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Abstract

We present a performance and communication analysis of the RPP3D
code, which implements the Particle-in-Cell (PIC) algorithm for sim-
ulation of laser-plasma interactions. The analysis is based on the
SCALEA tool and a new tool (WatchMPI) developed for detailed com-
munication analysis. We find favorable scaling and communication /
CPU ratio of the present code. Current bottlenecks are in on-node
computations.

1 Introduction

The Relativistic Plasma Propagation in 3 Dimensions (RPP3D) program
is the Photonics Institute’s implementation of a PIC algorithm to analyze
the interaction of a laser pulse with a plasma. Current mid-sized problems
require a nine-node cluster to maintain about 107 cells, on each of which 9
double precision numbers represent the electromagnetic fields and currents.
A total number of 2 × 107 particles move across those cells, where each
particle is characterized by 7 parameters. A typical job requires several
days of execution time and produces more than 2 GB of output data. Recent
developments of high-intensity pulses have created the demand to simulate
much larger plasma volumes which would require execution times of several
months. This motivates the thorough performance analysis of the existing
code presented here.
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We first give an overview over the PIC method and its implementation
in RPP3D. The tools employed for code analysis are briefly discussed before
a the analysis of single-node performance, load distribution, and communi-
cation is presented.

1.1 The PIC method

The propagation of a laser pulse through a plasma is governed by Maxwell’s
equations

~∇× ~B =
1

c

∂ ~E

∂t
+

4π

c
~J

~∇× ~E = −
1

c

∂ ~B

∂t
,

(1)

where the three-component vectors ~E and ~B are electric and magnetic fields
of the plasma. The derivatives are with respect to time t and the three
spatial directions x, y, z. The currents ~J are generated by electrons that
move according to the relativistic equations of motion
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Here m and ~v denote mass and velocity of each electron and c is the velocity
of light. A single electron contributes an amount of qe~v to the total current
~J , where qe is the electron charge. The contribution of ionic motion to
the currents is described by an analogous equation with mass and charge
adjusted accordingly

The main idea of PIC is to maximally exploit the locality of the above
system of partial differential equations for an efficient implementation on a
parallel computer. The total simulation volume is divided into a grid of cubic
“cells”, whose edges and surfaces carry the components of the local fields
and currents in the respective directions (cf. Figures 1 and 2). The electrons
are lumped together in “macro-particles” in the form of cubes of the same
size as the cells, each representing a cloud of electrons. For simplicity, we do
not distinguish in the following discussion between the macroparticles and
the electrons.

Maxwell’s equations are discretized using a first order finite difference
scheme. As an illustration, the time-derivative of the x-component of ~E is
approximated as
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Figure 1: A two-dimensional illustration of the grid cells and two particles
flowing continuously around. The center points of the cells and particles are
also shown, as well as two field vectors are exemplified in one grid cell.

Figure 2: One cell of the grid and the nine values it maintains.
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Figure 3: The separation of the simulation space in several subvolumes.
Each subvolume is assigned to a cluster node. The arrow denotes the laser
pulse which is applied at the center subvolume.

Particle motion, in turn, is continuous across the whole simulation volume.
The equations of motion (2) are solved by a 4th order Runge Kutta algo-
rithm. As field quantities are given only on discrete grid points, values for
arbitrary particle coordinates are obtained by interpolation.

Electrical current is produced, when particles cross grid-cell boundaries.
The contribution of a moving particle with total charge qe to the surface
component of ~J is weighted by the fraction of the particle cube that overlaps
with the cell.

Memory consumption of the scheme above is determined by the need
to store field and particle parameters of all cells and particles. RPP3D
consumes a minimum of X×Y ×Z×9×[precision] Bytes of RAM to establish
the simulation space. A typical mid-sized simulation space of X = Y = 120
and Z = 800 and using double precision floating numbers leads to a total
consumption of approximately 850 MB from RAM. The actual numbers
are somewhat larger because extra arrays for border values are used for
performance reasons.

1.2 The Main Algorithm

The simulation volume is divided into subvolumes, which are distributed
over parallel compute nodes as shown in Figure 3. Each time step consists
of updates of electric and magnetic fields, particle motion, and updates of
the cell currents. Between these steps one must communicate border values
of the fields to neighboring compute nodes and transfer particles that move
from one subvolume to the next.

Figure 4 shows a simplified flow chart of the RPP3D algorithm. The
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Figure 4: The main algorithm of the RPP3D code.

main loop starts immediately after the two initialization steps, which con-
sists of parsing the simulation input file and creating the simulation space,
i. e. the initial grid and particle quantities accordingly.

In the computation, a “co-moving frame” is used, i.e. the simulation
volume itself propagates at the speed of light and the laser pulse can never
leave it. In that way propagation over large distance can be simulated using
only a limited volume. For the implementation this requires the shift of the
coordinates of the field quantities after each time step.

The theoretical scaling behavior of that scheme is favorable as the com-
munication is strictly nearest-neighbor. In principle, when the volume to
surface ratio of the subvolumes is kept constant, linear scaling with the
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Figure 5: The field quantities of the border cells must be communicated to
every adjacent cluster node.

number of compute notes could be expected (cf. Figure 5). In practice, an
increase in volume is accompanied by changes in the physical parameters like
laser field strength or density of particles which leads to an as yet unknown
change in behavior of the equations (see discussion below).

1.3 Theoretical Code Analysis

The physical simulation volumes are measured in micrometers, but from
a performance point of view, the cell count per dimension is more critical
because each cell carries a fixed amount of electromagnetic field and current
values. Therefore, larger simulation volumes correspond to an equally larger
amount of cells. Obviously, the volume scales quadratically with the cross-
section. That is, doubling both the X and Y dimension raises the lateral
areas by two, but the volume—and also the computing load—is increased by
four. Since there is no communication through the front and rear surfaces,
the amount of field-related traffic scales proportionally with the cross-section
(the X and Y dimension) or the Z dimension.

On the other hand, the particles-related traffic is more complicated and
difficult to predict. Initially, at the start of the simulation, the particles are
uniformly distributed. Since the simulated plasma is globally neutral, both
electrons and ions must exist in equal numbers. That is the total number of
particles is (typically) twice the number of cells which is predetermined by
the volume.

Depending on the amount of energy injected by the laser pulse into the
plasma, a more or less significant number of particles will leave the current
subvolume of a computing node. But the pulse has also focusing capabil-
ities, constricting certain particles in the current subvolume. In practice,
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each computing node maintains an array of all particles that are present to
this node. At every time step, leaving particles are communicated to the
neighboring nodes, but this amount depends in a complicated way on the
pulse geometry, the pulse intensity, the size of the simulation volume cross
section, the boundary conditions, and other parameters.

1.4 Open Performance Questions

Although the algorithm and the source code are well known, due to the
complexity of a >13,500 lines parallelized code, empirical studies of the
performance and scaling behavior are needed. The following questions were
still open:

• Do certain subroutines result in bottlenecks compared to other sub-
routines? Which code regions need to be optimized?

• What traffic volume is communicated between the compute nodes?

• Is the CPU or the network burden more critical?

• What amount of particle-related traffic is really generated?

• Does the computing and traffic load become non-uniformly distributed
across the cluster nodes?

• Which scaling behavior can be expected for larger problem sizes?

The subsequent sections describe performance study in detail and present
our main conclusions.

2 Runtime Performance and Communication Mea-

surements

A variety of tools were employed for the analysis of node-performance and
communication. The SCALEA package [1] gave a detailed node-differential
analysis of the performance. For monitoring actual data rates close to hard-
ware, the MRTG [2] tool was employed. Finally, for a detailed analysis of
data flows, a new tool “WatchMPI” was developed. We give a brief descrip-
tion of these three tools below.
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2.1 SCALEA

The SCALEA package and its instrumentation system allowed us to mark
suspicious code regions by clamping them via special instrumentation func-
tion calls. Each of these “clamps” can be assigned a unique identifier, which
refers to the corresponding performance metric measured, plus a code re-
gion designator, which allows to group code regions by type. Measurable
performance metrics include wall-clock time, user time, system time, and
others. See [1] for a detailed description.

The profiling tool also logs code region dependencies, that is, nested code
regions can be easily tracked. This functionality supports a quick survey
through the code and a subsequent examination in greater detail. Other
than commonly used profiling tools, SCALEA allows to examine distributed
cluster applications, that is, each single node is observed separately. The
instrumentation library “SCALEA Instrumentation System” (SIS) supports
C/C++ and Fortran programs, which are implemented based on OpenMP,
MPI, or HPF+ routines.

We could successfully utilize SCALEA to measure various performance
parameters for a number of code regions, such as the number of invocations
and timing metrics. Figure 6 shows how the computing wall clock time
is distributed over various interesting code regions per parallel instance.
This way, certain critical code regions have been identified for recoding. In
addition the results have been compared and verified by other profiling tools,
in particular gprof and cachegrind, which could be applied on single-node
runs only. Essentially the figures were the same except that the performance
characteristics subtly change when the number of nodes is increased and the
application becomes more and more distributed.

2.2 WatchMPI

A simple MPI traffic measurement tool was developed, named ”WatchMPI”,
which allows to track each single data transaction between the computing
nodes and even between single code regions which are automatically identi-
fied by a unique identifier. Network protocol issues such as TCP algorithms
and timers are not taken into account. In order to improve our program
architecture we are only interested in the traffic volumes passed to the MPI
layer. In particular it is important to know how long each transaction takes.
Subsequently we can easily determine the aggregate traffic rates injected
into the network backbone to grasp any physical limitations.

WatchMPI consists of two components. First of all, a fast MPI wrapper
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Figure 6: The computing wall clock time consumption across code regions
and parallel instances. As it can be seen, most of the time is consumed by
a few subroutines only.
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written in C is used, which does the main work: it collects and logs statistical
traffic data. The second component consists of a set of Octave modules to
support the analysis of the logfiles. Octave [3] is a matrices-based calculation
program similar to MatLab (but freeware) and nearly syntax equivalent,
therefore these modules could be easily used with MatLab. Finally, a simple
shell script transforms any Fortran or Fortran90 code automatically into a
WatchMPI-instrumented version—that is, there is no need to mark each
MPI-call separately.

After instrumentation, the program is invoked as usual. During the run,
WatchMPI logs each transaction into a node-specific logfile. Each entry con-
sists of caller-ID, begin- and end- timestamp, receiver-rank, and the number
of transmitted payload bytes. Using this information one can easily deter-
mine which MPI-call of a specific node has sent how much data to another
specific node, and also when an event occurred and how long it took.

Besides tools for data preparation (calibration) and meta-tools (tools
that further enhance the operation) the following basic analysis tools are
currently available:

• rates computes the aggregate data rate per specified time unit (sec-
onds or even microseconds) and creates postscript plots automatically.
Fine-grain traffic rate figures can be computed, as well as a total aver-
age. This tool allows to observe the total payload traffic rate injected
into the physical network backbone. MPI saturation and network lim-
its can be easily detected.

• plapper creates a table which lists all MPI calls of the program by
ID and the corresponding traffic volume being sent by it. This is also
useful for sanity checks of the program and to detect code regions that
send unexpected huge (or low) volumes of data.

• collapse plots the aggregate data volumes injected into the network by
superposing all transactions in wall clock time bins, that is, considering
wall clock start and end times. This tool allows to analyze what data
quantities are passed to the MPI layer at specific points in time.

• twonodes plots single data transactions versus time between each two
nodes of the cluster. This tool allows to determine whether all nodes
utilize the MPI interface equally or not.

• txrate plots the aggregate cumulative data volume versus time. That
is, the slope (the first derivative) of this curve is the current aggregate
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traffic rate. This tool provides a simple overview of the overall traffic
characteristic of this run. For example, periodic patterns of the main
loop or time-varying anomalies (features) such as initialization traffic
can be easily determined.

The following example shall illustrate the usage of WatchMPI. For any
given Fortran1 program myprog.f90 which utilizes MPI calls, the com-
mand transmpi90.sh automatically prepares (or “instruments”) any F90
code in the current directory. As a second step the code must be build
against the WatchMPI code and can be executed as usual. If nine cluster
nodes were involved, WatchMPI will generate nine logfiles (watchmpi 0.log,
watchmpi 1.log, . . . , watchmpi 8.log), which contain the traffic measure-
ment information. These logfiles can be analyzed using the Octave tools de-
scribed above. The first command should always be octave:1> timereset(9),
which removes the offset from all stored timestamps. Note that each WatchMPI
module requires the number of cluster nodes as an argument. For example
octave:2> rates(9,1) will immediately generate a graph in Postscript for-
mat, containing a plot of the aggregate traffic rates, using one second as time
base. Figure 10 is an example plot of this tool. Another example of a prac-
tical module is octave:3> twonodes (9, 200), which creates Postscript
plots that illustrate the traffic volume being sent from one node to another.
If N nodes were specified, this module will produce N(N − 1) plots, in case
every node has sent data to any other node. The second argument specifies
how many observed transactions should be plotted, in this case no more
than 200. In our investigations, the module twonodes was especially useful
to analyze the network load distribution.

2.3 MRTG

As an immediate solution to analyze a per-node network traffic, we installed
the Multi-Router Traffic Grapher (MRTG) at the front-end node of the clus-
ter. MRTG [2] is a freeware tool which allows to read network interface card
counters periodically and automatically plots traffic statistics in self-created
HTML pages. MRTG was initially developed to measure IP traffic statistics
of routers (hence the name) but it is a universal Simple Network Manage-
ment Protocol (SNMP) client and can be also used to read the counters of
Ethernet, Myrinet and Infiniband Switches.

1Currently, WatchMPI only supports Fortran 77 and Fortran 90. An extension for
C/C++ is planned.
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Figure 7: One example plot of MRTG illustrating the data rates of one
cluster node during a 9-node RPP3D run.

Although MRTG turned out to be very practical to get a quick idea of the
network load during a run, we needed a more precise tool, which allows to
measure traffic rates with finer granularity since MRTG only supports time
bases greater or equal five minutes. Furthermore, we needed to measure
payload-based data rates, that is, without protocol overhead, in order to
restrict the investigations solely on our program architecture. This lead to
the development of WatchMPI.

3 Communication Analysis

As shown in figure 7, the traffic load of a single cluster node, which is pro-
cessing a mid-sized problem lies between 10 and 20 Mbit/s. These values
have been measured with MRTG and include all protocol overheads.2 There-
fore, the network backbone is currently no limit to our RPP3D application,
assuming access rates greater or equal 1 Gb/s and a switch backplane of at
least 1 Gb/s × number of nodes.

Interestingly, as shown in figure 8, the network backbone load (average
aggregate data rate of the computing nodes) decreases when the simulation
volume is increased, provided that a constant number of cluster nodes are
involved. This observation has been made for numerous 4-node runs, as well
as for 9-node runs.

Also it can be seen from figure 8, quadrupling the cross section (i. e.
doubling the X and the Y dimension) reduces the average aggregate traffic
rates by 60-90%. Obviously, the total traffic volume per loop cycle must
be significantly increased because the surfaces of the subvolumes have been
doubled and the number of particles even quadrupled.

2We assume full-sized Ethernet frames with 18 Bytes of header information plus ad-
ditional 40 bytes for TCP/IP headers, leading to a protocol overhead of approximately 4
percent, disregarding any MPI overhead.
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Figure 8: The aggregate average network load of 11 9-node runs versus
simulation volume size. Note how the network load decreases when the
simulation volume size is increased.
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Table 1: The consumed wall clock time per main loop cycle in seconds
(rounded) for four different dimensions of the simulation volume.

Volume Dimensions Seconds/cycle

30×30×250 0.1
60×60×250 0.3
120×120×250 1
120×120×875 3

An empirical comparison of the “instantaneous traffic rate” has been
made using a “collapse” algorithm, which aggregates and superposes all
transmitted traffic volumes of all nodes in wall clock time bins. This WatchMPI
feature does not provide a traffic rate based on arbitrary time bases, which
would always smoothen extremely short bursts, rather it illustrates what
amount of traffic load is passed to the MPI layer at any instant of time.
For example the 9-node 60×60×250 run showed bursts up to 1,4 Mbytes
“per instant”, while the 9-node 120×120×250 run reached 3,5 Mbytes per
instant. That is, the empirical scaling factor for the traffic bursts during a
single pass of the main loop is approximately 2.5.

This empirical scaling behavior leads us to the assumption that the ratio
between CPU load and network load is increased when the problem size is
increased. Doubling the X and Y dimension quadruples the cross section as
well as the volume of each subvolume. That is, the number of cells and the
number of field quantities used for the calculations, are also increased by a
factor of four. As table 1 shows, these assumptions are indeed supported
by empirical observations, as the processing time per loop cycle is actually
increased by a factor of 3 or 4.

Watchmpi labels each MPI-call with an unique index, which allows to
draw the transmitted data volume versus “code region”. We denote a code
region any arbitrary consistent chunk of code (typically a subroutine) which
passes data to the MPI interface. Figure 9 shows the traffic statistics of
a typical example job, with dimensions of 60×60×250. Clearly, the field-
related traffic is about 3-4 orders of magnitude larger than the particle-
related traffic. In the example, the particle-related traffic has a magnitude
of 10-100 MByte compared to 200-1000 MByte for the field-related traffic.

Another interesting observation is the initial negative slope of the aver-
age network backbone load at the beginning of a job. As it can be seen in
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Figure 9: Total traffic volumes transmitted per code region. Code regions
with traffic volumes below 2 · 108 communicate only particle information.
All other code regions shown here communicate field-related information.

figure 10, the traffic rate is nearly twice as high when the job is started and
reaches a constant average value after approximately 6000 seconds. This ob-
servation has been made with arbitrary problem sizes and the explanation
is as follows: At the moment the laser pulse hits the front surface of the
simulation volume, all cells have zero values for the field quantities and the
calculation of the Maxwell equations is immediately finished. During the
propagation of the laser pulse, more and more cells are affected by the dis-
tortion of the electromagnetic field and hence the calculation load increases
linearly. Finally, when the laser pulse hits the rear surface of the simulation
volume, the CPU load cannot be further increased and the observed traffic
rate reaches the saturated value. At this moment, any further propagation of
the laser pulse is implemented by a coordinate-shift of the field coordinates,
hereby establishing a “co-moving frame”.

It should be mentioned, that (currently) the particle-related communica-
tion is more efficiently implemented than the field-related communication.
While particles are maintained in a dynamically managed array and it is
obvious to only communicate those particles which are really leaving the
volume, field values of any border-cell are always communicated—even if
the assigned field quantities have not changed. As soon as traffic reduction
becomes a critical issue, an improvement of the field-related data structures
must be considered.
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Figure 10: The data rate evolution of a typical 9-node run. The initial
negative slope corresponds to inflow of the electromagnetic Al fields of the
laser pulse.
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4 Conclusion

SCALEA and WatchMPI turned out to be practically usable tools to in-
vestigate the performance and bottlenecks of Beowulf applications. Using
them in combination, the most critical questions could be answered and also
several optimization approaches could be planned. In particular:

• Certain subroutines which constitute critical bottlenecks have been
identified.

• Currently, the aggregate traffic volume communicated between the
cluster nodes does not hit the limits of a Gigabit/s network backbone3

• The ratio between the CPU load and the network load increases with
an increased problem size. Typically, the scaling behavior drops the
network load by approximately 30% when the simulation volume is
quadrupled.

• The particle-related traffic is almost negligible compared to field- re-
lated traffic. Although the number of particles is twice as high as the
total number of cells, only a small amount of them crosses the borders
of a subvolume per time step.

• Both SCALEA and WatchMPI revealed that the computing and traffic
load roughly remains uniformly distributed across the cluster nodes.

• The network load will only be limited by the network backbone if the
basic algorithm will be significantly accelerated. This issue must be
considered during the ongoing code optimizations.

Additional interesting analysis approaches could be performed because both
SCALEA and WatchMPI provide various different types of measurement
data, which can be correlated and might reveal further insights from a par-
allelized code. It should be stated that analysis tools for parallelized pro-
grams should be as flexible and automatic as possible. Typically, a single
“performance experiment” takes a lot of preparation time, including instru-
mentation of the code, compilation time, and input file preparation, as well
as a significant post processing time needed to analyze the data. According

3As been told by the cluster administrators, Jumbo frames, i. e. oversized frames
greater than 8 KB, are currently not implemented. Since RPP3D generates typical mes-
sage sizes between 40 and 800 KByte, the use of Jumbo frames would further increase the
overall network throughput.
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to our experience, the automation of the whole process is still an important
issue.

All described performance tests have been made under “production con-
ditions”, that is, also other jobs were frequently running in parallel and
consumed a more or less significant fraction of the network backplane band-
width. Nevertheless, the described behavior has been repeatedly observed
and can be considered reproducible.
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