling software-defined
gateways. In order to address such concerns, application developers implement operational
governance processes (cf. Figure 5.4).

In Chapter 8 we introduce a general approach for runtime operational governance in
software-defined IoT Cloud systems. In this chapter we mainly deal with operational
governance processes that manipulate the states of IoT Cloud applications, at runtime.
Such processes can be seen as a sequence of operations, which perform runtime state
transitions from a current state to some desired target state (e.g., that satisfies some
non-functional properties, enforces compliance, or exactly meets custom requirements).
The core abstraction behind the operational governance business logic are governance
capabilities. Generally, the governance capabilities represent the main building blocks
of operational governance processes and they are usually executed in IoT devices. The
governance capabilities encapsulate governance operations which can be applied on
deployed software-defined gateways, e.g., to query the current version of a service, change
a communication protocol, or spin up a virtual gateway. Such capabilities are described
via well-defined APIs and are usually provided by domain experts who develop the
IoT units. The framework enables such capabilities to be dynamically added to the
system and supports managing their APIs. Generally, we do not make any assumptions
about concrete capability implementations. However, the framework requires them to be
packaged as shown in Figure 5.6.

To enable programmatic operational governance (implementing application governance
processes) our framework offers a governance DSL and managed governance APIs. They
are used by application developers to develop application governance logic, i.e., operational
governance processes that install, deploy, manage and invoke the governance capabilities.
One way to define the operational governance processes is to provide a sequence of
governance API calls. Listing 5.6, shows examples of operational governance APIs
exposed by our framework. In addition, SDG-pro provides a higher-level support to
develop application governance processes in terms of a governance DSL. Listing 5.7
and Listing 5.8 respectively show how to use two main constructs of the application
governance DSL, namely how to define a GovernanceScope and how to define a simple

75

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

GovernancePolicy. The governance policies are discussed in more detail in Chapter 9.

1 /* General case of capability invocation. */
2 /deviceId/{capabilityId}/{methodName}/{arguments}?
3 arg1={first-argument}&arg2={second-argument}&...

5 /* Data points capability invocation example. */
6 deviceId/DPcapa/setPollRate/arguments&rate=5s/deviceId/DPcapa/list

8 /* Capabilities manager examples. */
9 /deviceId/cManager/capabilities/list

10 /deviceId/cManager/{capabilityId}/stop

Listing 5.6: Examples of operational governance APIs.

1 G:GOVERNANCE_SCOPE
2 query:= location=buildingX & type=JACE-545
3 CONSIDERING_UNCERTAINTY:
4 missing_data = "location<=’?’,type<=’*’" AND
5 selection_strategy = optimistic AND
6 use_cache = false

Listing 5.7: Example governance scope.

1 S:STRATEGY CASE Fulfilled(CND1):
2 setUpdateRate(5s) FOR G //see listing above
3 CONSIDERING_UNCERTAINTY:
4 run_in_isolation = true AND
5 keep_alive = 5min AND
6 degree_parallelism = 200 AND
7 tolerate_fault_percentage = 20% AND
8 fallback_count = 2 AND
9 time_to_next_fallback = 500ms

Listing 5.8: Example governance policy.

5.4 SDG-Pro’s Runtime Mechanisms

The SDG-Pro framework provides a set of runtime mechanisms that underpin the pro-
gramming abstractions (Section 5.3) and support application execution atop the IoT
Cloud. Generally, application execution includes instantiating, provisioning and deploying
software-defined gateways; dynamically loading device services atop the gateways; in-
stantiating virtual application topologies (with Intents and IntentScopes); and triggering
execution of operational governance processes (on-demand, depending on the business
logic). Next, we discuss the design and implementation of the most important SDG-Pro’s
runtime mechanisms in more detail.

76

5.4. SDG-Pro’s Runtime Mechanisms

5.4.1 Instantiating, provisioning and deploying software-defined
gateways

Currently SDG-Pro supports a version of software-defined gateways (prototypes), which
is based on Linux Containers (LXC). When a developer instantiates a gateway prototype
(e.g., as shown in Listing 5.4), the IoT units controller (cf. Figure 5.3) performs three main
tasks. First, it creates an instance of LXC and installs the provisioning and governance
agents in the container. Second, the provisioning agent2 executes the provisioning
directives, supplied in a provisioning script (e.g., Listing 5.5). Finally, the IoT units
controller deploys the gateway instance in IoT Cloud.

Firstly, to instantiate a software-defined gateway our framework relies on Docker3, i.e.,
more specifically on Docker deamon that offers a remote API for programmatic container
creation. To bootstrap the instantiation, SDG-Pro provides a custom base image, which
we developed atop a BusyBox user land on a stripped-down Linux distribution. In SDG-
Pro, the DeviceManager is based on the Docker remote API, but it provides additional
support for configuring and managing containers such as specifying the custom meta
information (e.g., location) to provide more control over the software-defined gateways
at the application level. As the last part of gateway instantiation, SDG-Pro installs its
provisioning and governance agents that support execution of the subsequent phases.

Provisioning a software-defined gateway includes configuring, deploying and installing
different artifacts such as device services, libraries (e.g., cloud communication protocols)
and other binaries atop the newly created gateway instance. In the first step of the
provisioning process, the ProvisioningManager creates artifacts image. In essence, it is
a (compressed) set of component binaries and provisioning scripts. Next, the Deploy-
mentManager places the image in the update queue. The provisioning agent periodically
inspects the queue for new updates and when it is available the agent polls the image in
the gateway (container) in a lazy manner. Additionally, SDG-Pro allows the components
to be asynchronously pushed to the gateways, similarly to eager object initialization.
Finally, the agent interprets provisioning scripts, i.e., performs a local installation of the
binaries and executes any custom configuration directives.

Lastly, the SDG-Pro framework selects an IoT Cloud node, i.e., an edge device or a
cloud VM, and deploys the gateway instance on it. The main component responsible
for gateways (containers) allocation and deployment is the GatewayCoordinator. In the
current prototype, the GatewayCoordinator is built based on fleet and etcd. The fleet
is a distributed init system that provides the functionality to manage a cluster of host
devices, e.g., the IoT Cloud nodes. The etcd is a distributed key/value store that supports
managing shared configurations among such nodes. In order to allocate a gateway, i.e.,
select the best matching node in the IoT Cloud, the GatewayCoordinator compares
the available gateway attributes (e.g., location, ownership, node type, etc.) with the

2The provisioning agent is implemented as a light-weight service, based on Oracle Compact Profile1
JVM

3https://docker.com/

77

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

meta data of the available IoT Cloud nodes. The gateway’s meta data is obtained from
a developer-specified configuration model. The nodes’ meta data is provided by the
DeviceManager and it is mostly maintained manually, e.g., by system administrators. At
the moment, we only provide a rudimentary support for gateway allocation, i.e., SDG-Pro
only considers static node properties. In the future, we plan to address this issue by
including support for dynamic properties such as available bandwidth and providing
support for runtime migration (reallocation) of software-defined gateways. Finally, after
a node is selected, the GatewayCoordinator invokes the fleet to deploy the gateway on
that node.

5.4.2 Intent-based invocation and IntentScope resolution

In the SDG-Pro framework, the communication among the main application components
is performed via Intents. Generally, it follows a partial content-based publish/subscribe
model and in the current prototype it is based on the Apache ActiveMQ JMS broker.

When an application submits a new Intent to SDG-Pro’s RuntimeContainer, it first
routes the Intent to the TaskSelector, which matches intent headers with device services
(task) filters to find suitable services that match the Intent. Afterwards, the TaskSelector
reads the Intent attributes and compares them with the task filters to find the best
matching task. The attributes are represented as feature vectors and a multi-dimensional
utility function, based on the Hamming distance, is used to perform the matching.
Afterwards, the TaskSelector requests a service instance, by providing its description to
the the TaskManager. It checks the validity of the mapping and, if it is valid, invokes
the corresponding service. If no service is available the Intent is marked as failed and the
invoker is notified.

In a more general case, when an Intent gets invoked on an IntentScope, the aforemen-
tioned invocation process remains the same, with the only difference that our framework
performs all steps on a complete IntentScope, in parallel, instead on an individual gateway.
To this end, the ScopeCoordinator provides dynamic resolution of the IntentScopes. The
IntentSope specifications are implemented as composite predicates which reference device
meta information and profile attributes. The predicates are applied on the GlobalScope
(Section 5.3.2), filtering out all resources that do not match the provided attribute
conditions. The ScopeCoordinator uses the resulting set of resources to initiate the
Intent mapping and invocation. The ScopeCoordinator is also responsible to provide
support for gathering results delivered by the invoked device services. This is needed
since the scopes are resolved in parallel and the results are asynchronously delivered by
the software-defined gateways.

5.4.3 Invocation of runtime governance capabilities

As shown in Section 5.3.4, application developers define operational governance logic as
a sequence of API calls to the governance capabilities. The APIManager is responsible
to mediate (map) these invocations to the underlying infrastructure, i.e., the software-

78

5.5. Evaluation

defined gateways. To this end it relies on the CapabilityManager, which is a cloud-based
service and the governance agent, which is a light-weight HTTP deamon, preinstalled in
software-defined gateway prototypes.

When an API request is submitted by an application, SDG-Pro performs following
steps: it registers the capability, maps the API call, executes the capability, and returns
the result. First, the APIManager registers the API call with the corresponding capability.
This involves querying the capability repository to obtain its meta-information (such
as expected arguments), as well as building a dynamic mapping model, which includes
capability ID, a reference to a runtime environment (e.g., Linux shell), input parameters,
the result type, and further configuration directives. The CapabilityManager forwards
the model to the gateways (i.e. the governance agent) and caches this information for
subsequent invocations. During future interactions, the framework acts as transparent
proxy, since subsequent steps are handled by the underlying gateways. In the next
step, the governance agent needs to perform a mapping between the API call and the
underlying capability. By default, it assumes that capabilities follow the traditional Unix
interaction model, i.e., that all arguments and configurations (e.g., flags) are provided via
the standard input stream (stdin) and output is produced to standard output (stdout)
or standard error (stderr) streams. This means, if not specified otherwise in the mapping
model, the framework will try to invoke the capability by its ID and will forward the
provided arguments to its stdin. For capabilities that require custom invocation, e.g.,
property files, policies, or specific environment settings, the framework requires a custom
mapping model. This model is used in the subsequent steps to correctly perform the
API call. Finally, the governance agent invokes the governance capability and as soon
as the capability completes it collects and wraps the result. Currently, the framework
provides means to wrap results as JSON objects for standard data types and it relies
on the mapping model to determine the appropriate return type. However, this can be
extended to support generic behavior, e.g., with Google Protocol Buffers.

5.5 Evaluation

5.5.1 Evaluation methodology

In this section we present a functional evaluation of the chapter’s main contribution –
the SDG-Pro’s programming model for IoT Cloud applications. To validate SDG-Pro’s
programming model we follow evaluation design guidelines provided in [100]. The main
objective of our qualitative analysis is twofold. First, to show that SDG-pro facilitates
dealing with the challenges of designing and developing IoT Cloud applications (RC1-
RC4), we demonstrate how our programming model enforces the main design principles
of IoT Cloud systems, as justified in Section 5.2.1. Second, in order to show that SDG-
Pro enables easier, efficient and more intuitive development of IoT Cloud applications,
we compare it against traditional programming model evaluation criteria that include:
readability, code simplicity, reusability, expressiveness and functional extensibility.

79

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

5.5.2 Examples of FMS applications and services

To demonstrate the most important concepts and features of SDG-Pro’s programming
model, we present a set of real-life applications from our FMS system (Section 5.1).
This example suite is designed to cover typical interactions and requirements of IoT
Cloud applications, such as realtime monitoring and data analytics, remote actuation
and control, autonomous device tasks and offline data analytics, in order to show the
completeness of SDG-Pro’s programming model regarding its support w.r.t. the real-life
requirements. The example applications are developed and deployed atop a virtualized
IoT Cloud testbed, based on CoreOS. In our testbed we simulate and mimic physical
gateways in the cloud. The gateways are based on a snapshot of a real-world gateway,
developed by our industry partners. The testbed is deployed on our local OpenStack
cloud and it consists of 7 CoreOS 444.4.0 VMs, each running 150 LXCs, thus simulating
approximately 1000 vehicles.

Example 1 – Energy consumption tracking

The FMS needs to monitor high-value vehicles’ energy consumption in (near) real-time.
In case any energy fault is detected, it must notify a golf course manager and put the
vehicles in a reduced energy mode.

1 //select high-value vehicles
2 IntentScope s =
3 cont.delimit(IntentScope.getGlobal(),
4 Cond.greaterThan("price", "5000"));
5 Intent eFault = Intent.newMIntent("EnergyFault");
6 eFault.setScope(s);
7 cont.notify(eFault, this);//sub. to event
8 ...
9 public void onEvent(Event e){

10 IntentScope ts = IntentScope.create(e.getEntityId();
11 Intent eCons = Intent.newCIntent("ReduceEnergy");
12 eCons.setScope(ts);//set task scope
13 cont.send(eCons); //send to all vehicles in ts
14 }

Listing 5.9: Remote monitoring of fleet’s energy consumption.

The most important part of this application in shown in Listing 5.9. To implement
the monitoring behavior, developers only need to define an IntentScope (lines 2-4), in
which they declare properties (e.g., metadata) that need to be satisfied by monitored
vehicles, define a MonitorIntent and assign the desired scope to it (lines 5-7). Similarly, to
implement a remote control behavior developers only need to define a ControlIntent (lines
12-14). In this example, it is natural to use asynchronous communication (of sensory
data), thus a developer uses SDG-Pro’s notify directive (line 8), to subscribe for the
state changes in the environment.

This example demonstrates how easy it is to implement a real-time remote monitoring
behavior. By introducing IntentSopes at the application level, SDG-Pro shields the

80

5.5. Evaluation

developers from directly referencing the vast number of diverse physical entities and
enables them to delimit the range of their actions on a higher abstraction level. Similarly,
to perform an IoT control action or to subscribe for relevant events, developers only need
to define and configure the corresponding Intents. This allows them to communicate to
the system what needs to be done, instead of worrying how the underlying devices will
perform the specific task.

Example 2 – Scheduled maintenance check

The FMS performs daily checks of the fleet’s health. This is done mainly during the
night, when the vehicles reside dormant in the club house, within the Wi-Fi range. The
application reads the diagnostic data, gathered during the day, and analyzes them offline.

1 Intent localCon = Intent.newMIntent("ConnType");
2 localCon.setScope(IntentScope.getGlobal());
3 IntentScope ds = container.
4 delimit(Cond.eq("WLAN", localCon));
5 ds.addObserver(this);

7 public void update(Observable obs, Object arg){
8 Intent di = Intent.newMIntent("DiagnosticsLogger");
9 di.setScope((IntentScope)obs);

10 List<Event> data = container.poll(diagnostics);
11 // send data to an analytics framework
12 }

Listing 5.10: Scheduled maintenance check.

To implement such behavior, application first needs to determine that a vehicle is
connected to a local network. This is achieved by defining an active IntentScope, as shown
in Listing 5.10, lines 1-4. Second, the application needs to gather vehicles’ diagnostic
data and store them, e.g., in a local database. To synchronously poll the vehicle data, a
developer simply defines a MonotorIntent and uses the poll directive (lines 8-10).

This example, demonstrates several important points. First, since MonitorIntents
can be used to define an IntentScope, SDG-Pro enables developers to dynamically (e.g.,
based on environment or context changes) determine application behavior. Second, since
IntentScopes are observable, developers can specify complex conditions that will trigger
an execution of the business logic, without having to write complicated queries and event
processing schemes. Finally, it is worth noticing that SDG-Pro does not provide support
for the data analytics. However, we have shown that with little effort, by using intuitive
concepts, an offline analytics application can obtain the required data, which can then
be analyzed with data analytics frameworks, e.g., MapReduce.

Example 3 – Diagnostics data logging

This application periodically pools the data from the variety of vehicle’s sensors e.g.,
engine status, battery status, transmission, etc. and stores them locally for later analysis

81

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

(e.g., see Example 2).

1 //Create custom sensor from physical channel
2 BufferConf bc = new BufferConf("voltage_in");
3 bc.setClass(BufferClass.SENSOR);
4 bc.getAdapterChain().add(
5 new ScalingAdapter(0.0,100.0,10.0));
6 bc.getAdapterChain().add(new LowpassFilter(0.30));
7 BufferManager.create("lowpass-scaled", bc);
8 //Define diagnostics model
9 DataPoint diagnostics =

10 new ComplexDataPoint("lowpass-scaled","voltage_in");
11 DataInstance di = diagnostics.read();
12 //log the diagnostics data di

Listing 5.11: Logging diagnostics data locally.

Listing 5.11 shows a partial diagnostics data model. The diagnostic data contains
raw engine voltage readings and scaled voltage readings with low-pass filter, e.g., possibly
indicating that something is taking the power away from the motor. To develop a custom
sensor, developers only need to create a virtual buffer (referencing the base channel,
e.g., raw voltage readings) and configure its adapter chain, as shown in lines 2-6. After
creating a custom virtual sensor (line 7) application can treat this sensor as any other
sensor. Consequently, a data model can then be easily defined with Data Points, as sown
in lines 9-11. Storing the data is omitted for readability purposes.

Essentially, this example shows how our framework transparently virtualizes access to
the same voltage sensor. This demonstrates two important features of the data and control
points. First, since the SDG-Pro provides (virtually) exclusive access to the sensors (i.e.,
buffers act as multiplexers), developers can define custom configurations for the data
streams, effectively creating an application-specific view of the sensors. An important
consequence is that multiple applications can easily share the infrastructure, retaining a
custom view of it. Second, since Data and Control points support developers to interact
with underlying devices in a unified manner, i.e., independent of the communication
protocols or the input channel types, applications can define their (arbitrarily complex)
data models by only specifying the required data points. These can be seen as volatile
fields in traditional data model entities.

Example 4 – Energy fault detection

To detect vehicles over consuming battery an FMS service relies on powermeter, odometer
and temperature sensors that are available in the vehicles and uses a custom algorithm
to detect potential energy faults.

In Listing 5.12 we show a code snippet from the corresponding FMS service. De-
velopers create two data points. The dp1 combines the battery status and odometer
readings and it asynchronously delivers the sensory readings to the service. The dp2
queries the available temperature data channels, based on their meta data and aggregates

82

5.5. Evaluation

1 DataPoint dp1 = DataPoint.
2 create("battery", "odometer");
3 DataPoint dp2 = new DataPoint();
4 //Since we have multiple temperature sensors
5 //we query them via the meta data
6 Collection<BufferDescription> tempBuffers =
7 dataPoint.queryBuffers(
8 new SensorProps("*temperature*"));
9 dp2.assign(tempBuffers);

10 ...
11 //invoke energy fault detection algorithm

Listing 5.12: Device service for energy fault detection.

the temperature readings from the available thermometers (lines 6-9). Among other
things, the energy fault detection algorithm uses these data points and Complex Event
Processing (CEP) techniques to determine potential energy faults, but its implementation
is omitted in accordance with our nondisclosure agreement.

We notice that application obtains the temperature readings without directly refer-
encing any physical sensor. Instead it generically queries the sensors’ meta data. Further,
since SDG-Pro takes care of synchronizing the sensors’ readings, e.g., among the temper-
ature sensors, developers can focus on custom data processing steps (algorithm). This is
a crucial requirement to be able to develop portable applications, which do not directly
depend on the physical infrastructure.

Example 5 – Provisioning and deploying application runtime environment

In order to execute an application/service (see Examples 1-4), developers need to provision
a software-defined gateway and deploy it atop IoT Cloud.

1 /* Snippet from Provisioning.java*/
2 //install JVM Compact Profile 1
3 String dest = ".../G2021/jvm";
4 provisioner.CreateDirIfMissing(dest);
5 provisioner.CopyToDir("jvm-profile1-1.8.0/*",dest);
6 provisioner.setPermissions(dest, "a+x");
7 ...
8 /* Snippet from Gateways.java*/
9 SDGateway gateway

10 = UnitsController.create(GType.BUSYBOX);
11 gateway.addConfigClass(Provisioning.class);
12 UnitsController.startParallel(gateway,
13 IntentScope.getGlobal().asResource());

Listing 5.13: Creating a software-defined gateway.

Listing 5.13, shows how to programmatically add Java Compact Profile runtime to a
gateway and how to deploy instances of that gateway atop the vehicles’ on-board devices.
In lines 3-6 we show how developers can use the provisioning API to specify which

83

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

custom resources are required in the gateway prototype. Further, this example show the
most important parts related to gateways deployment, i.e., gateway instantiation from
Docker-based Busybox prototype (lines 9,10), associating the configuration model with
the prototype (line 11) and multiple deployment (lines 12,13).

This example shows a part of general SDG-Pro’s provisioning API. We notice that our
framework provides a generic API which can be used to declaratively configure different
types of resources. This essentially enables developers to programmatically deal with
complex IoT Cloud infrastructure and its dependencies, i.e., the desired configuration
baseline is specified locally and once for multiple application instances. SDG-Pro provides
a unified view on defining and manipulating the infrastructure through software-defined
gateways, but also offers a fine-grained access and control of the gateways configuration
(e.g., container’s base image).

Example 6 – Configuring application dependencies programmatically

The FMS applications have different dependencies and requirements e.g., regarding
communication protocols. To guarantee correct application behavior, developers (or
operations managers) need to correctly configure such infrastructure dependencies.

1 //install Modbus
2 provisioner.addDCPointResource("modbus/Modbus.sab");
3 provisioner.addDCPointResource("modbus/Modbus.sax");
4 provisioner.addDCPointResource("modbus/Kits.scode");
5 provisioner.addDCPointResource("modbus/Kits.xml");
6 //install MQTT client
7 RemoteLibrary mqttClient
8 = provisioner.getFromURL(
9 "http://..../mqtt-client-0.0.1.jar");

10 provisioner.installComProto(mqttClient.getBinary());
11 ...

Listing 5.14: Configuring application dependencies.

Listing 5.14 shows excerpt of typical FMS protocols configuration. Lines 2-6 show
how developers can to configure Modbus device protocol (used by Data and Control
Points) and MQTT cloud connectivity protocol (lines 7-10), e.g., used by MonitorIntents.

The most important thing to notice here is that SDG-Pro provides software-defined
gateway specific provisioning APIs. This shows that our abstractions are designed in
such manner to inherently support programmatic provisioning, by exposing well-defined
API and providing runtime mechanisms which transparently enable inversion of control
and late (re)binding of the dependencies. Also standard provisioning operations such
as fetching a remote resource can be combined with specific provisioning APIs, as
shown in lines 7-9. The most important consequence is that developers can design
generic application business logic and transparently declare the desired infrastructure
dependencies programmatically, e.g., in a separate application module.

84

5.5. Evaluation

Example 7 – Emergency governance process

In case of an emergency situation the FMS needs to increase the monitoring frequency of
vehicles’ sensors.

1 Iterator<Vehicle> vehicles.iterator();
2 //for each vehicle on the golf course
3 List<DataPoint> dPoints = HTTPClient
4 .invoke(".../APIManager/mapper/"
5 +vehicles.next().getId()+"/DPcapa/list");
6 for (DataPoint dp : dPoints) {
7 HTTPClient.invoke(".../DPcapa/"
8 +"setPollRate/args?rate=10s&id="+dp.getId()");
9 }

Listing 5.15: Example emergency operational governance process.

To satisfy this cross-cutting compliance requirement, developers need to develop an
operational governance process [104, 110]. Listing 5.15 shows a code snippet form such
emergency governance process. The most important part of the process is shown in lines
7-8, which show how a developer can use governance API to dynamically manipulate the
edge of the infrastructure, in this case change the sensor update rate.

SDG-Pro takes over the responsibility of invoking individual governance capabilities
(e.g., per vehicle), effectively shielding the developers from low-level infrastructure details.
The most important consequence of having such governance API is that the governance
logic can be specified programmatically and maintained locally. Also governance processes
are completely separated from the business logic, thus the core business logic is not
polluted with cross-cutting governance concerns. In addition, since at the application
level the infrastructure is perceived as a set of capabilities exposed through the governance
API, the developers do not have to worry about geographical distribution, heterogeneity
or scale of the IoT Cloud infrastructure nor directly deal with individual devices.

5.5.3 Discussion

As shown on a set of real-life examples, our SDG-Pro framework enables addressing most
of development concerns at application code level (everything as code). This provides
advantages such as having a uniform view on the entire development process, which
makes it easily traceable and auditable, but also enables exploiting proven and well-known
technologies, e.g., source control or configuration management systems, during the entire
application lifecycle. Moreover, it gives full control to developers and makes IoT Cloud
applications less infrastructure-dependent.

We have shown how SDG-Pro provides API encapsulation of the most important
aspects related to gateway provisioning and governance. A key advantage of this approach
is that developers do not need to explicitly worry about the underlying infrastructure.
Rather, they perceive the complex and heterogeneous IoT Cloud infrastructure as a set

85

5. A Unifying Programming Framework and Methodology for
Everything-as-Code in IoT Cloud Systems

of uniform APIs that enable programmatic management of such infrastructure. Our
SDG-Pro framework supports the developers to declaratively provision IoT Cloud systems
and to automate most of the provisioning process. This improves general readability
and maintainability of the provisioning logic and simplifies the provisioning process.
Additionally, by encoding the provisioning directives as part of application’s source
code, our framework makes the provisioning process easily repeatable. This reduces the
potential errors, but more importantly enables continuous, automated enforcement of
the configuration base line. Regarding the governance processes, by providing a logically
centralized point of operation of IoT Cloud infrastructure, SDG-Pro supports developers
to easily define desired states and runtime behavior of IoT Cloud systems, but also
enables automated enforcement of governance processes, which is crucial to realize (time)
consistent governance strategies across the entire IoT Cloud system.

We also notice a number of limitations of our approach. From the technical perspec-
tive, at the moment SDG-Pro offers a rudimentary mechanism for gateway allocation,
which only considers static properties when deploying the software-defined gateways.
Additionally, although IoT Cloud systems include many mobile and unstable devices,
the current prototype provides a limited support regarding the dependability concerns.
However, optimization of gateway allocation and addressing the dependability issues
related to device mobility are subject of our future work. Furthermore, the set of proposed
programming concepts is not exhaustive and especially the provisioning and governance
APIs are in an active state of development and refinement. However, as we have shown
on a set of real-life examples, SDG-Pro offers programming support sufficient to express
many common behaviors of IoT Cloud applications. Although our programming model
has many important traits such as readability and simplicity, as well as facilitates writing
reusable and portable application logic, in SDG-Pro’s programming model, we trade
flexibility and expressiveness for more intuitive and efficient programming of the IoT
Cloud applications. Finally, although developers utilize the well-known Java programming
language, SDG-Pro introduces a number of new concepts that require an initial learning
effort. However, by explicitly enforcing main design principles of software-defined IoT
Cloud systems, we believe that in the long-run our framework can reduce development
time, potential errors and eventually the costs of application development.

5.6 Conclusion
In this chapter, we introduced the SDG-Pro framework for developing software-defined
IoT Cloud applications in a uniform manner. We presented SDG-Pro’s programming
model for IoT Cloud applications, which is designed to enforce the main principles of
software-defined IoT Cloud systems. We discussed that by enforcing such principles
on the application level, our framework enables easier, efficient and more intuitive
application development. Besides supporting business logic development, SDG-Pro
introduces additional support and provides a unified programmatic view on the entire
development process (everything as code). We illustrated how our framework encapsulates
most important aspects of IoT Cloud provisioning and governance, exposing them to

86

5.6. Conclusion

the developers in terms of uniform APIs and light-weight provisioning and governance
DSLs. We discussed on a set of real-life applications, that by providing a systematic
and structured support for everything-as-code paradigm our framework makes the entire
application development process more traceable and easily auditable, but also enables
exploiting proven and well-known technologies, e.g., source control or configuration
management systems, during the entire application lifecycle.

Finally, the comprehensive provisioning and governance models are subject of other
contributions of this thesis, which are respectively discussed in more detail in Part II
and Part III of the thesis.

87

Part II

Provisioning IoT Cloud Systems

89

Preface
Over the recent years, cloud computing and the Internet of Things have been converging
ever stronger, sparking creation of very large-scale, geographically distributed systems.
When facing such large-scale systems with heterogeneous, dynamic and geographically
distributed resource pool, efficacy of provisioning models, mechanisms and tools plays a
crucial role. With the rise of cloud computing, we have witnessed numerous benefits of
self-service, utility-oriented provisioning models, in terms of more flexible and cheaper
IT operations. Since cloud is a one of the key constituents of IoT Cloud, it would be
natural to expect that these flagship properties of cloud computing would be inherited by
IoT Cloud as well. Unfortunately, this is still not the case and as a consequence system
integrators and operations managers have to rely on provisional solutions, which require
combining multitude of provisioning techniques such as manual, script- and service-based
provisioning. This requires rethinking existing support for representing infrastructure
resources, managing their configuration and deployment models as well as composing low-
level resource components into usable infrastructures, capable to support novel application
business logic requirements.

The main objective of the second part of this thesis is to respond to one of the main
research questions formulated in Chapter 1, namely: “Which provisioning models, tech-
niques and tools can be applied to enable on-demand, self-service provisioning of IoT
Cloud resources at fine granularity?". The contributions presented in this part of thesis are
mainly driven by a stringent need: To enable refactoring of the underlying infrastructure
into finer-grained resource components whose behavior can be defined in software; To
provide conceptually unified representation of both Edge and Cloud resources; As well
as to enable automated and scalable management of IoT Cloud infrastructures and their
configuration models in a logically centralized fashion. To this end, in Chapter 6 we intro-
duce a conceptual model and layout a road map towards utility-based provisioning of IoT
Cloud systems. The main building blocks of our provisioning model are software-defined
IoT units. Our model conceptualizes the software-defined IoT units and elicit their main
design principles together with a road map to develop corresponding technical enablers.
Chapter 6 also introduces a preliminary prototype implementation of a provisioning frame-
work, which provides support (enablers) for automating the main aspect of provisioning
processes (units composition) and enables centrally managed configuration models. Chap-
ter 7 continues our line of research towards utility-based provisioning, by introducing a
middleware infrastructure, which provides a comprehensive support for multi-level provi-
sioning of IoT Cloud systems. The main features of our middleware include: i) Support
for automated provisioning and management of infrastructure resources, application
components and configuration models in a uniform, logically centralized manner through
middleware-managed APIs; ii) Extensible and flexible provisioning models, which support
self-service, on-demand consumption of Edge-device resources; iii) A generic, light-weight
resource abstraction mechanism, which allows for application-specific customization of
IoT Cloud resources with well-defined APIs.

CHAPTER 6
Provisioning Software-defined IoT

Cloud Systems

Cloud computing technologies have been intensively exploited in development and man-
agement of the large-scale IoT systems, e.g., in [134, 64, 160], because theoretically,
cloud offers unlimited storage, compute and network capabilities to integrate diverse
types of IoT devices and provide an elastic runtime infrastructure for IoT systems.
Self-service, utility-oriented model of cloud computing can potentially offer fine-grained
IoT resources in a pay-as-you-go manner, reducing upfront costs and possibly creating
cross-domain application opportunities and enabling new business and usage models of
the IoT cloud systems. However, most of the contemporary approaches dealing with IoT
cloud systems largely focus on data and device integration by utilizing cloud computing
techniques to virtualize physical sensors and actuators. Although, there are approaches
providing support for provisioning and management of the virtual IoT infrastructure
(e.g, [160, 134, 42]), the convergence of IoT and cloud computing is still at an early stage.
System designers and operations managers face numerous challenges to realize large-scale
IoT cloud systems in practice, mainly because these systems impose diverse requirements
in terms of granularity and flexibility of IoT resources consumption, custom provisioning
of IoT capabilities such as communication protocols, elasticity concerns, and runtime
governance. For example, modern large-scale IoT cloud systems heavily rely on the cloud
and virtualized IoT resources and capabilities (e.g., to support complex, computationally
expensive analytics), thus these resources need to be accessed, configured and operated
in a unified manner, with a central point of management. Further, the IoT systems are
envisioned to run continuously, but they can be elastically scaled in/down in off-peek
times, e.g., when a demand for certain data sources reduces. Due to the multiplicity of
the involved stakeholders with diverse requirements and business models, the modern IoT
cloud systems increasingly need to support different and customizable usage experiences.
Therefore, to utilize the benefits of cloud computing, IoT cloud systems need to support

93

6. Provisioning Software-defined IoT Cloud Systems

virtualization of IoT resources and IoT capabilities (e.g., gateways, sensors, data streams
and communication protocols), but also enable: i) encapsulating them in a well-defined
API, at different levels of abstraction, ii) centrally managing configuration models and
automatically propagating them to the edge of infrastructure, iii) automated provisioning
of IoT resources and IoT capabilities.

In this chapter, we introduce the concept of software-defined IoT units – a novel
approach to IoT cloud computing that encapsulates fine-grained IoT resources and IoT
capabilities in a well-defined API in order to provide a unified view on accessing, configur-
ing and operating IoT cloud systems. Our software-defined IoT units are the fundamental
building blocks of software-defined IoT cloud systems. They enable consuming IoT
resources at a fine granularity, allow for policy-based configuration of IoT capabilities and
runtime operation of software-defined IoT cloud systems. We present a preliminary imple-
mentation of a framework for dynamic, on-demand provisioning of the software-defined
IoT cloud systems. By automating main aspect of provisioning processes and supporting
centrally managed configuration models, our framework simplifies provisioning of such
systems and enables flexible runtime customizations.

The rest of this chapter is structured as follows: Section 6.1 presents a motivating
scenario and research challenges; Section 6.2 describes main principles and our conceptual
model of software-defined IoT systems; Section 6.3 outlines main provisioning techniques
for software-defined IoT systems; Section 6.4 introduces design and implementation of
our prototype, followed by its experimental evaluation; Finally, Section 6.5 concludes the
chapter.

6.1 Motivation
In this chapter, we analyze the two main use cases (FMS and BMS) derived from the case
study, presented in Chapter 2. This section approaches the two real-life systems form
the perspective of operations management. It illustrates tasks that need to be performed
to provision such systems and derives concrete research challenges, which the operations
managers currently face to provision large-scale, geographically-distributed IoT Cloud
systems.

6.1.1 Scenarios

Provisioning FMS

As mentioned in Chapter 2 the FMS is an IoT cloud system comprising vehicle’s on-
board gateways, network and the cloud infrastructure. The main features provided by
the on-board device include: a) vehicle maintenance (fault history, battery health,
crash history, and engine diagnostics), b) vehicle tracking (position, driving history,
and geo-fencing), c) vehicle info (charging status, odometer, serial number, and service
notification), d) set-up (club-specific information, maps, and fleet information). Vehicles
communicate with the cloud via 3G, GPRS or Wi-Fi network to exchange telematic and

94

6.1. Motivation

diagnostic data. On the cloud we host different FM subsystems and services to manage
the data. For example: a) Realtime vehicle status: location, driving direction, speed,
vehicle fault alarms; b) Remote diagnostics: equipment status, battery health and timely
maintenance reminders; c) Remote control: overriding on-board vehicle control system in
case of emergency; d) Fleet management: service history and fleet usage patterns. In the
following we highlight some of the FMS features, which need to be considered during
system provisioning:

• The FMS subsystems and services are hosted in the cloud and heavily rely on the
virtualized IoT resources, e.g., vehicle gateways and their capabilities. Therefore, we
need to enable encapsulating and accessing IoT resources and IoT capabilities via
uniform APIs.

• The FMS has different requirements regarding communication protocols. The fault
alarms and events need to be pushed to the services (e.g, via MQ Telemetry Transport
(MQTT) [114]), when needed vehicle’s diagnostics should be synchronously accessed
via RESTfull protocols such as CoAP [55]or sMAP [38]. The remote control system
requires a dedicated, secure point-to-point connection. Configuring these capabilities
should be decoupled from the underlying physical infrastructure, in order to allow
dynamic, fine-grained customization.

• The FMS spans multiple, geographically distributed cloud instances and IoT devices
that comprise FM’s virtual runtime topologies. These topologies abstract a portion
of the IoT cloud infrastructure, e.g., needed by specific subsystem, thus they should
support flexible configuring to allow for on-demand provisioning.

• The FMS involves growing number of stakeholders. Therefore, we need to accommodate
the scale and geographical distribution of the current FMS offering as well as support
projected growth and future customization requirements.

6.1.2 Provisioning BMS

In general, to provision BMS operations managers perform two distinct tasks. The initial
deployment and staging of devices on the one hand, and updates with varying frequency
and priorities on the other hand. In our scenario the BMS provider is responsible for
managing several hundreds of buildings with a variety of tenants. The managed buildings
are equipped with variety of Edge devices ranging from sensors to detect smoke and heat,
to elevator and door controls, to complex cooling and heating systems. They rely on
gateways, which provide constrained execution environments with limited processing,
storage, and memory resources to execute the device firmware and simple routines.
Gateways enable the basic bundling and management of a wide variety of connected
entities. Due to the current market situation and the existing lack of standards in
this novel field, there exists a huge heterogeneity in terms of software environments
when it comes to these gateways. Initially all these devices need to be staged with the
necessary capabilities to enable their basic functionality. The connected sensors need to

95

6. Provisioning Software-defined IoT Cloud Systems

be supported, the latest firmware needs to be installed and they need to be integrated
into a specific deployment structure. This is followed by long term evolution in terms of
general maintenance, changing deployments, shifting capabilities as well as updating the
software environment or firmware. The second kind of updates revolve around security
patches and hot fixes that need to be deployed very fast in order to ensure that the whole
infrastructure stays operational. These updates are time critical since delays can cause
severe security problems in the whole infrastructure. Similarly to FMS we outline the
following distinct requirements in the context of BMS:

• Gateways participating in an IoT infrastructure are resource-constrained in terms of
their processing, memory, and storage capabilities.

• Our scenario deals with large-scale deployments comprising thousands of gateways
with a wide variety of different supported execution environments.

• Requirements of these gateways change over time, which makes updates necessary.
These updates can either be non-time-critical or time-critical, like security updates.

• In order to sustain operations all updates need to be efficient and fast, and, therefore,
have to be performed during system runtime, without interrupting its operation, i.e.,
down time.

6.1.3 Research Challenges

The limited support for fine-grained provisioning at higher levels leads to tightly coupled,
problem specific IoT infrastructure components, which require difficult and tedious provi-
sioning and configuration management tasks on multiple levels. This inherently makes
provisioning and runtime operation of IoT cloud systems a complex task. Consequentially,
system designers and operations managers face numerous challenges to provision and
operate large-scale IoT cloud systems such as the FMS or BMS.

RC1 – The IoT cloud services and subsystems provide different functionality or analytics,
but they mostly rely on common physical IoT infrastructure. However, to date the IoT
infrastructure resources have been mostly provided as coarse grained, rigid packages,
in the sense that the IoT systems, e.g., the infrastructure components and software
libraries are specifically tailored for the problem at hand and do not allow for flexible
customization and provisioning of the individual resource components or the runtime
topologies.

RC2 – Elasticity, although one of the fundamental traits of the traditional cloud comput-
ing, has not yet received enough attention in IoT cloud systems. Elasticity is a principle
to provision the required resources dynamically and on demand, enabling applications
to respond to varying load patterns by adjusting the amount of provisioned resources
to exactly match their current needs, thus minimizing resources over- provisioning and
allowing for better utilization of the available resources [47]. However, IoT cloud sys-
tems are usually not tailored to incorporate elasticity aspects. For example, new types

96

6.2. Main Building Blocks of Software-defined IoT Systems

of resources, e.g., data streams, delivered by IoT infrastructure are still not provided
elastically in IoT cloud systems. Opportunistic exploitation of constrained resources,
inherent to many IoT cloud systems further intensifies the need to provision the required
resources on-demand or as they become available. These challenges prevent current IoT
systems from fully utilizing the benefits cloud’s elastic nature has to offer and call for
new approaches to incorporate the elasticity capabilities in the IoT cloud systems.

RC3 – Dependability is a general measure of dynamic system properties, such as
availability, reliability, fault resilience and maintainability. Cloud computing supports
developing and operating dependable large-scale systems atop commodity infrastructure,
by offering an abundance of virtualized resources, providing replicated storage, enabling
distributed computation with different availability zones and diverse, redundant network
links among the system components. However, the challenges to build and operate
dependable large-scale IoT cloud systems are significantly aggravated because in such
systems the cloud, network and embedded devices are converging, thus creating very
large-scale hyper-distributed systems, which impose new concerns that are inherently
elusive with traditional operations approaches.

RC4 – Due to dynamicity, heterogeneity, geographical distribution and the sheer scale
of IoT cloud, traditional management and provisioning approaches are hardly feasible in
practice. This is mostly because they implicitly make assumptions such as physical on-site
presence, manually logging into devices, understanding device’s specifics, etc., which
are difficult, if not impossible, to achieve in IoT cloud systems. Thus, novel techniques,
which will provide an unified and conceptually centralized view on system’s configuration
management are needed.

Therefore, we need novel models and techniques to provision and operate the IoT
cloud systems, at runtime. Some of the obvious requirements to make this feasible in
the very large-scale, geographically distributed setup are: (i) We need tools which will
automate development, provisioning and operations (DevOps) processes; (ii) Supporting
mechanisms need to be late-bound and dynamically configurable, e.g., via policies;
(iii) Configuration models need to be centrally managed and automatically propagated to
the edge of the infrastructure; (iv) Processes such as configuration models enforcement
and deployment need to be flexibly repeatable with little effort as possible.

6.2 Main Building Blocks of Software-defined IoT
Systems

6.2.1 Design Principles of Software-Defined IoT Cloud Systems

Generally, software-defined denotes a principle of abstracting the low-level components,
e.g., hardware, and enabling their provisioning and management through a well-defined
API [87]. This enables refactoring the underlying infrastructure into finer-grained resource
components whose functionality can be defined in software after they have been deployed.

97

6. Provisioning Software-defined IoT Cloud Systems

Utility‐based
provisioning of IoT
Cloud resources

Research Challenges Design Principles Main Enablersrequires
solving

addressed
by

implemented
byMain goal

Multi‐level provisioning
workflows

Cloud‐based dependency
resolution

Software‐defined gateways

Cloud‐based controller

Centralized infrastructure
API managementEnable fine‐grained resource

consumption(*)

On‐demand, self‐service
usage models

Unified representation of
heterogeneous resources

Cost‐awareness

Efficient provisioning models

Flexible customization of tightly
coupled resources

Enable resource monitoring

Device profiler

Properties of IoT Cloud
Systems:

 Large‐scale, Geo‐distribution,
Dynamic/mobile,

Constrained devices, Device
heterogeneity,

Unacessible (in person in cost‐
effective manner)

Support API encapsulation of the
infrastructure resources (*partialy)

Enable managed configuration
models(*)

Policy‐aware, declarative
units specificaton(+)

Enable automation of provisioning
processes(*partialy)

Support elastically scalable
provisioning processes

Supprot policy‐based specifications
and configurations(*)

Provide more autonomy to
the edge resources

Enable dynamic feature composition(*)

Optimize provisioning
framework resource usage

Enable smart resource allocation(‐)

Edge‐compatible
 provisioning agents

Flexible delpoyment and
provisioning models

Utility‐oriented delivery and
consumption

Logically centralized point of
operation

Support for elasiticty concerns

Software‐defined IoT
topology (complex units)

Configurations container

Figure 6.1: Summary of main principles and enablers of software-defined IoT Cloud
systems.

Software-defined IoT Cloud systems comprise a set of resource components, hosted
in IoT Cloud, which can be provisioned and controlled at runtime. The IoT resources
(e.g., sensory data streams), their runtime environments (e.g., gateways) and capabilities
(e.g., communication protocols, analytics and data point controllers) are described as
software-defined IoT units. Software-defined IoT units are software-defined entities that
are hosted in an IoT cloud platform and abstract accessing and operating underlying IoT
resources and lower level functionality. Generally, software-defined IoT units are used
to encapsulate the IoT Cloud resources and lower level functionality and abstract their
provisioning and governance, at runtime. To this end, our software-defined IoT units
expose well-defined API and they can be composed at different levels, creating virtual
runtime topologies on which we can deploy and execute IoT cloud systems such as our
FM system. The main design principles of software-defined IoT Cloud systems that we
discuss in this chapter are marked with “*” in Figure 6.1 and are described in more detail
subsequently. Other design principles, shown in the same figure, are discussed later in
Chapter 7.

• API Encapsulation – IoT resources and IoT capabilities are encapsulated in well-
defined APIs, to provide a unified view on accessing functionality and configurations
of IoT cloud systems.

• Fine-grained consumption – The IoT resources and capabilities need to be accessible
at different granularity levels to support agile utilization and self-service consumption.

98

6.2. Main Building Blocks of Software-defined IoT Systems

IoT Cloud platform

IoT Infrastructure Datacenters

Actuator

Software-
defined
gateway

Comm. protocol

Monitoring

Software library

A) E)

C)

Principles
A) Software-defined

IoT unit

B) Unit configuration

C) Software-defined
runtime topology

D) Runtime unit modification
(e.g, changing comm. protocol)

E) Runtime topology
modification (e.g, add new link)

Sensor

Principles
Fine-grained
resources
abstraction and
API encapsulation

A) Software-defined
IoT unit

Policy-based
provisioning and
configuration

B) Unit’s configuration

C) Software-defined
runtime topology

Flexible runtime
control
(e.g., of elastic
capabilities)

D) Runtime unit modification
(e.g, changing
communication protocol)

E) Runtime topology
modification
(e.g, add new link)

A) Software-defined IoT unit

B) Managed configuration

C) Software-defined IoT topology
(higher-level units)

D) Runtime unit control
and modification
(e.g, changing communication
protocol)

E) Runtime unit control
and modification
(e.g, add a dependency reference)

IoT Cloud Platform

GatewayGateway

Communication
Broker

Configuration Models
Manager

D)

B)

IoT Cloud Infrastructure

A) Software-defined IoT unit

B) Managed configuration

C) Software-defined IoT topology
(higher-level units)

D) Runtime unit control
and modification
(e.g, changing communication
protocol)

E) Automated unit composition
(e.g., adding a capability)

Figure 6.2: Main enablers of software-defined IoT cloud systems

• Enable dynamic feature composition – The units are specified declaratively and their
functionality is defined (composed) programmatically in software, using the well-defined
API and available, familiar software libraries.

• Automated provisioning – Main provisioning processes need to be automated in order
to enable dynamic, on-demand configuring and operating software-defined IoT systems,
on a large-scale (e.g, hundreds gateways).

• Managed configuration models – The configuration models need to be managed auto-
matically, as well as, dynamically propagated and (re)enforced in the edge resources,
by a provisioning framework.

Figure 6.1 summarizes how we translate the aforementioned high-level design principles
into concrete technical enablers. It serves as a general road map towards achieving our
goal of enabling the utility-based provisioning paradigm in IoT Cloud systems. For
example, to allow for flexible system customization, we need to enable fine-grained
resource consumption, well-defined API encapsulation and provide support for policy-
based specification and configuration. Among other things, these principles are enabled
by our software-defined IoT units and support for centrally managed configuration models.
Figure 6.2 gives high-level graphical overview of the main building blocks and enabling
techniques, which are the prime focus of this chapter. Subsequently, we describe them
in more detail. In Chapter 7, we will focus on enabling the remaining design principles
shown in Figure 6.1.

6.2.2 Conceptual Model of Software-defined IoT Units

Figure 6.3 illustrates the conceptual model of our software-defined IoT units. The
units encapsulate functional aspects (e.g., communication capabilities or sensor poll

99

6. Provisioning Software-defined IoT Cloud Systems

Software-defined
IoT Unit

Fu
n

ct
io

n
al

 A
P

I
Utility

cost-function

IoT resource and functionality binding

Late-bound
policies

Infrastructure capabilities

Software-defined IoT API

Configuration Governance Provisioning Functionality

Internal External

Unit.start()

Unit.stop()Unit.addLinkUnit()

Unit.changeLink()

Unit.setCPU()

Unit.setMem() Unit.setPollFreq()

Unit.addComProtocol() replicateUnit()

Unit.addPolicy()

Atomic software-defined IoT units

Custom
proc. logic

IoT data
storage

Communication

In-memory
image

VPN
Messaging

Sand
box

Network
overlay ProtocolVolatile

History

Key/Value
store

Security
Data

quality

Outliers
filter

IoT compute

GW
runtime

Data point
controller

CEP
Component

-model

Unit.addDataPoint()

Elasticity

Auto scaling
group controller

Enables
configuring

flexible
pricing and
cost models

Functional
capabilities

Non-functional
capabilities

Non-func aspects:
How many cores, memory

Attributes

G
o

ve
rn

an
ce

 A
P

I

Dependency
units

Provisioning API

Runtime
mechanisms

Runtime
controllers

...

...

Monitor.

Config.

N
o

n
-f

u
n

ct
io

n
al

 a
sp

ec
ts

Runtime composition

Fu
n

ct
io

n
al

 a
sp

ec
ts

Figure 6.3: Conceptual model of software-defined IoT units.

frequencies) and non-functional aspects (e.g., quality attributes, elasticity capabilities,
costs and ownership information) of the IoT resources and expose them in the IoT cloud.
The functional, provisioning and governance capabilities of the units are exposed via
well-defined APIs, which enable provisioning and controlling the units at runtime, e.g.,
start/stop. Our conceptual model also allows for composing and interconnecting software-
defined IoT units, in order to dynamically deliver the IoT resources and capabilities to the
applications. The runtime provisioning and configuration is performed by specifying late-
bound policies and configuration models. Naturally, the software-defined IoT units support
mechanisms to map the virtual resources with the underlying physical infrastructure.

To technically realize our unit model we introduce a concept of unit prototypes. They
can be seen as resource containers, which are used to bootstrap more complex, higher-level
units. Generally, they are hosted in the cloud and enriched with functional, provisioning
and governance capabilities, which are exposed via software-defined APIs. The unit
prototypes can be based on OS-level virtualization, e.g., VMs, or more finer-grained kernel
supported virtualization, e.g., Linux containers. Conceptually, virtualization choices do
not pose any limitations, because by utilizing the well-defined API, our unit prototypes
can be dynamically configured, provisioned, interconnected, deployed, and controlled at
runtime.

Given our conceptual model (Figure 6.3), by utilizing the provisioning API, the unit
prototypes can be dynamically coupled with late-bound runtime mechanisms. These
can be any software components (custom or stock), libraries or clients that can be
configured and whose binding with the unit prototypes is differed to the runtime. For

100

6.2. Main Building Blocks of Software-defined IoT Systems

example, the mechanisms can be used to dynamically add communication capabilities,
new functionality or storage to our software-defined IoT units. Therefore, by specifying
policies, which are bound later during runtime, system designers or operations managers
can flexibly manage unit configurations and customize their capabilities, at fine granularity
levels. Our conceptual model also allows for composing the software-defined IoT units
at higher levels. By selecting dependency units, e.g., based on their costs, analytics
or elasticity capabilities, and linking them together, we can dynamically build more
complex units. This enables flexible policy-based specification and configuration of complex
relationships between the units. Therefore, by carefully choosing the granularity of our
units and providing configuration policies we can automate the units composition process
at different levels and in some cases completely defer it to the runtime. This makes the
provisioning process flexible, traceable and repeatable across different cloud instances
and IoT infrastructures, thus reducing time, errors and costs.

The runtime governance API, exposed by the units, enables us to perform runtime
control operations such as starting or stopping the unit or change the topological structure
of the dependency units, e.g., dynamically adding or removing dependencies at runtime.
Therefore, one of the most important consequences of having software-defined IoT
unit is that the functionality of the virtual IoT infrastructure can be (re)defined and
customized after it has been deployed. New features can be added to the units and the
topological structure of the dependency units can be customized at runtime. This enables
automating provisioning and governance processes, e.g., by utilizing the governance API
and providing monitoring at unit level, we can enable elastic horizontal scaling of our
units. Therefore, most important features of software-defined IoT units which enable
the general principles of software-defined IoT (see Section 6.2.1) are: i) They provide
software-defined API, which can be used to access, configure and control the units, in
a unified manner. ii) They support fine-grained internal configurations, e.g, adding
functional capabilities like different communication protocols, at runtime. iii) They can
be composed at higher-level, via dependency units, creating virtual topologies that can
be (re)configured at runtime. iv) They enable decoupled and managed configuration (via
late-bound policies) to provision the units dynamically and on-demand. v) They have
utility cost-functions that enable pricing the IoT resources as utilities.

6.2.3 Units Classification

Depending on their purpose and capabilities, our software-defined IoT units have different
granularity and internal topological structure. Therefore, conceptually we classify them
into: (i) atomic, (ii) composed and (iii) complex software-defined IoT units. Depending on
their type, the units require specific runtime mechanisms and expose specific provisioning
API. Figure 6.4 depicts a simplified model of the software-defined IoT units structure
and the most important dependencies among the described unit types.

The atomic software-defined IoT units are the finest-grained software-defined IoT
units, which are used to abstract the core capabilities of an IoT resource. They provide
software-defined API and need to be packaged portably to include components and

101

6. Provisioning Software-defined IoT Cloud Systems

UnitPrototype AtomicUnit

ComposedUnit ComplexUnitlink

basedOn

*add

*

Figure 6.4: Simplified model of software-defined IoT units structure.

libraries, that are needed to provide desired capabilities. Figure 6.5 depicts some
examples of the atomic software-defined units. We broadly classify them into functional
and non-functional atomic software-defined IoT units, based on the capabilities they
provide. Functional units encapsulate capabilities such as communication or IoT compute
and storage. Non-functional units encapsulate configuration models and capabilities such
as elasticity controllers or data-quality enforcement mechanisms. Therefore, the atomic
units are used to identify fine-grained capabilities needed by an application. For example,
the application might require the communication to be performed via a specific transport
protocol, e.g., MQTT or it might need a specific monitoring component, e.g., Ganglia1.
Classifications similar to the one presented in Figure 6.5 can be used to guide the atomic
units selection process, in order to easily identify the exact capabilities, needed by the
application.

Software-defined
IoT Unit

Fu
n

ct
io

n
al

 A
P

I

Utility
cost-function

IoT resource and functionality binding

Late-bound
policies

Fu
n

ct
io

n
al

 a
sp

ec
ts

N
o

n
-f

u
n

ct
io

n
al

 a
sp

ec
ts

Infrastructure capabilities

Runtime composition

Software-defined IoT API

Configuration Governance Provisioning Functionality

Internal External

Unit.start()

Unit.stop()Unit.addLinkUnit()

Unit.changeLink()

Unit.setCPU()

Unit.setMem() Unit.setPollFreq()

Unit.addComProtocol() replicateUnit()

Unit.addPolicy()

Atomic software-defined IoT units

Custom
proc. logic

IoT data
storage

Communication

In-memory
image

VPN
Messaging

Sand
box

Network
overlay ProtocolVolatile

History

Key/Value
store

Security
Data

quality

Outliers
filter

IoT compute

GW
runtime

Data point
controller

CEP
Component

-model

Unit.addDataPoint()

Elasticity

Auto scaling
group controller

Enables
configuring

flexible
pricing and
cost models

Functional
capabilities

Non-functional
capabilities

Non-func aspects:
How many cores, memory

Attributes

G
o

ve
rn

an
ce

 A
P

I

Dependency
units

Provisioning API

Runtime
mechanisms

Runtime controllers
(e.g., elasticity)

...

...

Monitor.

Config.

Figure 6.5: Example classification of atomic software-defined IoT units.

The composed software-defined IoT units have multiple functional and non-functional
1http://ganglia.info/

102

6.3. Main Techniques for Provisioning Software-defined IoT Cloud Systems

capabilities, i.e., they are composed of multiple atomic units. Similarly to the atomic units
they provide well-defined API, but require additional functionality such as mechanisms to
support declaratively composing and binding the atomic units, at runtime (Section 6.3.2).
Example of composed unit is a software-defined IoT gateway.

The complex software-defined IoT units enable capturing complex relationships among
the finer-grained units. Internally, they are represented as a topological network, which
can be configured and deployed, e.g., on the cloud. They define an API and can integrate
(standalone) runtime controllers to dynamically (re)configure the internal topology, e.g.,
to enable elastic horizontal scaling of the units. Finally, they rely on runtime mechanism
to manage the references, e.g., IP addresses and ports, among the dependency units.

We notice that the software-defined API and our units offer different advantages to
the stakeholders involved into designing, provisioning and governing of software-defined
IoT systems. For example, IoT infrastructure providers can offer their resources at
fine-granularity, on-demand. This enables specifying flexible pricing and cost models and
allows for offering the IoT resources as elastic utilities in a pay-as-you-go manner. Because
our units support dynamic and automated composition on multiple levels, consumers
of IoT cloud resources can provision the units to exactly match their functional and
non-functional requirements, while still taking advantage of the existing systems and
libraries. Further, system designers and operations managers, use late-bound policies
to specify and configure the unit’s capabilities. Because we treat the functional and
configuration units in a similar manner (see Section 6.3.2), configuration models can
be stored, reused, modified at runtime and even shared among different stakeholders.
This means that we can support managed configuration models, which can be centrally
maintained via configuration management solutions for IoT cloud, e.g., based on OpsCode
Chef2, Bosh3 or Puppet4.

6.3 Main Techniques for Provisioning Software-defined
IoT Cloud Systems

6.3.1 Automated composition of software-defined IoT units

Generally, building and deploying software-defined IoT cloud systems includes creating
and/or selecting suitable software-defined IoT units, configuring and composing more
complex units and building custom business logic components. The deployment phase
includes deploying the software-defined IoT units together with their dependency units
and required (possibly standalone) runtime mechanisms (e.g., a message broker). In this
chapter we mostly focus on provisioning reusable stock components such as gateway
runtime environments or available communication protocols.

2http://opscode.com/chef
3http://docs.cloudfoundry.org/bosh/
4http://puppetlabs.org

103

6. Provisioning Software-defined IoT Cloud Systems

ACTIONS
* Pull external
repo
* Build
* Select
unit prototype
* Configure
* Exceptions
and errors

Atomic
unit

Compo-
sed
unit

Complex
unit

ACTIONS
* Conf.policies
* Select
unit prototype
* Resolve
dependencies
* Exceptions
and errors

ACTIONS

* Select
unit prototype
* Link unit
dependencies
* Exceptions
and errorsSelect

third-
party unit

Deploy

Standalone
runtime

mechanism
(optional)

Select
third-

party unit

UnitPrototype AtomicUnit
add

ComposedUnit ComplexUnit*

link

Figure 6.6: Automated composition of software-defined IoT units.

Figure 6.6 illustrates most important steps to compose and deploy our IoT units.
There are three levels of configuration that can be performed: (i) Building/selecting
atomic units; (ii) Configuring composed units; (iii) Linking into complex units. Each
of the phases includes selecting and provisioning suitable unit prototypes. For example,
the unit prototypes can be based on different resource containers such as VMs, Linux
Containers (e.g., Docker) or OSGi runtime.

The atomic units are usually provided as stock components, e.g., by a third-party,
possibly in a market-like fashion. Therefore, this phase usually involves selecting and
configuring stock components (e.g., Sedona5 or Niagara AX6 execution environments).
Classifications similar to the one presented in Figure 6.5 can be used to guide the atomic
units selection process. In case we want to perform custom builds of the existing libraries
and frameworks, there are many established build tools which can be used, e.g., for
Java-based components, Apache Ant or Maven.

On the second level, we configure the composed units, e.g., a software-defined IoT
gateway. This is performed by adding the atomic units (e.g., runtime mechanisms
and/or software libraries) to the composed unit. For example, we might want to enable
the gateway to communicate over a specific transport protocol, e.g., MQTT and add a
monitoring component to it, e.g., a Ganglia agent. To perform this composition seamlessly
at runtime, additional mechanisms are required. We describe them in Section 6.3.2.

Third level includes defining the dependencies references between the composed units,
which "glue together" the complex units. These links specify the topological structure
of the desired complex units. For example, to this end we can set up a virtual private
network and provide each unit with a list of IP addresses of the dependency units.
In this phase, we can use frameworks (e.g., TOSCA-based, OpenStack Heat, Amazon
CloudFormation, etc.) to specify the runtime topological structure of our units and
utilize mechanisms (e.g., Ubuntu CloudInit7) to bootstrap the composition.

5http://www.sedonadev.org/
6http://www.niagaraax.com/
7http://help.ubuntu.com/community/CloudInit/

104

6.4. Evaluation & Prototype Implementation

6.3.2 Centrally managed configuration models

An important concept behind software-defined IoT cloud systems is the late-bound runtime
policies. Our units are configured declaratively, via the policies by utilizing the exposed
software-defined API, without worrying about internals of the runtime mechanisms, i.e,
the atomic units. To enable seamless binding of the atomic units we provide a special
unit prototype, called bootstrap container. The bootstrap container provides mechanisms
to define (bind) the units based on supplied configurations or to redefine them when
configuration policies are changed. Therefore, the units can be simply "droped in" and
our bootstrap container (re)binds them together, at runtime without rebooting system.
Therefore, in order to support centrally managed configuration models and dynamic
feature composition, besides managing the units our provisioning framework is responsible
to maintain application-specific configurations. Application configuration models are
treated as special components of artifact packages. By decoupling the configuration
models from the functional artifacts, we can treat them as any software-defined IoT
unit, which adheres to the general principles of software-defined IoT (Section 6.2.1). Our
framework provides mechanisms to specify and propagate the configuration models to
the edge of IoT cloud infrastructure (e.g., gateways) and our bootstrap container enforces
the provided directives.

To support fully-fledged, dynamic feature composition, the configuration container
can act as a plug-in system, based on the inversion of control principles. It provides
mechanisms to bind the application artifacts (e.g., atomic units) based on supplied
configurations or to redefine them when configurations are changed. The container initially
binds such functional artifacts based on the configuration models and continuously listens
for configuration changes applying them on the affected functional artifacts accordingly.
The runtime changes are achieved by invalidating affected parts of the existing dependency
tree and dynamically rebuilding them, based on the new configuration directives. This
feature is especially useful for managing the communication protocols, which are provided
by cloud and device connectivity components (cf. Chapter 7). However, to support
dynamic feature composition, our framework requires the artifacts to be wrapped in
well-defined APIs, which are known to the provisioning container. Since this imposes some
limitations, this feature is optionally provided by the framework. The main advantage of
this approach is that it enables updating configuration models without updating the entire
artifact package, thus allowing for flexible customizations and dynamic configuration
changes without runtime interrupts as well as reducing communication overhead.

6.4 Evaluation & Prototype Implementation

6.4.1 Preliminary implementation of provisioning controller

The main aim of our prototype is to enable developers and operations managers to
dynamically, on-demand provision and deploy software-defined IoT systems. This includes
providing software-defined IoT unit prototypes, enabling automated unit composition,

105

6. Provisioning Software-defined IoT Cloud Systems

Units management services

Cloud core services layer

Framework

Sedona gateway

Monitoring

Niagara gateway

Topology model

Runtime topology

In
it

ia
liz

at
io

n
M

aa
ge

r

D
ep

lo
ym

en
t

M
an

ag
e

r

R
u

n
ti

m
e

C
o

o
rd

in
at

o
r

> Individual units
configuration models

> Topology model

SensorA

Comm. Protocol create/init/deploy
topology

e.g, start/stop
software-defined

unit

Repository

Initialization
Manager

Deployment
Manager

R
u

n
ti

m
e

C
o

o
rd

in
.

Repository
Services

C
lo

u
d

Sy
st

e
m

W
ra

p
p

e
r

C
o

n
fi

gu
ra

ti
o

n

M
an

ag
e

m
e

n
t

Units persistence layer

Policies repo. SD IoT units repo.

Presentation layer

Web UI RESTful API

Policy
Processor

Figure 6.7: Framework architecture overview.

at multiple levels and supporting centralized runtime management of the configuration
models.

In Section 6.2 we introduced the conceptual model of our software-defined IoT units.
To technically realize our units, we utilize the concept of virtual resource containers. More
precisely, we provide different unit prototypes that can be customized and/or modified
during runtime by adding required runtime mechanisms encapsulated in our atomic units.
The unit prototypes provide resources with different granularity, e.g., VM flavors, group
quotas, priorities, etc., and boilerplate functionality to enable automated provisioning
of custom software-defined IoT units. Figure 6.7 provides a high-level overview of
the framework (cloud-based provisioning controller) architecture. Our framework is
completely hosted in the cloud and follows a modular design which guarantees flexible
and evolvable architecture. The current prototype is implemented atop OpenStack [116],
which is an open source Infrastructure-as-a-Service (IaaS) cloud computing platform.
Presentation layer provides an user interface via Web-based UI and RESTful API. They
allow a user to specify various configuration models and policies, which are used by
the framework to compose and deploy our units in the cloud. Cloud core services layer
contains the main functionality of the framework. It includes the PolicyProcessor used
to read the input configurations and transform it to the internal model defined in our
framework. Units management services utilize this model for composing and managing
the units. The InitializationManager is responsible for configuring and composing
more complex units. It translates the directives specified in configuration models into
concrete initialization actions on the unit level. In our current implementation, the

106

6.4. Evaluation & Prototype Implementation

core of the InitalizationManager is an OpsCode Chef client, which is passed to the
VMs during initialization via Ubuntu cloud-init. InitalizationManager also provides
mechanisms for configuration management. The DeploymentManager is used to deploy
the software-defined IoT units in the cloud. Our prototype relies on SALSA8, a deployment
automation framework developed in our department. It utilizes the API exposed by
the CloudSystemWrapper to enable deployment across various cloud providers, currently
implemented for OpenStack cloud. The DeploymentManager is responsible to manage
and distribute the dependency references for the complex units (Section 6.2.3). The
Units persistence layer provides functionality to store and manage our software- defined
units and policies.

6.4.2 Experiments

Revisiting Motivating Scenario

We now show how our prototype is used to provision a complex software-defined IoT unit,
which provides functionality for the real-life FMS location tracking service (Section 6.1.1).
The service reports vehicle location in near real-time on the cloud. To enable remote
access, the monitored vehicles have an on-board device, acting as a gateway to its data
and control points. To improve performance and reliability, the golf course provides
on-site gateways, which communicate with the vehicles, provide additional processing
and storage capabilities and feed the data into the cloud. Therefore, the physical IoT
infrastructure comprises network connected vehicles, on-board devices and local gateways.

Typically, to provision the FMS service system designers and operations manager
would need to directly interact with the rigid physical IoT infrastructure. Therefore,
they at least need to be aware of its topological structure and devices’ capabilities. This
means that the FMS service also needs to have understanding of the IoT infrastructure,
instead of being able to customize the infrastructure to its needs. Due to inherent
inflexibility of IoT infrastructure, its provisioning usually involves long and tedious task
such as manually logging into individual gateways, understanding gateway internals or
even on site presence. Therefore, provisioning even a simple FMS location tracking
service involves performing many complex tasks. Due to a large number of geographically
distributed vehicles and involved stakeholders IoT infrastructure provisioning requires a
substantial effort prolonging service delivery and increasing costs. Subsequently, we show
the advantages our units (Section 6.2.2) and the provisioning techniques (Section 6.3)
have to offer to operations managers and application designers in terms of: a) Simplified
provisioning to reduce time, costs and possible errors; b) Flexibility to customize and
modify the IoT units and their runtime topologies.

To enable the FMS system we developed a number of atomic software-define IoT units
9 such as: a software-defined sensor that reports vehicle location in realtime, messaging

8https://github.com/tuwiendsg/SALSA/
9https://github.com/tuwiendsg/SDM

107

6. Provisioning Software-defined IoT Cloud Systems

infrastructure based on Apache ActiveMQ 10, software-defined protocol based on MQTT
and JSON, the bootstrap container based on the Spring framework11, and corresponding
configuration units. The experiments are simulated on our OpenStack (Folsom) cloud
and we used Ubuntu 12.10 cloud image (Memory: 2GB, VCPUS: 1, Storage: 20GB). To
display location changes we develop a Web application which displays changes of vehicles’
location on Google Maps.

Simplified provisioning

To demonstrate how our approach simplifies provisioning of the virtual IoT infrastructure,
we show how a user composes the FMS complex software-defined IoT unit, using our
framework. Figure 6.8 shows the custom deployment of the topological structure of the
FMS vehicle tracking unit, deployed in the cloud. The unit contains two gateways for
the vehicles it tracks, a web server for the Web application and a message broker that
connects them.

SALSA CENTER

state: RUNNING
Id: sd IoT system

UNIT PROTOTYPE

state: RUNNING
Id: VM container

state: RUNNING
Id: VM container

SD UNIT

state: RUNNING
Id: mqtt_broker

state: RUNNING
Id: VM container

UNIT PROTOTYPE

UNIT PROTOTYPE

SD UNIT

state: RUNNING
Id: SD gateway_1278

SD UNIT

state: RUNNING
Id: SD gateway_1280

SD UNIT

state: RUNNING
Id: Web server

Figure 6.8: Topological structure of FMS vehicle tracking unit (a screen shot).

In order to start provisioning the complex unit, system designer only needs to provide
a policy describing the required high-level resources and capabilities required by the
FMS service. For example, Listing 6.1 shows a snippet from the configuration policy for
FMS location tracking unit, that illustrates specifying a software-defined gateway, for
the on-board device.

The policy describes gateway’s initial configuration and the cloud instance where it
should be deployed. Additionally, it defines a dependency unit, i.e. the MQTT broker and
specifies vehicle’s Id that can be used to map it on the underlying device. Our framework

10http://activemq.apache.org/
11http://projects.spring.io/spring-framework/

108

6.4. Evaluation & Prototype Implementation

1 ...
2 <tosca:NodeTemplate id="SD-Gateway"
3 name="car_1278" type="vm">
4 <tosca:Properties>
5 <MappingProperties>
6 <MappingProperty type="vm">
7 <property name="instanceType">m1.small</property>
8 <property name="provider">openstack@dsg</property>
9 <property name="baseImage">ami-00000163</property>

10 </MappingProperty>
11 </MappingProperties>
12 </tosca:Properties>
13 <tosca:Requirements>
14 <tosca:Requirement name="MQTT-broker-IP" type="String"
15 id="brokerIp_Requirement"/>
16 </tosca:Requirements>
17 <tosca:DeploymentArtifacts>
18 <tosca:DeploymentArtifact artifactType="chef"
19 artifactRef="deployClient"/>
20 </tosca:DeploymentArtifacts>
21 </tosca:NodeTemplate>
22 ...

Listing 6.1: Partial TOSCA-like complex unit description.

takes the provided policy, spawns the required unit prototypes and provides them with
references to the dependency units. At this stage the virtual infrastructure comprises
solely of unit prototypes (VM-based). After performing the high-level unit composition
and establish the dependencies between the units, the user continues composing on the
finer granularity level. By applying the top-down approach we enable differing design
decisions and enable early automation of known functionality, to avoid over-engineering
and provisioning redundant resources.

In the next phase, the user provisions individual unit prototypes. To this end, he
provides policies specifying desired finer-grained capabilities. Listing 6.2 shows example
capabilities, that can be added to the gateway. To enable asynchronous pushing of the
location changes it should communicate over the MQTT protocol. Listing 6.3 shows a
part of Chef recipe used to add MQTT client to the gateway. Our framework fetches
the atomic units, that encapsulate the required capabilities, from the repository and
composes them automatically, relying on the software-defined API and our bootstrap
container.

1 {"run_list":
2 ["recipe[bootstrap_container]",
3 "recipe[mqtt-client]",
4 "recipe[protocol-config-unit]",
5 "recipe[sd-sensor]"]
6 }

Listing 6.2: Run list for software-defined gateway.

109

6. Provisioning Software-defined IoT Cloud Systems

1 include_recipe ’bootstrap_container::default’
2 remote_file "mqtt-client-0.0.1-SNAPSHOT.jar" do
3 source "http://128.130.172.215/salsa/upload/files/..."
4 group "root"
5 mode 00644
6 action :create_if_missing
7 end

Listing 6.3: Chef recipe for adding the MQTT protocol.

Therefore, compared to the traditional approaches, which require gateway-specific
knowledge, using proprietary API, manually logging in the gateways to set data points,
our automated units composition (Section 6.3.1), based on declarative unit configuration
policies, simplifies the provisioning process and makes it traceable and repeatable. Our
units can easily be shared among the stakeholders and composed to provide custom
functionality. This enables system designers and operations managers to rely on the
existing, established systems, thus reducing provisioning time, potential errors and costs.

Flexible customization

To exemplify the flexibility of our approach let us assume that we need to change configu-
ration of the FMS unit to use CoAP instead of MQTT. This can be due to requirements
change (Section 6.1.1), reduced network connectivity or simply to reuse the unit for a
golf course with different networking capabilities. To customize the existing unit, an
operations manager only needs to change the recipe[protocol-config-unit] unit
(Listing 6.2) and provide an atomic unit for the CoAP client. This is a nice consequence
of our late-bound runtime mechanisms and support for managed configuration models,
provided by our framework. We treat both functional and configuration units in the
same manner and our bootstrap container manages their runtime binding (Section 6.3.2).
Compared to traditional approaches that require addressing each gateway individually,
firmware updates or even modifications on the hardware level, our framework enables
flexible runtime customization of our units and supports operation managers to seamlessly
enforce configuration baseline and its modifications on a large-scale.

6.5 Conclusion

In this chapter, we introduced the conceptual model of software-defined IoT units. To
our best knowledge this is the first attempt to apply software-defined principles on IoT
systems. We showed how they are used to abstract IoT resources and capabilities in the
cloud, by encapsulating them in software-defined API. We presented automated unit
composition and managed configuration, the main techniques for provisioning software-
defined IoT systems. The initial results are promising in the sense that software-defined
IoT system enable sharing of the common IoT infrastructure among multiple stakeholders
and offer advantages to IoT cloud system designers and operations managers in terms

110

6.5. Conclusion

of simplified, on-demand provisioning and flexible customization. Therefore, we believe
that software-defined IoT systems can significantly contribute the evolution of the IoT
cloud systems.

111

CHAPTER 7
A Middleware Infrastructure for
Utility-based Provisioning of IoT

Cloud Systems

The IoT Cloud systems intensively exploit cloud computing models and technologies,
predominantly by utilizing large and remote data centers, but also nearby Cloudlets [129]
or micro data centers [12] to enhance resource-constrained Edge devices, in terms of
computation offloading [36, 29, 98] and data staging [139] or to provide an execution
environment for cloud-centric IoT applications [42, 106].

One of the main advantages of cloud computing is reflected in its support for self-
service, on-demand resource consumption. To date, we have witnessed numerous benefits
of such utility-based provisioning model, in terms of more flexible and cheaper IT
operations [23, 90]. Therefore, it would be natural to expect that this flagship property
of cloud computing would be inherited by IoT Cloud as well. Unfortunately, this is still
not the case, mainly because current approaches, dealing with IoT Cloud provisioning,
mostly focus on providing virtualization solutions for the Edge devices [43, 160, 134].
Although device virtualization is a key precondition for utility-based provisioning, such
approaches are usually meant to support a specific task, e.g., data integration or data-
linking, which contrasts consuming the IoT Cloud resources as general-purpose utilities.
Furthermore, most of the contemporary support for IoT Cloud provisioning, in terms
of available tools, frameworks and middleware provide only partial solutions, which
discriminate against some of the inherent properties of IoT Cloud infrastructures such
as heterogeneity, geographical distribution, and the sheer scale of such infrastructures.
Therefore, system integrators and operations managers have to rely on provisional
solutions, which require combining multitude of provisioning techniques such as manual,
script- and service-based provisioning. Additionally, many of these approaches implicitly
assume manual logging into Edge devices or even physical on-site presence, making them

113

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

hardly feasible in practice. The issue is further exacerbated due to strong dependence
of IoT Cloud applications on specific properties of the underlying Edge devices (e.g.,
available sensors) and novel resource features, that also need to be considered during
application provisioning. This inherently prevents consuming IoT Cloud infrastructure as
traditionally generic compute or storage utilities, thus requires rethinking existing support
for representing infrastructure resources, managing their configuration and deployment
models as well as composing low-level resource components into usable infrastructures,
capable to support novel business logic requirements.

In this chapter, we continue our line of research towards utility-based provisioning of
IoT Cloud systems and introduce a novel provisioning middleware for IoT Cloud. Our
middleware builds on the previously introduced concepts and frameworks Chapter 6,
extending them with a comprehensive support for scalable multi-level provisioning of
IoT Cloud systems. This is one of the crucial precondition for realizing utility-based
provisioning paradigm in IoT Cloud systems. The main features of our middleware
include: i) Support for automated provisioning of infrastructure resources, application
components and configuration models in a uniform, logically centralized manner through
dynamically managed APIs; ii) Extensible and flexible provisioning models, which support
self-service, on-demand consumption of Edge-device resources; iii) A generic, light-weight
resource abstraction mechanism, which allows for application-specific customizations
of and virtually exclusive access to low-level devices, e.g., sensors and actuators, with
well-defined APIs.

The remainder of the chapter is organized as follows: Section 7.1 presents main
research challenges and the research context; In Section 7.2 we introduce our middleware
and discuss it’s architecture in detail; Section 7.3 outlines the major runtime mechanism
for multi-level provisioning; Section 7.4 describes experimental results and outlines the
current prototype implementation; Finally, Section 7.5 concludes the chapter and gives
an outlook of our future research towards realizing fully-fledged utility-based provisioning
in IoT Cloud.

7.1 Motivation & Research Challenges
In Chapter 6, we have introduced a conceptual model for software-defined IoT Cloud
systems. The core concept of the provisioning model are software-defined IoT units. They
describe IoT Cloud resources (e.g., virtual sensors), their runtime environments (e.g.,
gateways) and capabilities (e.g., communication protocols or data point controllers). Such
units are used to encapsulate the IoT Cloud resources and abstract their provisioning in
software. To this end, they expose well-defined APIs and can be composed at different
levels, creating virtual runtime infrastructures for IoT Cloud applications.

The main purpose of such software-defined IoT Cloud infrastructures is to enable
utility-based provisioning of IoT Cloud resources by providing a uniform and logically
centralized view on the entire underlying resource pool, as well as by allowing IoT Cloud
applications to customize and consume those resources dynamically and on-demand.

114

7.1. Motivation & Research Challenges

However, due to dynamicity, heterogeneity, geographical distribution and sheer scale of
such infrastructures, achieving these features poses a number of challenges. To better
motivate our work, in continuation we discuss the properties of IoT Cloud infrastructures
and derive a set of key research challenges that currently prevent utility-based provisioning
of IoT Cloud resources.

 Middleware

 Provisioning workflows

IoT Cloud
environment

Virtualized infrastructure and device management middleware layer

Infrrastructure virtualization layer

D
evice m

anagem
ent

and orchestration

Virtual
sensors

Communication
protocols

Elastic pools of
VMs and containers

 Design and configure a

Virtual
actuators

Physical infrastructure
(Edge devices, network elements and data centers)

Identity m
anagem

ent and access control

Repositories

Software‐defined
IoT units

Configuration
models

Software
artifacts

Software‐defined IoT Cloud infrastructure

Users

Developers/
Engineers

Operations
managers

Figure 7.1: Overview of Software-defined IoT Cloud Infrastructure.

Figure 7.1 depicts a high-level architecture overview of the software-defined infras-
tructures, and shows how the main stakeholders interact with such infrastructures.
The bottom layer represents the Physical infrastructure, which comprises a variety of
geographically-dispersed edge devices (e.g., sensors and gateways), network elements
(routers and switches) and large data centers. In reality, the physical infrastructure is
usually not flat and follows a hierarchical structure, where sensors and actuators are
connected to data centers via gateways, which are intermediary nodes that mediate
the communication, but also provide constrained computational and storage resources,
which are currently largely underutilized. Additionally, it is common to strategically
place more powerful processing nodes near the Edge (but within the hierarchy), such as
Cloudlets and micro data centers. The communication between the Edge and the data
centers is realized over heterogeneous networks which include wired, wireless and cellular
communication channels. Moreover, IoT Cloud infrastructure is highly-decentralized and
distributed among multiple geographical regions and organizations.

115

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

A distinguishing feature of the software-defined IoT Cloud infrastructures is the
Infrastructure virtualization layer. A number of existing approaches deal with the Edge
devices virtualization, exposing them to the upper layers on different levels of abstraction.
Most relevant approaches for our discussion are centered around the Unikernels and kernel-
supported virtualization, which is discussed in Section 7.2. Other related approaches,
such as software-defined networking (SDN) and semantics-based data integration are
discussed in Chapter 10.

The Middleware is a crucial part of software-defined IoT Cloud infrastructure and, in
general, its main responsibility is to provide a uniform representation of the underlying
(virtual) infrastructure resources as well as to enable delivery and consumption of
such resources. This layer needs to provide mechanisms and tools for infrastructure
provisioning, managing configuration models and deployment of applications. The
middleware relies on and utilizes a number of different components. In the following, we
only briefly discuss those components since they are out of scope of this thesis, although
being the main focus of numerous research and industry approaches, e.g., [54], which can
be used to complement our approach.

The Device management and orchestration component is generally responsible to
support discovering and managing physical Edge devices (e.g., to detect newly connected
devices), monitoring their status, but also to enable mapping and allocation of virtual
resources to the underlying devices. The Repositories are used to provide persistent
storage facilities for configuration models, infrastructure automation scripts and software-
defined units, which are delivered and deployed on the devices by the middleware. The
Identity management and access control generally deals with assigning and managing
dedicated, unique names (IDs) to individual devices, but also provides security techniques
to determine which devices are permissible to be provisioned as IoT Cloud resources.

7.1.1 Research Challenges

The utility-based provisioning is a well-established and proven concept in cloud com-
puting [23, 91]. Among other things it requires: on-demand, self-service usage models;
enabling ubiquitous access to a shared pool of configurable resource, which can be cus-
tomized to exactly meet application requirements; as well as autonomous and automated
allocation of the consumed resources. However, given the previously described properties
of IoT Cloud, realizing these features in the context of IoT Cloud systems is a non-trivial
task which creates a number of challenges that need to be addressed.

One of the main challenges is to support on-demand, self-service usage model, because
it requires support for uniform interactions with the large-scale, heterogeneous IoT Cloud
resource pool. This could potentially be achieved by virtualizing and encapsulating the
IoT Cloud resources into well-defined APIs and allowing the users to access such resources
on multiple levels of abstraction. However, in this case the middleware (cf. Figure 7.1)
needs to provide support for a non-trivial task of managing such virtual resources, theirs
APIs and mediating all the communication with the heterogeneous devices.

116

7.2. IoT Cloud Provisioning Middleware

Assuming that IoT Cloud resources are accessible in a uniform manner, another
challenge is to enable the users to automatically provision IoT Cloud resources. However,
strong dependence of IoT Cloud applications on specific properties of the underlying
devices and novel resource features intrinsically prevent consuming IoT Cloud infras-
tructure as traditionally generic compute or storage utilities. This requires providing
comprehensive provisioning support on multiple levels such as infrastructure-, platform-
and application-level. One way to achieve this is by utilizing provisioning workflows [74]
(cf. Figure 7.1 (top)). The main advantage of the workflow approach is that it allows for
nested provisioning workflows (shown as dotted nodes in the figure), which are well suited
for multi-level provisioning. However, to support their execution on a large resource pool
the middleware needs to enable elastically scalable execution of the provisioning tasks.

Enabling ubiquitous access to the large, geographically-distributed resource pool is
yet another challenge since it demands a logically centralized interaction with underlying
devices. However, since the underlying devices are inherently dispersed, the middleware
needs to be distributed across the resource-constrained devices, thus optimized for such
constrained execution environments. Moreover, to support customizing such resources,
the middleware needs to support management of application components and configuration
models, but also provide suitable mechanisms to dynamically deliver and (re)enforce the
configuration models inside the Edge devices.

7.2 IoT Cloud Provisioning Middleware

With respect to the components presented in Figure 7.1, the main focus of this chapter is
the Middleware layer. The main purpose of our middleware is to facilitate implementing
and executing provisioning workflows in IoT Cloud systems, by addressing the previously-
described challenges and enabling the remainder of the design principles, introduced
in Chapter 6. The support for the multi-level provisioning is thoroughly discussed in
Section 7.3. At the moment it is important to note that IoT Cloud provisioning involves
two main tasks: i) allocating and deploying Software-Defined Gateways (SDG), which
are a special type of aforementioned software-defined IoT units and ii) customizing
software-defined gateways with application-specific artifacts.

Figure 7.2 gives a high-level architecture overview of our middleware. Generally, the
provisioning middleware is designed based on the microservices architecture [95] and it is
distributed across the Cloud and Edge devices. The main components of the provisioning
middleware include: i) the Software-Defined Gateways, ii) the Provisioning and Virtual
Buffers Deamons that run in Edge devices and iii) the Provisioning Controller which
runs in the Cloud. In the remainder of this section, we discuss these components in more
detail.

117

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

 Governance controller (Cloud‐based)

AP
IM

an
ag
er

Capability
Invoker

Sc
op

eC
oo

rd
in
at
or

Artifacts Repository

Software‐defined
gateway (device‐side)

Cl
ou

d
co
nn

ec
tiv

ity

Device
Profiler

Provisioning
Agent

Governance
Agent

Ca
pa

bi
lit
y

...

Deployment
Manager

Image
Builder

Dependency
Manager

Repository Connector

API
Mediator

Ca
pa

bi
lit
y

Ca
pa

bi
lit
y

Multi‐level Provisioning API

Edge Devices API

 APIManager
Artifacts
Package

Provisioning Controller

Artifacts
Package

M
onitoringAgent

SDGs Repository

Software‐Defined Gateway

Artifacts Package

Artifacts Package

Configuration
Container

Device Connectivity

Virtual Buffers Deamon

Provisioning Agent

SDG
 M

onitor

Device
Connectivity

Cloud Connectivity

MonitoringCoordinator

Im
ageBuilder

Dependency
M
anagem

ent

DeploymentHandler

SDGManager ArtifactsManager

Edge Device

Repositories

SDG Prototypes

Configuration
Models

Software Artifacts

PackageBuilder

Edge D
evice

Software‐Defined
Gateway

Device Drivers and Protocols

Device Drivers and Protocols

Virtual Buffers Deamon

Provisioning Deamon

...

Figure 7.2: Architecture overview of the provisioning middleware.

7.2.1 Software-defined gateways

The software-defined gateways are one particular type of the software-defined IoT units
and their main purpose is to support virtualizing the IoT Cloud compute resources, most
notably Edge devices, in order to provide isolated and managed application execution
environments. Our middleware does not support building custom SDGs from scratch,
instead it provides, so called, SDG prototypes and required mechanisms to customize
them, based on application-specific requirements. At their core SDG prototypes define an
isolated runtime environment for the SDGs and application-specific components. To this
end, the main purpose of SDG prototypes is to provide isolated namespaces as well as
limit and isolate resource usage such as CPU and memory. Therefore, the SDG prototypes

118

7.2. IoT Cloud Provisioning Middleware

are used to bootstrap higher-level SDG functionality. In Figure 7.3 the double line shows
the virtual boundaries of the SDG prototypes. It is important to mention that SDG
prototypes do not propose a novel virtualizaton solution, but rely on proven techniques,
namely kernel-supported virtualization approaches, which offer a number of light-weight
execution environments/drivers such as LXCs, libvirt-sandbox or even chroot, generally
referred to as containers that can be used to “wrap" SDGs. Conceptually, virtualization
choices do not pose any limitations, because by utilizing the well-defined APIs, our SDGs
can be dynamically configured, provisioned, interconnected and deployed, at runtime.
The SDG prototypes are hosted in the IoT Cloud and enriched with functional and
provisioning capabilities, which are exposed via well-defined APIs. There is a number
of middleware components (cf. Figure 7.3), which are pre-installed (except for Artifact
Packages) in each SDG prototype in order to support such APIs. Next, we discus these
components in more detail.

 Governance controller (Cloud‐based)

AP
IM

an
ag
er

Capability
Invoker

Sc
op

eC
oo

rd
in
at
or

Artifacts Repository

Software‐defined
gateway (device‐side)

Cl
ou

d
co
nn

ec
tiv

ity

Device
Profiler

Provisioning
Agent

Governance
Agent

Ca
pa

bi
lit
y

...

Deployment
Manager

Image
Builder

Dependency
Manager

Repository Connector

API
Mediator

Ca
pa

bi
lit
y

Ca
pa

bi
lit
y

Multi‐level Provisioning API

Edge Devices API

 APIManager
Artifacts
Package

Provisioning Controller

Artifacts
Package

M
onitoringAgent

SDGs Repository

Software‐Defined Gateway

Artifacts Package

Artifacts Package

Configuration
Container

Device Connectivity

Virtual Buffers Deamon

Provisioning Agent

SDG
 M

onitor

Device
Connectivity

Cloud Connectivity

MonitoringCoordinator

Im
ageBuilder

Dependency
M
anagem

ent

DeploymentHandler

SDGManager ArtifactsManager

Edge Device

Repositories

SDG Prototypes

Configuration
Models

Software Artifacts

PackageBuilder

Edge D
evice

Software‐Defined
Gateway

Device Drivers and Protocols

Device Drivers and Protocols

Virtual Buffers Deamon

Provisioning Deamon

...

Figure 7.3: Software-defined gateway architecture.

Artifact Packages

Generally, IoT Cloud applications consist of different application components and sup-
porting files (e.g., libraries and binaries), which we refer to as application-specific artifacts.
Such artifacts are deployed, configured and executed inside software-defined gateways.
Generally, our provisioning middleware does not make any assumptions about application
model or concrete artifact implementations. However, in order to enable automated
artifacts provisioning, it requires them to be packaged as shown in Figure 7.4. There
are two important things to mention here. First, the Artifact Package needs to contain

119

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

a set of provisioning directives with all the necessary instructions such as installing
and uninstalling the package. When a provisioning workflow submits a provisioning
request, the middleware maps the request to a concrete implementation of provisioning
directive. To support implementing such directives, in Chapter 5 we have introduced
a light-weight provisioning DSL. Second, the packages contain Meta-information such
as artifacts’ hardware requirements and exposed APIs. The specification of the APIs is
optional, but they are needed by the middleware if an application wants to completely
delegate management of its configuration models to the middleware, as we discussed in
Chapter 6.

Artifacts Package

PackageID

Executables
(e.g.,binary, sh)

Provisioning
directives

Config. model

Meta‐info.

Install
Uninstall

Mapping model

HW requirements

APIs

Figure 7.4: Artifacts package structure.

Provisioning Agent

All packages that are not pre-installed on the Edge devices have to be provisioned by
the framework during runtime. For this purpose, our middleware provides a light-weight
Provisioning Agent, which is pre-installed inside SDGs. The agent continuously runs in
each SDG and manages local artifact packages. The main responsibility of the provisioning
agent is to periodically inspect the Provisioning Controller (cf. Figure 7.2) update queue,
download the artifact packages and execute directives referenced in provisioning workflows.
Additionally, the agent acts as a local interpreter of provisioning directives specified via
our aforementioned provisioning DSL. The agent is also responsible to handle various
requests initiated by the Provisioning Controller, by triggering the required actions in
SDGs such as creating a snapshot of the current device state via the SDGMonitor and
uploading the snapshot to the Controller. The SDGMonitor is discussed together with
the Monitoring Agent later in this section.

Device Connectivity

The SDGs are deployed on Edge devices with limited privileges in the sense that they are
not permitted to directly access the hardware. An obvious reason for such limitation is
security, but also resource contentions and customization requirements, since we can have
multiple SDGs executing in same Edge device simultaneously. To enable applications to
access the underlying devices, e.g., sensors, SDG offers Device Connectivity component.
The main part of the device connectivity is a SDG endpoint, which exposes the devices
to the SDG and enables service-based interaction with them. The SDG endpoint is a

120

7.2. IoT Cloud Provisioning Middleware

single point of interaction with the underlying Virtual Buffers Deamon (cf. Figure 7.3)
and at the moment, it is defined up to the transport layer. For this reason the device
connectivity component provides a pluggable connectivity layer, which is by default
preconfigured with our custom, REST-like application-level protocol. In the current
prototype we have also implemented CoAP and MQTT communication protocols, but
the device connectivity can be easily extended by plugging in other application-level
protocols such as sMAP [38].

7.2.2 Edge Device middleware support

In order to support management of SDGs in Edge devices, our middleware provides light-
weight components that are pre-installed and continuously run inside the Edge devices.
The most important components are the Virtual Buffers Deamon and Provisioning
Deamon, shown in Figure 7.2 on the right-hand side.

Virtual Buffers Deamon

We have discussed how our software-define gateways can be used to virtualizing compute
resources of the Edge devices. However, since the SDGs run with reduced privileges,
the middleware also needs to virtualize accessing the low-level devices such as sensors
and actuators. To this end it provides the Virtual Buffers Deamon (VBD). The main
purpose of the VBD is to mediate the communication with the devices connected to
a field bus (e.g., via Modbus, CAN, SOX/DASP, I2C or IP-based) and to provide a
virtually exclusive access to such device. In general, the deamon act as multiplexer
of the data and control channels, thus enabling the SDGs to have their own view of
and define custom configurations for such channels. For example, a software-defined
gateway can configure sensor poll rates, activate a low-pass filter for an analog sensory
input or configure unit and type of data instances in the stream. Figure 7.5 depicts a
simplified UML diagram of the VBD’s most important components. The main concept
behind VBD are the VirtualBuffers. Generally, the main goal of the virtual buffers is to
provide virtual representation of sensors and actuators. They wrap the DeviceDrivers
and share a common behavior with them, inherited through the Component Interface.
For example, they can be initialized, shutdown and released. Both buffers and drivers
lifecycle are managed by the VirtualBuffersManager. The DeviceDrivers Package contains
a set of driver implementations. For readability purposes, in the figure we only show the
component for I2C protocol, but each implementation follows similar principle. It contains
a set of Ports, which is a VBD internal representation of devices attached to the bus.
Such Ports are dynamically instantiated by the VirtualBuffersManager at device bootup
during driver initialization phase, based on the provided PortConfig. At the moment,
PortConfig is specified as a JSON file that contains the meta-data such as port class (e.g.,
analog in), name and hardware-related data, e.g., multiplexer address or value correction
constants. One of the limitations of the current implementation is that it does not support
dynamic device reconfiguration, meaning that if low-level configurations change the VBD
must be restarted. Moreover, a virtual buffer references a set of Gatherers and can

121

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

VirtualBuffers
Manager

Gatherer

VirtualBuffer manages

I2CDriverImpl
wraps

SystemTimer

 has

AdapterChain Adapter

<<Interface>>

DeviceDriver

isSuitable()implements

<<Interface>>

Component

initialize()
shutDown()
release()

isBestChoice()
getAllPortDescriptors()
getPort()
setPort(portDescriptor, value)

Port

sets

BufferConfig SDGConnection
has

PortConfig

has

instantiates

has

Figure 7.5: Simplified UML diagram of Virtual Buffers Deamon.

contain an optional AdapterChain. Generally, a gatherer is a higher level representation
of a port. For example, in case of a sensing device the gatherer represents the most
resent value of the hardware interface. To support SDG-specific configurations such as
sensor poll rate, filters or scalers, each virtual buffer can have an AdapterChain. Adapter
chains reference different Adapters, which are specified and parametrized via BuferConfig.
For example, a raw sensing value is passed through such adapter chain before being
delivered to a SDG. Finally, the VBD is responsible to instantiate and maintain an open
communication channel with software-defined gateways (via SDGConnection) and keep
track of the mappings among the SGDs and their VirtualBuffers.

Provisioning Deamon

So far, we have tacitly assumed that SDGs are readily available and deployed in Edge
devices. However, this is naturally not the case, thus the SDGs need to be dynamically
allocated, instantiated and deployed on Edge devices. These tasks are shared responsibility
of the Provisioning Deamon and the Provisioning Controller.

122

7.2. IoT Cloud Provisioning Middleware

Generally, the provisioning deamon serves two main purposes: i) It continuously
runs in each Edge device and provides functionality to remotely manage the SDGs.
The remote endpoint is middleware’s Provisioning Controller. ii) It acts as a local
proxy to the provisioning agents running inside each SDG, mediating all the previously-
described provisioning communication with SDGs (Provisioning Agents). At its core
the provisioning deamon has a light-weight httpd server to allow for a bidirectional
communication between the Provisioning Controller and the Edge devices (i.e. SDGs). It
is designed as a pluggable component, which relies on the existing support for managing
shared hosting domains (i.e., containers) such as Docker, LXD or virsh. In this context,
the main components of the provisioning deamon are an InvocationMapper and a set
of plug-in components called Connectors. Among other things, the InvocationMapper
is responsible to handle the provisioning requests form the controller and map them to
the corresponding Connector as well as to obtain the required SDG prototypes form the
Respositories and locally manage their images. The connectors act as wrappers of the
underlying mechanisms for managing SDGs, exposing them to the InvocationMapper
via uniform APIs. Therefore, to use a different virtualization solution for SDGs, one
only needs to develop the needed connector and register it with the InvocationMapper.
Second, the provisioning deamon mediates the communication with the SDG provisioning
agents. To support this, it manages local network interfaces of SDGs and behaves
like a transparent proxy for the inbound communication. Regarding the outbound
communication the provisioning deamon treats the monitoring responses in a particular
manner. It intercepts the monitoring information delivered by SDGMonitors and enriches
it with the current device state information, delivered by the MonitoringAgent (cf.
Figure 7.2). The MonitoringAgent is used to collect meta information about the SDGs
such as ID, but also to continuously monitor the underlying system via available interfaces
in order to provide dynamic device information. To this end, it executes a sequence
of runtime monitoring actions to complete the dynamic device state-snapshot. For
example, such actions include: currently available disk space, available RAM, firewall
settings, environment information, list of processes and daemons, as well as a list of
currently installed and running SGDs. The created snapshots are transmitted to the
Provisioning Controller periodically or on request. The device snapshot is also used
by the InvocationMapper to determine if a new SDG can be instantiated and deployed
on the Edge device, since current virtualization management solutions only provide a
rudimentary support in this regard.

7.2.3 Cloud-based Provisioning Controller

The Provisioning Controller (cf. Figure 7.2) is the cloud counterpart part of our middle-
ware. It provides a mediation layer that enables the users to interact with IoT Cloud
in a conceptually centralized fashion, without worrying about geographical distribution
and heterogeneity of the underlying Edge devices. Internally, the Provisioning Con-
troller comprises several microservices: APIManager, MonitoringCoordinator, SDG- and
ArtifactsManager, DeploymentHandler, ImageBuilder and DependencyManagement.

123

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

The main responsibility of the APIManger is to manage the Multi-level Provisioning
API, i.e., it encapsulates the middleware provisioning capabilities in well-defined APIs
and handles all API calls from user-defined provisioning workflows. Although our
middleware provides multi-level provisioning support, this distinction is only relevant
to the middleware internal components, since APIManager hides all such details from
the users, who effectively observe only simple API calls and corresponding responses.
Therefore, the APIManager is responsible to resolve incoming requests, map them to the
respective handlers, i.e., SDGManager or ArtifactsManager (depending on the request
type), and deliver results to the calling workflow. Among other things, the actions
performed by these managers involve selecting requested SDGs or artifacts by querying
the corresponding SDG- and Artifacts-Repository, building the package images and
deliver them to the Edge devices. In Section 7.3, we describe this process in more detail.

Since majority of application artifacts and SDG images are not readily available
in Edge devices, the DeploymentHandler is responsible to deliver them to the Edge
devices (i.e., Provisioning Deamons) or SDGs (i.e, Provisioning Agents) at runtime. The
DeploymentHandler relies on the DependencyManagemet service to resolve the required
artifact dependencies and ImageBuilder to prepare (package and compress) them into
deployable images. Resolving the dependencies on the cloud is particularly useful, because
it saves a lot of processing and networking, from the perspective of whole IoT Cloud
infrastructure, since otherwise each Edge device would have to perform the same set of
actions, e.g., downloads. Furthermore, as opposed to fully-fledged OS distros, the Edge
devices usually provide limited support in terms of packaging or updating tools, since
they often run striped down user land such as BusyBox.

To create the aforementioned deployable images, our middleware uses the Image-
Builder. In order to build an image, the builder performs the following steps: (i) retrieve
gateway-specific information from the IoT gateway management, (ii) use the dependency
management service to gather a list of suitable plans, (iii) based on the plan, build an
image, (iv) if the build was successful, hand over to the deployment handler, (v) if the
build failed try next plan in list. Finally, all device state-snapshots are maintained by the
MonitoringCoordinator, which manages static device meta-information and periodically
sends monitoring request to the MonitoringAgent in order to obtain runtime snapshots of
current device state. The role of the MonitoringCoordinator and the MonitoringAgents
is described in more detail in Section 7.3.

7.3 Runtime Mechanisms for Multi-level Provisioning in
IoT Cloud

7.3.1 Runtime execution of provisioning workflows

In general, to provision (a part of) an IoT Cloud application a user might design a
workflow resembling our example provisioning workflow shown in Figure 7.6 at the top.
Individual actions of such workflow usually reference specific provisioning capabilities,

124

7.3. Runtime Mechanisms for Multi-level Provisioning in IoT Cloud

exposed via the middleware APIs, and rely on the middleware to support their execution.
Usually, the main execution thread of provisioning workflows (denoted by the solid
lines in our example provisioning workflow), represents provisioning directives for the
infrastructure-level, such as to deploy a SDG of a specific type on Edge devices (in this
case based-on BusyBox) or spin-up a cloud-based Message Queue Broker, e.g., MQTT
Broker. The sub-workflows (denoted by dashed lines in the same example), are mainly
used to specify application-level provisioning directives. As previously mentioned, this
involves customizing the SDGs with the application-specific artifacts and configuration
models. For example, this can involve deploying, configuring and starting an application
service.

The Figure 7.6 also depicts a simplified sequence of steps performed by the middleware
when executing a provisioning workflow. For the sake of clarity, we omit several steps
and mainly focus on showing the most common interaction, e.g., we assume no errors or
exceptions occur and we do not show interaction with the Repositories.

A provisioning workflow requests an application artifact or a SDG by specifying their
respective IDs (currently consisting of a name and a version number) and a specific Edge
device ID. Next, the workflow invokes a specific API, e.g., to install or uninstall the
artifact. At this point the middleware attempts to execute the specified provisioning
directive. The steps 1 to 7 in Figure 7.6 depict the most important actions performed
by our middleware in order to support an infrastructure-level provisioning request, e.g.,
to deploy, instantiate and start a SDG in an Edge device. Therefore, the middleware
performs the following actions: i) The APIManager initially evaluates the composite
predicates (described later in this section) in order to determine a set of devices on witch
the SGD will be deployed; ii) The SDGManager selects device compatible SDG prototype
and registers it with the DeploymentHandler; iii) The MonitoringCoordinator together
with MonitoringAgent checks the SDG against current device-state snapshot; iv) The
DeploymentHandler transfers the SDG prototype image to the Provisioning Deamon;
v) The ProvisioningDeamon configures the SDG’s local network interface (based on the
supplied mapping model), starts the SGD and registers the new SDG instance with
the Virtual Buffers Deamon; vi) Finally the Virtual Buffers Deamon allocates a set of
dedicated virtual buffers and creates a dedicated SDGConnection handler. At this point
the SDG instance is running in the Edge device and it is performing internal initialization
actions such as starting the Configuration Container, the Provisioning Agent and its
local SDG Monitor. After the final initializations the SDG transmits its initial device
state to the controller and it is ready to handle application-level provisioning requests.

To support an application-level provisioning request the provisioning middleware
performs the following actions (steps 8 to 13 in Figure 7.6): i) Similarly to the step 3
each application artifact is checked against current SDG-state snapshot, delivered by the
SDG Monitor; ii) The Dependency Management Service resolves runtime dependencies of
the artifact; iii) The PackageManager builds a deployable image and registers it with
the DeploymentHandler; iv) Similarly to the step 5 the DeploymentHandler deliveres the
image to the Provisioning Deamon; v) Finally, the Provisioning Deamon transparently

125

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

Example Provisioning Workflow

P
ro
visio

n
in
g C

o
n
tro

ller
Ed

ge d
evice

P
ro
visio

n
in
g M

id
d
lew

are

Response

1: Evaluate
composite
predicate

1': Map ID to
IP addres

2: Check artifact
(capa. meta‐info vs.

device profile)

3: Resolve
dependencies

4: Create
Package

5: Deploy
package

2': Get device‘s
dynamic profile

6: Register
capability‘s API

10: Wrap
result

8: Invoke
capability

Software‐Defined
Gateway

onCompletion

7: Resolve gov.
scope

install

9: Map API call
to capability

execute

Register
capability API

(query the repo)

Provide mapping
to the device

6'': send
mapping model

API call

SDG
BusyBox

Application‐level provisioning

Sedona
VM

Monitor
service

MQTT
Brocker

1: Evaluate
composite
predicates

1': Map to IP
addresses

3: Check SDG
requirements

5: Deploy
SDG prototype

3': Get
device‘s
dynamic
profile

2: Select
SDG prototype

6: Configure local
network interface

Software‐Defined
Gateway

8: Check artifact
requirements

9: Resolve
dependencies

10: Create
Package

11: Deploy
package

12: Map request
to SDG instance

13: Wrap
result

7: Create
Virtual Buffers

onFinish
Provisioning

install

run

API call
e.g., installSDG

Figure 7.6: Runtime execution of a provisioning workflow.

forwards the image to the SDG’s Provisioning Agent, which installs the package locally
in the SDG. In the remainder of the section we describe the most important runtime
mechanisms in more detail.

7.3.2 Evaluating composite predicates

While describing the main steps of the provisioning process, we have mostly focused
on the steps performed for a single device and a single SDG. However, usually the
provisioning workflows are meant to provision multiple devices, e.g., that share some
common properties or belong to the same organization. Therefore, the same provisioning

126

7.3. Runtime Mechanisms for Multi-level Provisioning in IoT Cloud

logic should be applicable regardless of specific devices. In this context, it is particularly
important to support designing generic provisioning workflows, in the sense that such
workflows should be defined independently of the Edge devices, e.g., without referencing
device IDs. One of the main preconditions for this is to support the users to dynamically
delimit the range of provisioning actions. In our middleware this is achieved by allowing
the users to specify the required device properties, as a set of composite predicates. Such
predicates reference device or SDG meta information and are used to filter out only the
matching devices, which meet the specified criteria. These predicates are specified by the
users and delivered to the middleware in a provisioning request as POST parameters.

To bootstrap delimiting the range of a provisioning action, our middleware maintains
a set of available devices for a particular user. The current prototype always considers all
the connected devices, since at the moment there is only a limited support for managing
the device identities and the access control. However, this is not a conceptual drawback
and there are many available solutions, which can be used to provide this functionality (as
discussed in Section 7.1). The predicates are applied on this set, filtering out all resources
that do not match the provided attribute conditions. The middleware uses the resulting
set of resources to initiate the provisioning actions with SDG- and AtrifactsManager.
These managers are also responsible to provide support for gathering results delivered by
the ProvisioningDeamons and the ProvisioningAgents, once the provisioning action is
completed (cf. Figure 7.6 step 13). This is needed since after the resources are selected,
provisioning actions are performed in parallel and the results are asynchronously delivered
to provisioning workflows.

7.3.3 Artifacts and SDGs prototypes runtime validation

Since we are dealing with resource-constrained devices, before deploying a SDG or
application artifact the middleware needs to verify that the component can be installed
on a specific device, e.g, that there is enough disk space available. This happens during
step 3 (Check SDG requirements) and step 8 (Check artifact requirements). To this end,
the MonitoringCoordinator first queries the Repositories. Besides the artifact binaries
and SDG prototypes, the repositories store corresponding meta-information, such as
required CPU instruction set (e.g., ARMv5 or x86), disk space and memory requirements.
After obtaining the meta-information our middleware starts building the current device
state-snaphshot. This is done in two stages. First, the device features catalog is queried
to obtain relevant static information, such as CPU architecture, kernel version and
installed userland (e.g., BusyBox [22]) or OS. Second, the MonitoringCoordinator in
coordination with the MonitoringAgent and SDGMonitor executes a sequence of runtime
profiling actions to complete the dynamic device state-snapshot. For example, the
profiling actions include: currently available disk space, available RAM, firewall settings,
environment information, list of processes and daemons, and list of currently installed
capabilities. Finally, when the dynamic device snapshot is completed, it is compared with
the SDG’s/artifact’s meta information in order to determine if they are compatible with
the device. In this context, the middleware performs in a similar fashion to a fail-safe

127

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

iterator, in the sense that it works with snapshots of device states. For example, if
something changes on the device side, during step 3 or step 8, it cannot be detected
by the middleware and in this case its behavior is not defined. Since we assume that
all the changes to the underlying devices are performed exclusively by our middleware,
this is a reasonable design decision. Other errors, such as failure to install an artifact,
in a specific SDG, are caught by the middleware and delivered as notifications to the
provisioning workflow, so that they do not interrupt its execution. With this approach
the middleware is capable to make autonomous decisions about the provisioned resource.
This is one of the main preconditions for supporting automated execution of provisioning
workflows, but also for enabling on-demand, self-service provisioning model, since our
middleware does not make any implicit assumptions such as user awareness of device
properties nor it requires them to manually interact with the underlying devices.

7.3.4 Provisioning models

One of the main goals of our middleware is to support on-demand resource consumption.
Previously, we have discussed some of the key preconditions such as the ability to
execute multiple SDGs inside an Edge device as well as to dynamically and automatically
determine if a SDG or an application package is suitable for a particular device, based on
the monitoring device-state snapshot. In the following we discuss the provisioning models
currently supported by the middleware prototype and discus some possible optimizations.
After the MonitoringCoordinator determines an SDG/package is compatible with Edge
devices, the middleware needs to create a SDG or Artifact image and deliver it to these
devices (steps 5 and 11 in Figure 7.6). This process requires the middleware to make the
following decisions: what to deliver to the devices, how to deliver it and where to host
the image. Therefore the image delivery process is structured along these three main
phases.

Delivery models

In the first phase, the middleware needs to chose whether to deliver a complete image
or only a download script. In the first case the ImageBuilder creates a SDG or an
Artifact image, which is essentially a compressed Artifact Package or SDG prototype.
This image is then registered with the DeploymentHandler by a corresponding manager,
which transfers the whole image to the ProvisioningDeamon. The second case the
process is done in a similar fashion, but in addition to the image the ImageBuilder also
generates a download script. The main part of this script is an URL of the location
where the actual image resides. Instead of the whole image only this script is sent to
the ProvisioningDeamon, so it can download and install the image. Since both of these
approaches have their advantages [123], the middleware leaves it to the users to make a
decision, i.e., to select the most suitable approach and pass it as a configuration parameter
in the provisioning request.

128

7.4. Evaluation

Deployment models

In the second phase the DeploymentHandler deploys the image (or the download script)
to the device. We support two different deployment strategies. The first strategy is
poll-based, in the sense that the image is placed in a queue and remains there for a
specified period of time (TTL). Both ProvisioningDeamons and ProvisioningAgents
periodically inspect the queue for new provisioning requests. When a request is available,
the device can poll the new image when it is ready, e.g., when the load on it is not too
high. Although, a provisioning workflow can specify the image priority in the queue, if a
device is busy over longer period of time, e.g., there is not enough disk space to install a
SDG, this can lead to a request starvation, blocking the execution of the provisioning
workflow. For this reason our middleware also supports a push-based deployment. In this
case, instead of waiting in the queue, an image is immediately pushed on a device. This
gives a greater control to the provisioning framework, but since the previously described
image runtime validation performs in a fail-safe manner, the push-based deployment
can lead to an undesired behavior. Therefore, when using this strategy a provisioning
workflow should also provide compensation actions, to return the device in the previous
state. Naturally, these two strategies can be used to create hybrid deployment strategies,
such as using the pool-based approach for SDG prototypes and the push-based approach
for application artifacts, because pushing artifacts is particularly useful for security
updates of hot fixes in SDGs.

Placement models

Finally, the middleware decides where to host the image. This largely depends on a
specific deployment strategy, but also on the delivery model. For example, for push-based
deployment the DeploymentHandler stores the images in-memory, also the download
scripts are always kept in-memory, but in case of pool-based strategy, images are usually
hosted in middleware local Repositories. However, it is not difficult to imagine more com-
plex provisioning models, which can be put in place in order to optimize the provisioning
process, e.g., to save bandwidth. For example, to achieve this, our middleware could
easily utilize proven technologies such as Content Delivery Networks (CND), Cloudlets or
micro data centers. One way of accomplishing this is to deliver a download script to a set
of Edge devices and push an image to a Cloudlet, residing in the proximity (single-hop)
of these device. The ProvisioningDeamon could then use the poll-based approach to
obtain the image.

7.4 Evaluation

7.4.1 Middleware performance

In the following experiments we show two main performance aspect of our provisioning
middleware: support for: i) scalable execution of the provisioning workflows (hundreds of

129

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

Figure 7.7: An example of our gateways for Building Management Systems.

Edge devices) and at the same time ii) middleware suitability for constrained devices in
terms of resource consumption, i.e., its memory and CPU usage.

Applications

In the experiments we used two real-life applications from our Building Management
System, described in Chapter 2. For our experiments, it is important to note that the
first application (SAPP) is written in Sedona [142] and it size is approximately 120Kb,
including the SVM and the application (.sab, .sax, .scode and Kits files). The second
application (JAPP) is JVM-based (compact profile2) and its size including all binaries,
libraries and the JVM is around 14Mb.

Additionally, for the experiments we have developed a SDG prototype, based on
BusyBox, which is a very light-weight Linux user land. The SDG prototype is specifically
build for Docker’s libcontainer virtualization environment and is approximately 1.4Mb
in disk size (without applications).

Experiment setup

In order to evaluate middleware performance regarding resource usage, we built 15
physical gateways (cf. Figure 7.7) and installed them throughout our department. The
getaways are based on Raspberry Pi 2, with ARMv7 CUP and 1Gb of RAM. They run
Raspbian Linux 8 (based on Debian “Jessi") on Linux Kernel 4.1.

130

7.4. Evaluation

In order to evaluate how our middleware behaves in a large-scale setup, we created
a virtualized IoT cloud testbed based on CoreOS [35]. In our testbed we use Docker
containers to mimic physical gateways in the cloud. These containers are based on a
snapshot of a real-world gateway, developed by our industry partners. For the experiments,
we deployed a CoreOS cluster on our local OpenStack cloud. The cluster consists of 16
CoreOS 444.4.0 VMs (with 4 VCPUs and 7GB of RAM), each running approximately 250
Docker containers. The Provisioning Controller and the Repositories are also deployed in
our Cloud on 3 Ubuntu 14.04 VMs (with 2VCPUs and 3GB of RAM).

Finally, since the physical gateways are attached to our department network, in order
to connect them to the cloud network (but avoid potential security risks), we have created
a network overlay based on Wave routers [150].

Experiments

Middleware resource consumption at the Edge. Initially, we show the performance
of middleware most important components that continuously run in edge devices, namely
the ProvisioningDeamon and the VirtualBuffersDeamon. The MonitoringAgent is not
considered in our experiments, since it only periodically executes to create device-state
snapshots, thus it does not have statistically significant impact on the performance. We
also do not discuss SDGs resource consumption, since it is largely application dependent,
but also depends on the underlying virtualization choices. However, it is important to
mention that the runtime overhead of middleware components running in the SDGs is
almost negligible, since it is less than 1Mb. The main goal of the following experiments
is to demonstrate the validity of our approach w.r.t. resource-constrained devices, since

0

2

4

6

8

10

12

14

C
P

U
 C

o
n

su
m

p
ti

o
n

 [%
]

Time

VirtualBuffersDeamon - CPU

Figure 7.8: CPU consumption of the VirtualBuffersDeamon.

131

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

14.7

14.8

14.9

15

15.1

15.2

15.3

15.4

15.5

R
A

M
 C

o
n

su
m

p
ti

o
n

 [
M

b
]

Time

VirtualBuffersDeamon - Memory

Figure 7.9: Memory consumption of the VirtualBuffersDeamon.

we do not claim that it outperforms related approaches, which provide functionality that
partially overlaps with our middleware.

Figure 7.8 and Figure 7.9 respectively show the CPU and memory usage of the
VirtualBuffersDeamon, over a period of time. There are several important things to
notice here. When there are no SDGs (applications) running in the gateway the deamon
is mainly idle, i.e., it only periodically polls the underlying drivers for device status and
on average its CPU consumption is less than 2%. This can be observed in Figure 7.8,
before the first peak. The two peaks represent SDG deployments for the two applications.
The first peak happens when the Sedona-based application is deployed and the second
peak signals the deployment of Java-based application. Since SAPP requires smaller
number of sensors than JAPP, the deamon needs to allocate and configure less virtual
buffers, thus the difference in the two peaks. However, in both cases the maximum CPU
usage of the deamon is below 14% and it lasts only a few seconds. For the same scenario
we have measured the deamon’s memory usage. Figure 7.9, shows the total memory of
deamon’s JVM process (with heap memory, Perm Size and stack). Initially, we notice
that in the idle state the deamon consumes little bit under 15Mb of RAM (the initial
heap size is configured to a minimum of 1Mb), what can be considered a low memory
footprint. We also observe that memory consumption behaves in a similar manner to
CPU consumption. This is represented by the two distinct jumps in memory usage (cf.
Figure 7.9). The increase in memory usage is due to newly allocated virtual buffers,
adapters (heap) and SDGConnections (stack). The reason for the difference being the
same as above. Finally, we notice a monotonic growth of memory usage, the reason for
this is that the Deamon does not trigger garbage collection, since both SDGs are ruining
and using the buffers, however after an application is stopped the deamon releases its
buffers. Therefore, the performance of the VirtualBuffersDeamon can be seen as suitable

132

7.4. Evaluation

for resource-constrained devices.

Figure 7.10 and Figure 7.11 show the CPU and memory usage of the ProvisioningDea-
mon (and the used Connector for the underlying virtualization solution). In this case
we only consider infrastructure-level provisioning requests, i.e., configuring and starting
SDGs, since only this type of requests are explicitly handled by the ProvisioningDeamon.
In Figure 7.10, we notice that in general our provisioning deamon utilizes the CPU
resources scarcely, namely its CPU usage is mostly around 1%. This is due to the fact
that most of the time the deamon idle, it only periodically checks for new requests from
the Provisioning Controller and sends a hart bit. The dramatic spikes in CPU usage
happen only during the SDG deployment (we launched 4 SDGs on the gateway during
the experiment), since this includes expensive network and computation operations, i.e.,
downloading SDG prototype, configuring it and starting it. However, the later two
operations are performed by the Connectors which execute the commands and quickly
terminate. Figure 7.11 shows the memory usage of the provisioning deamon for the
same experiment. One can notice that during the experiment the memory usage of the
provisioning deamon was always below 30Mb and more importantly shortly after an SDG
is started the deamon releases the unused (Connector’s) memory. Therefore, middleware
Edge components in total require under 45Mb of memory and consume around 2% of
CPU on average. We believe that this is reasonable resource utilization suitable for
resource-constrained devices.

Scalable execution of provisioning workflows. The reason we put an emphasis
on the scalability of our middleware is that it is one of the key precondition for consistent
realization of provisioning workflows across a large resource pool. For example, if
the execution of provisioning workflows were to scale exponentially with the size of the

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 C

o
n

su
m

p
ti

o
n

[%
]

Time

ProvisioningDeamon - CPU

Figure 7.10: CPU consumption of the ProvisioningDeamon.

133

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

R
A

M
 C

o
n

su
m

p
ti

o
n

 [
M

b
]

Time

ProvisioningDeamon - Memory

Figure 7.11: Memory consumption of the ProvisioningDeamon.

resource pool, theoretically it would take infinitely long to have a consistent infrastructure
baseline for the the whole system, given a sufficiently large resource pool.

The experiment presented in Figure 7.12 and Figure 7.13 show execution times
(averaged results of 30 repetitions) of the JAPP and SAPP provisioning workflows. In
the experiments we have used up to 1000 virtual gateways for the JAPP and up to 4000
gateways for SAPP. This corresponds to a large building management system containing
dozens of big buildings (each with more than 10 floors). As a reference, the diagram also
shows a plot of a trend line, which turns out to be a nlog(n) + c function, extrapolated
from individual experiment runs. Figure 7.12a depicts the provisioning time i.e. execution
time of the provisioning workflow for the JAPP application. At 300 gateways we see that
the initial overhead of the pushing approach is compensated and therefore the execution
time decreases a little bit. From 400 to 500 gateways, the middleware reaches its maximal
load. After the deployment size reaches 500, the middleware or more precisely the
cloud-based controller scales out and load balancer starts distributing the workload to
the newly deployed microservices, i.e. the SDGManager, the AritfactsManager and the
DeploymnetHandler. The corresponding scatter plot, depicted in Figure 7.12b, unveils
that the deviations of data points are relatively small, thus on average the provisioning
execution time scales almost linearly (nlog(n)) up to 1000 Edge devices in this experiment.

Figure 7.13 shows the overall execution time of the SAPP provisioning workfolow for
different deployments (number of gateways) by using simple push-based approach. In
Figure 7.13a we notice that due to the deployment scale the overall execution time got
slower compared to the first experiment. This increase in the number of virtualized Edge
devices, generates a lot of traffic for the underlying network infrastructure that causes

134

7.4. Evaluation

Avg. Time (
ms)

Trendline -
Linear

Median Time
(ms)

100 300 500 700 900
0

20000

40000

60000

80000

#IoT Gateways

(a) Provisioning JAPP.

Time (ms)

Trendline -
Linear

0 250 500 750 1000
0

20000

40000

60000

80000

#IoT Gateways

(b) Provisioning JAPP - Scatter Plot.

Figure 7.12: Average execution time of provisioning workflow for JAPP application.

slower response times and therefore the execution time of the provisioning workflow takes
noticeably more time. For this scenario we changed the load balancing strategy to allow
up to 2500 gateways before scaling out. We clearly see that up to 2500 gateways, the
execution time increases almost linearly. When reaching 3000 deployments, the execution
time rises again, but once more starts to flatten at 4000. When looking at the scatter plot
depicted in Figure 7.13b we see that at the beginning of the experiments the deviation
among data points is very small and gets bigger with increasing number of IoT gateways.
Nevertheless, we clearly see that our framework deals well with this rather large scenario
and once again provides almost linear scalability.

Generally, we notice that the middleware mechanisms for workflow execution (Sec-
tion 7.3.1) scale within O(nlog(n)) for relatively large number of Edge devices, which
can be considered a satisfactory result. We also notice that computational overheads
of the provisioning agents and deamons have no statistically significant impact on the
results, since they are distributed among the underlying devices. Finally, the provisioning
mechanism behaves in a similar fashion for both application. The reason for this is that
all gateways are in the same network, what can be seen as an equivalent to provisioning

Avg. Time (
ms)

Trendline -
Linear

Median Time
(ms)

1000 1500 2000 2500 3000 3500 4000
10000

30000

50000

70000

90000

#IoT Gateways

(a) Provisioning SAPP.

Time (ms)

Trendline -
Linear

0 1000 2000 3000 4000
10000

30000

50000

70000

90000

#IoT Gateways

(b) Provisioning SAPP - Scatter Plot.

Figure 7.13: Average execution time of provisioning workflow for SAPP application.

135

7. A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud
Systems

a complex of collocated buildings.

7.5 Conclusion
In this chapter, we introduced a provisioning middleware that enables developing generic,
multi-level provisioning workflows and supports automated and scalable execution of such
workflows in IoT Cloud systems. We showed how our middleware supports on-demand,
self-service resource consumption by providing flexible provisioning models and support
for uniform, logically centralized provisioning of Edge devices, application artifacts and
their configuration models. We introduced provisioning support for software-defined
gateways to enable application-specific customization of Edge devices through well-defined
APIs, while preserving the benefits of proven virtualization mechanism. The initial results
of our experiments are promising, since they showed that our middleware enables scalable
execution of provisioning workflows across relatively large IoT cloud resource pool and
at the same time its overhead in terms of resource consumption is suitable for resource-
constrained devices. Additionally, we discussed possible optimizations of the provisioning
models as a direct consequence of the middleware architecture. In this regard, the
main advantage of middleware’s architecture is reflected in its support for flexible and
customizable delivery, deployment and placement models for SDGs and application
artifacts. For example, it was discussed how our middleware can be configured to
optimize the provisioning process by utilizing proven technologies such as CDNs.

Our middleware lays a cornerstone towards realizing our vision of utility-based
provisioning of IoT Cloud systems. However, some challenges still remain to realize the
utility-based provisioning paradigm. As part of our future work, we plan to address the
current limitations of our middleware and the remaining challenges listed in Figure 6.1, by
extending our middleware in several directions to: i) Address the mobility aspects of the
Edge devices, especially focusing on the dependability issues related to the device mobility
and mobility of software components, i.e., runtime migration of SDGs; ii) Support smarter
resource allocation, i.e., optimize placement of SDG and applications on Edge devices to
include support for dynamic infrastructure properties; iii) Provide more dynamic and
finer-grained resource monitoring in order to support pay-as-you-go model; iv) Finally, we
plan to extend the current prototype to enable elasticity aspects for IoT Cloud systems,
most notably to support elastic, on-demand scaling of the SDGs.

136

Part III

Governing IoT Cloud Systems

137

Preface
The ongoing convergence of cloud computing and the IoT gives rise to the proliferation of
diverse, large-scale IoT Cloud systems that offer large pools of elastic resources, which
need to be operated and governed through their entire lifecycle. Moreover, wide and ever-
stronger growing application area of IoT Cloud systems, e.g., in the context of smart cities,
has lead to stronger interplay and entanglement among variety of diverse stakeholders,
with different objectives, interests and backgrounds. As a consequence, IoT Cloud systems
are becoming an integral part of many existing business models and a key enabler for new
business opportunities. This calls for a systematic and structured approach to IoT Cloud
governance. Unfortunately, vast majority of contemporary approaches dealing with IoT
Cloud governance draw a hard line between high-level governance objectives (that mainly
concern business stakeholders) and operations processes. The latter concern technical
stakeholders such as operations managers that need to implement concrete operations
processes, conforming to or enforcing the high-level governance objectives. Therefore, at
the moment there is a wide gap between the main stakeholders involved in governing IoT
Cloud systems, increasing the risk of lost requirements or causing over-regulated systems,
potentially incurring higher operation costs or limiting business opportunities.

In this part of the thesis we aim to respond to the third main research question: “Which
models, techniques and tools are required to achieve structured and systematic IoT Cloud
governance?". To this end, in Chapter 8, we introduce GovOps – a novel methodology and
framework for governing IoT Cloud systems. The main incentive for introducing GovOps
is to bring business stakeholders and operations managers closer together and make a step
forward in bridging the gap between governance objectives (e.g., standards and regulations)
and operations processes. GovOps introduces a novel methodology, governance model
and roles, in order to enable seamless integration and alignment of high-level governance
objectives and strategies with executable operations processes from early designing stages.
Furthermore, Chapter 8 also introduces a runtime framework, which is a reference GovOps
implementation, and its main purpose is to support operations managers in implementing
and executing GovOps processes in large-scale IoT Cloud systems, without worrying about
scale, geographical distribution and dynamicity of such systems. Finally, in Chapter 9, we
introduce an uncertainty extension for GovOps. It defines a declarative policy language
and a runtime, which enable development of uncertainty- and elasticity-aware GovOps
processes, in order to support operations managers to mitigate uncertainties intrinsic to
IoT Cloud governance strategies that are mainly caused by the novel interactions of Edge
devices, network elements, Cloud resources and humans.

CHAPTER 8
GovOps: A Methodology and a

Runtime Framework for
Governance in Large-scale IoT

Cloud Systems

Wide and ever-stronger growing application area of IoT Cloud systems, e.g., in the context
of smart cities, has lead to stronger interplay and entanglement among variety of diverse
stakeholders (both business and technical). Various domains, such as smart building
and vehicle management, increasingly rely on IoT Cloud resources and capabilities to
optimize their key business tasks, improve efficiency of processes and quality of life. As a
consequence, IoT Cloud systems are becoming an integral part of many existing business
models and a key enabler for new business opportunities and cross-domain applications.
Consequently, governance issues such as security, safety, legal boundaries, compliance,
and data privacy concerns are being addressed ever-stronger [44, 51, 152], mainly due to
their potential impact on the variety of involved stakeholders. However, such approaches
are mostly intended for high-level business stakeholders, neglecting support, in terms
of tools and frameworks, to realize governance strategies in large-scale, geographically
distributed IoT Cloud systems. Approaching IoT Cloud from the operations management
perspective, different approaches have been introduced, e.g. [160, 134, 29, 139]. For
example, such approaches deal with IoT Cloud infrastructure virtualization and its
management, enabling utilization of IoT Cloud computation resources and operating
their storage resources. However, most of these approaches do not explicitly consider
high-level governance objectives such as legal issues and compliance. This increases the
risk of lost requirements or causes over-regulated systems, potentially increasing costs and
limiting business opportunities. Therefore, current approaches to IoT governance usually

141

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

addresses the Internet part of the IoT, e.g, in the context of the Future Internet services1,
while operations processes mostly deal with Things (e.g, in [32]) as additional resources
that need to be operated. The governance objectives (law, compliance, etc.) are not easily
mapped to operations processes (e.g., querying sensory data streams or adding/removing
devices), so that contemporary models, which assume that business stakeholders define
governance objectives, and operations managers implement and enforce them, are hardly
feasible in IoT Cloud systems. In practice, bridging this gap between governance and
operations management of IoT cloud systems poses a significant challenge for the involved
stakeholders. What is more, even with perfectly aligned governance objectives, designing
and realizing operational governance processes [133, 70], posses a significant challenge.
Traditional operational governance approaches are hardly applicable for IoT Cloud
systems, mainly due to the large number of involved stakeholders, novel requirements
for shared resources and capabilities, dynamicity, geographical distribution, and the
sheer scale of such systems. Supporting tools and mechanisms for runtime operational
governance of IoT Cloud systems remain largely undeveloped, thus placing much of the
burden on operations managers to perform operational governance processes.

This calls for a systematic approach to govern IoT Cloud resources and applications
throughout their entire lifecycle. In this chapter we introduce a GovOps methodology,
conceptual model and framework to effectively manage runtime governance in software-
defined IoT Cloud systems. The main aim of GovOps is to bridge the gap between
high-level governance objectives (e.g., costs, legal issues or compliance) and underlying
operations processes that enforce such objectives. Therefore, GovOps mostly focuses
to provide conceptual and framework support for designing and executing operational
governance processes, which represent a subset of the overall IoT Cloud governance and
incorporate relevant aspects of both high-level governance strategies and underlying
operations management. We present a GovOps reference model that defines required
roles, concepts, and techniques, to support seamless mapping between governance and
operations, and to facilitate realizing IoT Cloud governance processes. We introduce the
rtGovOps, which is a runtime framework for dynamic operational governance of large-scale
IoT Cloud systems. Its main objective is to support GovOps managers in implementing
and executing operational governance processes in IoT Cloud systems, without worrying
about scale, geographical distribution, dynamicity, and other characteristics inherent to
such systems that currently hinder operational governance in practice. The rtGovOps
framework provides runtime mechanisms and enabling techniques to reduce the complexity
of IoT Cloud operational governance, thus enabling the GovOps managers to perform
custom operational governance processes more efficiently in large-scale IoT Cloud systems.

The remainder of this chpater is structured as follows: Section 8.1 presents our
motivating scenarios. In Section 8.2, we present the GovOps methodological approach to
governance and operations management in IoT Cloud systems; Section 8.3 outlines the
GovOp reference model and design process for GovOps strategies; Section 8.4 outlines
main concepts and the design of the rtGovOps framework; In Section 8.5, we explain

1http://ec.europa.eu/digital-agenda/en/internet-things

142

8.1. Motivation

main runtime mechanisms of rtGovOps; Section 8.6 describes the experimental results
and outlines the prototype implementation; Finally, Section 8.7 provides final remarks
and concludes the chapter.

8.1 Motivation
Let us consider our real-life FMS scenario, described in Chapter 2, form a perspective of
the involved stakeholders and governance requirements. Next, we briefly discuss some of
the involved stakeholders, mainly focusing on their requirements and issues related to
governing FMS applications and underlying IoT Cloud resources.

As we have mentioned in Chapter 2 FMS is responsible for managing electric vehicles
deployed worldwide, e.g., on different golf courses. These vehicles communicate with
the Cloud via 3G or Wi-Fi networks to exchange telematic and diagnostic data. On the
Cloud, FMS provides different applications and services to manage this data. Examples of
such services include realtime vehicle status, remote diagnostics, and remote control. The
FMS is currently used by the following three types of stakeholders: vehicle manufacturers,
distributors, and golf course managers. These stakeholders have different business models.
For example, when a manufacturer only leases vehicles to customers, they are interested
in the status and upkeep of the complete fleet, will perform regular maintenance, as
well as monitor crashes and battery health. Golf course managers are mostly interested
in vehicle security to prevent misuse and ensure safety on the golf course (e.g., using
geofencing features). In general, the stakeholders rely on the FMS and its services to
optimize their respective business tasks. Figure 8.1 gives a high-level overview of the FMS
deployment and infrastructure. We notice that FMS runs atop a nontrivial IoT Cloud
infrastructure that includes a variety of IoT Cloud resources. For our discussion, the two
most relevant types of IoT Cloud resources are on-board physical gateways (G) and cloud
virtual gateways (VG). Most of the vehicles are equipped with on-board gateways that
are capable to host lightweight services such as geofencing or local diagnostics services.
For legacy cars that are not equipped with such gateways, a device acting as a CAN-IP
bridge is used (e.g, Teltonika FM53002). In this case FMS hosts virtual gateways on the
cloud that execute the aforementioned services on behalf of the vehicles.

We notice that the FMS is a large-scale system that manages thousands of vehicles
and relies on diverse cloud communication protocols. Further, the FMS depends on IoT
Cloud resources that are geographically distributed on different golf courses around the
globe. Jurisdiction over these resources can change over time, e.g., when a vehicle is
handed over from the distributor to a golf course manager. In addition, these resources
are usually constrained. This is why the FMS heavily relies on cloud services, e.g., for
computationally intensive data processing, fault-tolerance or to reliably store historical
readings of vehicle data. While the cloud offers the illusion of unlimited resources,
systems of such scale as FMS can incur very high costs in practice (e.g., of computation
or networking). Finally, due to the large number of involved stakeholders, the FMS needs

2http://www.teltonika.lt/en/pages/view/?id=1024

143

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

C
lo
u
d

Se
n
so
rs
 &

ac
tu
at
o
rs

Vehicle

VG3

Gateway (G1)

VG... VGn

VG2

G4 G...

GnP
h
ys
ic
al

ga
te
w
ay
s

G6
G5CAN‐IP

bridge

Service
G2

This sends a wrong message, since people will think that we wirtualize gaeways

Legacy car

(VG1)
Virtual gateway

Service
ServiceServiceServices

ServiceServiceServices

G3

FMS

Figure 8.1: Overview of FMS infrastructure.

to enable runtime customizations of infrastructure resources in order to exactly meet
stakeholder requirements and allow for operation within specified compliance and legal
boundaries. Therefore, the IoT Cloud resources and applications need to be managed
and governed throughout their entire lifecycle. In our approach, this is captured and
modeled as operational governance processes.

Example operational governance processes

Subsequently, we highlight some basic operational governance processes in FMS that are
facilitated through our framework:

• Typically, the FMS polls diagnostic data from vehicles (e.g., with CoAP). However, a
golf course manager could design an operational governance process that is triggered
in specific situations such as in case of emergency. Such process could, for example,
increase the update rate of the vehicle sensors and change the communication protocol to
MQTT in order to satisfy a high-level governance objective, e.g., company’s compliance
policy to handle emergency updates in (near) real-time.

• To increase fault-tolerance and guarantee history preservation of vehicle data (e.g.,
due to governance objectives related to legal requirements), a distributor could decide
to spin up additional virtual gateways in a different availability zone.

• After multiple complaints about problems with vehicles of type X, a manufacturer
would need to add additional monitoring features to all vehicles of type X to perform
more detailed inspections.

144

8.2. GovOps – A Novel Methodology for Governance and Operations in IoT Cloud Systems

This is by no means a comprehensive list of operational governance processes in the
FMS. However, due to dynamicity, heterogeneity, geographical distribution, and the
large scale of IoT Cloud systems, traditional approaches to realize even basic operational
governance processes are hardly feasible in practice. This is mostly because such ap-
proaches implicitly make assumptions such as physical on-site presence, manually logging
into gateways, understanding device specifics, etc., which are difficult, if not impossible,
to meet in IoT Cloud systems. Therefore, due to a lack of systematic approaches for
operational governance in IoT Cloud systems, operations managers currently have to rely
on ad-hoc solutions to deal with the characteristics and complexity of IoT Cloud systems
when performing operational governance processes.

8.2 GovOps – A Novel Methodology for Governance and
Operations in IoT Cloud Systems

The main objective of our GovOps approach (Governance and Operations) is twofold. On
the one side it aims to enable seamless integration of high-level governance objectives and
strategies with concrete operations processes. On the other side, it enables performing
operational governance processes for IoT Cloud systems in such manner they are feasible
in practice. In general, governance objectives and operations processes define and enforce
system invariants that are ideally satisfied at any point in time. The objectives and
states are usually associated with rules, conditions and properties, that should hold
during system’s runtime. In reality, due to the dynamicity and the scale of IoT Cloud
systems, this is difficult, if not impossible to achieve, without constantly reinforcing
the objectives and desired system states, as well as adapting the processes to the ever
changing requirements of the multitude of the involved stakeholders.

Figure 8.2 illustrates how GovOps relates to IoT Cloud governance and operations. It
depicts the main idea of GovOps to bring governance and operations closer together and
bridge the gap between governance objectives and operations processes, by incorporating
the main aspects of both IoT Cloud governance and operations management. To this
end, we define GovOps principles and design process of GovOps strategies (Section 8.3)
that support determining what can and needs to be governed, based on the current
functionality and features of an IoT Cloud system, and that allow for aligning such
system capabilities with regulations and standards. Additionally, we introduce a novel
role, GovOps manager (Section 8.2.3) responsible to guide and manage designing GovOps

IoT cloud
Governance
(privacy, sustainability,
legal, compliance, etc.)

IoT cloud
Operations
(deployment topologies,
config. models, etc.)

GovOps

Figure 8.2: GovOps in relation to IoT Cloud governance and operations.

145

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

strategies, because in practice it is very difficult, risky, and ultimately very costly to
adhere to the traditional organizational silos, separating business stakeholders from
operational managers. Therefore, GovOps integrates business rules and compliance
constraints with operations capacities and best-practices, from early stages of designing
governance strategies in order to counteract system over-regulation and lost governance
requirements [51].

It is worth noting that GovOps does not attempt to defined a general methodology
for IoT Cloud governance. There are many approaches (Chapter 10), which define
governance models and accountability frameworks for managing governance objectives
and coordinating decision making processes, and that can usually be applied within
GovOps without substantial modifications.

8.2.1 Governance Aspects

From our case studies, we have identified various business stakeholders such as build-
ing residents, building managers, governments, vehicle manufacturers and golf course
managers. Typically, these stakeholders are interested in energy efficient and greener
buildings, sustainability of building assets, legal and privacy issues regarding sensory
data, compliance (e.g, regulatory or social), health of the fleet, security and safety issues
related to the environments under their jurisdiction.

Depending on the concrete (sub)system and the involved stakeholders, governance ob-
jectives are realized via different governance strategies. Generally, we identify the following
governance aspects: i) environment-centric, ii) data-centric and iii) infrastructure-centric
governance.

Environment-centric governance deals with issues of overlapping jurisdictions in IoT
Cloud managed environments. For example, in our BAS, we have residents, building
managers and the government that can provide governance objectives, which directly or
indirectly affect an environment, e.g., a residential apartment. In this context, we need
to articulate multiple governance objectives related to comfort of living, energy efficiency,
safety, health and sustainability.

Data-centric governance mostly deals with implementing the governance strategies
related to the privacy, quality, and provenance of sensory data. Examples include
addressing legal issues, compliance, and user preferences w.r.t. such data.

Infrastructure-centric governance addresses issues about designing, installing, and
deploying IoT Cloud infrastructure. This mostly affects the early stages of introducing a
IoT Cloud system and involves feasibility studies, cost analysis, and risk management.
For example, it supports deciding between introducing new hardware or visualizing the
IoT Cloud infrastructure.

146

8.2. GovOps – A Novel Methodology for Governance and Operations in IoT Cloud Systems

8.2.2 Operations Management Aspects

Operations managers implement various processes to manage BAS and FMS at runtime.
Generally, we distinguish following operational governance aspects: i) configuration-
centric, ii) topology-centric, and iii) stream-centric governance.

Configuration-centric governance includes dynamic changes to the configuration
models of the software-defined IoT Cloud systems at runtime. Example processes include:
a) enabling/disabling an IoT resource or capability (e.g, start/stop a unit), b) changing
an IoT capability at runtime (e.g, communication protocol), and c) configuring an IoT
resource (e.g, setting sensors poll rate).

Topology-centric governance addresses structural changes that can be performed on
software-defined IoT systems at runtime. For example, a) Pushing processing logic from
the application space towards the edge of the infrastructure; b) Introducing a second
gateway and an elastic load balancer to optimize resource utilization, e.g., provide more
bandwidth; c) Replicating a gateway, e.g., for fault-tolerance or data source history
preservation.

Stream-centric governance addresses runtime operation of sensory data streams and
continuous queries, e.g., to perform custom filtering, aggregation, and querying of the
available data-streams. For example, to perform local filtering the processing logic is
executed on physical gateways, while complex queries, spanning multiple data streams
are usually executed on VGWs. Therefore, operations managers perform processes
like: a) Placing custom filters (e.g., near the data source to reduce network traffic);
b) Allocating queries to virtual gateways; and c) Splitting streams, i.e., sending events to
multiple virtua gateways.

8.2.3 Integrating Governance Objectives with Operations Processes

The examples presented in Section 8.2.1 and Section 8.2.2 are by no means a comprehensive
list of IoT Cloud governance processes. However, due to dynamicity, heterogeneity,
geographical distribution and the sheer scale of IoT Cloud, traditional approaches to
realize these processes are hardly feasible in practice. This is mostly because such
approaches implicitly make assumptions such as physical on-site presence, manually
logging into gateways, understanding device specifics, etc., which are difficult, if not
impossible, to meet in IoT Cloud systems. Therefore, due to a lack of a systematic
approach for operational governance in IoT systems, currently operations managers have
to rely on ad hoc solutions to deal with the characteristics and complexity of IoT Cloud
systems, when performing governance processes.

Table 8.1 lists examples of governance objectives and according operations management
processes to enforce these objectives. The first example comes from the FMS, since
many of the golf courses are situated in countries with specific data regulations, e.g.,
the US or Australia. In order to enable monitoring of the whole fleet (as required by
the manufacturer) the operations managers needs to understand the legal boundaries

147

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

Governance objectives Operations processes

1.
Fulfill legal requirements w.r.t.
sensory data in country X.
Guaranty history preservation.

Spin-up an aggregator gateway.
Replicate VGW, e.g., across
different availability zones.

2.

Reduce GHG emission. User
preferences regarding living
comfort. Consider health
regulations.

Provide a configuration directives
for a IoT Cloud resource (e.g,
HVAC).

3. Data quality compliance regarding
location tracking services.

Choose among available services,
e.g., GPS vs. GNSS (Global
Navigation Satellite System)
platform.

Table 8.1: Example governance objectives and operations processes.

regarding data privacy. For example, in Australia, the OAIC3 has issued a 32 page
guidance as to what "reasonable steps to protect personal information" might include, that
in practice need to be interpreted by operations managers. The second example contains
potentially conflicting objectives supplied by stakeholders, e.g., building manager, end
user, and the government, leaving it to the operations team to solve the conflicts, at
runtime. The third example, hints that GNSS is usually better-suited to simultaneously
work in both northern and southern high latitudes. Even for these basic processes, an
operations team faces numerous difficulties, since in practice there is no one-size-fits-all
solution to map governance objectives to operations processes.

Therefore, GovOps proposes a novel role, GovOps manager, as a dedicated stakeholder
responsible to bridge the gap between governance strategies and operations processes in
IoT Cloud systems. The main rationale behind introducing a GovOps manager is that in
practice designing governance strategies needs to involve operations knowledge about
the technical features of the system, e.g., physical location of devices, configuration and
placement of queries, and component replication strategies. Reciprocally, defining systems
configurations and deployment topologies should incorporate standards, compliance, and
legal boundaries at early stages of designing operations processes. To achieve this, the
GovOps manager is positioned in the middle, in the sense that they continuously interact
with both business stakeholders (to identify high-level governance issues) and operations
team (to determine operations capacities).

The main task of a GovOps manager is to determine suitable tradeoffs between satis-
fying the governance objectives and the system’s capabilities, as well as to continuously
analyze and refine how high-level objectives are articulated through operations processes.
In this context, a key success factor is to ensure effective and continuous communication
among the involved parties during the decision making process, facilitating i) openness,

3Office of the Australian Information Commissioner(OAIC), Australian privacy regulator.

148

8.2. GovOps – A Novel Methodology for Governance and Operations in IoT Cloud Systems

ii) collaboration, iii) establishment of a dedicated GovOps communication channel, along
with iv) early adoption of standards and regulations. This ensures that no critical
governance requirements are lost and counteracts over-regulation of IoT Cloud systems.

8.2.4 Main principles of GovOps in IoT Cloud systems

Generally, GovOps strategies manipulate the state of IoT Cloud resources at runtime
while considering governance objectives and regulations. Therefore, they can be seen as a
sequence of runtime state transitions from the current state to some desired, target state
(e.g., that satisfies some non-functional properties, enforces compliance or exactly meets
custom functional requirements). The core idea of GovOps is to provide abstractions that
shield stakeholders from the complexities of underlying system and diversities of various
legal and compliance issues, allowing them to focus on integrating governance objectives
with practically feasible operations processes. To support performing such processes in
IoT Cloud systems, (e.g., listed in Section 8.1), while considering system characteristics
(e.g., large-scale, geographical distribution and dynamicity), GovOps relies on concepts
that include:

Central point of operation (R1) – Enable conceptually centralized interaction with
the software-defined IoT Cloud system to enable a unified view on the system’s
operations and governance capabilities (available at runtime), without worrying
about low-level infrastructure details.

Automation (R2) – Allow for dynamic, on-demand governance of software-defined
IoT cloud systems on a large scale and enable governance processes to be easily
repeatable, i.e., enforced across the IoT Cloud, without manually logging into
individual gateways.

Fine-grained control (R3) – Expose the control functionality of IoT Cloud resources
at fine granularity to allow for precise definition of governance processes (to exactly
meet requirements) and flexible customization of IoT Cloud system governance
capabilities.

Late-bound directives (R4) – Support declarative directives that are bound later
during runtime in order to allow for designing generic and flexible operational
governance processes.

IoT Cloud resources autonomy (R5) – Provide a higher degree of autonomy to IoT
Cloud resources to reduce communication overhead, increase availability (e.g., in
case of network partitions), enable local exception and fault handling, support
protocol independent interaction, and increase system scalability.

149

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

IoT Unit
Governance
Capability

has

ResourceState

Governance
Scope

Cost Lifecycle
Operation

Configuration
Directive

Topology
Transformation

Replacement
Action

describes

has

GovOps
Strategy

affects

appliedOn
references

triggers

CurrentState

TargetState

describes

Config.Model Topology

Governance
Objective

parametrizes

compliesWitih

Complience
Constraint

BusinessRule

Legislation

DataQuality

Figure 8.3: Simplified UML diagram of GovOps model for IoT Cloud governance.

8.3 A reference model for GovOps methodology

8.3.1 Overview of GovOps model for IoT Cloud systems

To realize the GovOps approach we need suitable abstractions to describe IoT Cloud
resources that allow IoT Cloud infrastructure to be (re)defined after it has been deployed.
We show in Chapter 6 how this can be done with software-defined IoT units. GovOps
model (Figure 8.3) builds on this premise and extends our previous work with fundamental
aspects of operational governance processes: i) describing states of deployed IoT resources,
ii) providing capabilities to manipulate these states at runtime, and iii) defining governance
scopes.

Within our model, the main building blocks of GovOpsStrategies are Governance-
Capabilities. They represent operations which can be applied on IoT Cloud resources,
e.g., query current version of a software, change communication protocol, and spin-up a
virtual gateway. These operations manipulate IoT Cloud resources in order to put an
IoT Cloud system into a specific (target) state. Governance capabilities are described via
well-defined software-defined APIs and they can be dynamically added to the system, e.g,
to a VGW. From the technical perspective, they behave like add-ons, in the sense that
they extend resources with additional operational functionality. Generally, by adopting
the notion of governance capabilities, we allow for processes to be automated to a great
extent, but also give a degree of autonomy to IoT Cloud resources.

Since the meaning of a resource state is highly task specific, we do not impose many
constraints to define it. Generally, any useful information about an IoT Cloud resource
is considered to describe the ResourceState, e.g., a configuration model or monitoring
data such as CPU load. Technically, there are many frameworks (e.g., Ganglia or Nagios)
that can be used to (partly) describe resource states. Also configuration management
solutions, such as OpsCode Chef4, can be used to maintain and inspect configuration

4http://opscode.com/chef

150

8.3. A reference model for GovOps methodology

states. Finally, design best practices and reference architectures (e.g., AWS Reference
Architectures5) provide a higher-level description of the desired target states of an IoT
Cloud system.

The GovernanceScope is an abstract resource, which represents a group of IoT
Cloud resources (e.g., gateways) that share some common properties. Therefore, our
governance scopes are used to dynamically delimit IoT Cloud resources on which a
GovernanceCapability will have an effect. This enables writing the governance strategies
in a scalable manner, since the IoT Cloud resources are not individually addressed. It also
allows for backwards compatible GovOps strategies, which do not directly depend on the
current resource capabilities. This means that we can move a part of the problem, e.g.,
faults and exceptions handling, inside the governance scope. For example, if a gateway
loses a capability the scope simply wont invoke it i.e., the strategy will not fail.

8.3.2 Design process of GovOps strategies

As described in Section 8.2, the GovOps manager is responsible to oversee and guide the
GovOps design process and to design concrete GovOps strategies. The design process is
structured along three main phases: i) identifying governance objectives and capabilities,
ii) formalizing strategy, and iii) executing strategy.

Generally, the initial phase of the design process involves eliciting and formalizing
governance objectives and constraints, as well as identifying required fine-grained gover-
nance capabilities to realize the governance strategy in the underlying IoT Cloud system.
GovOps does not make any assumptions or impose constraints on formalizing governance
objectives. To support specifying governance objectives the GovOps manager can utilize
various governance models and frameworks, such as the 3P [128] or COBIT [63]. How-
ever, it requires tight integration of the GovOps manager into the design process and
encourages collaboration among the involved stakeholders to clearly determine risks and
tradeoffs, in terms of what should and can be governed in the IoT Cloud system, e.g.,
which capabilities are required to balance building emission regulations and residents
temperature preferences. To this end, the GovOps manager gathers available governance
capabilities in collaboration with the operations team, identifies missing capabilities, and
determines if further action is necessary. Generally, governance capabilities are exposed
via well-defined APIs. They can be built-in capabilities exposed by IoT units (e.g.,
start/stop), obtained from third-parties (e.g., from public repositories or in a market-like
fashion), or developed in-house to exactly reflect custom governance objectives. By
promoting collaboration and early integration of governance objectives with operations
capabilities, GovOps reduces the risks of lost requirements and over-regulated systems.

After the required governance capabilities and relevant governance aspects are iden-
tified, the GovOps manager relies on the aforementioned concepts and abstractions
(Section 8.3.1) to formally define the GovOps strategy and articulate the artifacts defined
in the first phase of the design process. Governance capabilities are the main building

5http://aws.amazon.com/architecture/

151

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

blocks of the GovOps strategies. They are directly referenced in GovOps strategies
to specify the concrete steps which need to be enforced on the underlying IoT Cloud
resources, e.g., defining a desired communication protocol or disabling a data stream
for a specific region. Also in this context, the GovOps reference model does not make
assumptions about the implementation of governance strategies, e.g., they can be realized
as business processes, policies, applications, or domain specific language. Individual
steps, defined in the generic strategy, invoke governance capabilities that put the IoT
Cloud resources into desired target state, e.g., which satisfies a set of properties. Subse-
quently, the generic GovOps strategy needs to be parameterized, based on the concrete
constraints and rules defined by the governance objectives. Depending on the strategy
implementation these can be realized as process parameters, language constraints (e.g.,
Object Constraint Language), or application configuration directives. By formalizing
the governance strategy, GovOps enables reusability of strategies, promotes consistent
implementation of established standards and best practices, and ensures operation within
the system’s regulatory framework.

The last phase involves identifying the system resources, i.e. the governance scopes
that will be affected by the GovOps strategy and executing the strategy in the IoT Cloud
system. It is worth mentioning that the scopes are not directly referenced in the GovOps
strategies, as the GovOps manager applies the strategies on the resource scopes instead of
the actual resources. Introducing scopes at the strategy-level shields the operations team
from directly referencing IoT Cloud resources, thus enables designing declarative, late-
bound strategies in a scalable manner. Furthermore, additional capabilities identified in
the previous phase will be acquired and/or provisioned at this point in the underlying IoT
Cloud system, whereas unused capabilities will be decommissioned in order to optimize
resource consumption.

8.4 rtGovOps – A Runtime Framework for GovOps in
Large-scale IoT Cloud Systems

The main aim of our rtGovOps (runtime GovOps) framework is to facilitate operational
governance processes for software-defined IoT Cloud systems. To this end, rtGovOps
provides a set of runtime mechanisms and does most of the “heavy lifting” to support
operations managers in implementing and executing operational governance processes
in large-scale software-defined IoT Cloud systems, without worrying about scale, geo-
graphical distribution, dynamicity, and other characteristics inherent to such systems
that currently hinder operational governance in practice. In order to facilitate perform-
ing the operational governance processes, while considering the characteristics of the
software-defined IoT Cloud systems, the rtGovOps framework follows the set of design
principles, introduced in Section 8.2.4. They represent the main requirements, which
need to be supported and enforced by our rtGovOps framework.

Figure 8.4 gives a high-level architecture and deployment overview of the rtGovOps
framework. Generally, the rtGovOps framework is distributed across the cloud and IoT

152

8.4. rtGovOps – A Runtime Framework for GovOps in Large-scale IoT Cloud Systems

 Governance controller

Governance
sstrategy

Operations
manager

What is on the
cloud

Sequence of actions
and conditions

Actuators
Sensors

Runtime
Container

Agents and
profilers

AP
IM

an
ag
er

Capability
Invoker

Sc
op

eC
oo

rd
in
at
or

G
ov
.S
tr
at
eg
yP
ro
ce
ss
or

In
te
rn
a

G
ov
.M

od
el

SD gateway

SD gateway

Governance capabilities
repository

Governance
capabilities

Edge Device

Cl
ou

d
co
nn

ec
tiv

ity

Device
Profiler

Provisioning
Agent

Governance
Agent

Ca
pa

bi
lit
y

...
Deployment
Manager

Image
Builder

Dependency
Manager

Repository Connector

API
Mediator

Profile
Manager

Ca
pa

bi
lit
y

Ca
pa

bi
lit
y

Figure 8.4: Overview of rtGovOps architecture and deployment.

devices. It is designed based on the microservices architecture6, which among other
things enables flexible, evolvable, and fault-tolerant system design, while allowing for
flexible management and scaling of individual components. The main components of
rtGovOps include: i) the governance capabilities, ii) the governance controller that runs
on the cloud, and iii) the rtGovOps agents that run in IoT devices. In the remainder of
this section, we will discuss these components in more detail.

8.4.1 Operational governance capabilities

As we described in Section 8.1, operational governance processes govern software-defined
IoT units throughout their entire lifecycle. Generally, Governance capabilities represent
the main building blocks of operational governance processes and they are usually executed
in IoT devices. The governance capabilities encapsulate governance operations which can
be applied on deployed IoT units, e.g., to query the current version of a service, change a
communication protocol, or spin up a virtual gateway. Such capabilities are described
via well-defined APIs and are usually provided by domain experts who develop the IoT
units. The rtGovOps framework enables such capabilities to be dynamically added to
the system (e.g, to gateways), and supports managing their APIs. From a technical
perspective, they behave like add-ons, in the sense that they extend the resources with
additional operational functionality. Internally, IoT devices host rtGovOps agents that
behave like an add-on manager, responsible for installing/enabling, starting/stopping
a capability, and managing the APIs they expose. Generally, rtGovOps does not make

6http://martinfowler.com/articles/microservices.html

153

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

Capability Package

CapabilityId
(name+version)

Executable
(e.g.,binary, sh)

Provisioning
directives

Config. model

Meta‐info.

Install
Uninstall

Mapping model

HW requirements
Runtime dependencies

APIs
Software‐defined

IoT unit (e.g., gateway)

governs

Figure 8.5: Overview of capability package structure.

any assumptions about concrete capability implementations. However, it requires them
to be packaged as shown in Figure 8.5. Subsequently, we highlight relevant examples of
governance capabilities related to our FMS application.

• Configuration-specific capabilities include changes to the configuration models of
software-defined IoT Cloud systems at runtime. For example: setting sensor poll
rate, changing communication protocol for cloud connectivity, configuring data point
unit and type (e.g., temperature in Kelvin as unsigned 10-bit integer), mapping a
sensor or CAN bus unit to a device’s virtual pin, or activating a low-pass filter for an
analog sensory input.

• Topology-specific capabilities address structural changes that can be performed on the
deployment topologies of software-defined IoT systems. Examples include replicating a
virtual gateway to increase fault-tolerance or data source history preservation and push
data processing logic from the application space towards the edge of the infrastructure.

• Stream-specific capabilities deal with managing the runtime operation of sensory data
streams and continuous Complex Event Processing (CEP) queries. Therefore, to enable
features like scaling out or stream replaying, operations managers need capabilities
such as: filter placement near the data source to reduce network traffic, allocation
of queries to gateways, and stream splitting, i.e., sending events to multiple virtual
gateways.

• Monitoring-specific capabilities deal with adding a general monitoring metric, e.g.,
CPU load, or providing an implementation of a custom metric to IoT Cloud resources.

For the sake of simplicity, we assume that the capabilities are readily available7. In
reality, they can be obtained from a central repository, provided by a third-party in a
market-like fashion, or custom developed in-house.

As mentioned above, governance capabilities are dynamically added to the IoT Cloud
resources. There are several reasons why such behavior is advantageous for operations
managers and software-defined IoT Cloud systems. For example, as we usually deal with

7We provide example governance capabilities under https://github.com/tuwiendsg/GovOps/

154

8.4. rtGovOps – A Runtime Framework for GovOps in Large-scale IoT Cloud Systems

constrained resources, static provisioning of such resources with all available functionality
is rarely possible (e.g., factory defaults rarely contain the desired configuration for FMS
vehicle gateways). Further, as we have seen in Section 8.1, jurisdiction over resources
(in this case FMS vehicles) can change during runtime, e.g., when a vehicle is handed
over to a golf course manager. In such cases, because the governing stakeholder changes,
it is natural to assume that the requirements regarding operational governance will
also change, thus requiring additional or different governance capabilities. As opposed
to updating the whole device image at once, we reduce the communication overhead,
but also enable changing device functionality without interrupting the system, e.g., to
reboot. This provides greater flexibility and enables on-demand governance tasks (e.g,
by temporally adding a capability), which are often useful in systems with a high degree
of dynamicity. Finally, executing capabilities in the IoT devices improves scalability of
the operational governance processes and enables better resource utilization.

8.4.2 Operational governance processes and governance scopes

Operational governance processes represent a subset of the general IoT Cloud gover-
nance and deal with operating and governing IoT Cloud resources at runtime. Such
processes are usually designed by operations managers in coordination with business
stakeholders [104]. The main purpose of such processes is to enable supporting high-level
governance objectives such as compliance and legal concerns, which influence system’s
runtime behavior. To be able to dynamically govern IoT Cloud resources, the operational
governance processes rely on the governance capabilities. This means that individual steps
of such process usually invoke governance capabilities in order to enforce the behavior of
IoT Cloud resources in such manner that it complies with the governance objectives. In
this context, our rtGovOps framework provides runtime mechanisms to enable execution
of these operational governance processes.

As described in Chapter 6, we use software-defined IoT units to describe IoT Cloud
resources. However, these units are not specifically tailored for describing non-functional
properties and available meta information about IoT Cloud resources, e.g., location of a
vehicle (gateway) or its specific type and model. For this purpose, rtGovOps provides
governance scopes. The governance scope is an abstract resource which represents a group
of IoT Cloud resources that share some common properties. For example, an operations
manager can specify a governance scope to include all the vehicles of type X. The
ScopeCoordinator (Figure 8.4) provides mechanisms to define and manage the governance
scopes. The rtGovOps framework relies on the ScopeCoordinator to determine which IoT
Cloud resources need to be affected by an operational governance process. Generally,
the governance scopes enable implementing the operational governance processes in a
scalable and generic manner, since the IoT Cloud resources do not have to be individually
referenced within such process.

155

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

8.4.3 Governance controller and rtGovOps agents

The Governance controller (Figure 8.4) represents a central point of interaction with all
available governance capabilities. It provides a mediation layer that enables operations
managers to interact with IoT Cloud systems in a conceptually centralized fashion, with-
out worrying about geographical distribution of the underlying system. Internally, the
governance controller comprises several microservices, among which the most important
include: DeploymentManager and ProfileManager that are used to support dynamical
provisioning of the governance capabilities, as well as APIManager and previously men-
tioned ScopeCoordinator that support operational governance processes to communicate
with the underlying capabilities. The APIManger exposes governance capabilities to
operational governance processes via well-defined APIs and handles all API calls from
such processes. It is responsible to resolve incoming requests, map them to respective gov-
ernance capabilities in the IoT devices and deliver results to the calling process. Among
other things, this involves discovering capabilities by querying the capabilities repository,
and parameterizing capabilities via input arguments or configuration directives.

Since governance capabilities are usually not “pre-installed” in IoT devices, the
DeploymentManager is responsible to inject capabilities into such devices (e.g., gateways)
at runtime. To this end it exposes REST APIs, which are used by the devices to
periodically check for updates, as well as by the operational governance processes to push
capabilities into the devices. Finally, the ProfileManager is responsible to dynamically
build and manage device profiles. This involves managing static device meta-information
and periodically performing profiling actions in order to obtain runtime snapshots of
current device states.

Another essential part of the rtGovOps framework are the rtGovOps agents. They
include: ProvisioningAgent, GovernanceAgent and DeviceProfiler. These agents are

Runtime
Container

OEM
device‐API

Software‐defined Gateway

Apps and
services

Capability APIManager

Co
m
. B

us

CapabilityManager

CapabilityWrapper

Governance
sstrategy

Operations
manager

Operational governance
controller

Governance
capabilities

Sequence of
actions and
conditions

Actuators
Sensors

Governance
agents

AP
IM

an
ag
er

Capabilities
Manager

Scope
Coordinator

G
ov
.S
tr
at
eg
yP
ro
ce
ss
or

In
te
rn
a
G
ov
.M

od
el
Virtual
gateway

Virtual
gateway

IoT cloud

Gateway Gateway

Cloud connectivity

Runtime
(e.g, Sedona)

InvocationMapper

G
ov
.A
ge
nt

Capability Capability Capability...

Figure 8.6: Overview of the governance agent architecture.

156

8.5. Main Runtime Mechanism of the rtGovOps Framework

very light-weight components that run in all IoT Cloud resources that are managed
by rtGovOps such as the FMS vehicles. Figure 8.6 shows a high-level overview of the
GovernanceAgent architecture. It is responsible to manage local governance capabilities,
to wrap them in well-defined APIs and to expose them to the Governance controller.
The rtGovOps agents offer advantages in terms of general scalability of the system and
provide a degree of autonomy to the IoT Cloud resources.

8.5 Main Runtime Mechanism of the rtGovOps
Framework

Generally, the rtGovOps framework supports operations managers to handle two main
tasks. First, the rtGovOps framework enables dynamic, on-demand provisioning of
governance capabilities. For example, it allows for dynamically injecting capabilities
into IoT Cloud resources, and coordinating the dynamic profiles of these resources at
runtime. Second, our framework allows for runtime management of governance capabilities
throughout their entire lifecycle that, among other things, includes remote capability
invocation and managing dynamic APIs exposed to users.

As we have mentioned earlier, in order to achieve a high-level governance objective
such as enforce (part of) compliance policies for handling emergency situations an
operations manager could design an operational governance process similar to the one
shown in Figure 8.7 (top). Individual actions of such processes usually reference specific
governance capabilities and rely on rtGovOps to support their execution. Figure 8.7
depicts a simplified sequence of steps executed by the rtGovOps framework when a
governance capability gets invoked by an operational governance process. For the sake of
clarity, we omit several steps performed by the framework and mainly focus on showing
the most common interaction, i.e., we assume no errors or exceptions occur. We will
discuss the most important steps performed by rtGovOps below. Note that all of these
steps are performed transparently to operations managers and operational governance
processes. The only thing that such processes observe is a simple API call (similar to
REST service invocation) and a response (e.g., a JSON array in this case). Naturally,
the process is responsible to provide arguments and/or configuration directives that are
used by rtGovOps to parametrize the underlying capabilities.

8.5.1 Automated Provisioning of Governance Capabilities

In order to enable dynamic, on-demand provisioning of governance capabilities whenever
a new capability is requested (i.e., referenced in an operational governance process), the
rtGovOps framework needs to perform the following steps: i) the ScopeCoordinator
resolves the governance scope to get a set of devices to which the capability will be
added; ii) the ProfileManager checks whether the governance capability is available and
compatible with the device; iii) the Dependency Manager resolves runtime dependencies
of the capability; iv) the ImageBuilder creates a capability image; v) Finally, the De-

157

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

Example of an operational governance process (e.g., applicaiton or workflow)

C
lo
u
d
‐sid

e co
n
tro

lle
r

Io
T d

evice‐sid
e age

n
ts

rtG
o
vO

p
s fram

ew
o
rk

Set comm.
protocol to

MQTT

Increase data
points update
rate to 5s

List vechicle‘s
engine data points

Invoke gov. capability
(/scopeID/capability/args)

Get response
(e.g., JSON object)

1: Resolve
governance

scope

1': Map ID to
IP addr.

Governance capabilities
repository

2: Check capability
(capa. meta‐info vs.

device profile)

3: Resolve
dependencies

4: Create
capability image

5: Inject
capability

2': Get device‘s
dynamic profile

6: Register
capability‘s API

10: Wrap
result

8: Invoke
capability

4': get binary

2'': get meta‐info.

Governance capability
(e.g., list vehicles engine data points) onCompletion

7: Resolve gov.
scope

install 9: Map API call
to capability

execute

Maybe merge steps 9 and 10
Remove/move 6(Wrap capability in API) to 10

Register
capability API

(query the repo)

Provide mapping
to the device

6': get APIs data

6'': send
mapping model

Figure 8.7: Execution of an operational governance process.

ploymentManager injects the capability into devices. An overview of this process is also
shown in steps 1− 5 in Figure 8.7.

Algorithm 8.1 shows the capability provisioning process in more detail. An operational
governance process requests a capability by supplying a capability ID (currently consisting
of capability name and version) and an operational governance scope (more detail in
Section 8.5.2). After that rtGovOps tries to add the capability (together with its runtime
dependencies) to a device. If successful, it continues along the steps shown in Figure 8.7.
The algorithm performs in a similar fashion to a fail-safe iterator, in the sense that
it works with snapshots of devices states. For example, if something changes on the
device side inside checkComponent (Algorithm 8.1, lines 2− 5) it cannot be detected by
rtGovOps and in this case the behavior of rtGovOps is not defined. Since we assume that
all the changes to the underlying devices are performed exclusively by our framework,

158

8.5. Main Runtime Mechanism of the rtGovOps Framework

this is a reasonable design decision. Other errors, such as failure to install a capability on
a specific device, are caught by rtGovOps and delivered as notifications to the operational
governance process, so that they do not interrupt its execution.

Algorithm 8.1: Governance capability provisioning.
input : capaID : A capability ID.

gscope : Operational governance scope.
result : Capability added to device or error occurred.

1 func checkComponent(component, device)
2 capaMeta← queryCapaRepo(component)
3 devP rofile← getDeviceP rofile(device)
4 status← isCompatible(capaMeta, devP rofile)
5 return status

6 end
/* Begin main loop. */

7 components← resolveDependencies(capaID)
8 components← add(capaID)
9 for device in resolveGovScope(gscope) do

10 for component in components do
11 if not checkComponent(component, device) then
12 error
13 end
14 end

/* Inject capability. */
15 capaImg ← createImg(components)
16 deployCapa(capaImg, device)
17 installCapa(capaImg) // On device-side

18 end

Capability checking

From the steps presented in Algorithm 8.1 checkComponent (lines 1−6) and injectCapability
(lines 15 − 17) are the most interesting. The framework invokes checkComponent for
each governance capability and all of its dependencies for the currently considered device.
At this point rtGovOps verifies that the component can be installed on this specific
device. To this end, the ProfileManager first queries the central capabilities repository.
Besides the capability binaries, the repository stores capability meta-information, such as
required CPU instruction set (e.g., ARMv5 or x86), disk space and memory requirements,
as well as installation and decommissioning directives. After obtaining the capability
meta-information the framework starts building the current device profile. This is done
in two stages. First, the gateway features catalog is queried to obtain relevant static
information, such as CPU architecture, kernel version and installed userland (e.g., Busy-
Box8) or OS. Second, the ProfileManager in coordination with DeviceProfiler executes
a sequence of runtime profiling actions to complete the dynamic device profile. For
example, the profiling actions include: currently available disk space, available RAM,

8http://busybox.net

159

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

firewall settings, environment information, list of processes and daemons, and list of
currently installed capabilities. Finally, when the dynamic device profile is completed, it
is compared with the capability’s meta information in order to determine if the capability
is compatible with the device.

Capability injection

The rtGovOps capability injection mechanism, deals with uploading and installing ca-
pabilities on devices, as well as managing custom configuration models. This process is
structured along three main phases: Creating a capability image, deploying the capability
image on a device and installing the capability locally on the device.

1. After the ProfileManager determines a capability is compatible with the gateway,
the ImageBuilder creates a capability image. The capability image is rtGovOps
internal representation of the capability package (see Figure 8.5). In essence it is a
compressed capability package containing component binaries and a dynamically
created runlist. The runlist is an ordered list of components that need to be
installed. It is created by the DependencyManager and its individual steps reference
component installation or decommissioning directives that are obtained from the
capabilities repository.

2. In the second phase, DeploymentManager deploys the image to the device. We
support two different deployment strategies. The first strategy is poll-based, in the
sense that the image is placed in the update queue and remains there for a specified
period of time (TTL). The ProvisioningAgent periodically inspects the queue for
new updates. When an update is available, the device can poll the new image when
it is ready, e.g., when the load on it is not too high. A governance process can have
more control over the poll-based deployment by specifying a capability’s priority in
the update queue. Finally, on successful update the DeploymentManager removes
the update from the queue. The second deployment strategy allows governance
capabilities to be asynchronously pushed to gateways. Since the capability is forced
onto the gateway, it should be used cautiously and for urgent updates only, such as
increasing a sensor poll-rate in emergency situations. Finally, independent of the
deployment strategy, the framework performs a sequence of checks to ensure that
an update was performed correctly (e.g., compares checksums) and moves to the
next phase.

3. In the final phase, the ProvisioningAgent performs a local installation of the capabil-
ity binaries and its runtime dependencies, and performs any custom configurations.
Initially, ProvisioningAgent unpacks the previously obtained capability image and
verifies that the capability can be installed based on the current device profile.
In case the conditions are not satisfied, e.g., due to disk space limitation, the
process is aborted and an error is sent to the DeploymentManager. Otherwise,
the ProvisioningAgent reads the runlist and performs all required installation or
decommissioning steps.

160

8.5. Main Runtime Mechanism of the rtGovOps Framework

A limitation of the current rtGovOps prototype is that it only provides rudimentary
support to specify installation and decommissioning directives. Therefore, capability
providers need to specify checks, e.g., if a configuration file already exists, as part of the
installation directives. In the future we plan to provide a dedicated provisioning DSL to
support common directives and interactions.

8.5.2 rtGovOps APIs and invocation of governance capabilities

When a new governance capability is injected into a gateway, the rtGovOps framework
performs the following steps: i) register capability with APIManager; ii) ScopeCoordi-
nator resolves the governance scope; iii) APIMediator provides a mapping model to the
GovernanceAgent; iv) the GovernanceAgent wraps the capability into a well-defined API,
dynamically exposing it to the outside world; v) CapabilityInvoker invokes the capability
and deliver the result to the invoking operational governance process when the capability
execution completes. A simplified version of this process is also shown in steps 6− 10 in
Figure 8.7.

Before we dive into technical details of this process, it is worth mentioning that cur-
rently in the capabilities repository, besides aforementioned capability meta-information
and binaries, we also maintain well-defined capability API descriptions, e.g., functional,
meta and lifecycle APIs. These APIs are available to operations managers as soon as
a capability is added to the repository and independent of whether the capability is
installed on any device. Additionally, we provide a general rtGovOps API that is used to
allow for more control over the system and its capabilities. It includes CapabilityManager
API (e.g., list capabilities, check if capability installed/active), capability lifecycle API
(e.g., start, stop or remove capability), and ProvisioningAgent API (e.g., install new
capability). Listing 8.1 shows some examples of such APIs as REST-like services (version
numbers are omitted for clarity).

1 /* General case of capability invocation. */
2 /govScope/{capabilityId}/{methodName}/{arguments}?
3 arg1={first-argument}&arg2={second-argument}&...

4 /* Data points capability invocation example. */
5 /deviceId/DPcapa/setPollRate/arguments?rate=5s
6 /deviceId/DPcapa/list

7 /* Capabilities manager examples. */
8 /deviceId/cManager/capabilities/list
9 /deviceId/cManager/{capabilityId}/stop

Listing 8.1: Examples of capabilities and rtGovOps APIs.

Single invocation of governance capabilities

In the following we mainly focus on explaining the steps that are performed by the
rtGovOps framework when a capability is invoked on a single device. The more general

161

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

case involving multiple devices and using operational governance scopes is discussed in
the next section.

When a capability gets invoked by an operational governance process for the first time,
APIManager does not know anything about it. Therefore, it first needs to check, based
on the API call (e.g., see Listing 8.1), if the capability exists in the central capabilities
repository. After the capability is found and provisioned (Section 8.5.1), the rtGovOps
framework tries to invoke the capability. This involves the following steps: registering
the capability, mapping the API call, executing the capability, and returning the result.

1. First, the APIManager registers the API call with the corresponding capability.
This involves querying the capability repository to obtain its meta-information (such
as expected arguments), as well as building a dynamic mapping model. Among
other things, the mapping model contains the capability ID, a reference to a runtime
environment (e.g., Linux shell), a sequence of input parameters, the result type, and
further configuration directives. The APIMediator forwards the model to the device
(i.e. GovernanceAgent) and caches this information for subsequent invocations.
During future interactions, the rtGovOps framework acts as transparent proxy,
since subsequent steps are handled by the underlying devices.

2. In the next step, rtGovOps needs to perform a mapping between the API call and
the underlying capability. Currently, there are two different ways to do this. By
default, rtGovOps assumes that capabilities follow the traditional Unix interaction
model, i.e., that all arguments and configurations (e.g., flags) are provided via the
standard input stream (stdin) and output is produced to standard output (stdout)
or standard error (stderr) streams. This means, if not specified otherwise in the
mapping model, the framework will try to invoke the capability by its ID and
will forward the provided arguments to its stdin. For capabilities that require
custom invocation, e.g., property files, policies, or specific environment settings, the
framework requires a custom mapping model. This model is used in the subsequent
steps to correctly perform the API call.

3. Finally, the CapabilityInvoker in coordination with the GovernanceAgent invokes the
governance capability. As soon as the capability completes, the GovernanceAgent
collects and wraps the result. Currently, the framework provides means to wrap
results as JSON objects for standard data types and it relies on the mapping model
to determine the appropriate return type. However, this can be easily extended to
support more generic behavior, e.g., by using Google Protocol Buffers9.

Operational governance scopes

When an operational governance process gets invoked on a governance scope, the afore-
mentioned invocation process remains the same, with the only difference that rtGovOps

9http://code.google.com/p/protobuf/

162

8.6. Evaluation & Prototype Implementation

performs all steps on a complete governance scope in parallel instead on an individual
device. To this end, the ScopeCoordinator enables dynamic resolution of the governance
scopes.

There are several ways how a governance scope can be defined. For example, an
operations manager can manually assign a set of resources to a scope, such as all vehicles
belonging to a golf course, or they can be dynamically determined depending on runtime
features by querying governance capabilities to obtain dynamic properties such as current
configuration model. To bootstrap defining the governance scopes, the ScopeCoordinator,
defines a global governance scope that is usually associated with all the IoT Cloud
resources administered by a stakeholder at the given time. Governance scope specifications
are implemented as composite predicates referencing device meta information and profile
attributes, The predicates are applied to the global scope, filtering out all resources
that do not match the provided attribute conditions. The ScopeCoordinator uses the
resulting set of resources to initiate capability invocation with the CapabilityInvoker. The
ScopeCoordinator is also responsible to provide support for gathering results delivered by
the invoked capabilities. This is needed since the scopes are resolved in parallel and the
results are asynchronously delivered by the IoT devices.

8.6 Evaluation & Prototype Implementation

8.6.1 Prototype implementation

In the current prototype, the rtGovOps Governance controller microservices are imple-
mented in Java and Scala programming languages. The rtGovOps agents are based
on lightweight httpd server and are implemented as Linux shell scripts. The complete
source code and supplement materials providing more details about current rtGovOps
implementation are publicly available in Git Hub10.

8.6.2 Experiments setup

In order to evaluate how our rtGovOps framework behaves in a large-scale setup (hundreds
of gateways), we created a virtualized IoT Cloud testbed based on CoreOS11. In our
testbed we use Docker containers to virtualize and mimic physical gateways in the cloud.
These containers are based on a snapshot of a real-world gateway, developed by our
industry partners. The Docker base image is publicly available in Docker Hub under
dsgtuwien/govops-box12.

For the subsequent experiments we deployed a CoreOS cluster on our local OpenStack
cloud. The cluster consists of 4 CoreOS 444.4.0 VMs (with 4 VCPUs and 7GB of RAM),
each running approximately 200 Docker containers. Our rtGovOps agents are preinstalled
in the containers. The rtGovOps Governance controller and capabilities repository are

10http://github.com/tuwiendsg/GovOps
11http://coreos.com/
12https://registry.hub.docker.com/u/dsgtuwien/govops-box/

163

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

deployed on 3 Ubuntu 14.04 VMs (with 2VCPUs and 3GB of RAM). The operational
governance processes are executing on a local machine (with Intel Core i7 and 8GB of
RAM).

8.6.3 Governing FMS at runtime

We first show how our rtGovOps framework is used to support performing operational
governance processes on a real-world FMS application for monitoring vehicles (e.g.,
location and engine status) on a golf course (Section 8.1). The application consists of
several services. On the one side, there is a light-weight service running in the vehicle
gateways that interfaces with vehicle sensors via the CAN protocol, and feeds sensory data
to the cloud. On the cloud-side of the FMS application, there are several services that,
among other things, perform analytics on the sensory data and offer data visualization
support. In our example implementation of this FMS application, the gateway service is
implemented as a software-defined IoT unit that among other things provides an API and
mechanisms to dynamically change the cloud communication protocol without stopping
the service.

The FMS application polls diagnostic data from vehicles with CoAP. However, in
case of an emergency, a golf course manager needs to increase the update rate and
switch to MQTT in order to handle emergency updates in (near) real-time. This can
be easily specified with an operational governance process that contains the following
steps: change communication protocol to MQTT, list vehicle engine and location data
points and set data points update rate, e.g, to 5 seconds. These steps are also depicted
in Figure 8.7 (top). The golf course manager relies on rtGovOps governance capabilities
to realize individual process steps and rtGovOps mechanisms (Section 8.5) to execute
the operational governance process.

Figure 8.8 shows the bandwidth consumption of the FMS application that monitors 50
vehicles over a period of time. We notice two distinct operation modes: normal operation
and operation in case of an emergency (emergency operation). Most notable are the
two transitions: first, from normal to emergency operation and second, returning from
emergency to normal operation. These transitions are described with the aforementioned
operational governance process that is executed by the rtGovOps framework. The
significant increase in bandwidth consumption happens during the execution of the
operational governance process, because it changes the communication protocol from
polling the vehicles approximately every minute with CoAP, to pushing the updates
every 5 seconds with MQTT.

Typically, when performing processes such as the transition from normal to emergency
operation without the rtGovOps framework, golf course managers (or generally operations
managers) need to directly interact with vehicle gateways. This usually involves long
and tedious tasks such as manually logging into gateways, dealing with device specific
configurations or even an on-site presence. Therefore, realizing even basic governance
processes, such as the one we presented above, involves performing many manual and error

164

8.6. Evaluation & Prototype Implementation

0

10

20

30

40

50

60

0 100 200 300 400 500 600

Ba
nd

w
id
th
 u
sa
ge
 [k
bp

s]

Time [s]

A

normal
operation

normal
operationemergency operation

GovOps
process

GovOps
process

Figure 8.8: Example execution of operational governance process in the FMS.

prone tasks, usually resulting in a significant increases in operations costs. Additionally,
in order to be able to have a timely realization of governance processes and consistent
implementation of governance strategies across the system, very large operations and
support teams are required. This is mainly due to the large scale of the FMS system,
but also due to geographical distribution of the governed IoT resources, i.e., vehicles.

Besides the increased efficiency, the main advantage that rtGovOps offers to operations
managers is reflected in the flexibility of performing operational governance processes
at runtime. For example, in Figure 8.8 the execution of the operational governance
process took around 2 minutes. In our framework this is, however, purely a matter of
operational governance process configuration (naturally with upper limits as we show
in the next section). This means, the operational governance process can be easily
customized to execute the protocol transition “eagerly”, in the sense to force the change
as soon as possible, even within seconds, or “lazy”, to roll-out the change step-wise,
e.g., 10 vehicles at the time. The most important consequence is the opportunity to
effectively manage tradeoffs. For example, executing the process eagerly incurs higher
costs, due to additional networking and computation consumption, but it is needed in
most emergency situations. Conversely, executing the process in a lazy manner can be
desirable for non-emergency situations, since operations managers can prevent possible
errors to affect the whole system.

Figure 8.8 also shows that rtGovOps introduces a slight communication overhead.
This is observed in the two peaks at the end of the first process execution, when the
framework performs the final checks that the process completed successfully and also when
the second process gets triggered, i.e., when the capabilities get invoked on the vehicles.
However, in our experiments this overhead was small enough not to be statistically
significant. An additional performance-related concern of using rtGovOps is that network
latency can slow down the execution of the operational governance process. However,
since rtGovOps follows the microservices architecture style, it is possible to deploy relevant

165

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600 700 800

Ti
m

e
[m

s]

Governance Scope Size [No. of gateways]

Provisioning Capability [~MB]
Provisioning Capability [~KB]
nlog(n)+c

0
2000
4000
6000
8000

10000
12000
14000
16000

100 200 300 400 500 600 700 800

Ti
m

e
[m

s]

Governance Scope Size [No. of gateways]
Building Checking Mapping Invocation Avg. invocation

0

2

4

6

8

10

12

0 200 400 600 800

Ti
m

e
[m

in
]

Governance Scope Size [No. of gateways]

Figure 8.9: Capabilities first invocation.

services (API- and DeploymentManager) on Cloudlets [129] near the vehicles, e.g., on
golf courses, where they can utilize local wireless networks.

8.6.4 Experiments results

To demonstrate the feasibility of using rtGovOps to facilitate operational governance
processes in large-scale software-defined IoT Cloud systems, we evaluate its performance
to govern approximately 800 vehicle gateways that are simulated in the previously
described test-bed. In our experiments, we mainly focus on showing the scalability of
the two main mechanisms of the rtGovOps framework: (i) capability invocation and
(ii) automated capability provisioning. We also consider the performance of capability
checking and governance scope resolution. The reason why we put an emphasis on the
scalability of our framework is that it is one of the key factors to enable consistent
implementation of governance objectives across a large-scale systems. For example, if
the execution of an operational governance process were to scale exponentially with the
size of the resources pool, theoretically it would take infinitely long to have a consistent
enforcement of the governance objectives in the whole system, with sufficiently large
resource pool. The results of the experiments are averaged results of 30 repetitions and
we have experimented with 5 different capabilities that have different properties related
to their size and computational overhead.

Figure 8.9 shows the execution time of the first invocation of a capability (stacked
bar) and an average invocation time of capability execution (plain bar). We notice
that the first invocation took approximately between 10 and 15 seconds and average
invocation varied between 4 and 6 seconds depending on the scope size (measured in the
number of gateways). The main reason for such a noticeable difference is the invocation
caching performed by rtGovOps. This means that most of the steps, e.g., building

166

8.6. Evaluation & Prototype Implementation

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800

Ti
m

e
[m

s]

Governance Scope Size [No. of gateways]

Avg. Invocation
Capability Checking
Scope Resolution
nlog(n)+c

Figure 8.10: Average invocation time of capabilities on a governance scope.

capability image and building the mapping model are only performed when a capability
is invoked for the first time, since in the subsequent invocations the capability is already
in the gateways and the mapping can be done in cache. In Figure 8.10, we present
the average execution time of a capability (as it is observed by an invoking operational
governance process on the locale machine), average execution of capability checking
mechanism and governance scope resolution. As a reference, the diagram also shows a
plot of a nlog(n) + c function. We can see that the mechanisms scale within O(nlog(n))
for relatively large governance scopes (up to 800 gateways), which can be considered a
satisfactory result. We also notice that computational overheads of the capabilities have
no statistically significant impact on the results, since they are distributed among the
underlying gateways. Finally, it is interesting to notice that the scope resolution time
actually decreases with increasing scope size. The reason for this is that in the current
implementation of rtGovOps, scope resolution always starts with the global governance
scope and applies filters (lambda expressions) on it. After some time Java JIT “kicks-in”
and optimizes filters execution, thus reducing the overall scope resolution time.

In Figure 8.11, we show the general execution times of the rtGovOps capability
provisioning mechanism (push-based deployment strategy) for two different capabilities.
The first one has a size order of magnitude in MB and second capability size is measured in
KB. There are several important things to notice here. First, the capability provisioning
also scales similarly to O(nlog(n)). Second, after the governance scope size reaches 400
gateways there is a drop in the capability provisioning time. The reason for this is that
the rtGovOps load balancer spins-up additional instances of the DeploymentManger and
ImageBuilder, naturally reducing provisioning time for subsequent requests. Finally, the
provisioning mechanism behaves in a similar fashion for both capabilities. The reason for
this is that all gateways are in the same network, what can be seen as an equivalent to

167

8. GovOps: A Methodology and a Runtime Framework for Governance in
Large-scale IoT Cloud Systems

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600 700 800

Ti
m

e
[m

s]

Governance Scope Size [No. of gateways]

Provisioning Capability [~MB]
Provisioning Capability [~KB]
nlog(n)+c

0
2000
4000
6000
8000

10000
12000
14000
16000

100 200 300 400 500 600 700 800

Ti
m

e
[m

s]

Governance Scope Size [No. of gateways]
Building Checking Mapping Invocation Avg. invocation

0

2

4

6

8

10

12

0 200 400 600 800

Ti
m

e
[m

in
]

Governance Scope Size [No. of gateways]

Figure 8.11: Average capability provisioning duration (push-based strategy).

vehicles deployed on one golf course.

8.6.5 Discussion and lessons learned

The observations and results of our experiments show that rtGovOps offers advantages in
terms of realizing operational governance processes with greater flexibility, and also makes
such processes easily repeatable, traceable and auditable, which is crucial for successful
implementation of governance strategies. Generally, by adopting the notion of governance
capabilities and by utilizing resource agents, rtGovOps allows for operational governance
processes to be specified with finer granularity (R3), but also give a degree of autonomy
(R5) to the managed IoT Cloud resources. Therefore, by selecting suitable governance
capabilities, operations managers can precisely define desired states and runtime behavior
of software-defined IoT Cloud systems. Further, since the capabilities are executed locally
in IoT Cloud resources (e.g., in the gateways), our framework enables better utilization
of the “edge of infrastructure” and allows for local error handling, thus increasing system
availability and scalability. Further, the main advantage of approaching provisioning
and management of governance capabilities in the described manner is that operation
managers do not have to worry about geographically-distributed IoT Cloud infrastructure
nor deal with individual devices, e.g., key management or logging in. They only need to
declare (R4) which capabilities are required in the operational governance process and
specify a governance scope. The rtGovOps framework takes care of the rest, effectively
giving a logically centralized view (R1) on the management of all governance capabilities.
Further, by automating (R2) the capability provisioning, rtGovOps enables installing,
configuring, deploying, and invoking the governance capabilities in a scalable and easily
repeatable manner, thus reducing errors, time, and eventually costs of operational
governance.

168

8.7. Conclusion

It should be also noted that there is a number of technical limitations of and pos-
sible optimizations that can be introduced in the current prototype of the rtGovOps
framework. As we have already mentioned, rtGovOps currently offers limited support for
specifying provisioning directives. Additionally, while experimenting with different types
of capabilities, we noticed that in many cases a better support to deal with streaming
capabilities would be useful. Regarding possible optimizations, in the future we plan
to introduce support for automatic composition of capabilities on the device level, e.g.,
similar to Unix piping. This should reduce the communication overhead of rtGovOps
and improve resource utilization in general. In spite of the current limitations, the initial
results are promising, in the sense that rtGovOps increases flexibility and enables scalable
execution of operational governance processes in software-defined IoT Cloud systems.

8.7 Conclusion
In this chapter, we introduced the GovOps approach to runtime governance of IoT Cloud
systems. We presented the GovOps reference model that defines suitable concepts and a
flexible process to design IoT Cloud governance strategies. We introduced the GovOps
manager, a dedicated stakeholder responsible to determine suitable tradeoffs between
satisfying governance objectives and IoT Cloud system capabilities, and ensure early
integration of these objectives with operations processes, by continuously refining how
the high-level objectives are articulated through operations processes.

Moreover, this chapter introduced the rtGovOps framework that serves as GovOps
reference implementation, providing support for designing and executing operational
governance processes. We presented rtGovOps’ main runtime mechanisms and enabling
techniques that support operations managers to handle two main tasks: (i) perform
dynamic, on-demand provisioning of governance capabilities and (ii) remotely invoke such
capabilities in IoT Cloud remotely, via dynamic APIs. We demonstrated, on a real-world
case study, the feasibility of GovOps methodology and framework to facilitate execution
of operational governance processes in large-scale IoT Cloud systems.

The initial results are promising in several aspects. We showed that the rtGovOps
framework enables operational governance processes to be executed in a scalable manner
across relatively large IoT Cloud resource pools. Additionally, we discussed how rtGovOps
enables flexible execution of operational governance processes by automating the execution
of such processes to a large extent, offering finer-grained control over IoT Cloud resources
and providing a logically centralized interaction with IoT Cloud resource pools. Finally,
we discussed how GovOps allows for IoT Cloud governance processes to be realized in
practice without worrying about the complexity and scale of the underlying IoT Cloud
and diversities of various legal and compliance issues.

169

CHAPTER 9
Governing Elastic IoT Cloud
Systems under Uncertainty

Emerging elastic IoT systems extend contemporary cloud systems beyond the data centers
to include a variety of edge IoT devices, such as sensors and sensory gateways [143]. On
the other hand, these systems utilize cloud resources, to enhance resource-constrained
IoT devices, but also to enable elastic delivery and consumption of the vast IoT resources
through the cloud computing on-demand pay-per-use model. This has proliferated unified
IoT cloud infrastructures which comprise large pools of IoT and cloud resources ranging
from large data centers and the edge of the network (cf. Chapter 7). In such systems,
governance strategies are a useful mechanism to address issues related to risk mitigation,
compliance and legal requirements, as we have discussed in Chapter 8. However, due
to numerous uncertainties inherently present in the IoT Cloud systems, realizing these
strategies poses a plethora of challenges. Such uncertainties are mainly caused by
the novel interactions of IoT elements, network elements, cloud resources and humans.
For example, uncertainties related to state monitoring, data delivery and performance
variability (e.g., due to probe failures, network issues or human error) often lead to
imperfect data about the infrastructure. As a result, infrastructural information needed
by operational governance processes might be incomplete or inaccurate, thus hindering
the operational tasks of both automated management systems and the end users. This
serves as the main motivation for extending our GovOps approach (cf. Chapter 8) to
include uncertainty considerations in operational governance processes from early design
stages.

In this chapter we introduce the U-GovOps framework for governance of elastic IoT
cloud systems under uncertainty. The U-GovOps conceptually extends the GovOps ap-
proach and technically refines the rtGovOps framework, in which we have tacitly assumed
perfect information (e.g., about IoT cloud resource states), and reliable and deterministic
behavior of the IoT cloud infrastructure. Unfortunately, due to the infrastructure uncer-

171

9. Governing Elastic IoT Cloud Systems under Uncertainty

tainties, such assumptions are unrealistic and difficult to meet in practice, thus putting
a lot of burden on the developers and operations managers (users) to deal with the
uncertainties in ad-hoc fashion. For this purpose, the U-GovOps framework introduces
novel techniques to facilitate developing and executing the governance strategies under
presence of the uncertainty. The main contributions of the framework presented in
this chapter include: i) A declarative policy language for developing uncertainty- and
elasticity-aware governance strategies for IoT cloud systems. ii) Runtime mechanisms
and uncertainty mitigation techniques, which support execution of such strategies under
uncertainty.

The remainder of the chapter is structured as follows: Section 9.1 presents motivation
and research challenges; Section 9.2 outlines the design of the U-GovOps framework; In
Section 9.3, we present U-GovOps declarative policy language; Section 9.4 introduces
U-GovOps runtime mechanisms for uncertainties mitigation; Section 9.5 describes the
current prototype implementation and presents the results of our experiments; Finally,
Section 9.6 concludes the chapter.

9.1 Motivation & Research Challenges

9.1.1 Scenario

As we discussed in Chapter 2, generally, the BMS comprises various applications and
subsystems responsible to monitor and control different building assets such as HVAC,
lightning, elevators and plumbing facilities, as well as to handle fault events and alarms
(e.g, fire or gas leakage). For our discussion in this chapter, the most relevant application
of this system is Predictive Maintenance Application (PMA)1. The PMA runs atop a
complex IoT cloud infrastructure that includes (i) various edge devices, such as, (software
and hardware) sensors, actuators and gateways, (ii) network elements, and (iii) cloud
services, e.g., for complex event processing, NoSQL data storage, and streaming data
analysis. All of these infrastructural elements need to be governed throughout their entire
lifecycle. As shown in Chapter 8 this can be aceived by designing suitable governance
strategies. However, numerous uncertainties interfere with the execution of such strategies,
making the implementation of even rudimentary governance strategies a challenging task.

To exemplify uncertainties in such governance strategies, let us consider an operational
governance process in the PMA. Typically, the PMA polls diagnostic data from equipment,
such as chiller plants (e.g., with CoAP), but for optimization purposes (mainly network
consumption) not all available sensory data are polled from the cloud. However, in
situations such as an emergency or multiple devices failure, the PMA needs to change
its operation to be in accordance with company’s legal regulatory compliance, e.g.,
to handle status updates in (near) real time. To satisfy such governance objective a
maintenance manager could create a governance strategy which “activates" all available
sensors, changes the communication protocol to push-based, e.g., MQTT, and sets the

1We provided an implementation of PMA at https://github.com/tuwiendsg/DaaSM2M/wiki/

172

https://github.com/tuwiendsg/DaaSM2M/wiki/

9.1. Motivation & Research Challenges

sensors update rate to maximum. Finally, after such situations have been dealt with, the
PMA should return to its normal operation mode. In such situations, we need to rely on
up-to-date and highly accurate infrastructural state information and stable performance
of control actions of various resources to adjust the IoT cloud systems. However, in
real world it is hard, if not impossible to achieve them. Therefore, to deal with such
situations, on the one hand, we need to capture different types of uncertainties related
to state information and performance variability of underlying resources to allow for
strategies specified for different uncertainties. On the other hand, we need to develop
runtime mechanisms to support these governance strategies under such uncertainties.

9.1.2 Research Challenges

Capturing infrastructure-level uncertainties in IoT cloud systems

Inspired by the traditional fault, error, failure classification [10] and the general belief
model [122], in our work we have identified different uncertainties for IoT cloud infras-
tructure. To systematically document uncertainties, we have developed a taxonomy and
use this taxonomy to classify the uncertainties and analyze their effects on the typical
governance strategies2. Our taxonomy mainly focuses on infrastructure uncertainties
that originate at runtime. Other uncertainties such as design- or requirements-level
uncertainties [125] are currently not considered. Figure 9.1 gives a high-level overview
of the taxonomy and its main concepts (uncertainty classes) which are used to classify
the infrastructure-level uncertainties: i) Temporal manifestation reflects the duration
of the uncertain (or failure) state caused by an uncertainty. ii) Nonfunctional dimen-
sionality captures affected nonfunctional properties of the infrastructure. For example,
the uncertainties can affect well-known infrastructure’s dependability [10] , quality of
sensory data, or regulatory compliance [104]. iii) Cause of uncertainty can be a natural
phenomenon, a human action or a technological phenomenon (anything caused by an in-
frastructure phenomenon, which is beyond user’s control). iv) Effect propagation denotes

Infrastructure
uncertainties

Nonfunc.
dimensionality

Functional
dimension.

Execution env.

Storage
Data delivery

Actuation

Locality Virtual infrastr.
Hardware

Temporal
manifestation

Persistent
Recurring
Sporadic Effect

propagation

Application

Physical env.

External

Observation
time Deployment

time

Runtime

Cause
Human action

Natural
phenomenon

Quality
Compliance

Dependability

Technological

Figure 9.1: Taxonomy for IoT cloud infrastructure uncertainties.

2The description of the taxonomy is out of the scope of this chapter. A detailed description of the
uncertainty taxonomy is provided as supplement material in Appendix A.

173

9. Governing Elastic IoT Cloud Systems under Uncertainty

whether an uncertainty affects the application or the physical environment. v) Locality
describes where an uncertainty occurs. We differentiate between uncertainties present in
hardware, platform (virtual infrastructure) or external to infrastructure.vi) Functional
dimensionality denotes the category of infrastructure’s functionality that is affected by an
uncertainty, e.g., execution environment, actuation, data delivery and storage facilities.

In order to classify an uncertainty, the users describe its general properties by assigning
it to the uncertainty classes shown in Figure 9.1. For example, in our taxonomy, a freezing
of sensors could be classified as affecting the dependability of the data delivery facilities,
caused by a natural phenomenon, external to infrastructure that sporadically manifests
itself during application runtime. When classifying uncertainties, we notice that not all
combinations of the uncertainty classes are allowed. For example, it makes no sense to
have a natural phenomenon uncertainty which occurs at the virtual infrastructure level
(in software). Based on this observation we identified 11 elementary uncertainty families.
The introduced taxonomy enables the users (e.g., maintenance manager) to capture
their knowledge about potential uncertainties, in a systematic and structured way, based
on the set of general, well-defined concepts. Besides the common elements used in the
governance strategies, e.g., runtime monitoring information, enabling the users to embed
such knowledge in the governance strategies is crucial for development of the strategies that
can account for the runtime uncertainties. For our following discussion, we focus on two
most relevant uncertainty families, which affect the tasks performed in typical governance
strategies namely DataQualityUncertainties and ActuationDependabilityUncertainties.
We elaborate the main governance challenges caused by these uncertainties.

Main challenges of IoT cloud governance under uncertainty

One of the main tasks of governance strategies is to identify a governance scope. As
discussed in Chapter 8, governance scopes represent a set of IoT cloud resources that
should be governed by such strategies. The resources are selected and assigned to the
governance scopes based on their properties, i.e, the governance scopes are specified as
composite predicates referencing the resource attributes. Such attributes mainly reference
resource’s meta data (mainly specified by humans) and resource’s profile data (mainly
based on sensory readings) that are used to compute the governance scopes. However, in
practice, the DataQualityUncertainties often lead to incomplete or missing data about
resources and their states in IoT cloud systems, such as null attribute values (e.g., due
to monitoring failures or human error). These quality of data problems make it very
challenging to determine the governance scopes. Currently, the users deal with such
imperfect information in an ad-hoc fashion, e.g., by writing complex queries or developing
sophisticated probabilistic models. This pollutes the governance logic with uncertainty
management, making the governance strategies difficult to maintain, less traceable and
significantly increasing the development effort.

Another key task performed by governance strategies is (remote) invocation of the
governance actuations (cf. Chapter 8), e.g., to increase sensors update rate, as well as
the elasticity actuations [33], e.g., to keep the cloud services’ response time within the

174

9.2. The U-GovOps framework

specified limits, when the sensors update rate is increased. Such actuations are often
subject to the ActuationDependabilityUncertainties, which degrade dependability of
the actuation facilities (e.g., due to network latency, device failure or race conditions),
manifesting itself often transparently to the users, as lost actuations, cascading failures or
resource over-consumption. This usually causes an inconsistent realization of governance
strategies or even renders them completely useless, thus causing breaches of regulations
or compliance.

9.2 The U-GovOps framework

9.2.1 Managing uncertainties in governance strategies

Altdough uncertainty is not limited to the absence of knowledge, is tightly related to the
lack thereof [148]. Further, it strongly depends on the task-at-hand and on the system
setup and environment [163]. When dealing with uncertainties, generally we are more
interested in the effects of such uncertainties than the actual uncertainties. In the previous
section we broadly discussed the main challenges, caused by the uncertainty, which affect
governance strategies, by causing different problems. Therefore, by categorizing the
uncertainties, analyzing their Effects and measuring the degree of sensitivity to such
uncertainties (in our taxonomy captured with Nonfunctional dimensionality), we can
formulate more precise statements such as: “An uncertainty X affects the application
dependability by causing resource over-consumption and potentially leads to a complete
functionality failure of actuation facilities". This allows for streamlining the uncertainty
management by enabling the users to employ general, well-defined knowledge concepts,
e.g., from software engineering or the domain of interest, to derive requirements, actions
and configuration models needed to define suitable mitigation strategies. The main
aim of our U-GovOps framework is to facilitate the runtime governance of elastic IoT
cloud systems under presence of uncertainty by incorporating such requirements and
configurations from the early stages of strategy design. To this end, U-GovOps supports
the users to design elasticity- and uncertainty-aware governance strategies.

While governance strategies are mainly used to address issues related to risk mitigation,
compliance and legal requirements, it is often useful to incorporate elasticity actuations
in the governance strategies to enable the users to also anticipate changes in resource
demand, costs and quality of the governed systems (encompassing both IoT and cloud
infrastructures). For example, by considering elasticity relationships [143], while designing
the elasticity-aware governance strategies, users can anticipate increases in resource
demand, e.g., since they know that some other governance actions increase the sensors’
update rate. They can utilize this knowledge, for instance to “warm up" VMs in order to
mitigate the uncertainties related to the actuation delays (of spinning up the VMs) when
scaling out related cloud services. However, due to an intrinsic “bootstrapping problem"
this only facilitates uncertainty management to a certain extent, since the mechanisms
underpinning the governance and elasticity actuations are also subject to uncertainty
(Section 9.1). For this reason the U-GovOps framework allows the users to incorporate

175

9. Governing Elastic IoT Cloud Systems under Uncertainty

uncertainty considerations in governance strategies, effectively raising the awareness
level of such strategies. To this end, U-GovOps defines a governance policy language
for developing uncertainty- and elasticity-aware governance policies (Section 9.3) and
provides a language runtime (Governance and Elasticity Controllers) that does most of
the “heavy lifting" to support executing governance policies, without explicitly worrying
about the infrastructure uncertainties.

9.2.2 U-GovOps architecture

The U-GovOps framework is distributed across the Clouds and IoT devices. In U-GovOps,
the GovernancePolicyProcessor (Figure 9.2) represents a central point of interaction with
the Governance Controller and the Elasticity Controller, i.e., it is responsible to interpret
the user-provided governance policies (strategies), described latter in Section 9.3 and
map them to the controllers API, exposed by the API Manager.

The Governance Controller comprises several microservices, the most important being
the GovernanceScopeCoordinator. It provides mechanisms to define and manage the
governance scopes, in order to determine which IoT cloud resources will be affected by a
governance strategy. It relies on the ProfileManager to dynamically build and manage
resource (e.g., device) profiles. This involves managing static device meta-information and
performing profiling actions in order to obtain runtime snapshots of current device states.
The Elasticity Controller is based on rSYBL [33] and it provides general mechanisms
to handle elasticity actuations specified in governance policies. Its main microservices
include: The ControlEngine, which implements the elasticity control algorithms, e.g.,

Governance
sstrategy

Operations
manager

What is on the
cloud

Sequence of actions
and conditions

Actuators
Sensors

Runtime
Container

Agents and
profilers

G
ov
er
na
nc
eP
ol
ic
y
Pr
oc
es
so
r

Ca
pa
bi
lit
yI
nv
ok
er

G
ov
er
na
nc
e

Sc
op

e
Co

or
di
na
to
rG
ov
.S
tr
at
eg
yP
ro
ce
ss
or

In
te
rn
a

G
ov
.M

od
el

SD gateway

SD gateway

Governance capabilities
repository

Governance
capabilities

Edge Device

Co
m
. I
nf
ra
st
ru
ct
ur
e

Device
Profiler

Elasticity
Agent

Governance
Agent

Ca
pa
bi
lit
y

...

Provisioning
Manager

Image
Builder

Dependency
Manager

Repository Connector

Profile
Manager Ca

pa
bi
lit
y

Governance controller

Elasticity controller

Co
nt
ro
l

En
gi
ne

Monitoring
Coordinator

Interaction
Service

Capability
Manager

ConstraintsEnforcer

AP
I M

an
ag
er

Figure 9.2: Overview of U-GovOps architecture.

176

9.3. A DSL for Developing Uncertainty- and Elasticity-aware Governance Strategies

greedy planning; The MonitoringCoordinator that is used to integrate infrastructure
monitoring frameworks such as Nagios or Ganglia and; The InteractionService, which
encapsulates higher-level control mechanism, e.g., exposed by an IaaS provider.

These controllers rely on the CapabilityInvoker to perform the actual invocations of
the underlying capabilities. i.e., perform actuations on the IoT cloud resources over the
network (denoted as two-way arrows in Figure 9.2). For this purpose the framework uses
the ElasticityAgent, the GovernanceAgent and the DeviceProfiler, which are responsible to
manage local governance and elasticity capabilities and to expose them to the controllers.
They are very light-weight components that run in all IoT cloud resources that are
managed by U-GovOps.

9.3 A DSL for Developing Uncertainty- and
Elasticity-aware Governance Strategies

9.3.1 U-GovOps declarative policy language

In order to facilitate governing IoT cloud systems under uncertainty, the U-GovOps
framework provides a declarative policy language for developing uncertainty- and elasticity-
aware governance policies. It is based on our previously developed SYBL [33] and its
main aim is to support developers and operations managers (users) to design such policies
on a higher-level of abstraction, without explicitly dealing with IoT cloud infrastructure
uncertainties. Two main tasks that users perform are identifying the governance scopes
and defining the governance and elasticity actuations, to be applied on such scopes
(Section 9.1). In our language, STRATEGY directive allows the specification of the
governance or elasticity actuations to be undertaken (e.g., set sensor update rate) or
desired behavior to be enforced (e.g., maximize throughput) when specific conditions are
met. Further, to declare the governance scopes, determining which resources should be
affected by such actuations, our language offers GOVERNANCE_SCOPE directive. Finally,
to support the users to articulate their knowledge about the uncertainties, namely to
raise the level of awareness in governance policies, the U-GovOps language provides
the CONSIDERING_UNCERTAINTY construct. It is mainly used to specify configuration
directives for determining the behavior of the governance scopes and governance or
elasticity actuations.

The full syntax of the U-GovOps language is described in Appendix B. Subsequently,
we describe the most important language concepts and supporting runtime mechanisms
in more detail, mainly focusing on: 1) Rough governance scopes and 2) Isolated
(governance and elasticity) actuations. In the remainder of the chapter we mostly focus
on describing our framework’s support for managing the uncertainties related to the
actuation dependability and incomplete and missing data about IoT cloud systems, which
were identified as most relevant for our work.

177

9. Governing Elastic IoT Cloud Systems under Uncertainty

Rough governance scopes

In order to support governance policy developers to deal with the uncertainties related to
missing and incomplete data (Section 9.1), the U-GovOps framework introduces a new
concept called rough governance scope. Generally, a rough governance scope represents
a formal approximation of a resource set, taking into account resources, which due to
uncertainty, cannot be positively (i.e. with absolute certainty) characterized as members of
the targeted governance scope. Rough governance scopes are modeled based on the rough
set theory, which unlike fuzzy sets or probabilistic models, has an advantage of providing
an objective formal approximation of membership relation [120]. Practically, this means
that even with no user involvement, U-GovOps can make an objective approximation of
resource assignments to governance scopes under data uncertainty.

Formally, a rough governance scope is defined as a tuple 〈GX, GX〉, where GX and
GX are traditional (crisp) sets that represent lower and upper approximation in the
rough governance scope, given the set of attributes G. The G-lower approximation is
the union of all equivalence classes (granules) G(x) that are a subset of the targeted
governance scope X: GX =

⋃
{G(x) | G(x) ⊆ X}. The G-upper approximation is the

union of all in G(x) which have non-empty intersection with the targeted governance
scope X: GX =

⋃
{G(x) | G(x) ∩X 6= ∅} [120]. Therefore, GX represents a positive

(or pessimistic) approximation and GX represents an optimistic approximation of the
targeted governance scope.

1 G:GOVERNANCE_SCOPE
2 query:= location=buildingX & type=JACE-545
3 CONSIDERING_UNCERTAINTY:
4 missing_data = "location<=’?’,type<=’*’" AND
5 selection_strategy = optimistic AND
6 use_cache = false !\DNumber!

Listing 9.1: Example governance scope.

Listing 9.1 shows an example governance scope defined with U-GovOps policy lan-
guage. In our language, a governance scope is specified as composite predicates referencing
device meta information and profile attributes within the query parameter. To specify
the behavior of governance scopes under data uncertainty users provide additional direc-
tives within the CONSIDERING_UNCERTAINTY construct. The selection_strategy
parameter can take values: optimistic, pessimistic or reduct. It instructs the framework
on how to treat the resources belonging to the boundary region (GX−GX), which due to
uncertainty (e.g., incomplete attribute set) cannot be positively characterized as members
of the governance scope. For example, selecting the optimistic strategy means that
U-GovOps will compute the governance scope based on the upper (GX) approximation.
This behavior might be desirable when a governance policy can tolerate false positives,
but it must not have any false negatives included in the governance scope. With this
knowledge the framework can compute an objective approximation of the governance
scope, even if the governed resources are indiscernible with the available attributes in

178

9.3. A DSL for Developing Uncertainty- and Elasticity-aware Governance Strategies

G. More details about the underlying mechanisms are provided in Section 9.4. This
is sufficient to address the uncertainties related to the completeness of the data (e.g.,
available resource attributes).

However, to be able to handle the missing data, the governance scope membership
relation must be refined with a subjective extension. To this end U-GovOps utilizes the
concepts of characteristic relations and characteristic sets [61]. Essentially, this enables
the users to specify how the missing data should be interpreted. The missing_data
directive enables the users to generally define interpretation of the missing attribute
values as “do not know" [137] or “do not care" [84], depending on the task-at-hand, since
there is no universally best interpretation of the missing attribute values [61]. The former
concept (denoted with ‘?’) is used to indicate the lost data, e.g., missing sensory readings
for an attribute. The latter (denoted with ‘∗’ or ‘−’) indicates the unavailable data, e.g.,
attributes initially deemed irrelevant by a human, thus potentially not included in all
resource descriptions.

Isolated actuations

As mentioned earlier, governance and elasticity actuations are declared via the STRATEGY
construct. It encapsulates actuations such as “change communication protocol" or "spin
up a VM". However, the underlying capabilities (which implement the actuation logic)
are mainly running at the edge of the infrastructure, e.g., inside IoT gateways, and are
invoked remotely over the network. Therefore, this often leads to failures and functionality
degradations (transparent to users) as we discussed in Section 9.1.

In order to support the users in managing such uncertainties, U-GovOps offers two lev-
els of actuation isolation – per governance policy and per capability invocation. To instruct
U-GovOps to isolate a governance policy users can specify run_in_isolation = true
(Listing 9.2). This effectively tells the framework to create a separate resource pool (e.g.,
a thread pool) for the policy and perform all actuations within that resource pool. More
details about the design of this mechanism are given in Section 9.4.

To provide finer-grained control for the isolated policies and actuations, the U-GovOps
framework exposes additional configuration parameters. For example, the keep_alive
parameter enables users to specify the maximal time slot that should be allocated to

1 S:STRATEGY CASE Fulfilled(CND1):
2 setUpdateRate(5s) FOR G //see Listing 1
3 CONSIDERING_UNCERTAINTY:
4 run_in_isolation = true AND
5 keep_alive = 5min AND
6 degree_parallelism = 200 AND
7 tolerate_fault_percentage = 20% AND
8 fallback_count = 2 AND
9 time_to_next_fallback = 500ms

Listing 9.2: Example of an isolated actuation with uncertainty considerations.

179

9. Governing Elastic IoT Cloud Systems under Uncertainty

1 C:CONSTRAINT responseTime<150ms WHEN nrOfUsers<900
2 CONSIDERING_UNCERTAINTY:decision_confidence >=20%
3 S1:STRATEGY CASE Violated(C):scaleOut()
4 S2:STRATEGY CASE Fulfilled(C):maximize(throughput)
5 CONSIDERING_UNCERTAINTY:
6 considering_strategies = StrategyX

Listing 9.3: Example elasticity actuations with uncertainty considerations.

a governance policy to complete. The tolerate_fault_percentage is a similar
concept, designed to temporarily stop the policy execution in case the percentage of failed
actuations exceeds a pre-defined threshold. These two concepts are based on the circuit
breaker pattern3, which are especially useful for handling blocked or zombie policies and
reducing the resources tied up in operations which are likely to fail due to uncertainties.
Further, the degree_parallelism tells U-GovOps how many actuations should be
performed in parallel. This is useful in capturing the user’s knowledge about the
infrastructure’s scale and dynamicity in order to optimize resource consumption. For
example, if a governance policy is meant to govern all active gateways in a building (e.g.,
≈ 300 at the time) it makes little sense to set the degree of parallelism to 1000. Finally,
the fallback_count and time_to_next_fallback parameters are used to handle
uncertainty at the level of a single actuation. Its main purpose is to support graceful
handling of network latencies and timeouts and to guaranty fail-fast behavior (with quick
recoveries) and graceful functionality degradation (with fallback logic).

Listing 9.3 gives an example of using elasticity actuations in governance policies.
It first defines a CONSTRAINT directive, which describes desired conditions of keeping
the response time below 150 ms if the number of current users is below 900. Lines
3 and 4 in Listing 9.3 tell U-GovOps to fire appropriate elasticity actuations based
on the status of the constraint. However, the elasticity actuations are also subject
to uncertainty, our language also allows for uncertainty configuration directives for
elasticity controls. for example, such uncertainties originate due to hardware or platform
glitches (e.g., unsuccessful network interface attachment) or infrastructure overload
(e.g., collocation issues on physical servers) leading to unexpected behavior such as
actuation delays. To account for such issues, U-GovOps allows users to specify their
knowledge about the elasticity relationships, such as that increasing sensors update rate
will most probably require scaling out the cloud services. The elasticity relationships
can be specified via considering_strategies parameter, effectively enabling the
framework to anticipate the aforementioned situations and for instance preemptively spin
up required VMs. Naturally, all the uncertainty directives shown in Listing 9.2 are also
valid in this context.

3 http://martinfowler.com/bliki/CircuitBreaker.html

180

9.4. U-GovOps Runtime Mechanisms for Mitigating Governance Uncertainties

9.4 U-GovOps Runtime Mechanisms for Mitigating
Governance Uncertainties

Resolving rough governance scopes at runtime

When a request to compute a rough governance scope (Listing 9.1) arrives in U-GovOps
runtime, the framework performs the following general steps: i) It first evaluates the user-
provided query and performs the resource selection with the currently available data. If
no uncertainty parameter is specified or use_cache=true and there is a precomputed
governance scope for the query, the U-GovOps framework immediately returns the
obtained resource set. Otherwise, it proceeds with the next steps. ii) Parametrize the
missing data. iii) Calculate Similarity Classes [137]. iv) Calculate characteristic sets.
v) Return a governance scope approximation.

Algorithm 9.1: Computing characteristic sets.
input : res : Governed resource, GS : Global scope, G : Attribute list
result : CS : Characteristic set for the res.

1 CS ← GS
2 forall the attr in G do
3 switch attr do
4 case ′?′ = res.attr
5 CS ← GS
6 case ′∗′ = res.attr
7 foreach val ∈ AttrDomain(attr) do CS ← CS ∪ SimilarityClass(attr, val)
8 case ′−′ = res.attr
9 V ← {r|r ∈ GS, isDefined(r, attr), r.d = res.d}

10 if V 6= ∅ then
11 foreach r ∈ V do
12 CS ← CS ∪ SimilarityClass(attr, r.attr)
13 end
14 else CS ← GS

15 otherwise /*attr is defined (not missing)*/
16 CS ← CS ∩ SimilarityClass(attr, res.attr)
17 end
18 endsw
19 end

In order to parametrize the missing data the U-GovOps framework first tries the
assignments from missing_data directive. The permissible values to assign to the missing
attributes include ‘?’, ‘∗’ and ‘−’. The ‘?’ is used to denote that the attribute value
might be lost and ‘∗’ or ‘−’ mean that the user suspects that the attribute values were
unavailable in the first place. If no user-provided parameter exists for an attribute,
U-GovOps will associate it with the ‘?’ by default. Although straightforward, this process
has a significant impact on the framework’s decisions how to compute the the governance
scope. For example, assigning the ‘?’ to a device’s attribute instructs U-GovOps not
to include that device in any Similarity Classes for such attribute. Further, the ‘∗’
tells U-GovOps that the original values were irrelevant, thus can be considered as any

181

9. Governing Elastic IoT Cloud Systems under Uncertainty

value consistent with that attribute. Finally, the ‘−’ tells the framework that these
missing values can be considered as any value consistent with that concept, as discussed
in [61, 137, 84].

To calculate the characteristic set for a resource, e.g., a device, the U-GovOps
framework performs the calculation as shown in Algorithm 9.1. The intuition behind the
algorithm is to enable determining similar resources, under attributes G with missing
information, by considering problem-dependent uncertainty parametrization. Please
note that the shown algorithm is meant to demonstrate the main calculation steps
and it is not necessarily optimized for performance. Finally, based on the specified
selection_strategy the U-GovOps returns a governance scope. For example, for
optimistic selection strategy the governance scope, to be returned, is calculated as upper
approximation of the targeted scope X with: GX =

⋃
{CSG(r) | r ∈ X}, where CS is a

characteristic set for a resource r and G is the specified attribute set.

Actuating under uncertainty

Figure 9.3 outlines the most important steps performed by U-GovOps to support the
isolated actuations (we omit loops, caching, error handling, etc., for readability purposes.).
This mechanism is triggered when a user submits a policy (e.g., as shown in Listing 9.2)
to U-GovOps for execution. A user only observes the invocation calls and the returned
results (shown hatched in Figure 9.3). The other steps are performed by the framework,
transparent to the users.

Initially, the U-GovOps framework resolves the rough governance scope and creates
a policy context, which stores the uncertainty parameters (supplied by the user), the
computed governance scope and the policy invocations cache. The subsequent steps are
mainly determined, by the user-provided uncertainty configuration directives (Listing 9.2).
If the run_in_isolation is set to true, U-GovOps isolates the policy by allocating a
dedicated resource pool for it. In the current prototype this is realized by instantiating
a dedicated thread pool (per policy) and performing all policy actuations (on separate
threads) within that thread pool. However, other concepts such as Actor Model could be
used instead. In case a policy should not be executed in isolation, individual actuations
will still remain isolated, but they will share the same global resource pool.

The Policy Monitor (Figure 9.3) implements the circuit breaker and continuously
monitors the threads and the thread pools (policies) for the aforementioned conditions such
as the permissible fault percentage and keep alive timeouts. Currently this is implemented
based on the Netflix OSS Hystrix, since U-GovOps uses HTTP as the underlying protocol
for Remote Procedure Calls. Also here exist alternatives such as Twitter Finagle or
Google gRPC. If the constraints are violated, the Policy Monitor trips the circuit, denying
the further resources to that policy and temporally putting its execution on hold or
interrupting its execution if keep alive expired. Generally, this or an actuation failure will
trigger the execution of the fallback logic (if fallback_count>0). Currently, the
U-GovOps framework only provides a rudimentary support for specifying the fallback

182

9.5. Evaluation

Actuation
invocation request

Resolve rough
governance scope

Circuit open?
Policy
context
exists?

Create policy
contextHolds uncertainty

parameters and cache

Perform actuationCreate dedicated
policy thread pool

Run in
isolation?

no

yes

 Policy monitor
(e.g., keep alive and faults %)

trip circuit

no

Fallback
count > 0

Execute fallback logic
Collect and return

results

Degree
parallel.
reached?

time before callback expired;
terminate actuation;

no

yes
yes

Is failure?yes

no

 Legend:
 exec. flow
 interrupt

no

Figure 9.3: Execution flow for isolated actuations.

logic, by retrying the normal flow or returning a generic error if everything else fails.
In the future we plan to address this and allow injecting custom fallbacks. Finally,
U-GovOps collects the actuation results (if any) and returns them to the calling policy.
through the utilization of Futures and Promise pipelining, which enable asynchronous
result processing with minimal latency.

9.5 Evaluation

In this section, we present the preliminary results of our experiments. Our experiments
comprise two general parts. First, we perform a functional evaluation of U-GovOps’s
language support for implementing uncertainty- and elasticity-aware governance policies,
based on our real-life use case (Section 9.1). Second, we evaluate U-GovOps’s main
runtime mechanisms for mitigating runtime infrastructure uncertainties.

9.5.1 Experiments setup

In order to evaluate how our framework behaves under uncertainty, we created a testbed
for virtualized IoT cloud systems using CoreOS. We used Docker containers to virtualize
and mimic physical gateways in the cloud. These containers are based on a snapshot of
a real-world, proprietary IoT gateway. The Docker base image is publicly available in
Docker Hub under dsgtuwien/govops-box.

For the subsequent experiments we deployed the testbed on our local OpenStack
cloud, running approximately 1000 Docker containers (simulating the gateways/nodes).

183

9. Governing Elastic IoT Cloud Systems under Uncertainty

Each of the containers “hosts" different virtual sensors (e.g., location) and are associated
with different meta data (e.g., owner). These sensors replay the prerecorded real-life
data, obtained in our case study. Since the main aim is to govern the infrastructure
services and resources, we only consider the infrastructure state data relevant for the
governance policies and not the data used by the business logic cloud services (although
these might overlap). The U-GovOps controllers and the demo application (Section 9.1)
are deployed separately, in the same cloud on 4 Ubuntu 14.04 VMs (with 2VCPUs and
3GB of RAM) and used to execute our governance policies. Finally, to simulate the
uncertainties, i.e., the missing or incomplete data (about the infrastructure states) and
actuation uncertainties, we developed three mechanisms (based on Dell Blockade4), which
perform random fault injections: (i) killing of the containers, (ii) dropping of data packets
and, (iii) slowing down the network.

9.5.2 Example governance policy implementation

We first show how U-GovOps language is used to develop the real-life governance policy
for the PMA application, presented in our case study (Section 9.1). Listing 9.4 shows the
complete source code of the governance policy. Since it mostly uses the familiar language
concepts, presented earlier in the chapter, we refrain from explaining the individual steps
and instead focus on the most important features of our language.

We notice that a user utilizes intuitive, high-level abstractions and configuration
directives to declare what needs to be done instead of specifying how to do it (e.g.,
Listing 9.4, lines 4-7). For example, a user does not directly invoke the individual
actuations nor has to explicitly handle actuation failures or recovery logic, since the actual

1 G1: GOVERNANCE_SCOPE query: location=building3&type=JACE-545&owner=TUW
2 CONSIDERING_UNCERTAINTY: missing_data=location<=’?’, owner<=’*’
3 AND selection_strategy=optimistic;

4 M1: MONITORING abnormal_behavior := sensorAlert(G1)==true OR
5 heartBeatAVG(G1)>5min;

6 S1: STRATEGY CASE abnormal_behavior: setProtocol(’mqtt’),
7 changeUpdateRate(’5s’) FOR G1
8 CONSIDERING_UNCERTAINTY: run_in_isolation=true AND
9 keep_alive=1min AND

10 fallback_count=2 AND
11 tolerate_fault_percentage = 20% AND
12 invocation_caching=true;

13 C1: CONSTRAINT cost<200 CONSIDERING_UNCERTAINTY: decision_confidence >=20%;

14 S2: STRATEGY CASE responseTime>250ms: scaleOut()
15 CONSIDERING_UNCERTAINTY:considering_strategies = S1;

Listing 9.4: Example PMA governance policy.

4https://github.com/dcm-oss/blockade

184

9.5. Evaluation

invocations are pushed down to U-GovOps, who transparently handles lost actuations
and prevents cascading failures, based on the user-provided configurations. Further
although our framework limits the expressiveness to a certain extent, the users can still
express many common behaviors of governance strategies. For example, the user can
easily specify the desired elasticity behavior, taking into account possible uncertainties
caused by related actions (lines 8-9). Finally, our framework simplifies the user effort
in dealing with the data uncertainties (lines 1-2), since the users do not have to write
complex queries or explicitly deal with False Positive (FP) and False Negative (FN)
results.

9.5.3 Experiments results

Next, we evaluate main U-GovOps runtime mechanisms: resolving rough governance
scopes and for isolating the actuations under presence of two main uncertainties: missing
or incomplete data and actuation uncertainties (simulated as described above). The
experiment results are averaged on 50 repetitions and we have experimented with 7
different governance policies, which have different properties regarding query complexity
and actuation types (e.g., execution time and computational complexity).

Table 9.1: Averaged F1 scores for the governance scopes.

Percentage of the
missing data 10% 20% 30% 40% 50%

F1 scores - optimistic
strategy 0.95 0.86 0.86 0.80 0.74

F1 scores - pessimistic
strategy 0.90 0.90 0.80 0.79 0.72

F1 scores - no uncer-
tainty consideration 0.91 0.80 0.66 0.50 0.29

To evaluate the coverage of our governance policies, i.e., the “goodness" of approxi-
mation of our governance scopes under uncertainty (missing data) we show two relevant
metrics: the F1 scores and the error rates, as cumulative metric for the FPs and FNs.
The baseline is calculated with “perfect information" (no missing data) and then we
repeated the policies execution, while simulating the data losses. Table 9.1, shows the
resulting averaged F1 scores. The missing data represents the percentage of missing data
instances randomly distributed across the resources and the resource attributes. We
run 3 different setups: not considering the data uncertainty (i.e., ignoring the missing
data), using optimistic selection strategy and using the pessimistic selection strategy.
The corresponding error rates are shown in Figure 9.4.

It is important to notice (Figure 9.4) that not considering uncertainties and pessimistic
strategy only contain FNs (i.e., resources that should be included in the governance scope,
but were not due to the lack of information), while optimistic strategy only returns FPs
(i.e., includes the desired resources with certainty). This shows an important property of

185

9. Governing Elastic IoT Cloud Systems under Uncertainty

Missing data (%) No uncertainty Rough scop Rough scope - pessimistic
10 0.16 0.07 0.1 0.06
20 0.33 0.34 0.16 0.17
30 0.5 0.33 0.25 0.25
40 0.66 0.5 0.38 0.28
50 0.83 0.66 0.51 0.32

0.216
all FN all FP all FN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

Er
ro

r r
at

e

Missing data [%]

No uncertainty consideration
Rough scope - pessimistic
Rough scope - optimistic

Figure 9.4: Error rates for governance scopes due to missing data.

our approach, i.e., it enables users to make trade-offs depending on the task-at-hand. For
example, governance policies that do not care about FPs (formulated as: “ALL resources
with specific properties MUST be included") can be easily specified with optimistic
selection strategy. Additionally, compared to traditional approaches (no uncertainty
consideration) our pessimistic selection strategy generally behaves better, i.e., displays
on average about 20% less errors. Finally, it is worth noting that parametrization of
missing data (different combinations of ‘?’, ‘∗’ and ‘−’) had a significant impact on the
quality of the results. This can be considered a drawback, since it steepens the learning
curve of U-GovOps language. In the future we plan to explore this phenomenon in order
to derive suitable heuristics for parameterizing the missing data in governance scopes.

Figure 9.5 shows the percentages of lost actuations, with and without U-GovOps
mechanism for isolated actuations, for different fault rates. For example, for fault rate of
10% we know that 10% of all actuations will be affected by at least one of the 3 fault
injection actions. For all the evaluated policies we use the same base-line, e.g., number
of containers (≈ 1000), configurations, etc. The isolated actuations are configured in
a greedy fashion, with main objective to mitigate as many uncertainties as possible.
Generally, by isolating the actuations we managed to reduce the rate of lost actuation
by more then 50% on average, compared with the traditional approaches, which do not
consider uncertainties. The majority of unaccounted uncertainties were due to the killed
containers, since it is currently not possible to compensate this with U-GovOps.

On the secondary axes (Figure 9.5), we show the average execution time of the
governance policies. We notice that average execution time of the policies without
uncertainty consideration was only slightly affected by the faults, mainly due to network
slowdowns. On the other hand, our approach had an exponential increase in execution time
with high fault rates. This is mainly due to the exponential back-off policy implemented
by the framework in order to be “fair" to the underlying actuators, i.e., not overload
them with requests, e.g., in case of major network problems. This shows an important

186

9.6. Conclusion

Faults (%)
No uncertainty
consideration

Isolated
actuations

10 0.08 0.032
20 0.17 0.068
30 0.25 0.1
40 0.34 0.136
50 0.45 0.18

0

12

24

36

48

60

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

Ti
m

e
[s

]

Lo
st

 a
ct

ua
tio

ns
 ra

te

Faults [%]

No uncertainty consideration
Isolated actuations
Avg. proc. duration (no uncertainty consideration)
Avg. proc. duration (isolated actuations)

Figure 9.5: Lost actuations rates for isolated actuations.

property of the uncertainty management that it does not come “for free", in the sense
that users need to accept some overhead, e.g., of performance or additional costs, in
order to account for the uncertainties. Naturally, the users can control these aspects by
relaxing the uncertainty constraints.

We are also aware of certain limitations of our framework. For example, maintaining
the threads and the thread pools per actuation/policies causes an additional computational
overhead, due to thread queueing, scheduling, and context switching. We deliberately
decided to make a tradeoff here, since we believe that the overall advantages of having
more resilient and fault tolerant governance overweight the additional costs in the long
run. Finally, currently U-GovOps mainly focuses on runtime infrastructure uncertainties
and does not explicitly consider cumulative effects and uncertainty propagation. This is,
however, subject of our future work.

9.6 Conclusion
In this chapter we introduced the U-GovOps framework for governing elastic IoT cloud
systems under uncertainty. We presented the U-GovOps declarative policy language for
developing uncertainty- and elasticity-aware governance policies. The main U-GovOps
runtime mechanisms for managing rough governance scopes and enabling isolated ac-
tuations were introduced to facilitate enforcing such polices, by effectively mitigating
the infrastructure uncertainties, as demonstrated on a real-life case study. The initial
results are promising in the sense that with the U-GovOps framework users can develop
custom governance strategies efficiently, by using intuitive, high-level abstractions and
configuration parameters without explicitly dealing with the uncertainties of complex
interactions in IoT cloud infrastructure.

187

CHAPTER 10
Related work

10.1 Programming Support for IoT Cloud applications

Developing and managing IoT Cloud systems and applications have been receiving a lot
of attention lately. In [160, 42, 64] the authors mostly deal with device virtualization
and its management on cloud platforms. A number of different approaches (e.g., [134, 3])
employ semantics aspects to enable discovering, linking and orchestrating heterogeneous
IoT devices. In [29, 85] the authors propose utilizing cloud for additional computation
resources and approaches presented in [139, 162] focus on utilizing cloud’s storage resources
for sensory data. Approaches presented in [39, 83] deal with integrating IoT devices
and services with enterprise applications based on SOA paradigm. These approaches
mostly adopt a cloud-centric view on IoT Cloud applications development. For example,
in [42] the authors focus on developing a virtualized infrastructure to enable sensing
and actuating as a service on the cloud. They propose a software stack that includes
support for management of device identification and device services aggregation. In [160]
the authors introduce sensor-cloud infrastructure that virtualizes physical sensors on
the cloud and provides management and monitoring mechanisms for the virtual sensors.
Although, such approaches facilitates development of IoT Cloud applications to a certain
extent, contrary to our approach they usually do not define a structured programming
model for developing such applications. Another example of cloud-centric approach is
SenaaS [3]. SenaaS mostly focuses on providing a cloud semantic overlay atop physical
infrastructure. It defines an IoT ontology to mediate interaction with heterogeneous
devices and data formats, exposing them as event streams to the upper layer cloud services.
Similarly, the OpenIoT framework [134] focuses on supporting IoT service composition
by following cloud/utility based paradigm. It mainly relies on semantic web technologies
and CoAP to enable web of things and linked sensory data. Such approaches can be seen
as complementary to our own, as abstracting the IoT devices sets the cornerstone for
developing IoT Cloud applications. Our programming model relies on the contemporary

189

10. Related work

advances in IoT Cloud and extends them with novel programming abstractions which
enable everything-as-code paradigm, facilitating development of IoT Cloud applications
and making the entire development process traceable and auditable (e.g., with source
control systems), thus improving maintainability and reducing development costs.

Putting more focus on the edge devices, i.e., IoT gateways, network devices, cloudlets
and small clouds, different approaches have emerged recently. For example, in [17] the
authors present a concept of fog computing and define its main characteristics, such
as location awareness, reduced latency and general QoS improvements. They focus on
defining a virtualized platform that includes the edge devices and enables running custom
application logic atop different resources throughout the network. Further, in [62] the
authors focus on abstracting devices as service and enabling two-way communication be-
tween enterprise applications and devices via Web Services (WS) and provide mechanisms
for service discovery and provisioning. Similar approach is DPWS [113], i.e., SOA4D or
WS4D. Also, approaches utilizing RESTful protocols, CoAP[55] and sMAP [38] exist.
For example, [83] focuses on defining a CoAP-based runtime to enable composing IoT
services. Most of these approaches focus on abstracting underlying hardware and pro-
viding service-based access to a device. Although, they provide some key elements, e.g.,
service discovery and resource management, they implicitly assume developers have a
good understanding of the underlying domain, as raw sensory data streams and low-level
device services are directly exposed to them and application development is envisioned by
composing the atomic services into admissible control sequences or processing schemes.
Compared to these approaches our programming model defines high-level abstractions
which enable development of cloud-scale IoT Cloud applications.

Another edge-centric approach is usage of component-based frameworks [77], [14] to
abstract devices or more precisely to create proxies, which are represented as components
and enable remote communication with the devices. These frameworks use OSGi for
component management and execution environment. They share similarity with our
approach, regarding usage of component-based architecture. However, they abstract
devices as components and define a local component model and their applications
operate on a residential gateway scale. Contrary to these approaches, our programming
frameworks supports development of applications that seamlessly utilize both the Edge
and the Cloud.

Some of the related approaches in ubiquitous computing and context-awareness are
[126] and [135]. In [135] authors adopt a definition of task as representation of user’s
everyday activities. They focus on assisting the users during these activities and managing
the resources in smart environments. Although, we share some similarities, regarding
task as a generic activity, they don’t introduce abstractions with a generic view on
scopes, needed to enable development of IoT applications in a scalable manner. In general
compared to the aforementioned edge-centric approaches, our approach also aims at better
utilization of the edge infrastructure, but we also focus on providing a systematic approach,
supporting application developers to address most of the application/infrastructure
provisioning and governance issues programmatically, in a logically centralized fashion,

190

10.2. Provisioning Approaches in IoT Cloud

by offering the software-defined gateways and well-defined provisioning and governance
APIs.

Another related field is macroprogramming of sensor networks [93, 30, 101, 25]. For
example, in [93] the authors provide an SQL-like interface where the entire network is
abstracted as a relational database (table). Contrary to their approach, we utilize more
general set theory to define operations on our IntentScopes. This gives more flexibility to
developers, since our framework also allows dynamic, custom properties to be included
in scope definitions, but comes at the cost of additional performance overhead. Similarly,
in [101], the authors deal with enabling dynamic scopes in WSN, mainly addressing the
important issues of task placement and data exchange (among the WSN nodes), in order
to account for the heterogeneity of the nodes and enable logically localized interactions.
Their approach can be seen as conceptually complementing our own, since task allocation
and such interaction types are not the main focus of our framework. In [30], the authors
propose the notion of logical neighborhood. Their approach is based on logical nodes
(templates), which enable instantiating and grouping the nodes, based on their exported
attributes. To facilitate communication within the neighborhoods, which is of greater
importance in WSN, they also provide an efficient routing mechanism. In [25] the authors
introduce an extensible programming framework that unifies the WSN programming
abstractions in order to facilitate business processes orchestration with WSN. Despite
the relevant efforts to integrate provisioning and business logic (e.g., template-based
customizations [30]), the main focus of the aforementioned approaches is application
business logic, while we address a more general problem of enabling everything-as-code
paradigm, in order to also allow for capturing provisioning and governance logic for IoT
Cloud resources programmatically.

10.2 Provisioning Approaches in IoT Cloud

Over the last years, advancing the convergence of Edge (IoT) and Cloud computing
has been receiving a lot of attention. This has resulted in a number of approaches
which lay a cornerstone for realizing the utility-based provisioning in IoT Cloud. For
example, different approaches deal with leveraging more powerful resources such as
remote, fully-fledged Clouds or smaller Cloudlets and micro data centers, which are
located in the proximity (single hop away) of the Edge, to enhance resource-constrained
(mobile) devices. Such approaches, also referred to as cyber-foraging systems [89], mainly
focus on specific tasks such as computation offloading [36, 29, 85] or data offloading (data
staging) [7, 53, 162, 139]. Although, they offer valuable insights about moving cloud
computing closer to the Edge, as well as about smart resource utilization, management
and allocation, contrary to our approach they mainly emphasize on algorithms (e.g.,
solvers), energy efficiency, performance (e.g., of processing or networking) and supporting
architectures for the aforementioned tasks.

Other approaches which mainly adopt a cloud-centric view, mostly aim at virtualizing
Edge devices, predominantly sensors and actuators, on cloud platforms. In [42] the au-

191

10. Related work

thors focus on developing a virtualized infrastructure to enable sensing and actuating as a
service on the cloud. They propose a software stack that includes support for management
of device identification and device services aggregation. In [43], the same authors discus
a utility-oriented paradigm for IoT, explicit claiming the resource virtualization and
abstraction as their main goal. In [160] the authors introduce sensor-cloud infrastructure
that virtualizes physical sensors on the cloud and provides management and monitoring
mechanisms for the virtual sensors. In [64] the authors develop an infrastructure virtual-
ization framework for wireless sensor networks. It is based on a content-based pub/sub
model for asynchronous event exchange and utilizes a custom event matching algorithm to
enable delivery of sensory events to subscribed cloud users. Also the previously-described
approaches the SenaaS [3] and the OpenIoT framework [134] provide some support regard-
ing the IoT Cloud provisioning. However, their support is mainly focused on high-level
application provisioning aspects such as discovering, linking and orchestrating internet
connected objects and IoT services. Finally, there are various commercial solutions such
as Xively [156], Carriots [24] and ThingWorx [141], which allow users to connect their
sensors to the Cloud and enable remote access to and management of such sensors. The
aforementioned approaches mainly focus on providing different virtualization, device
interoperability and semantic-based data integration techniques for IoT Cloud. Therefore,
such approaches conceptually underpin our middleware, since virtualizing Edge devices is
a main precondition towards realizing utility-based provisioning paradigm in IoT Cloud
systems, as we illustrate in Figure 1.1. Although, some of the above-described solutions
(e.g., [160, 134, 42]) provide support for provisioning and management of virtual sensors
and actuators, their support is often based on tightly-coupled provisioning models, e.g.,
static templates. Moreover, such approaches are usually meant to support specific data-
centric tasks, mostly focusing on integrating various data formats, providing data-linking
solutions and supporting communication protocols. Contrary, to these approaches our
middleware provides support for multi-level provisioning and consuming both IoT and
Cloud resources as general-purpose utilities.

Putting more focus on the network virtualization, programming and management,
two prominent approaches have recently appeared, namely software-defined and fog
computing. Different approaches have exploited and extend software defined concepts to
facilitate utilization and management of the pooled sets of shared IoT Cloud resources,
e.g., software-defined storage [140] and software-defined data center [37]. Advances in
more traditional software-defined networking (SDN) [80, 78, 76] have enabled easier
management and programming of the intermediate network resources, e.g., routers,
mostly focusing on defining the networking logic, e.g., injecting routing rules into network
elements. In [17] the authors present a concept of fog computing and define its main
characteristics. Although the general idea of fog computing shares similarities with our
approach, there is still a number of challenges to realize its full vision [157]. Further,
current advances in fog computing mainly revolve around virtualization, management and
programmatic control of the network elements. Although provisioning of network resources
is not the focus of our middleware, these approaches can be seen as complementary
to our own approach, since the network resources are an integral part of IoT Cloud

192

10.3. IoT Cloud Governance

infrastructures (cf. Figure 1.1).

Finally, since the utility-based provisioning paradigm originated from cloud computing,
it is natural that cloud computing has provided numerous tools and frameworks to support
the utility-based provisioning. The relevant approaches are centered around infrastruc-
ture automation and configuration management solutions such as OpsCode Chef [118],
BOSH [18] and Puppet [124] as well as deployment topology orchestration approaches
such as OpenStack Heat [115], AWS CloudFormation [11] and OpenTOSCA [117]. The
main reasons why these solutions cannot be simply reused in the context of IoT Cloud
systems are that they mostly assume unlimited amount of available resources; they do
not account for intrinsic dependance of application business logic on underlying devices;
they are usually not suited for constrained environments and they often rely on features
provided only by fully-fledged OS, e.g., configuration management approaches often hand
off dependency resolution to OS package managers.

10.3 IoT Cloud Governance

The IoT governance has been receiving a lot of attention recently. For example, in [152]
the author evaluates various aspects of the IoT governance, such as privacy, security and
safety, ethics, etc., and defines main principles of IoT governance, e.g., legitimacy and
representation, transparency and openness, and accountability. In [151], the authors deal
with issues of data quality management and governance. They define a responsibility
assignment matrix that comprises roles, decision areas and responsibilities and can be used
to define custom governance models and strategies. Traditional IT governance approaches,
such as SOA governance [13, 27, 111] and governance frameworks like CMMI [2], the
3P model [128], and COBIT [63], provide a valuable insights and models which can be
applied in GovOps processes, usually without substantial modifications. Compared to
these approaches, GovOps does not attempt to define a general methodology for IoT
Cloud governance. Therefore, such approaches conceptually do not conflict with our
approach and they can rather be seen as methodologies and techniques complementing
GovOps.

Further, numerous government organizations and standardization bodies deal with
IoT Cloud governance. The governance concepts have been already applied on different
Internet aspects and there is a range of organizations such as IETF, ICANN, RIRs, ISOC,
IEEE, IGF, W3C, which are dealing with specific areas of Internet governance. The
EU Commission has also created task forces, research clusters and reports, which deal
with the governance issues in IoT [51, 50, 52]. They have identified several challenges
in contemporary IoT Cloud governance. For example, the difficulty to find a common
definition of IoT governance together with the different positions of many stakeholders.
Also, due to the high number and heterogeneity of technologies and devices in the IoT
systems, IoT governance requires even more specific solutions compared to the traditional
governance solutions. Moreover, current approaches in IoT governance usually addresses
the Internet part of the IoT, e.g, in the context of the Future Internet services, while

193

10. Related work

operations processes mostly deal with Things as additional resources that need to be
operated. Although, there are approaches that facilitate operating the Edge devices
(e.g., [160, 43] as we discussed in the previous section), mapping the governance objectives
(law, compliance, etc.) to operations processes largely remain elusive to the contemporary
governance approaches. The GovOps model builds on these approaches and addresses
the issue of bridging the gap between governance objectives and operations processes,
by introducing the GovOps manager as a dedicated stakeholder, as well as defining the
suitable GovOps reference model to support early integration of governance objectives
and operations processes. For high-level business stakeholders, GovOps enables continu-
ous analysis, verification, and improvement of governance objectives and implemented
strategies using a systematic approach. Furthermore, implementing the GovOps approach
enables technological advantages such as greater flexibility, reduction of time-to-delivery,
improved ease of operation, and shielding operations from regulatory issues.

Although, to our best knowledge there are no related approaches in the literature
that deal with uncertainty issues in IoT Cloud governance, a number of approaches exist
which address system uncertainties and faults. In the field of self-adaptive systems (SAS)
there are many approaches dealing with uncertainties and faults. For example, in [125],
the authors present a taxonomy of uncertainty for dynamically SAS. Whittle et al. [154]
developed RELAX, a textual requirements language that provides fuzzy logic-based
operators to facilitate the specification of uncertainties in SAS at requirements level.
Weyns et al. [153] introduced FORMS, a formal reference model for self-adaptation that
builds upon feedback loops to enable addressing uncertainties at design level. The runtime
uncertainties are addressed in [56], mainly using the concept of reactive feedback loops.
Such approaches conceptually complement our own, by providing valuable insights and
techniques to understand and analyze uncertainties. However, the distinct feature of our
operational governance approach is that it considers both elasticity and uncertainty at
the level of governance policies. Approaches form Wireless Sensor Networks (WSN) also
deal with uncertainties, e.g., [132, 94]. However, they mostly deal with sensor network
deployments and detecting redundant sensors in the WSN. Contrary to such approaches,
to our best knowledge, our GovOps approach is the first attempt to enable developing
uncertainty- and elasticity-aware governance strategies encompassing both IoT and cloud
infrastructures.

194

CHAPTER 11
Conclusion & Research Outlook

In this chapter, we reflect on the main results of the research conducted during the course
of this thesis. In Section 11.1 we summarize the main contributions presented in the thesis
and provide final remarks. Section 11.2, revisits the main research questions formulated
in Section 1.1 and discusses how and to what extent the presented contributions address
these research questions. Finally, Section 11.3 concludes the thesis and gives an outlook
of open topics for the future research that can be build on this thesis’ contributions.

11.1 Summary of Contributions
This thesis tackled a series of timely and relevant issues hindering the development and
operation of IoT Cloud systems. The presented thesis contributions advance the state of
the art in programming, provisioning and governing IoT Cloud systems, by introducing
a rich ecosystem comprising novel models, frameworks and middleware for novel IoT
Cloud systems. The thesis introduced three main contributions in the emerging field of
IoT Cloud, which are presented coherently, resembling the three main parts of the thesis:

First part of the thesis presented the first main contribution that deals with program-
ming IoT Cloud systems. The main problems addressed by this contribution include:
(i) Enabling development of generic IoT Cloud applications, which seamlessly utilize
both the Edge and the Cloud resources; (ii) Supporting the variety of involved de-
veloper roles; and (iii) Accounting for the complexity of software stack, ranging from
resource-constrained Edge devices development to high-level Cloud services. To system-
atically address these problems the contribution was divided into three parts, which
were presented in chapters 3, 4 and 5, respectively. Chapter 3 presented a high-level
programming model and a runtime for developing cloud-centric IoT Cloud applications.
The programming model introduced programming constructs (Intents and IntentScopes)
and operators, which raise the level of programming abstraction, enabling developers to
implement IoT Cloud applications without worrying about the diversity and complexity

195

11. Conclusion & Research Outlook

of the underlying Edge devices. We also presented a supporting runtime framework,
which provides a cloud-based application execution environment and a set of mecha-
nisms, which enable loosely-coupled communication with the Edge devices. Chapter 4
presented a programming model and a runtime for resource-constrained Edge devices,
e.g., gateways. We discussed the main programming abstractions introduced by the
programming model, namely the Data and Control Points, which are intended to support
domain expert developers in developing common monitor and control tasks for Edge
devices. An application runtime was presented that provides mechanisms which act as
multiplexers of the data and control channels, providing a virtually exclusive access to the
underlying devices, thus enabling the edge-device applications to have their own view of
and define custom configurations for such channels. In Chapter 5 we introduced SDG-Pro
– a unifying programming framework for IoT Cloud systems, based on everything-as-
code paradigm. The main problem addressed by the SDG-Pro framework is a lack of
programming support to account for complex and strong dependence of application
business logic on specific capabilities and features of the IoT devices. To address this
problem, the presented framework combines the Intents with the Data and Control Points
to provide a uniform support for application business logic development. Further, it
provides additional support for programmatic provisioning and governance of IoT Cloud
systems, unifying it with the support for application business logic development. The
SDG-Pro framework mainly focuses on defining programming support, but it relies on the
provisioning and governance models and techniques, which are developed in the other two
contributions of the thesis. Finally, we showed that the introduced approach is designed
in such manner to provide multiple logical views on the application development process,
while retaining a uniform view (in code) on the produced application artifacts.

In the second part of this thesis the focus was shifted from application-level support
to runtime middleware and tooling support for operating IoT Cloud systems. The work
presented in this part of the thesis was mainly motivated by a stringent need: To enable
refactoring the IoT Cloud infrastructure into finer-grained resource components whose be-
havior can be defined in software; To provide conceptually unified representation of both
Edge and Cloud resources; As well as to enable automated and scalable management of
IoT Cloud resources, application components and their configuration models in a logically
centralized fashion. To address these problems, the second contribution of this thesis
comprises two main parts that were presented in Chapter 6 and Chapter 7, respectively.
Chapter 6 introduced a unified provisioning model and a framework support for logically
centralized provisioning of IoT Cloud systems. We showed how our provisioning model
enables the IoT Cloud resources (e.g., virtual sensors and data point controllers), their
runtime environments (e.g., IoT gateways) and configuration models (e.g., for communica-
tion protocols) to be descrribed as software-defined IoT units. Such units were introduced
as the core concept of the provisioning model. We discussed how these units can be used
to encapsulate the IoT Cloud resources and abstract their provisioning in software through
managed APIs. A concept of unit prototypes was introduced to technically underpin the
provisioning model. The unit prototypes are hosted in the IoT Cloud and enriched with
provisioning capabilities (delivered by framework’s provisioning agents), that allow them

196

11.1. Summary of Contributions

to be dynamically configured, composed and deployed. At this point, it is important to
remind that the unit prototypes do not introduce novel virtualization solutions, but rely
on proven technologies, namely kernel-supported virtualization to abstract the IoT Cloud
resources. In Chapter 7, we introduced a middleware infrastructure for utility-based
provisioning IoT Cloud systems, which conceptually extends and technically refines the
first part of this contribution. We presented the middleware’s main components: a
cloud-based provisioning controller and edge-based provisioning agents and deamons.
Further, we discussed the main runtime mechanisms of the provisioning middleware:
i) A light-weight mechanism for resource abstraction (based on the unit prototypes),
which allow for application-specific customizations of IoT Cloud resources; ii) Support
for automated provisioning and management of infrastructure resources, application
components and configuration models in a uniform, logically centralized manner through
middleware-managed APIs and; iii) Extensible and flexible provisioning models, which
support on-demand consumption of the Edge-device resources. We discussed how our
provisioning middleware provides a comprehensive support for multi-level provisioning
of IoT Cloud systems, in order to support execution of provisioning processes that are
based on the previously-introduced provisioning model. It was shown how the controller
architecture and the provisioning mechanisms are specifically tailored to account for the
large-scale of IoT Cloud, but also for the resource-constrained nature of Edge devices.
Finally, we discussed how our provisioning approach: enables logically centralized point of
operation in IoT Cloud system; facilitates fine-grained on-demand resource consumption;
allows for automating the provisioning processes, making them easily repeatable; and
supports elasticity scalable execution of such processes, which are some of the main
preconditions for provisioning large-scale, geographically-distributed systems.

The last part of this thesis dealt with governance in IoT Cloud systems. We identified
critical problems in contemporary IoT Cloud governance: (i) A wide gap between the
main stakeholders involved in governing IoT Cloud systems; and (ii) enforcing governance
strategies in a large-scale, geographically distributed systems in a time-consistent manner.
To address these problems, the third contribution of this thesis comprises three main
parts, presented in Chapter 8 and Chapter 9. Firstly, Chapter 8 introduced GovOps –
a methodology and a reference model for operational governance processes. The main
objective of GovOps is to bring business stakeholders and operations managers closer
together, making a step forward in bridging the gap between governance objectives (e.g.,
standards and regulations) and supporting operations processes. GovOps introduced a
governance model and a design methodology for operational governance processes, in order
to enable seamless integration and alignment of the high-level governance objectives with
executable operations processes from early designing stages. We showd how the GovOps
model builds on the software-defined IoT unit model, extending it among other things,
with a concept of governance capabilities that encapsulate governance operations which
can be dynamically applied on such units during runtime. We also introduced GovOps
manager role, responsible to guide and oversee the design of the operational governance
processes. Secondly, this chapter also introduced the rtGovOps framework that serves
as GovOps reference implementation, providing support for designing and executing

197

11. Conclusion & Research Outlook

operational governance processes. We presented rtGovOps’ main runtime mechanisms and
enabling techniques that support GovOps managers to handle two main tasks: (i) perform
dynamic, on-demand provisioning of governance capabilities and (ii) remotely invoke
such capabilities in IoT Cloud, via dynamic APIs. We demonstrated, on a real-world
case study, the feasibility of GovOps methodology and framework to facilitate execution
of operational governance processes in large-scale IoT Cloud systems. Finally, Chapter 9
introduces an uncertainty extension for GovOps. The main motivation for the last
part of this contribution was to enable mitigating uncertainties inherent to operational
governance processes, mainly caused by the novel interactions of Edge devices, network
elements, Cloud resources and humans. This refined U-GovOps framework introduced a
declarative policy language and its runtime in order to enable development of uncertainty-
and elasticity-aware governance processes. The main U-GovOps runtime mechanisms for
managing rough governance scopes and enabling isolated actuations were introduced to
facilitate enforcing such polices, by effectively mitigating the infrastructure uncertainties,
as demonstrated on a real-life case study.

Generally, the thesis has striven to achieve a fair balance between formal, systematic
problem abstractions and concrete technology mappings, with runnable prototypes.
Most of the developed prototypes have been provided to the community as open source
frameworks or middleware. Each contribution has been rigorously evaluated on the
developed proof-of-concept prototypes and representative real-life scenarios. In generally,
the quantitative experiments were mainly designed to evaluate the implemented prototypes
with respect to two distinct performance requirements. On the one side, they aimed to
prove scalability of the introduced mechanisms and algorithms. On the other side, they
needed to validate the the prototypes’ suitability for resource-constrained devices, in terms
of their resource consumption requirements. Additionally, the presented programming
models were evaluated qualitatively against the widely-accepted design requirements for
programming models and languages. For the evaluation purposes, an IoT Cloud testbed
was developed, which combines physical IoT devices, which were built and installed in
our department, with cloud-based simulated IoT devices, deployed on our private cloud
infrastructure.

11.2 Revisiting Research Questions

In this section, we discuss the research questions formulated in Section 1.1 and reflect on
how and to what extent this thesis has addressed them:

• Q1: What is a suitable programming model and methodology for developing IoT Cloud
applications in an efficient, uniform and generic manner?
To respond to this general research question, in Part I of this thesis we introduced
programming model and framework, specifically tailored for IoT Cloud systems. The
presented programming model is designed to offer multiple logical views on the IoT
Cloud application development process, while retaining a uniform view (in code) on the

198

11.2. Revisiting Research Questions

produced application artifacts. For this purpose we introduced suitable abstractions
for cloud-centric applications, namely Intents and IntentScopes, which raise the level
of programming abstraction, enabling developers to implement IoT Cloud applications
more efficiently and intuitively, without worrying about the diversity and complexity of
the underlying Edge devices. To support the domain expert developers in programming
edge-centric IoT Cloud applications and services, the introduced Data and Control
Points allow for multiplexing of low-level the data and control channels, providing a
virtually exclusive access to the underlying devices. This enables edge-device applica-
tions to have their own view of and define custom configurations for such channels,
thus supporting development of generic IoT Cloud applications. Besides supporting
business logic development, the presented programming framework introduces addi-
tional support and provides a unified programmatic view on the entire development
process (everything as code), by encapsulating most important aspects of IoT Cloud
provisioning and governance.

We also recognize a number of limitations and shortcomings of the presented approach.
Our current approach is mainly intended for one particular type of IoT Cloud appli-
cations, i.e., reactive applications, which are characterized by receiving (monitoring)
information and as a response performing a sequence of (control) actions. However,
to enable wider utilization of IoT Cloud applications, the proposed programming
model needs to be extended to provide better support for both online and offline
Big Data analytics. Further, our programming model provides only a rudimentary
support for synchronous delivery of Intents to the Edge devices. In this context, a
mechanisms which would enable more reliable, RPC-like communication with the Edge
are needed, especially for time-critical tasks such as handling emergency situations.
The approach also needs to be extended to provide support for automated mapping
of the tasks to edge-devices, which can be mobile and utilized in an opportunistic
fashion, but also to enable runtime task migrations among the Edge devices. Finally,
although our approach provides support for programmatically controlling the physical
entities, a number of issues still need to be addressed. For example, at the moment our
programming framework only provides a rudimentary support for concurrent execution
of control actions and conflicts resolution, based on static priority levels assigned
to applications. In addition, considerations of actuator’s physical limitations and
safety-related issues of invoking an actuator need to be introduced at the middleware
level, to relieve application developers from coping with such issues in ad hoc manner.

• Q2: Which provisioning models, techniques and tools can be applied to enable on-
demand, self-service provisioning of IoT Cloud resources at fine granularity?

As a response to this research question, Part II of the thesis introduced a provisioning
model for IoT Cloud system, based on the main software-defined principles and a
middleware infrastructure for provisioning of IoT Cloud systems. The main objective
of the provisioning model and middleware was to make a step forward towards enabling
utility-based provisioning paradigm in IoT Cloud systems. To this end, initially (in
Chapter 6) we laid out a road map towards utility-based provisioning of IoT Cloud

199

11. Conclusion & Research Outlook

systems, which identified the key challenges and introduced a set of design principles
and technical enablers to address these challenges. The introduced provisioning model
enables uniform representation of both IoT and Cloud resources, based on the concept of
software-defined IoT units. We discussed how these units can be used to encapsulate the
IoT Cloud resources at fine granularity levels and abstract their provisioning in software
through managed APIs, in a unified manner. The introduced provisioning middleware
provides a comprehensive support for multi-level provisioning of IoT Cloud systems,
which facilitates provisioning of infrastructure resources, application artifacts and
configuration models. Finally, we demonstrated the middleware capabilities to: enable
logically centralized point of operation in IoT Cloud system; facilitate on-demand,
self-service resource consumption; allow for automating the provisioning processes;
and to support elasticity scalable execution of such processes, which are of the main
challenges to enable utility-based provisioning of large-scale, geographically-distributed
IoT Cloud systems.

Our approach lays a cornerstone towards realizing the vision of utility-based provisioning
in IoT Cloud, but a number of challenges still remain. In the road map, we have
identified resource monitoring and cost awareness as some of the main preconditions
for enabling pay-per-use model. Although, our approach provides monitoring support,
it mainly provides a coarse-grained information about resources usage and needs to be
refined and extended to enable true utility-oriented, pay as you go resource consumption.
Further, one of the main traits of utility-based consumption is autonomous and
automated allocation of the consumed resources. Although our middleware provides
good support for automating the provisioning tasks it still requires manual interactions
and human-supported decision making to efficiently allocate the software-defined
gateways on the underlying Edge devices. Therefore, support for smarter resource
allocation is required, which would optimize placement of software-defined gateways
and application artifacts on Edge devices, based on autonomous decisions with respect
to dynamic properties of IoT Cloud infrastructure. Finally, the approach needs to
be extended to address the mobility aspects of the Edge devices, especially focusing
on the dependability issues related to the device mobility and mobility of software
components, i.e., runtime migration of the software-defined gateways.

• Q3: Which models, techniques and tools are required to achieve structured and system-
atic IoT Cloud governance?

Part III of this thesis aimed to respond to this research question, by introducing
GovOps – a novel governance model and runtime framework for operational governance
in IoT Cloud systems. We discussed how GovOps can bring business stakeholders
and operations managers closer together, making a step forward in bridging the gap
between governance objectives (e.g., standards and regulations) and the supporting
operations processes. It was shown how GovOps enables structured integration and
alignment of the high-level governance objectives with executable operations processes
from early designing stages. Moreover, we showed that the supporting GovOps runtime
framework facilitates realizing governance strategies in geographically-distributed IoT

200

11.3. Future Work

Cloud systems, by supporting governance managers to perform dynamic, on-demand
provisioning of governance capabilities and to invoke such capabilities in IoT Cloud
remotely, in a centralized manner via dynamic APIs. We demonstrated how our
approach allows for systematic, time-consistent enforcement of operational governance
processes in large-scale IoT Cloud systems, making them more traceable and auditable,
thus effectively reducing costs and potential business limitations due to inefficient
governance.
Also here we identify several shortcomings of our approach. The GovOps approach
should be extended with additional support to enable structured management of
high-level governance objectives, beyond operational governance processes. This is
out of scope of this thesis, but it is envisioned as one of the crucial future research
directions in the context of IoT Cloud systems. Furthermore, although the runtime
GovOps framework supports dynamic changes in deployment topologies of IoT Cloud
systems to a certain degree (mainly those related to elasticity requirements), the
current approach should be extended to support similar functionality related to other
governance requirements such as “redirecting” sensory data streams to comply with
legal regulations.

11.3 Future Work
This thesis proposed several models, frameworks and middleware to address crucial issues
in programming, provisioning and governing IoT Cloud systems. In spite this, a number
of challenges remain that were out of scope of the thesis. In the following we conclude
the thesis with a summary of possible future research directions.

• The ever-stronger need to process and analyze the Big Data generated by different IoT
Cloud systems (e.g., in the context of smart cities) calls for structured programming
support for developing data-centric IoT Cloud applications. To this end, the future
research is expected to build on the programming models presented in this thesis
to extend its support for online and offline data analytics specifically tailored for
large-scale data-centric IoT Cloud applications.

• Elasticity is increasingly becoming key enabling feature for many contemporary appli-
cations. We believe that novel IoT Cloud systems can significantly benefit from elastic
computing, not only in the cloud, but also across the entire IoT Cloud resource pool.
However, in this context besides technical also numerous governance challenges arise.
In the future, we plan to extend the current provisioning and governance approaches
to enable elasticity aspects for IoT Cloud systems, most notably to support elastic
scaling of the software-defined gateways across entire IoT Cloud.

• Although, testing is one of the crucial tasks in application development lifecycle, it is
out of the scope of this thesis. In the future we plan to continue our current research in
testing the IoT Cloud systems and applications. We plan to utilize the benefits of our

201

11. Conclusion & Research Outlook

current approach, which besides developing application business logic, also supports
programmatic provisioning and governance of IoT Cloud applications. Conceptually,
this allows for systematic approaches to test the provisioning and governance processes
(e.g., scripts, workflows and policies), however novel techniques are required to support
defining and identifying the states and behavior of system under test (SUT).

• In the future, it is expected that the GovOps model will be refined and extended in
several directions: First, we envision integration with existing high-level governance
and accountability frameworks for managing governance objectives and coordinating
decision making processes, but also development of novel governance approaches
specifically designed for IoT Cloud. Second, due to novel interactions of Edge devices,
Cloud resources and humans, we envision a number of extensions of our current
governance approach to account for the novel interactions among various stakeholders,
as well as for the ever-stronger entanglement of humans and technology.

• Finally, we plan to continue our line of research towards fully-fledged utility-based
delivery/consumption of IoT Cloud resources, possibly in a market-like fashion. To
achieve full automation and provide autonomy to the IoT Cloud resources, one of
the key remaining challenges is enabling the IoT Cloud applications to autonomously
“compensate" the infrastructure owners for using their resources, such as sensory
data or computing power. To this end, we will explore novel billing and payment
solutions based-on cryptocurrencies, extending them with comprehensive support for
monetary micro-transactions (time- and size-wise), automated cash handling and
scalable processing of business transactions.

202

Bibliography

[1] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness.
In Handheld and ubiquitous computing, pages 304–307. Springer, 1999.

[2] Dennis M Ahern, Aaron Clouse, and Richard Turner. CMMI distilled: a practical
introduction to integrated process improvement. Addison-Wesley Professional, 2004.

[3] Sarfraz Alam, Mohammad Chowdhury, and Josef Noll. Senaas: An event-driven
sensor virtualization approach for internet of things cloud. In NESEA, 2010.

[4] Apache Software Foundation. Apache cassandra. http://cassandra.apache.
org/. [Online; accessed Jun-’13].

[5] Stefan Appel, Sebastian Frischbier, Tobias Freudenreich, and Alejandro Buchmann.
Eventlets: Components for the integration of event streams with soa. In SOCA,
2012.

[6] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A
view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[7] Trevor Armstrong, Olivier Trescases, Cristiana Amza, and Eyal de Lara. Efficient
and transparent dynamic content updates for mobile clients. In Proceedings of the
4th international conference on Mobile systems, applications and services, pages
56–68. ACM, 2006.

[8] Taimur Aslam, Ivan Krsul, and Eugene H Spafford. Use of a taxonomy of security
faults. 1996.

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787–2805, 2010.

[10] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts
of dependability. University of Newcastle, Computing Science, 2001.

[11] AWS. CloudFormation. URL: https://aws.amazon.com/
cloudformation/. [Online; accessed Feb.-2015].

203

http://cassandra.apache.org/
http://cassandra.apache.org/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/

Bibliography

[12] Victor Bahl. Cloud 2020: Emergence of micro data centers (cloudlets) for latency
sensitive computing (keynote). In Middleware 2015, 2015.

[13] Muneera Bano, Didar Zowghi, and Naveed Ikram. Alignment between business
requirements and services: the state of the practice. In ICSSEA, 2013.

[14] Jonathan Bardin, Philippe Lalanda, and Clement Escoffier. Towards an automatic
integration of heterogeneous services and devices. In APSCC, pages 171–178, 2010.

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
ACM SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[16] Ketan Bhardwaj, Sreenidhy Sreepathy, Ada Gavrilovska, and Karsten Schwan.
ECC: Edge Cloud Composites. In MobileCloud 2014, pages 38–47. IEEE, 2014.

[17] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the Internet of Things. In MCC workshop on Mobile cloud computing,
pages 13–16, 2012.

[18] BOSH. BOSH. URL: http://docs.cloudfoundry.org/bosh/. [Online;
accessed Feb.-2015].

[19] Thomas Buchholz and Michael Schiffers. Quality of context: What it is and why
we need it. In In Proceedings of the 10th Workshop of the OpenView University
Association: OVUA’03, 2003.

[20] Nicola Bui, Angelo P Castellani, Paolo Casari, and Michele Zorzi. The internet of
energy: a web-enabled smart grid system. Network, IEEE, 26(4):39–45, 2012.

[21] Nicola Bui and Michele Zorzi. Health care applications: a solution based on the
internet of things. In Proceedings of the 4th International Symposium on Applied
Sciences in Biomedical and Communication Technologies, page 131. ACM, 2011.

[22] BusyBox. BusyBox: The Swiss Army Knife of Embedded Linux. URL: https:
//busybox.net/about.html. [Online; accessed Jan.-2015].

[23] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation computer systems,
25(6):599–616, 2009.

[24] carriots.com. Carriots–IoT Application Platform. URL: https://www.
carriots.com. [Online; accessed Jan.-2015].

[25] Fabio Casati, Florian Daniel, Guenadi Dantchev, Joakim Eriksson, Niclas Finne,
Stamatis Karnouskos, Patricio Moreno Montera, Luca Mottola, Felix Jonathan
Oppermann, and Gian Pietro Picco. Towards business processes orchestrating the

204

http://docs.cloudfoundry.org/bosh/
https://busybox.net/about.html
https://busybox.net/about.html
https://www.carriots.com
https://www.carriots.com

Bibliography

physical enterprise with wireless sensor networks. In ICSE’12, pages 1357–1360,
2012.

[26] Marie Chan, Daniel Estève, Christophe Escriba, and Eric Campo. A review of
smart homes—present state and future challenges. Computer methods and programs
in biomedicine, 91(1):55–81, 2008.

[27] Anis Charfi and Mira Mezini. Hybrid web service composition: business processes
meet business rules. In ICSOC, pages 30–38. ACM, 2004.

[28] Harry Chen, Tim Finin, and Amupam Joshi. Semantic web in the context broker
architecture. Technical report, DTIC Document, 2005.

[29] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
Clonecloud: elastic execution between mobile device and cloud. In Conference on
Computer systems. ACM, 2011.

[30] Pietro Ciciriello, Luca Mottola, and Gian Pietro Picco. Building virtual sensors
and actuators over logical neighborhoods. In International workshop on Middleware
for sensor networks, pages 19–24. ACM, 2006.

[31] Cognizant Reports. Reaping the Benefits of the Internet of Things.
URL: http://www.cognizant.com/InsightsWhitepapers/
Reaping-the-Benefits-of-the-Internet-of-Things.pdf, 2015.
[Online; accessed Mar-’15].

[32] Adrian Copie, T Fortis, Victor Ion Munteanu, and Viorel Negru. From cloud
governance to iot governance. In Advanced Information Networking and Applications
Workshops, pages 1229–1234. IEEE, 2013.

[33] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar.
Sybl: an extensible language for controlling elasticity in cloud applications. In
CCGRID’13.

[34] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar.
Multi-level elasticity control of cloud services. In Service-Oriented Computing,
pages 429–436. Springer Berlin Heidelberg, 2013.

[35] CoreOs. CoreOS - a Linux for Massive Server Deployments. URL: http://
coreos.com/. [Online; accessed Mar.-2016].

[36] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last
longer with code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 49–62. ACM, 2010.

205

http://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf
http://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-the-Internet-of-Things.pdf
http://coreos.com/
http://coreos.com/

Bibliography

[37] Davidson, Emily A (Softchoice Advisor). The Software-Defined-Data-Center
(SDDC): Concept Or Reality? URL: http://tinyurl.com/omhmbfv. [Online;
accessed Jan-’15].

[38] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David
Culler. smap: a simple measurement and actuation profile for physical information.
In SenSys, pages 197–210, 2010.

[39] Luciana Moreira Sá De Souza, Patrik Spiess, Dominique Guinard, Moritz Köhler,
Stamatis Karnouskos, and Domnic Savio. Socrades: A web service based shop floor
integration infrastructure. In The internet of things, pages 50–67. 2008.

[40] DevOps.com. Surprise! Broad Agreement on the Defini-
tion of DevOps. URL: http://devops.com/2015/05/13/
surprise-broad-agreement-on-the-definition-of-devops/, 2016.
[Online; accessed Jan-’16].

[41] Anind K Dey, Gregory D Abowd, and Daniel Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware applications.
Human-computer interaction, 16(2):97–166, 2001.

[42] Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito. Sensing and actuation
as a service: a new development for clouds. In NCA, pages 272–275, 2012.

[43] Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito. A utility paradigm
for IoT: The sensing Cloud. Pervasive and mobile computing, 20:127–144, 2015.

[44] Don DeLoach. Internet of Things Part 4: Critical issues around governance for the
Internet of Things. URL: http://tinyurl.com/mxnq3ma. [Online; accessed
July-2014].

[45] Avri Doria, J Hadi Salim, Robert Haas, Horzmud Khosravi, Weiming Wang, Ligang
Dong, Ram Gopal, and Joel Halpern. Forwarding and control element separation
(forces) protocol specification. Internet Requests for Comments, RFC Editor, RFC,
5810, 2010.

[46] Charalampos Doukas and Ilias Maglogiannis. Bringing iot and cloud computing
towards pervasive healthcare. In Innovative Mobile and Internet Services in Ubiq-
uitous Computing (IMIS), 2012 Sixth International Conference on, pages 922–926.
IEEE, 2012.

[47] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong. Principles
of elastic processes. Internet Computing, IEEE, 15(5):66–71, 2011.

[48] Dustin Whittle. An Introduction to DevOps. http://devops.com/2014/04/
02/introductiontodevops/, 2014.

206

http://tinyurl.com/omhmbfv
http://devops.com/2015/05/13/surprise-broad-agreement-on-the-definition-of-devops/
http://devops.com/2015/05/13/surprise-broad-agreement-on-the-definition-of-devops/
http://tinyurl.com/mxnq3ma
http://devops.com/2014/04/02/introductiontodevops/
http://devops.com/2014/04/02/introductiontodevops/

Bibliography

[49] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–
131, 2003.

[50] European Commission. Report on the Consultation on IoT Governance. URL:
http://tinyurl.com/mx24d9o. [Online; accessed August-2014].

[51] European Commission. Report on the public consultation on IoT governance. URL:
http://tinyurl.com/mx24d9o. [Online; accessed August-2014].

[52] European Research Cluster on the Internet of Things. IoT Governance, Privacy
and Security Issues. URL: http://www.internet-of-things-research.
eu/pdf/IERC_Position_Paper_IoT_Governance_Privacy_Security_
Final.pdf, 2016. [Online; accessed Jan-’16].

[53] Jason Flinn, Shafeeq Sinnamohideen, Niraj Tolia, and Mahadev Satyanarayanan.
Data staging on untrusted surrogates. In FAST, volume 3, pages 15–28. Citeseer,
2003.

[54] forgerock.com. Forge Rock. URL: https://www.forgerock.com/. [Online;
accessed June-2014].

[55] B Frank, Z Shelby, K Hartke, and C Bormann. Constrained application protocol
(coap). IETF draft, Jul, 2011.

[56] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. Computer, 37(10):46–54, 2004.

[57] Gartner. Top Seven Considerations for Configuration Management for Virtual and
Cloud Infrastructures. http://img2.insight.com/graphics/no/info2/
insight_art6.pdf, 2015. Last accessed: Jun 2015.

[58] Google. Google protocol buffers. http://code.google.com/p/protobuf/.
[Online; accessed Jun-’13].

[59] Jim Gray. Why do computers stop and what can be done about it? In Symposium
on reliability in distributed software and database systems, pages 3–12. Los Angeles,
CA, USA, 1986.

[60] David Gregorczyk, T Bubhaus, and Stefan Fischer. A proof of concept for medical
device integration using web services. In SSD, 2012.

[61] Jerzy W Grzymala-Busse. Three approaches to missing attribute values: A rough
set perspective. In Data Mining: Foundations and Practice, pages 139–152. Springer,
2008.

207

http://tinyurl.com/mx24d9o
http://tinyurl.com/mx24d9o
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Governance_Privacy_Security_Final.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Governance_Privacy_Security_Final.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Governance_Privacy_Security_Final.pdf
https://www.forgerock.com/
http://img2.insight.com/graphics/no/info2/insight_art6.pdf
http://img2.insight.com/graphics/no/info2/insight_art6.pdf
http://code.google.com/p/protobuf/

Bibliography

[62] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and Dom-
nic Savio. Interacting with the soa-based internet of things: Discovery, query,
selection, and on-demand provisioning of web services. Services Computing, IEEE
Transactions on, 3(3):223–235, 2010.

[63] Gary Hardy. Using IT governance and COBIT to deliver value with IT and respond
to legal, regulatory and compliance challenges. Information Security technical
report, 11(1):55–61, 2006.

[64] Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh. A framework of
sensor-cloud integration opportunities and challenges. In ICUIMC, 2009.

[65] Wu He, Gongjun Yan, and Li Da Xu. Developing vehicular data cloud services in the
iot environment. Industrial Informatics, IEEE Transactions on, 10(2):1587–1595,
2014.

[66] Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan Balasubra-
maniam. Middleware for distributed context-aware systems. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, pages 846–863.
Springer, 2005.

[67] Robert G Hollands. Will the real smart city please stand up? intelligent, progressive
or entrepreneurial? City, 12(3):303–320, 2008.

[68] Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis
Karnouskos, and David Boyle. From Machine-to-machine to the Internet of Things:
Introduction to a New Age of Intelligence. Academic Press, 2014.

[69] Jason I Hong and James A Landay. An architecture for privacy-sensitive ubiquitous
computing. In Proceedings of the 2nd international conference on Mobile systems,
applications, and services, pages 177–189. ACM, 2004.

[70] IBM . SOA pages - Definition of SOA governance. URL: http://ibm.com/
software/solutions/soa/gov/. [Online; accessed June-2014].

[71] Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and
Schahram Dustdar. MADCAT - A methodology for architecture and deploy-
ment of cloud application topologies. In Service-Oriented System Engineering,
2014.

[72] IoT Now Magazine. Employee safety and security regulations raise the stakes for
fleet operators. URL: http://tinyurl.com/huzgrmr, 2015. [Online; accessed
Jan-’15].

[73] ITU-T Study Group 13. Recommendation ITU-T Y.2060. URL: http://handle.
itu.int/11.1002/1000/11559, 2016. [Online; accessed Mar-’16].

208

http://ibm.com/software/solutions/soa/gov/
http://ibm.com/software/solutions/soa/gov/
http://tinyurl.com/huzgrmr
http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559

Bibliography

[74] Alexander Keller and Remi Badonnel. Automating the provisioning of application
services with the bpel4ws workflow language. In Utility Computing, pages 15–27.
Springer, 2004.

[75] Sean Dieter Tebje Kelly, Nagender Kumar Suryadevara, and Subhas Chandra
Mukhopadhyay. Towards the implementation of iot for environmental condition
monitoring in homes. Sensors Journal, IEEE, 13(10):3846–3853, 2013.

[76] Hyojoon Kim and Nick Feamster. Improving network management with software
defined networking. Communications Magazine, IEEE, 51(2):114–119, 2013.

[77] Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles, and Abdelsalam Helal.
Atlas: A service-oriented sensor platform: Hardware and middleware to enable
programmable pervasive spaces. In LCN, pages 630–638, 2006.

[78] Keith Kirkpatrick. Software-defined networking. Communications of the ACM,
56(9):16–19, 2013.

[79] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux symposium, volume 1,
pages 225–230, 2007.

[80] Boris Koldehofe, Frank Dürr, Muhammad Adnan Tariq, and Kurt Rothermel.
The power of software-defined networking: line-rate content-based routing using
openflow. In MW4NG’12, 2012.

[81] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A distributed control platform for large-scale production networks. In OSDI,
volume 10, pages 1–6, 2010.

[82] Gerd Kortuem, Fahim Kawsar, Daniel Fitton, and Vasughi Sundramoorthy. Smart
objects as building blocks for the internet of things. Internet Computing, IEEE,
14(1):44–51, 2010.

[83] Matthias Kovatsch, Martin Lanter, and Simon Duquennoy. Actinium: A restful
runtime container for scriptable internet of things applications. In Internet of
Things, pages 135–142, 2012.

[84] Marzena Kryszkiewicz. Rules in incomplete information systems. Information
sciences, 113(3):271–292, 1999.

[85] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, 43(4):51–56, 2010.

[86] Dimosthenis Kyriazis, Theodora Varvarigou, Anna Rossi, Douglas White, and
Joshua Cooper. Sustainable smart city iot applications: Heat and electricity man-
agement & eco-conscious cruise control for public transportation. In World of

209

Bibliography

Wireless, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th Interna-
tional Symposium and Workshops on a, pages 1–5. IEEE, 2013.

[87] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In SIGCOMM Workshop on Hot Topics
in Networks. ACM, 2010.

[88] Marek Leszak, Dewayne E Perry, and Dieter Stoll. A case study in root cause
defect analysis. In Proceedings of the 22nd international conference on Software
engineering, pages 428–437. ACM, 2000.

[89] Grace Lewis, Sebastián Echeverría, Soumya Simanta, Ben Bradshaw, and James
Root. Tactical cloudlets: Moving cloud computing to the edge. In Military
Communications Conference (MILCOM), 2014 IEEE, pages 1440–1446. IEEE,
2014.

[90] Frank Leymann. Cloud Computing: The Next Revolution in IT. In 52th Pho-
togrammetric Week ’09, pages 3–12, 2009.

[91] Frank Leymann and Dieter Roller. Production workflow: concepts and techniques.
2000.

[92] Ma łgorzata Steinder and Adarshpal S Sethi. A survey of fault localization tech-
niques in computer networks. Science of computer programming, 53(2):165–194,
2004.

[93] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.
TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on database systems (TODS), 30(1):122–173, 2005.

[94] Sanchita Mal-Sarkar, Iftikhar U Sikder, Chansu Yu, and Vijay K Konangi.
Uncertainty-aware wireless sensor networks. International Journal of Mobile Com-
munications, 7(3):330–345, 2009.

[95] Martin Fowler. Microservices - a definition of this new architectural term.
URL: http://martinfowler.com/articles/microservices.html. [On-
line; accessed Jan.-2016].

[96] Friedemann Mattern and Christian Floerkemeier. From the internet of computers
to the internet of things. In From active data management to event-based systems
and more, pages 242–259. Springer, 2010.

[97] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

210

http://martinfowler.com/articles/microservices.html

Bibliography

[98] Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic, Deqing Chen,
Thomas J Giuli, and Xiaohui Gu. Towards a distributed platform for resource-
constrained devices. In Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on, pages 43–51. IEEE, 2002.

[99] Mike Loukides. What is DevOps? O’Reilly Media, 2012.

[100] Parastoo Mohagheghi and Øystein Haugen. Evaluating domain-specific modelling
solutions. In Advances in Conceptual Modeling - Applications and Challenges, pages
212–221, 2010.

[101] Luca Mottola, Animesh Pathak, Amol Bakshi, Viktor K Prasanna, and Gian Pietro
Picco. Enabling scope-based interactions in sensor network macroprogramming. In
MASS 2007, pages 1–9, 2007.

[102] Taewoo Nam and Theresa A Pardo. Conceptualizing smart city with dimensions of
technology, people, and institutions. In Proceedings of the 12th Annual Interna-
tional Digital Government Research Conference: Digital Government Innovation
in Challenging Times, pages 282–291. ACM, 2011.

[103] Stefan Nastic, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar. Gov-
erning Elastic IoT Cloud Systems under Uncertainty. In The 7th International
Conference on Cloud Computing Technology and Science (CloudCom 2015), 2015.

[104] Stefan Nastic, Christian Inziger, Hong-Linh Truong, and Schahram Dustdar. Gov-
Ops: The Missing Link for Governance in Software-defined IoT Cloud Systems. In
WESOA14, 2014.

[105] Stefan Nastic, Sanjin Sehic, Duc-Hung Le, Hong-Linh Truong, and Schahram
Dustdar. Provisioning Software-defined IoT Cloud Systems. In FiCloud’14.

[106] Stefan Nastic, Sanjin Sehic, Michael Voegler, Hong-Linh Truong, and Schahram
Dustdar. PatRICIA - A novel programing model for IoT applications on cloud
platforms. In SOCA, 2013.

[107] Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. Sdg-pro: a programming
framework for software-defined iot cloud gateways. Journal of Internet Services
and Applications, 6(1):1–17, 2015.

[108] Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. A Middleware Infrastruc-
ture for Utility-based Provisioning of IoT Cloud Systems. In The First IEEE/ACM
Symposium on Edge Computing, 2016. (In review.).

[109] Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar. Data and Control Points:
A Programming Model for Resource-constrained IoT Cloud Edge Devices. In IEEE
International Conference on Systems, Man, and Cybernetics (SMC 2016), 2016. In
review.

211

Bibliography

[110] Stefan Nastic, Michael Voegler, Christian Inziger, Hong-Linh Truong, and Schahram
Dustdar. rtGovOps: A Runtime Framework for Governance in Large-scale Software-
defined IoT Cloud Systems. In Mobile Cloud 2015, 2015.

[111] Michael Niemann, André Miede, Wolfgang Johannsen, Nicolas Repp, and Ralf
Steinmetz. Structuring SOA governance. International Journal of IT/Business
Alignment and Governance, 1(1):58–75, 2010.

[112] Bruno AA Nunes, Manoel Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and
Thierry Turletti. A survey of software-defined networking: Past, present, and
future of programmable networks. Communications Surveys & Tutorials, IEEE,
16(3):1617–1634, 2014.

[113] OASIS. Device Profile for Web Services (DPWS) Specification. http://docs.
oasis-open.org/ws-dd/ns/dpws/2009/01. [Online; accessed Jul-’13].

[114] OASIS. MQ Telemetry Transport Specification. http://docs.oasis-open.
org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. [Online; accessed Mar-’16].

[115] Open Stack Orchestration. Heat Project. URL: https://wiki.openstack.
org/wiki/Heat. [Online; accessed Feb.-2015].

[116] OpenStack.org. OpenStack – Open source software for creating private and public
clouds. http://www.openstack.org/. [Online; accessed Mar-’14].

[117] OpenTOSCA. OpenTOSCA. URL: http://www.iaas.uni-stuttgart.de/
OpenTOSCA/. [Online; accessed Feb.-2015].

[118] OpsCode. Chef. URL: http://opscode.com/chef. [Online; accessed Feb.-
2015].

[119] Pacific Controls. Galaxy platfrom of platforms. http://pacificcontrols.
net/products/. [Online; accessed Jun-’13].

[120] Zdzisław Pawlak. Rough sets. International Journal of Computer & Information
Sciences, 11(5):341–356, 1982.

[121] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing (draft).
NIST special publication, 800:145, 2011.

[122] Kristin Potter, Paul Rosen, and Chris R Johnson. From quantification to visu-
alization: A taxonomy of uncertainty visualization approaches. In Uncertainty
Quantification in Scientific Computing, pages 226–249. Springer, 2012.

[123] Giuseppe Procaccianti, Patricia Lago, and Grace A Lewis. A catalogue of green
architectural tactics for the cloud. InMaintenance and Evolution of Service-Oriented
and Cloud-Based Systems (MESOCA), 2014 IEEE 8th International Symposium
on the, pages 29–36. IEEE, 2014.

212

http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
http://www.openstack.org/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://opscode.com/chef
http://pacificcontrols.net/products/
http://pacificcontrols.net/products/

Bibliography

[124] Puppet Labs. Puppet. URL: http://puppetlabs.org. [Online; accessed
Feb.-2015].

[125] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. A taxonomy of uncer-
tainty for dynamically adaptive systems. In SEAMS’12, 2012.

[126] Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H Campbell, and
M Dennis Mickunas. Olympus: A high-level programming model for pervasive
computing environments. In PerCom, 2005.

[127] Rouan Wilsenach. DevOps Culture. http://martinfowler.com/bliki/
DevOpsCulture.html, 2015.

[128] Bop Sandrino-Arndt. People, portfolios and processes: The 3p model of it gover-
nance. Information Systems Control Journal, 2:1–5, 2008.

[129] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The
case for vm-based cloudlets in mobile computing. Pervasive Computing, 8(4):14–23,
2009.

[130] Andreas Schaefer, Marc Reichenbach, and Dietmar Fey. Continuous integration
and automation for devops. In IAENG Transactions on Engineering Technologies,
pages 345–358. Springer, 2013.

[131] Sanjin Sehic, Fei Li, Stefan Nastic, and Schahram Dustdar. A programming model
for context-aware applications in large-scale pervasive systems.

[132] Mustapha Reda Senouci, Abdelhamid Mellouk, Latifa Oukhellou, and Amar Aissani.
Uncertainty-aware sensor network deployment. In GLOBECOM’11. IEEE, 2011.

[133] SOA Software. Integrated SOA governance. URL: http://www.soa.com/
solutions/integrated_soa_governance. [Online; accessed June-2014].

[134] John Soldatos, Martin Serrano, and Manfred Hauswirth. Convergence of utility
computing with the internet-of-things. In IMIS, pages 874–879, 2012.

[135] João Pedro Sousa and David Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. 2002.

[136] Stanford Plato. Stanford Plato Phenomenolgy. URL: http://plato.stanford.
edu/entries/phenomenology/, 2015. [Online; accessed Jan-’15].

[137] Jerzy Stefanowski and Alexis Tsoukias. Incomplete information tables and rough
classification. Computational Intelligence, 17(3), 2001.

[138] Diane M Strong, Yang W Lee, and Richard Y Wang. Data quality in context.
Communications of the ACM, 40(5):103–110, 1997.

213

http://puppetlabs.org
http://martinfowler.com/bliki/DevOpsCulture.html
http://martinfowler.com/bliki/DevOpsCulture.html
http://www.soa.com/solutions/integrated_soa_governance
http://www.soa.com/solutions/integrated_soa_governance
http://plato.stanford.edu/entries/phenomenology/
http://plato.stanford.edu/entries/phenomenology/

Bibliography

[139] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. Wherestore: Location-based data
storage for mobile devices interacting with the cloud. In MCS, 2010.

[140] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Rowstron,
Tom Talpey, Richard Black, and Timothy Zhu. IoTFlow: A software-defined storage
architecture. In SOSP, pages 182–196. ACM, 2013.

[141] thingworx.com. ThingWorx. URL: http://thingworx.com. [Online; accessed
Jan.-2015].

[142] Tridium. Sedona Virtual Machine. URL: http://www.sedonadev.org/. [On-
line; accessed Jan.-2016].

[143] Hong-Linh Truong and Schahram Dustdar. Principles for engineering IoT Cloud
systems. Cloud Computing, IEEE, 2:68–76, 2015.

[144] Ovidiu Vermesan and Peter Friess. Internet of things: converging technologies for
smart environments and integrated ecosystems. River Publishers, 2013.

[145] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald Sund-
maeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura, Mark Harrison,
M Eisenhauer, et al. Internet of things strategic research roadmap. Internet of
Things-Global Technological and Societal Trends, pages 9–52, 2011.

[146] Michael Voegler, Johannes M. Schleicher, Christian Inziger, Stefan Nastic, Sanjin
Sehic, and Schahram Dustdar. Leonore – large-scale provisioning of resource
constrained iot deployments. In SOSE, 2015.

[147] Carl A Waldspurger. Memory resource management in vmware esx server. ACM
SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[148] Warren E Walker, Poul Harremoës, Jan Rotmans, Jeroen P van der Sluijs, Mar-
jolein BA van Asselt, Peter Janssen, and Martin P Krayer von Krauss. Defining
uncertainty: a conceptual basis for uncertainty management in model-based decision
support. Integrated assessment, 4(1):5–17, 2003.

[149] Nanbor Wang, Douglas C Schmidt, Aniruddha Gokhale, Christopher D Gill, Bal-
achandran Natarajan, Craig Rodrigues, Joseph P Loyall, and Richard E Schantz.
Total quality of service provisioning in middleware and applications. Microprocessors
and Microsystems, 27(2):45–54, 2003.

[150] Waveworks. Wave router. URL: https://github.com/weaveworks/weave.
[Online; accessed Mar.-2015].

[151] Kristin Weber, Boris Otto, and Hubert Österle. One size does not fit all—a
contingency approach to data governance. Journal of Data and Information
Quality (JDIQ), 1(1):4, 2009.

214

http://thingworx.com
http://www.sedonadev.org/
https://github.com/weaveworks/weave

Bibliography

[152] Rolf H Weber. Internet of things–governance quo vadis? Computer Law & Security
Review, 29(4):341–347, 2013.

[153] Danny Weyns, Sam Malek, and Jesper Andersson. Forms: a formal reference model
for self-adaptation. In Proceedings of the 7th international conference on Autonomic
computing, pages 205–214. ACM, 2010.

[154] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel Bruel.
Relax: Incorporating uncertainty into the specification of self-adaptive systems. In
RE’09, 2009.

[155] WSO2. Stratos. http://wso2.com/cloud/stratos/. [Online; accessed Jun-
’13].

[156] Xively. Xively. URL: http://xively.com. [Online; accessed Jan-’15].

[157] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts, applications
and issues. In Proceedings of the 2015 Workshop on Mobile Big Data, pages 37–42.
ACM, 2015.

[158] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology
of cloud computing. In Grid Computing Environments Workshop, 2008. GCE’08,
pages 1–10. IEEE, 2008.

[159] Miao Yun and Bu Yuxin. Research on the architecture and key technology of
internet of things (iot) applied on smart grid. In Advances in Energy Engineering
(ICAEE), 2010 International Conference on, pages 69–72. IEEE, 2010.

[160] Madoka Yuriyama and Takayuki Kushida. Sensor-cloud infrastructure-physical
sensor management with virtualized sensors on cloud computing. In Network-Based
Information Systems (NBiS), 2010 13th International Conference on, pages 1–8.
IEEE, 2010.

[161] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele
Zorzi. Internet of things for smart cities. Internet of Things Journal, IEEE,
1(1):22–32, 2014.

[162] Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. Sensing as a
service and big data. arXiv preprint arXiv:1301.0159, 2013.

[163] Man Zhang, Shaukat Ali, Tao Yue, Dipesh Pradhan, Bran Selic, Oscar Okariz, and
Roland Norgren. An Uncertainty Taxonomy to Support Model-Based Uncertainty
Testing of Cyber-Physical Systems. Technical report, Simula, 2015.

215

http://wso2.com/cloud/stratos/
http://xively.com

APPENDIX A
A Taxonomy of

Infrastructure-level Uncertainties
in CPS

Overview of CPS Infrastructure
The infrastructure of Cyber-Physical Systems (CPS) is complex and usually comprises
variety of sensors, actuators, gateways, multiplicity of network elements and (multi) cloud
platforms (e.g., VMs and cloud services). In general, there are three main logical parts of
CPS infrastructure: Physical layer (containing physical devices, data centers, etc.), virtual
layer (encompassing virtualized CPS infrastructure, most importantly cloud platforms
and software-defined gateways) and Virtual verticals (in this context application/system
specific configurations and policies that directly affect CPS infrastructure).

Generally, errors, faults and uncertain behaviors at the infrastructure level affect the
execution of CPS applications independent of their business logic. Therefore, classifying
the infrastructure level uncertainties can be generic to a large extent, i.e., based on the
functionality CPS applications usually expect from such infrastructures to deliver. Some
of the responsibilities (functionality) of the CPS infrastructure include:

• Providing communication facilities (i.e., network) among the sensors/actuators and
CPS applications/services;

• Providing an execution environment for such applications (e.g., on gateways or in the
cloud);

• Providing (temporary and/or permanent) storage for the large amounts of sensory
data;

217

A. A Taxonomy of Infrastructure-level Uncertainties in CPS

• Providing facilities for generating, preprocessing and delivering sensory data;

• Enabling routing/buffering of actuation requests (from applications to physical actua-
tors).

We mainly focus on uncertainties that affect the aforementioned functionality of
the infrastructure. More specifically, such uncertainties affect the expected state of
the infrastructure, i.e., the outcome when an application utilizes (e.g., invokes) some
of the infrastructure functionality. Generally, such uncertainties can cause the CPS
infrastructure to display faulty behavior (i.e., come into an error state) or some uncertain
state (not necessarily an error state).

In the traditional fault, error, failure classifications, faults lead to some form of errors
which are manifested as failures at application or service level [10]. The main difference
between the traditional (latent) error state and the uncertain state are the causes that
lead the CPS infrastructure to transition to such state and in how such state manifests
at application level or in the surrounding environment. In our context, uncertainties
can coincide with faults, but are much broader category. For example, an empty data
channel can be considered as an uncertain infrastructure state, since it can be caused by
a sensor failure (error state) or because there is no change in the physical environment,
thus nothing is detected by a sensor (normal state).

Infrastructure level uncertainties taxonomy for CPS
systems
Our taxonomy classifies the (at design time) known sources of the error and the uncertain
states, e.g., the behaviors of system units which are potentially, positively or cumulatively
responsible for the error/uncertain states of CPS infrastructure. Figure A.1 gives an
overview of the infrastructure level uncertainties taxonomy for CPS systems. The
taxonomy shown in Figure A.1 comprises a set of concepts (i.e., uncertainty properties
classes), which are a extensions of the concepts defined in the meta model introduced
in [163]. We have identified 7 main uncertainty properties classes at the infrastructure
level. Next we describe these property classes in more detail.

Ingress/egress uncertainties (What the uncertainties affect) Uncertainties at
the CPS infrastructure can manifest themselves as failures or as functionality degradation
at application level (e.g., [49]) or in the physical environment [72]. For example, empty
data channel will obviously be noticed by an application, while malfunctioning chiller
wing will be noticed in the physical environment.

Uncertainty locality (Where uncertainties occur): Depending on the locality of
the uncertainties occurrence, we differentiate between the uncertainties that are present
in the infrastructure itself, i.e., in hardware (e.g., sensors, actuators, gateways, etc.), CPS
platform/virtual part of the infrastructure (e.g., cloud services or elasticity controllers)
and the uncertainties that occur outside the infrastructure and affect the infrastructure,

218

Infrastructure
uncertainties

Nonfunctional
dimensionality

Functional
dimensionality

Execution
environment

Storage

Data
delivery

Actuation

Elasticity

Governance

Uncertainty
locality Platform

(virtual infrastructure)

Hardware

Temporal
manifestation

Persistent

Recurring

Sporadic
Ingress/
Egress

Application

Physical
environment

External to
infrastructure

Observation
time

Deployment
time

Runtime

Cause

Human actions

Natural
phenomenon

Quality

Legal /
compliance

Dependability

Technological

Figure A.1: Overview of uncertainties taxonomy for CPS.

e.g., smoke interfering with normal operation of surveillance cameras. These uncertainty
properties are based on the previous work on fault localization [8, 92] and root cause
analysis [88].

Nonfunctional dimensionality (Which nonfunctional property they affect):
The uncertainties can affect the dependability [10] (e.g., safety, availability, reliability,
security, etc.), data quality or legal/compliance of the CPS infrastructure [138, 19, 152].
It is worth noticing here that the nonfunctional dimensionality can be used to measure
the degree of sensitivity to an uncertainty, where a complete functionality failure is the
highest degree and no functionality degradation (e.g., no availability degradation) is the
lowest degree.

Causes of uncertainty (What causes them): The uncertainties can be caused by
some natural phenomenon in the surrounding environment, they can be a consequence of

219

A. A Taxonomy of Infrastructure-level Uncertainties in CPS

human actions or they can be technology caused uncertainties. Under uncertainties with
technological cause, we classify all the uncertainties that are caused by some infrastructure
phenomenon, which is beyond application developer’s control. For example, these can be
infrastructure hardware failures or bugs in the virtual infrastructure. Generally, these
uncertainty properties represent the phenomenological cause of an uncertainty [136].

Temporal manifestation (How they manifest in time): The uncertainties can
manifest in time as persistent, sporadic or as recurring. Generally, temporal manifestation
denotes the duration of the infrastructure uncertainty state caused by that uncertainty.
For example persistent uncertainties will cause permanent uncertainty state, i.e., until
an outside action (e.g., human intervention) causes the infrastructure to return from
the uncertain state to a normal state. These properties are inspired by the traditional
software bugs classifications [59].

Functional dimensionality (Which functional properties they affect): As al-
ready discussed at the beginning of this section, CPS infrastructure is responsible to
provide a specific functionality to the applications. Depending on what functionality
class they affect, we differentiate among elasticity, governance, actuation, data delivery,
storage or execution environment uncertainties. The functional dimensionality is derived
from state-of-the-art in CPS infrastructure research [9, 160, 139, 129].

Observation time (When do they manifest/become active): Depending on when
in the application lifecycle an uncertainty becomes active, i.e., potentially manifests itself
as a failure, we have deployment time or runtime uncertainties.

Elementary uncertainty families

When classifying the uncertainties, we notice that not all the combination of the un-
certainty properties are allowed. For example, it makes no sense to have a natural
phenomenon uncertainty which occurs at the platform level (in software). Subsequently
we identify the uncertainty families that are most common in practice. The uncer-
tainty families are the permissible combinations of uncertainty properties (without claim
of completeness). The families are mainly categorized depending on the functional
dimensionality of the uncertainties.

Data delivery uncertainties family

The data delivery uncertainties family includes such uncertainties that affect the in-
frastructure’s facilities for generating, preprocessing and delivering (sensory) data. It
includes three main elementary categories, i.e., uncertainties affecting the dependability
of the data delivery facilities, uncertainties affecting the quality of data and uncertainties
related to legal/compliance. In the following, we describe them to more detail. Examples
of these uncertainties are shown in Figure A.2.

220

Data delivery dependability uncertainties – These uncertainties affect the general depend-
ability of the data delivery facilities. They can originate due to a human action or
have a technological cause. They are located in hardware or platform. They can have
any temporal manifestation and can be observed at any phase of application lifecycle.

Data quality uncertainties – These uncertainties affect the quality of the data generated
and/or delivered by the CPS infrastructure. They can have a technological cause or
originate due to a human action or some natural phenomenon. They can have any
defined locality. They can have any of the defined temporal manifestations and can be
observed at any phase of application lifecycle.

Data delivery legal/compliance uncertainties – These uncertainties affect the legal or
compliance aspects of the data delivery process. They originate due to human actions,
external to infrastructure. They are persistent and observed during application’s
runtime.

Data delivery
Uncertainties

family Application

Quality
(data)

Dependability

Human
actions

Natural
phenomenon

Platform

Hardware

External to
infrastructure

Persistent Runtime Sensor
misconfiguration

Runtime Data freshness due to
network uncertainties,

e.g., latency

Hardware

Sporadic Runtime

Truck passing
In front of camera

Persistent Runtime Precision loss due to
data conversion or

formating

Sporadic

Legal /
complience

Human
actions

External to
infrastructure Persistent Runtime

Legal changes regarding
dissemination of sensory
data in certain areas

(e.g., country)

Runtime Sensor
decalibration

Recurring

Technological Runtime

Temporary device
malfunction due to
hardware glitches

Hardware Sporadic

Data packet corruption
on the network layer,

e.g., bit flip

Platform PersistentHuman action
Deployment

time Unsupported com.
protocol

Sensor freezing
(e.g., Airbus A320)

Technological

Persistent
Deployment

time Sensor resolution, e.g.,
Google maps location

Figure A.2: Overview of data delivery uncertainties family.

221

A. A Taxonomy of Infrastructure-level Uncertainties in CPS

Actuation uncertainties family

The actuation uncertainties family includes such uncertainties that affect the infras-
tructure’s mechanisms related to routing, buffering, delivering and ordering (e.g., by
priorities) of actuation requests that originate on the application level and are propagated
to the physical or virtual actuators. All uncertainties from this family are observed during
application runtime. The actuation uncertainties family comprises three main elementary
categories: Actuation legal/compliance uncertainties, actuation uncertainties affecting
the dependability of applications and actuation uncertainties affecting the dependability
of environment. In the following, we describe them to more detail. Examples of these
uncertainties are shown in Figure A.3.

Actuation legal/compliance uncertainties – These uncertainties affect the legal or com-
pliance aspects of the actuation process. They are caused by human actions, in the
platform and are mainly persistent uncertainties.

Actuation dependability uncertainties in applications – These uncertainties affect the
general dependability of the applications, i.e., actuation facilities. They can be caused
by a human action or technology. They are located in hardware or platform. They can
have any temporal manifestation defined in the taxonomy.

Actuation dependability uncertainties in environment – These uncertainties affect the
general dependability of the physical environment. They can have any origin specified
in the taxonomy. They usually located in the hardware or external to the infrastructure
and have any of the specified temporal manifestations.

Execution environment uncertainties family

The execution environment uncertainties family comprises uncertainties about the assump-
tions made by application developers about the underlying infrastructure functionality.
They interfere with the infrastructure’s ability to support application execution, thus
are classified as application uncertainties. The execution environment uncertainties
family comprises two main elementary categories: Execution environment uncertainties
observed at application deployment and execution environment uncertainties observed
at application runtime. In the following, we describe them to more detail. Examples of
these uncertainties are shown in Figure A.4.

Deployment time execution environment uncertainties – These uncertainties are observed
during application’s deployment phase. The nonfunctional dimensionality of such un-
certainties is either dependability or legal/compliance and their locality manifestation
is mostly at hardware or platform level. They have a technological origin or can be
caused by human actions. They can have any of the defined temporal manifestations.

Runtime time execution environment uncertainties – These uncertainties interfere with
application’s execution, thus are observed during its runtime, mainly by affecting

222

Data delivery
Uncertainties

family Application

Quality
(data)

Dependability

Human
actions

Natural
phenomenon

Platform

Hardware

External to
infrastructure

Persistent Runtime Sensor
misconfiguration

Runtime Data freshness due to
network uncertainties,

e.g., latency

Hardware

Sporadic Runtime

Truck passing
In front of camera

Persistent Runtime Precision loss due to
data conversion or

formating

Sporadic

Legal /
complience

Human
actions

External to
infrastructure Persistent Runtime

Legal changes regarding
dissemination of sensory
data in certain areas

(e.g., country)

Runtime Sensor
decalibration

Recurring

Technological Runtime

Temporary device
malfunction due to
hardware glitches

Hardware Sporadic

Data packet corruption
on the network layer,

e.g., bit flip

Platform PersistentHuman action
Deployment

time Unsupported com.
protocol

Sensor freezing
(e.g., Airbus A320)

Technological

Persistent
Deployment

time Sensor resolution, e.g.,
Google maps location

Actuation
Uncertainties

family Runtime

Dependability

Legal/compliance Platform
Human
actionsApplication Persistent Insufficient

permissions to access
a device

Application

Environment

Human
actions

Technological

Human
actions

Natural
phenomenon

Platform

Sporadic Concurrent access to
a device

Recurring Competing applications
actions (e.g., app1 open

window, app2 close window)

External to
infrastructure Sporadic Actuation action

jeopardizes user
safety

Hardware Persistent Action that causes
defect actuator

Hardware Sporadic Lost actuation
request

Recurring Actuator malfunctioning
(e.g, chiller wing
malfunction)

External to
infrastructure Sporadic Temporarely blocked

actuator

Platform Persistent
Actuation starvation
due to actuation

request scheduling,
e.g., by priorities

Technological Hardware

Figure A.3: Overview of actuation uncertainties family.

infrastructure’s dependability at hardware of platform level. They can have any of the
defined temporal manifestations or origin.

Data delivery
Uncertainties

family Application

Quality
(data)

Dependability

Human
actions

Natural
phenomenon

Platform

Hardware

External to
infrastructure

Persistent Runtime Sensor
misconfiguration

Runtime Data freshness due to
network uncertainties,

e.g., latency

Hardware

Sporadic Runtime

Truck passing
In front of camera

Persistent Runtime Precision loss due to
data conversion or

formating

Sporadic

Legal /
complience

Human
actions

External to
infrastructure Persistent Runtime

Legal changes regarding
dissemination of sensory
data in certain areas

(e.g., country)

Runtime Sensor
decalibration

Recurring

Technological Runtime

Temporary device
malfunction due to
hardware glitches

Hardware Sporadic

Data packet corruption
on the network layer,

e.g., bit flip

Platform PersistentHuman action
Deployment

time Unsupported com.
protocol

Sensor freezing
(e.g., Airbus A320)

Technological

Persistent
Deployment

time Sensor resolution, e.g.,
Google maps location

Actuation
Uncertainties

family Runtime

Dependability

Legal/compliance Platform
Human
actionsApplication Persistent Insufficient

permissions to access
a device

Application

Environment

Human
actions

Technological

Human
actions

Natural
phenomenon

Platform

Sporadic Concurrent access to
a device

Recurring Competing applications
actions (e.g., app1 open

window, app2 close window)

External to
infrastructure Sporadic Actuation action

jeopardizes user
safety

Hardware Persistent Action that causes
defect actuator

Hardware Sporadic Lost actuation
request

Recurring Actuator malfunctioning
(e.g, chiller wing
malfunction)

External to
infrastructure Sporadic Temporarely blocked

actuator

Platform Persistent
Actuation starvation
due to actuation

request scheduling,
e.g., by priorities

Technological Hardware

Execution
environment
uncertainties

family
Application
uncertainty

Runtime

Deployment
time

Dependability

Hardware

Technological Persistent Unsupported CPU
architecture

Human actions

Sporadic
Insufficient RAM

Platform Human actions Persistent Runtime unavailable
(e.g., JVM) due to
provisioning errors

Persistent Unavailable/not
installed device
(e.g., sensor)

Dependability

Hardware Technological Persistent
Gateway failure

Legal/compliance Platform Human actions Persistent
Insufficient

permissions to deploy
device‐service to a

gateway

Gateway cannot accept
connection from device

Platform Technological Sporadic

Figure A.4: Overview of execution environment uncertainties family.

223

A. A Taxonomy of Infrastructure-level Uncertainties in CPS

Storage uncertainties family

The storage uncertainties family includes uncertainties that affect the infrastructure’s
facilities for persistent storage of monitoring (sensory) data. This family mainly manifests
as failure at application level when such applications perform batch data analytics (As
opposed to the data delivery facilities, where the focus is on real-time data processing).
All uncertainties from this family are observed during application runtime. The storage
uncertainties family comprises three main elementary categories: Uncertainties affecting
the dependability of the storage facilities, uncertainties affecting the quality of the
historical data and uncertainties related to legal/compliance regulating sensory data
storage. In the following, we describe them to more detail. Examples of these uncertainties
are shown in Figure A.5.

Storage quality uncertainties – These uncertainties affect the quality of the data (most
notably historical sensory data) stored in the CPS infrastructure. They can have a
technological origin or are caused by a human action at hardware or platform level.
They can have any of the temporal manifestations specified in the taxonomy.

Storage dependability uncertainties – These uncertainties affect the general dependability
of the data storage facilities. They can have a technological origin or are caused by
human action. They are located in hardware or platform and can have any temporal
manifestation.

Storage legal/compliance uncertainties – These uncertainties affect the legal or compli-
ance aspects related to the data storage. They originate due to human actions, external
to infrastructure and are persistent uncertainties.

Data delivery
Uncertainties

family Application

Quality
(data)

Dependability

Human
actions

Natural
phenomenon

Platform

Hardware

External to
infrastructure

Persistent Runtime Sensor
misconfiguration

Runtime Data freshness due to
network uncertainties,

e.g., latency

Hardware

Sporadic Runtime

Truck passing
In front of camera

Persistent Runtime Precision loss due to
data conversion or

formating

Sporadic

Legal /
complience

Human
actions

External to
infrastructure Persistent Runtime

Legal changes regarding
dissemination of sensory
data in certain areas

(e.g., country)

Runtime Sensor
decalibration

Recurring

Technological Runtime

Temporary device
malfunction due to
hardware glitches

Hardware Sporadic

Data packet corruption
on the network layer,

e.g., bit flip

Platform PersistentHuman action
Deployment

time Unsupported com.
protocol

Sensor freezing
(e.g., Airbus A320)

Technological

Persistent
Deployment

time Sensor resolution, e.g.,
Google maps location

Actuation
Uncertainties

family Runtime

Dependability

Legal/compliance Platform
Human
actionsApplication Persistent Insufficient

permissions to access
a device

Application

Environment

Human
actions

Technological

Human
actions

Natural
phenomenon

Platform

Sporadic Concurrent access to
a device

Recurring Competing applications
actions (e.g., app1 open

window, app2 close window)

External to
infrastructure Sporadic Actuation action

jeopardizes user
safety

Hardware Persistent Action that causes
defect actuator

Hardware Sporadic Lost actuation
request

Recurring Actuator malfunctioning
(e.g, chiller wing
malfunction)

External to
infrastructure Sporadic Temporarely blocked

actuator

Platform Persistent
Actuation starvation
due to actuation

request scheduling,
e.g., by priorities

Technological Hardware

Execution
environment
uncertainties

family
Application
uncertainty

Runtime

Deployment
time

Dependability

Hardware

Technological Persistent Unsupported CPU
architecture

Human actions

Sporadic
Insufficient RAM

Platform Human actions Persistent Runtime unavailable
(e.g., JVM) due to
provisioning errors

Persistent Unavailable/not
installed device
(e.g., sensor)

Dependability

Hardware Technological Persistent
Gateway failure

Legal/compliance Platform Human actions Persistent
Insufficient

permissions to deploy
device‐service to a

gateway

Gateway cannot accept
connection from device

Platform Technological Sporadic

Storage
Uncertainties

family Application

Legal /
compliance

External to
infrastructure

Human
actions Persistent

Legal changes regarding
storage of sensory data
(location, duration, etc.)

in a country

Dependability

Quality

TechnologicalHardware

Persistent

Multiple data instances
measuring the same

phenomenon due to readings
from multiple sensors affecting

data consistency

Sporadic Incomplete sensory
data history due to

event losses

Platform
Human
action Recurring Delayed synchronization

of sensory data stream
with permanent storage

Runtime

Hardware Technological Persistent

Loss of sensory data
history due to disk failure

Platform
Human
actions Sporadic Storage availability

uncertainties due to too
many concurrent writes

Insufficient disk space
for the Big sensory data

Figure A.5: Overview of storage uncertainties family.

224

Composite uncertainties families

Composite uncertainties appear mostly in infrastructure’s higher-level functionality –
most notably, but not limited to governance and elasticity facilities, thus they mostly
manifest at the higher levels in the infrastructure stack, e.g., the platform. Composite
uncertainties mostly come into effect through the uncertainties propagation and/or uncer-
tainties aggregation from the elementary uncertainties families. It is also worth noticing
that composite uncertainties can be used as an extension point of the infrastructure
uncertainties classification.

Although unknown uncertainties (unknown unknowns) are out-of-scope of this tak-
sonomy, we notice that a very large number of such uncertainties can manifest themselves
at the infrastructure level. This is mainly due to complex dependencies among the
infrastructure components and effects of uncertainty propagation and/or uncertainty
aggregation between such components. Generally, the root cause, locality, temporal
manifestation, etc., of unknown uncertainties are inherently difficult if not impossible to
determine. Therefore, classification of such uncertainties is usually application specific
and can be classified under different or even multiple elementary classes depending on
the task-at-hand.

Governance uncertainties family

The governance uncertainties family includes uncertainties that affect the infrastructure’s
facilities responsible to realize CPS governance processes or the uncertainties which make
such processes invalid. Figure A.6 shows UML diagram of the composed uncertainties
families related to governance uncertainties:

Governance process execution uncertainties – Governance process execution uncertain-
ties affect the dependability of the governance process during runtime. They are
observed at applications runtime and are mainly located in the platform. They usually
have a synthetic origin and any permissible temporal manifestation.

For example a golf course management application polls diagnostic data from vehicles
(e.g., with CoAP). However, a golf course manager could design a governance process that
is triggered in specific situations such as in case of emergency. Such process could, for
example, increase the update rate of the vehicle sensors and change the communication
protocol to MQTT in order to satisfy a high-level governance objective, e.g., company’s
compliance policy to handle emergency updates in (near) real-time. In this context
it is uncertain whether the governance process will be executed consistently across
the infrastructure, because some vehicle sensors might not support functionality to
dynamically change their update rate.

225

A. A Taxonomy of Infrastructure-level Uncertainties in CPS

Data delivery
Uncertainties

family Application

Quality
(data)

Dependability

Human
actions

Natural
phenomenon

Platform

Hardware

External to
infrastructure

Persistent Runtime Sensor
misconfiguration

Runtime Data freshness due to
network uncertainties,

e.g., latency

Hardware

Sporadic Runtime

Truck passing
In front of camera

Persistent Runtime Precision loss due to
data conversion or

formating

Sporadic

Legal /
complience

Human
actions

External to
infrastructure Persistent Runtime

Legal changes regarding
dissemination of sensory
data in certain areas

(e.g., country)

Runtime Sensor
decalibration

Recurring

Technological Runtime

Temporary device
malfunction due to
hardware glitches

Hardware Sporadic

Data packet corruption
on the network layer,

e.g., bit flip

Platform PersistentHuman action
Deployment

time Unsupported com.
protocol

Sensor freezing
(e.g., Airbus A320)

Technological

Persistent
Deployment

time Sensor resolution, e.g.,
Google maps location

Actuation
Uncertainties

family Runtime

Dependability

Legal/compliance Platform
Human
actionsApplication Persistent Insufficient

permissions to access
a device

Application

Environment

Human
actions

Technological

Human
actions

Natural
phenomenon

Platform

Sporadic Concurrent access to
a device

Recurring Competing applications
actions (e.g., app1 open

window, app2 close window)

External to
infrastructure Sporadic Actuation action

jeopardizes user
safety

Hardware Persistent Action that causes
defect actuator

Hardware Sporadic Lost actuation
request

Recurring Actuator malfunctioning
(e.g, chiller wing
malfunction)

External to
infrastructure Sporadic Temporarely blocked

actuator

Platform Persistent
Actuation starvation
due to actuation

request scheduling,
e.g., by priorities

Technological Hardware

Execution
environment
uncertainties

family
Application
uncertainty

Runtime

Deployment
time

Dependability

Hardware

Technological Persistent Unsupported CPU
architecture

Human actions

Sporadic
Insufficient RAM

Platform Human actions Persistent Runtime unavailable
(e.g., JVM) due to
provisioning errors

Persistent Unavailable/not
installed device
(e.g., sensor)

Dependability

Hardware Technological Persistent
Gateway failure

Legal/compliance Platform Human actions Persistent
Insufficient

permissions to deploy
device‐service to a

gateway

Gateway cannot accept
connection from device

Platform Technological Sporadic

Storage
Uncertainties

family Application

Legal /
compliance

External to
infrastructure

Human
actions Persistent

Legal changes regarding
storage of sensory data
(location, duration, etc.)

in a country

Dependability

Quality

TechnologicalHardware

Persistent

Multiple data instances
measuring the same

phenomenon due to readings
from multiple sensors affecting

data consistency

Sporadic Incomplete sensory
data history due to

event losses

Platform
Human
action Recurring Delayed synchronization

of sensory data stream
with permanent storage

Runtime

Hardware Technological Persistent

Loss of sensory data
history due to disk failure

Platform
Human
actions Sporadic Storage availability

uncertainties due to too
many concurrent writes

Insufficient disk space
for the Big sensory data

DataDelivery
Uncertainty

Infrastructure
Uncertainty

Governance
Uncertainty

GovernanceProcess
ExecutionUncertainty

Actuation
Uncertainty

ExecutionEnvironment
Uncertainty

RuntimeExecution
EnvironmentUncertainty

Figure A.6: Overview of governance composite uncertainties family.

Elasticity uncertainties family

Elasticity is dependent on multiple factors. First, elasticity decisions are taken based
on monitoring information, so uncertainty related to monitoring has great importance.
Based on monitoring information, elasticity decisions are enforced through a combination
of software and hardware actuation mechanisms, each of them also potentially introducing
their own uncertainties. Figure A.7 shows UML diagram of the composed uncertainties
families related to elasticity uncertainties:

Monitoring data uncertainties – These uncertainties affect elasticity of the system, and
can refer to uncertainty of monitoring data quality, e.g., availability or freshness. They
usually have a synthetic origin, i.e., required information is not collected and monitored
due to a software error. Another cause can be software failure of monitoring system,
or of monitoring information data source. Another cause is data collection mechanism
and intervals, especially considering poll-based data collection systems, which collect
and report monitoring information only at certain time intervals. They are located
in platform. They can have any temporal manifestation and can are observed at
application runtime.

Cloud Service behavioral uncertainty after actuation – These uncertainties affect the elas-
ticity of the application by reducing the effectiveness, or affecting the impact of enforced
elasticity actions. They originate in the (cloud provider’s) platform not offering con-
sistent performance across different instances of the same used cloud service, either

226

to colocation or congestion or virtual resources, or complete/partial failure due to
underlying cloud software and hardware infrastructure.

Data delivery
Uncertainties

family Application

Quality
(data)

Dependability

Human
actions

Natural
phenomenon

Platform

Hardware

External to
infrastructure

Persistent Runtime Sensor
misconfiguration

Runtime Data freshness due to
network uncertainties,

e.g., latency

Hardware

Sporadic Runtime

Truck passing
In front of camera

Persistent Runtime Precision loss due to
data conversion or

formating

Sporadic

Legal /
complience

Human
actions

External to
infrastructure Persistent Runtime

Legal changes regarding
dissemination of sensory
data in certain areas

(e.g., country)

Runtime Sensor
decalibration

Recurring

Technological Runtime

Temporary device
malfunction due to
hardware glitches

Hardware Sporadic

Data packet corruption
on the network layer,

e.g., bit flip

Platform PersistentHuman action
Deployment

time Unsupported com.
protocol

Sensor freezing
(e.g., Airbus A320)

Technological

Persistent
Deployment

time Sensor resolution, e.g.,
Google maps location

Actuation
Uncertainties

family Runtime

Dependability

Legal/compliance Platform
Human
actionsApplication Persistent Insufficient

permissions to access
a device

Application

Environment

Human
actions

Technological

Human
actions

Natural
phenomenon

Platform

Sporadic Concurrent access to
a device

Recurring Competing applications
actions (e.g., app1 open

window, app2 close window)

External to
infrastructure Sporadic Actuation action

jeopardizes user
safety

Hardware Persistent Action that causes
defect actuator

Hardware Sporadic Lost actuation
request

Recurring Actuator malfunctioning
(e.g, chiller wing
malfunction)

External to
infrastructure Sporadic Temporarely blocked

actuator

Platform Persistent
Actuation starvation
due to actuation

request scheduling,
e.g., by priorities

Technological Hardware

Execution
environment
uncertainties

family
Application
uncertainty

Runtime

Deployment
time

Dependability

Hardware

Technological Persistent Unsupported CPU
architecture

Human actions

Sporadic
Insufficient RAM

Platform Human actions Persistent Runtime unavailable
(e.g., JVM) due to
provisioning errors

Persistent Unavailable/not
installed device
(e.g., sensor)

Dependability

Hardware Technological Persistent
Gateway failure

Legal/compliance Platform Human actions Persistent
Insufficient

permissions to deploy
device‐service to a

gateway

Gateway cannot accept
connection from device

Platform Technological Sporadic

Storage
Uncertainties

family Application

Legal /
compliance

External to
infrastructure

Human
actions Persistent

Legal changes regarding
storage of sensory data
(location, duration, etc.)

in a country

Dependability

Quality

TechnologicalHardware

Persistent

Multiple data instances
measuring the same

phenomenon due to readings
from multiple sensors affecting

data consistency

Sporadic Incomplete sensory
data history due to

event losses

Platform
Human
action Recurring Delayed synchronization

of sensory data stream
with permanent storage

Runtime

Hardware Technological Persistent

Loss of sensory data
history due to disk failure

Platform
Human
actions Sporadic Storage availability

uncertainties due to too
many concurrent writes

Insufficient disk space
for the Big sensory data

DataDelivery
Uncertainty

Infrastructure
Uncertainty

Governance
Uncertainty

GovernanceProcess
ExecutionUncertainty

Actuation
Uncertainty

ExecutionEnvironment
Uncertainty

RuntimeExecution
EnvironmentUncertainty

Storage
Uncertainty

StorageDependability
Uncertainty

Infrastructure
Uncertainty

DataDelivery
Uncertainty

Elasticity
Uncertainty

MonitoringData
Uncertainty

ActuationBehavior
Uncertainty

Actuation
Uncertainty

ExecutionEnvironment
Uncertainty

RuntimeExecution
EnvironmentUncertainty

Figure A.7: Overview of elasticity composite uncertainties family.

227

APPENDIX B
GovOps Policy Language BNF

1 Constraint := constraintName : CONSTRAINT ComplexCondition |
2 CONSTRAINT ComplexCondition UncertaintyDetails
3
4 Monitoring := monitoringName : MONITORING varName=MetricFormula
5
6 UncertaintyParameter:= String| String BitwiseOperator UncertaintyParameter
7 UncertaintyDetails:= CONSIDERING_UNCERTAINTY UncertaintyParameter
8
9 Strategy := strategyName :

10 STRATEGY CASE ComplexCondition : action(parameterList) |
11 STRATEGY CASE ComplexCondition : action(parameterList)
12 FOR GovName UncertaintyDetails |
13 strategyName : STRATEGY WAIT ComplexCondition |
14 strategyName : STRATEGY STOP ComplexCondition |
15 strategyName : STRATEGY RESUME ComplexCondition
16
17
18 Query := query:= QueryParameter
19 QueryParameter= paramType=paramValue |
20 paramType=paramValue AND QueryParameter
21 GovernanceScope:= govName: GOVERNANCE_SCOPE Query UncertaintyDetails
22
23 MetricFormula := metric | number |
24 metricFormula MathOperator metric |
25 metricFormula MathOperator number
26
27 Condition := metric RelationOperator number|
28 number RelationOperator metric |
29 Violated(name)|Fulfilled(name)
30 ComplexCondition := Condition | ComplexCondition BitwiseOperator Condition |
31 (ComplexCondition BitwiseOperator Condition)
32
33
34 MathOperator := + | - | * | /
35 BitwiseOperator := OR | AND | XOR | NOT
36 RelationOperator := <|>|>=|<=|==|!=

229

	Acknowledgements
	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Listings
	List of Publications
	Introduction
	Problem Statement
	Scientific Contributions
	Organization of the Thesis

	Case Study & Background
	Case Study Scenarios
	Background

	Programming IoT Cloud Systems
	A High-Level Programming Model for Cloud-centric IoT Cloud Applications
	Motivation and Research Challenges
	Design Requirements and Overview of PatRICIA Framework
	Intent-based Programing Model for IoT Cloud Applications
	Evaluation & Prototype Implementation
	Conclusion

	A Programming Model for Resource-constrained IoT Cloud Edge Devices
	Overview of DRACO Framework
	Data and Control Points: A Programming Model for Edge Devices
	Main Runtime Mechanisms of the DRACO Framework
	Evaluation & Prototype Implementation
	Conclusion

	A Unifying Programming Framework and Methodology for Everything-as-Code in IoT Cloud Systems
	Motivation and Research Challenges
	The SDG-Pro Framework and Development Methodology for IoT Cloud Applications
	SDG-Pro's Programming Model
	SDG-Pro's Runtime Mechanisms
	Evaluation
	Conclusion

	Provisioning IoT Cloud Systems
	Provisioning Software-defined IoT Cloud Systems
	Motivation
	Main Building Blocks of Software-defined IoT Systems
	Main Techniques for Provisioning Software-defined IoT Cloud Systems
	Evaluation & Prototype Implementation
	Conclusion

	A Middleware Infrastructure for Utility-based Provisioning of IoT Cloud Systems
	Motivation & Research Challenges
	IoT Cloud Provisioning Middleware
	Runtime Mechanisms for Multi-level Provisioning in IoT Cloud
	Evaluation
	Conclusion

	Governing IoT Cloud Systems
	GovOps: A Methodology and a Runtime Framework for Governance in Large-scale IoT Cloud Systems
	Motivation
	GovOps – A Novel Methodology for Governance and Operations in IoT Cloud Systems
	A reference model for GovOps methodology
	rtGovOps – A Runtime Framework for GovOps in Large-scale IoT Cloud Systems
	Main Runtime Mechanism of the rtGovOps Framework
	Evaluation & Prototype Implementation
	Conclusion

	Governing Elastic IoT Cloud Systems under Uncertainty
	Motivation & Research Challenges
	The U-GovOps framework
	A DSL for Developing Uncertainty- and Elasticity-aware Governance Strategies
	U-GovOps Runtime Mechanisms for Mitigating Governance Uncertainties
	Evaluation
	Conclusion

	Related work
	Programming Support for IoT Cloud applications
	Provisioning Approaches in IoT Cloud
	IoT Cloud Governance

	Conclusion & Research Outlook
	Summary of Contributions
	Revisiting Research Questions
	Future Work

	Bibliography
	A Taxonomy of Infrastructure-level Uncertainties in CPS
	GovOps Policy Language BNF

