
Standardized Intermediate Representation for Fortran, Java, C and C++
Programs

APART
�
Technical Report

Workpackage 1

http://www.fz-juelich.de/apart

Aurora Technical Report

Clovis Seragiotto, Jr., Hong-Linh Truong
Institute for Software Science

University of Vienna�
clovis, truong�@par.univie.ac.at

Thomas Fahringer
Institute for Computer Science

University of Innsbruck
Thomas.Fahringer@uibk.ac.at

Bernd Mohr
Central Institute for Applied Mathematics

Forschungszentrum Jülich GmbH
B.Mohr@fz-juelich.de

Michael Gerndt, Tianchao Li
Institut für Informatik, LRR

Technische Universität München�
gerndt, lit�@in.tum.de

Abstract

When building a performance analysis tool, one usually needs to select an instrumentation engine for a specific program-
ming language. Instrumentation engines commonly traversean internal, mostly non-portable program representation in order
to insert probes that collect performance information during execution of an instrumented program. Performance analysis
tools are built on non-standardized instrumentation engines, which forces performance tools to develop separate interfaces to
instrumentation engines and adjust to different intermediate program representations, one for every different instrumentation
engine. In the context of the Apart working group, we designed a unique intermediate program representation named SIR as
an XML-language, which we propose as a standard to be used by alarge variety of performance analysis tools. The basic
idea of SIR is to provide a standardized intermediate program representation that must be supported by a large variety of
instrumentation engines covering the most important programming languages. SIR has been defined thus far for Fortran,
C, C++, and Java thus we demonstrated that SIR comprises bothprocedural and object-oriented programming languages.
Through a SIR, performance analysis tools no longer have to adjust to different program representations for every different
instrumentation engine. Moreover, in combination with a standardized instrumentation request language, a comprehensive
interface between performance analysis tools and instrumentation engines is described.

1 Introduction

Many performance tools rely on performance information (overheads, trace files, etc.) commonly obtained by staticallyin-
strumenting the source code or dynamically instrumenting an executable. Static instrumentation frequently imposes compiler
dependencies, whereas dynamic instrumentation may dependon symbol table information and is also very much hardware�

The IST Working Group onAutomatic Performance Analysis: Real Toolsis funded under Contract no. IST-2000-28077

1

specific. In the worst case performance tool developers haveto build separate instrumentation engines for every different
programming language, a tedious and time consuming effort.

In this document we propose aStandardizedIntermediateRepresentation as an interface between instrumentation engines
and higher-level performance tools. The SIR is intended to be an abstract representation for procedural and object-oriented
programs. Basically, a SIR contains information about statements and directive types (e.g. OpenMP) with very little details
on their structures. Higher-level performance tools commonly only need to know the type of a statement in order to make a
decision about specific instrumentation requests or performance analysis.

Moreover, higher-level performance tools can request the generation of a SIR for arbitrary source programs. The perfor-
mance tool can then traverse the SIR and request the instrumentation of specific code regions. Important is that the generation
of a SIR based on a specific input program as well as the actual instrumentation is done by an external tool. On the basis of
the SIR, higher-level performance tools are provided with ahigh-level and portable instrumentation/profiling/monitoring in-
terface for a broad variety of programming languages without dealing with low-level details such as instrumentation, tracing,
etc.

In this document we describe the format of a SIR for Fortran 95, Java, C and C++ programs applicable not only to source
codes but also to binaries generated from a program written in one of these languages. As extensive support already exists to
traverse XML documents, we chose to define the SIR based on XML.

��� ���� ����	
	���

An XML documentis a well-formed data object according to the XML specification [1]. An XML document contains at
least oneelement, and each element may have a set ofattributesand may be nested within other elements. The (unique)
element in the XML document that is not nested is called theroot element. For instance, in

<staff>
<employee matr="B001" name="John Doe" marriedTo="A003"/>
<employee matr="B002" name="John Smith"/>
<employee matr="A003" name="Jane Doe" marriedTo="B001"/>

</staff>

staff� and
employee� are elements, whilematr, nameandmarriedToare attributes of the element
employee�.
A DTD (Document Type Definition) is a set of markup declarations that defines the grammar for a class of XML docu-

ments. An XML document that has an associated DTD and complies with it is said to bevalid. For example, the previous
example is valid according to the following DTD:

<!ELEMENT staff (employee)+> <!-- meaning: a staff element may contain one -->
<!-- or more employee elements -->

<!ELEMENT employee EMPTY> <!-- meaning: an employee element may not contain -->
<!-- any text or nested element -->

<!ATTLIST employee <!-- meaning: an employee element: -->
matr ID #REQUIRED <!-- must have the attribute matr, a string not -->

<!-- used as the value of any other ID-attribute -->
<!-- in the same XML document -->

name CDATA #REQUIRED <!-- must have the attribute name, a string -->
marriedTo IDREF #IMPLIED <!-- may have the attribute marriedTo, a string -->

<!-- with the same value of any other -->
<!-- ID-attribute in the same XML document-->

In the following, DTD will be used to define thegrammarof SIR documents, but note that DTD cannot describe all
semantic rules and restrictions specificated in this document.

DTDs have a limited datatype capability and a different syntax from XML documents; this motivated the development of
XML schemas, to which the DTD grammar can be converted using the rules in Section 4.

2 SIR Description

A SIR is an XML document representing a Fortran 95, Java, C or C++ program (referred to simply asinput programin
the rest of this document). A valid SIR may contain several types of elements, the most important of which aresir, unit, and

2

codeRegion. All the elements are described in detail in this section, which also gives the markup declarations (element type
declarations and attribute-list declarations) that must compose the DTD describing the syntax of SIRs.

A tool that generates SIRs does not need to represent all elements described in this specification in order to be SIR
compliant; nevertheless, the tool must document that, if the generated SIR does not contain a certain element or attribute, this
is not because the element is absent in the input program, butbecause the tool chose to ignore it.

� �� ��� � ����	
 ��

The root of any SIR is given by asir element. Asir element must specify:

� the ”main” language the input program is written in (for instance, if a Java program uses native C functions, the language
must be Java, not C);

� at least one group (for instance, a class; see Section 2.2) ora program unit (for instance, a function; see Section 2.3).

Moreover, if it is known that the program communicates with other programs (processes or threads) by sending and receiv-
ing messages, themessagePassingattribute may be specified with the valuetrue (default:false); similarly, if communication
is done (also) through shared memory, thesharedMemoryattribute may be specified with the valuetrue (default:false).

The markup declarations representing these requirements are given below:

<!ELEMENT sir (variable*, (group|unit)+)>
<!ATTLIST sir
language (fortran|java|c|cpp) #REQUIRED
messagePassing (true|false) #IMPLIED
sharedMemory (true|false) #IMPLIED>

� �� ��� � ����	
� �
��� �	� �	��
�
�	��

Thegroupelement is used to represent an organizational, non-executable unit:

� modules in Fortran;

� packages, classes, interfaces, array types, and enums in Java;

� namespaces and classes, as well as structs and unions that define methods, in C++.

Any groupelement must specify:

� the type of the group it represents (with the attributetype);

� a unique identifier (with the attributeid).

The type used for Java arrays and enums and for C++ structs andunions isclass, while the type used for C++ namespaces
is package.

A groupelement may also specify the name of the group it represents (using the attributename) and the internal name the
compiler assigned to the represented group (with the attribute internal). In C++, aliases of namespaces are ignored, as well
as any alias for a class, struct or union name created withtypedef. This rule holds also for struct and union names in C.

A groupelement contains also zero or moregroupelements and zero or moreunit elements.
The declaration of variables (or fields) is represented withthe elementvariable, described in Section 2.5.
When representing a class or interface, agroupelement may specify superclasses and superinterfaces using the element

inheritance; this element accepts either the identifier or the name of a superclass or superinterface (with the attributesid and
namerespectively). The name must be used when the identifier is not available, since determining such an identifier may not
be trivial.

Finally, agroupmay contain alocationelement, to provide where the group has been declared (see Section 2.6). If the URI
of a location in agroupelement is left unspecified (or the entire location element), and if the immediate element containing
this groupelement is either agroupelement representing a class or interface, or aunit element representing a method, one
must assume that the URI of both elements (container and nested) is the same.

The requirements for agroupelement in a DTD are given below:

3

<!ELEMENT group (inheritance*, location?, variable*, (group|unit)*)>
<!ATTLIST group
id ID #REQUIRED
type (module|package|class|interface) #REQUIRED
name CDATA #IMPLIED
internal CDATA #IMPLIED>

<!ELEMENT inheritance EMPTY>
<!ATTLIST inheritance
id IDREF #IMPLIED
name CDATA #IMPLIED>

The language of the input program imposes certain additional restrictions; one should assume that these restrictions are
also respected in thegroupelements of any SIR (although this is not enforced):

� a groupelement representing a Fortran module may not contain anygroupelement;

� a groupelement for C++ may be nested only in agroupelement representing a namespace;

� in agroupelement representing a Java class, theinheritanceelement must always be specified (except if the represented
class isjava.lang.Object);

� the nameelement is never specified in agroup element representing a Java anonymous class (theinternal element,
however, may be);

� the name of a Java class or interface mustnotbe fully specified (that is, it mustnotcontain package names), as the full
name can be always derived from the SIR structure. In particular, nested classes must not contain the name of the class
they are nested within.

� �� ��� � ��	�
��

�� �
� �����

Theunit element is used to represent:

� functions, subroutines and the main program in Fortran;

� methods in Java and C++;

� functions in C and C++.

Any unit element must specify:

� the type of the unit it represents;

� a unique identifier.

A unit element specifies, through the attributename, the name of the unit it represents. Theunit element may also specify
the language of the unit represented (attributelanguage), which is useful when representing C methods linked to Javaor
Fortran programs. It may also specify an internal, compiler-assigned name for the unit it represents (attributeinternal).
Furthermore, aunit element must specify the attributeinstrumentablewith the valuefalse(the default istrue) if the tool that
generates the SIR knows that the unit cannot be later instrumented (e.g, it is a library function, but the instrumentation tool
can only instrument the source code). Finally, the attributevirtual must appear with the valuefalse(the default istrue) if, and
only if, one of the following conditions is true:

� theunit element represents a Java method declared as private;

� theunit element represents a C++ method not declared as virtual.

4

Nested in aunit element there is zero or moreunit elements, zero or moregroupelements, and zero or morecodeRegion
elements. Similar togroupelements, aunit element may also contain alocationelement, to provide the location where the
unit has been declared (see Section 2.6). If the URI of a location in aunit element is left unspecified (or the entire location
element), and the immediate element containing thisunit element is either agroupelement representing a class or interface,
or a unit element representing a method with the same language attribute, one must assume that the URI of both elements
(container and nested) is the same.

The declaration and use of variables are represented with the elementsvariableandvariableRef, described in Section 2.5.
When representing a method, function or subroutine, aunit element must specify the method (or function, or subroutine)
signature by specifying the attributeargumentsand suplying the identifiers of variables, as described alsoin Section 2.5.

When representing a Fortran function or subroutine, aunit element may specify a name under which the function or
subroutine may also be called using thealiaselement.

Note that the fact a function or method isinline is ignored.
The syntactic requirements for aunit element in a DTD are given below:

<!ELEMENT unit (alias?, location?, variable*, arguments*, variableRef*,
(group|unit|codeRegion)*)>

<!ATTLIST unit
id ID #REQUIRED
type (function|subroutine|program|method) #REQUIRED
name CDATA #IMPLIED
arguments IDREFS #IMPLIED
virtual (true|false) #IMPLIED
internal CDATA #IMPLIED
language (fortran|java|c|cpp) #IMPLIED
instrumentable (true|false) #IMPLIED

>
<!ELEMENT alias (#PCDATA)>

The language of the input program imposes certain additional restrictions; one should assume that these restrictions are
also respected in theunit elements of any SIR (although this is not enforced):

� only aunit element representing a Fortran function or subroutine may be nested within aunit element representing a
Fortran subroutine, function, or main program;

� the nesting level forunit elements in asir element representing a Fortran program is at most 2;

� for Java and C++ programs, the name used in theunit element representing a constructor must be the same name used
in thegroupelement representing the class where the constructor has been declared;

� for Java programs, the name used in theunitelement representing a class or interface initializer mustbe
��� � �������� � �

.
The ”correct” name would be	clinit
, but the characters	 and
 may not be used in an element’s attribute;

� for Java programs,
��� � ������ � �

must be the name used in theunit element representing an instance initializer;

� a group element may be nested within aunit element only if the first represents a Java class and the second a Java
method (but even if a class is declared inside a method, it maybe represented simply nested within the class the method
is member of);

� only unit elements representing Java classes, Java methods and C functions may be nested within agroup element
representing a Java class;

� a unit element may not be nested within anotherunit element if thesir element represents a C or C++ program.

5

� �� ��� � ����	
� �
������
	 � ������ � ��������
	 � �

��
	
�
�� �
��� � ����� � �
���� �
�	� ��������	�

A codeRegionelement is used to represent a sequence of specific executable program statements and directives in aunit.
Any codeRegionelement must specify:

� the type of the program statement it represents in the input program (elementtype);

� a unique identifier (elementid).

A codeRegionelement contains zero or more nestedcodeRegionelements and zero or more nestedgroup elements (in
Java, it is allowed that a class is declared inside a method).It may also contain:

� a locationelement to provide the location of the represented program statement (see Section 2.6);

� acalleeelement, giving the identifier or the name of a method invokedor a function or subroutine called (details under
the itemcall, below);

� an expressionelement, giving information about an expression (or expressions) evaluated before the represent code
region executes (more details below);

� a loopControlelement, giving information about the start, stop, and increment expression (or expressions) evaluated by
certain kinds of loop constructs (details under the itemloop, below).

� elementsvariableandvariableRefto represent the declaration and use of variables (described in Section 2.5).

Because of the complexity and diversity of the different languages and programming models, we do not intend to define a
fixed set of allowed types that acodeRegionelement must follow. In fact, different instrumentors may have their own favorites
on what types of code regions are distinguished. However, inthe following, we do provide a predefined set of types based
on our experiences, which should be regarded only as a recommendation rather than a full specification. In the rest of this
document, acodeRegionelement with a certain type� will be called an xCodeRegionelement for brevity.

� assignment
Corresponds to an explicit scalar assignment in the input program, that is, using the operator� and, in the case of
Java, C and C++, also the operators�� , ��, � � , � �, and so on (see the typevectorbelow for vector assign-
ments). Multiple assignments in a single statement (like !"#$% � & "#$ � '($)* "#$ &++ �� , - ..) should be
represented by using nestedexpressionelements, but may be also represented by expanding the assignments to several
assignmentCodeRegionelements (respecting the evaluation order). See an examplein Section 3.

� block
Some language constructs are composed by several blocks. For instance, theif construct is composed by thethen, else
if (in Fortran), andelseblocks, and the constructsswitchandSELECTare composed by several blocks to be executed
depending on the value of an expression. Instead of creatinga new kind of block for each of these constructs, the SIR
just defines the generic typeblock, which can be used in any situation. A block can also be used torepresent an arbitrary
sequence of statements in the input program which cannot be represented by any of the types described in this section.

� if
Corresponds to theif construct in Java, C, C++, and Fortran. AnifCodeRegionelement has one or more nestedcodeRe-
gion elements, the type of which must beblock. ThecodeRegionelements inside the firstblockCodeRegionelement
corresponds to theif part of theif construct, and the otherblockCodeRegionelements, if present, to theelseor else if
part. EachblockCodeRegionelement (except the one corresponding to the ”else” part of the if construct) may contain
also anexpressionelement representing the constructs that are evaluated in the respective condition (see an example in
Section 3). The expression evaluated in theif part of anif construct may be also represented as acodeRegionelement
immediately before thecodeRegionelement representing theif construct; the use of a nestedexpressionelement is
preferred, though.
Note:else ifis allowed only in Fortran; therefore, when representing a Java, C or C++ program, at most two blocks are
allowed nested within anifCodeRegionelement.

6

� switch
Corresponds to theswitch construct in Java, C or C++, and to theSELECTconstruct in Fortran. ThecodeRegion
elements nested within aswitchCodeRegionelement must have the typeblock; each of them corresponds to a ”case”
(including the ”default case”) of theswitchor SELECTconstruct. The presence or absence of an implicit jump aftereach
”case” must be inferred from the language attribute of theunitor sir element containing theswitchCodeRegionelement.
Moreover, aswitchCodeRegionelement may have oneexpressionelement representing the condition evaluated by the
switchor SELECTconstruct (as inexpressionelements forifCodeRegionelements). Although the use of anexpression
element is the preferred way of representing such a condition, it may also be represented by acodeRegionimmediately
before thecodeRegionrepresenting theswitchor SELECTconstruct.

� loop
Corresponds to any kind of loop in the input program:for, while, do...whilein Java, C and C++;DO, DO WHILE
(but notFORALL) in Fortran. A loopCodeRegionelement may have either anexpressionelement representing the
stop condition evaluated by the represented loop construct(as inexpressionelements forifCodeRegionelements) or a
loopControlelement representing the start, stop and increment expressions in these three kinds of loop constructs:for
(Java, C and C++),DO (Fortran). An example is shown in Section 3.

� jump
Corresponds to an unconditional jump in the input program (break, continue, andreturn in Java, C and C++,throw
in Java and C++,goto in C and C++, andGO TO, CYCLE, EXIT, andRETURNin Fortran). Note that a call to
the functionlongjmp is not considered a jump. If the return construct being represented returns a value computed
from an expression declared in front of the return statement, this expression should be represented in anexpression
element nested within thejumpCodeRegion. Alternatively, it may also be represented as one or morecodeRegion
elements immediately before thejumpCodeRegionelement representing thereturn construct. The same is valid for the
representation of throw constructs, that is, the expression computing the object to be thrown may be represented either
as a nested element within thejumpCodeRegionor as one or morecodeRegionelements immediately before it.

� call
In Fortran, corresponds to a function or subroutine call or to a statement for dynamic storage allocation or deallocation
(ALLOCATE, DEALLOCATE, and NULLIFY). In C, it corresponds to a function call, and in C++ to a function call,
dynamic storage allocation and deallocation (newanddelete) or a method invocation. In Java, it corresponds to a
method invocation or dynamic storage allocation (new).
The creation of class instances, which usually includes dynamic allocationanda method (constructor) invocation, must
be represented as a singlecallCodeRegion, as if only the constructor were invoked.
Nested within acallCodeRegionelement there must be onecalleeelement giving either the identifier of the function,
subroutine or method invoked (or ”supposed” to be invoked inthe case of virtual methods) or, if the identifier is not
available, the name of the invoked unit. In C++, when allocating or deallocating memory for a type that cannot be
represented as aunit in the SIR (likeint), the callee will benewor delete, respectively. Anexpressionelement may also
appear nested within acallCodeRegionelement, indicating assignments and other function calls or method invocations
that are performed before the represented call is executed,the results of which will be used as arguments of the call
or invocation. Alternatively (but not preferably) these assignments and calls (or invocations) may be represented as
codeRegionelements appearing immediately before thecodeRegionrepresenting a call or invocation.
In indirect calls (for instance, with function pointers), only the signature of the method invoked must be specified for
the callee. See an example in Section 3.

� io (Fortran specific)
Corresponds to an IO statement in Fortran (like PRINT or OPEN). As with callCodeRegions, expressionelements may
appear nested within anioCodeRegionto represent other function calls performed before the IO statement is executed.

� try, catch (Java and C++ specific), finally (Java specific)
Correspond to the constructtry...catch...finallyin Java ortry...catchin C++.

� where (Fortran specific)
Corresponds to theWHEREconstruct in Fortran. AwhereCodeRegionelement has oneexpressionelement, which
represents the condition evaluated by theWHEREconstruct (in the same way theexpressionelement forifCodeRegion

7

elements), and one or two nestedblockCodeRegionelements. ThecodeRegionelements inside the firstblockCodeRe-
gioncorrespond to thewherepart in theWHEREconstruct, while the secondblockCodeRegion, if present, corresponds
to theelsewherepart.

� forall (Fortran specific) Corresponds to theFORALLconstruct in Fortran. Like aloopCodeRegion, a forallCodeRegion
element may have aloopControlelement representing the start, stop and increment expressions. It may also contain an
expressionelement representing the condition (”scalar mask”) evaluated for each iteration.

� vector (Fortran specific) Corresponds to an explicit vectorassignment in the input program. AvectorCodeRegion
may contain also anexpressionelement representing functions called before the assignment take place (for instance,� � ��� �� �

).

Furthermore, motivated by OpenMP [4], we also defined a set ofparallel...codeRegions, which can, in fact, be applied
to any similar shared-memory paradigm. Table 1 shows the mapping of OpenMP directives to the correspondingparal-
lel...codeRegions.

OpenMP directive parallel...codeRegion in SIR

PARALLEL parallelRegion
DO parallelLoop

SECTIONS paralleSsections
SINGLE parallelSingle

WORKSHARE parallelWorkshare
MASTER parallelMaster
CRITICAL parallelCriticalSection
ATOMIC parallelAtomic
BARRIER parallelBarrier

FLUSH parallelFlush
ORDERED parallelOrdered

Table 1. Mapping from OpenMP directives to parallel...codeRegions
.

� parallelRegion
Corresponds to a code region executed by several threads in parallel.

� parallelLoop
Corresponds to a work-sharing construct that distributes the iterations of a loop among several threads. The loop is
represented by a nestedloopCodeRegionelement. Aschedulingelement may also be nested to inform the scheduling
type (static, dynamic, guided, or runtime) and, if applicable, the chunk to be used. Finally, if threads that finish the
work they have been assigned do not need to wait until other threads also finish their work, thenowaitattribute must be
specified with the valuetrue (default:false).

� parallelSections
Corresponds to a work-sharing construct that distributes the execution of several code regions among several threads.
Nested within such acodeRegionelement there may be onlyblockCodeRegions, each of which representing a code
region that is assigned to a thread. If threads that finish thework they have been assigned do not need to wait until other
threads also finish their work, thenowaitattribute must be specified with the valuetrue (default:false).

� parallelSingle
Used to group a sequence of code regions that must be executedby only one thread; this sequence is represented by
one or morecodeRegionelements nested within theparallelSingleCodeRegion. If the other threads do not need to wait
that the thread that executes the code regions finishes its work, thenowaitattribute must be specified with the value
true (default:false).

� parallelWorkshare
Corresponds to a work-sharing construct that distributes the execution of several code regions among several threads.

8

Nested within aparallelWorkshareCodeRegionthere may be any number ofcodeRegionelements (of any type); the
way the execution of the code regions is distributed among threads depends on the library that implements the construct.
If threads that finish the work they have been assigned do not need to wait that other threads also finish their work, the
nowaitattribute must be specified with the valuetrue (default:false).

� parallelMaster
Used to group a sequence of code regions that must be executedby only one thread, called the master thread; this
sequence is represented by one or morecodeRegionelements nested within theparalle-masterCodeRegion.

� parallelCriticalSection
Used to represent a critical section. Nested within this element there may be any number ofcodeRegionelements. A
unique name may be specified (in the attributecriticalSectionName) to identify a set of critical sections that must be ex-
ecuted by only one thread at a time. Among theparallel...CodeRegions, this is currently the only one that may be used
nested within asir element representing a Java program. In Java, however, it isnot in general possible, at compile time,
to determine a name to give to theparallelCriticalSectionCodeRegion, but the expression evaluated to compute the lock
to be acquired should be represented either as anexpressionelement nested within theparallelCriticalSectionCodeRe-
gion(preferred way) or as one or morecodeRegionelements immediately before theparallelCriticalSectionCodeRegion
element representing thesynchronizedconstruct.

� parallelAtomic
Used to inform that an assignment is performed atomically. Nested within aparallelAtomicCodeRegionelement there
may be only onecodeRegionelement, namely anassignmentCodeRegion, which must represent the atomic assignment.
Atomicity achieved through library invocations (for instance, using the package java.util.concurrent.atom) must be
represented ordinarily with acallCodeRegion.

� parallelBarrier
Corresponds to a language construct that synchronizes all threads within the dynamic scope of a parallel region. Barriers
used through library invocations must be represented ordinarily as acallCodeRegion.

� parallelFlush
Corresponds to an explicit construct that provides consistency between a thread (the one that executes the construct)
and the main memory.

� parallelOrdered
Corresponds to a construct that ensures that a sequence of code regions ”is executed in the order in which iterations
would be executed in a sequential execution” of a loop [4]. Nested within aparallelOrderedCodeRegionthere may be
any number ofcodeRegionelements (of any type).

As we said, the types of the code region are language and programming model specific and can not be fully specified by
the above recommended list. However, the above defined set oftypes could be the basis for a custom definition.

The requirements for acodeRegionelement in a DTD are given below. Note that the DTD does not (and cannot) enforce
semantic rules involving thetype attribute ofcodeRegionelements, like the fact that acallee element may appear only
immediately inside acallCodeRegionelement.

<!ELEMENT codeRegion (callee?, location?,
variable*, variableRef*, scheduling?,
(expression|loopControl)*, (codeRegion|group)*)>

<!ATTLIST codeRegion
id ID #REQUIRED
type CDATA #REQUIRED
criticalSectionName CDATA #IMPLIED
noWait (true|false) #IMPLIED

>
<!-- The recommended code region types include
(block|assign|loop|if|switch|where|jump|call|try|catch|finally|forall|vector|
parallelRegion|parallelLoop|parallelSections|parallelSingle|

9

parallelWorkshare|parallelMaster|parallelCriticalSection|
parallelAtomic|parallelBarrier|ParallelFlush|ParallelOrdered|
vector|forall)

-->

<!ELEMENT callee EMPTY>
<!ATTLIST callee
id IDREF #IMPLIED
name CDATA #IMPLIED

>

<!ELEMENT expression ((codeRegion|group)+))>

<!ELEMENT loopControl (lower?,upper?,stride?)>

<!ELEMENT lower (codeRegion+)>
<!ELEMENT upper (codeRegion+)>
<!ELEMENT stride (codeRegion+)>

<!ELEMENT scheduling EMPTY>
<!ATTLIST scheduling
type (static|dynamic|guided|runtime) #REQUIRED
chunk CDATA #IMPLIED>

The order ofcodeRegionelements in thesir, as well as the way they are nested, reflect the syntactical order and nesting of
the represented program statements in the input program thesir represents. For instance, if the program statement (or sequence
of program statement)

�
appears in the input program before the program statement (or sequence of program statements)� ,

then thecodeRegionelement representing
�

must appear in the SIR before thecodeRegionelement representing� .

2.4.1 Open Issues Regarding the unit Element
� Templates in C++ and Java are not represented

� Overloaded operators in C++ are not represented, although they may represent rather complex functions.

� Extra compiler information
Sometimes, it is possible to determine through compiler analysis the real method that is going to be invoked (or a set
of possible methods). The same is valid for indirect function calls. For instance:

if (condition) myfunction = max else myfunction = min;
x = myfunction(10, 20);

or

Shape s;
if (condition) s = new Circle(...) else s = new Square(...);
s.draw();

Even if the compiler has this information, it cannot be represented in the SIR.

� firstprivate, lastprivate, reduction in OpenMP
It is not clear if they should be represented in the SIR.

10

� �� ��� � ����	
� �
��
���
	� �
��
� �����

The variable element represents the definition of a variable (scalar or array). Each variable must have an attribute of
uniqueid, and can have optional attributes like aname, a type, anddimensions. If dimensionsis defined as -1 or if it is
omitted, then the variable is simply a scalar. For arrays, the lower bound and upper bound of each dimension can be specified
with one nested elementdimension, while theindexattribute indicates which dimension is being described. The type used
for a variableelement is language dependent (that is, this specification does not dictate the name under which the type of an
variable must be represented), but it should be used consistently throughout the input program representation.

As usual, thelocationelement informs where a variable is declared in the input program.
The DTD segment forvariableelement is given below:

<!ELEMENT variable (location?, dimension*)>
<!ATTLIST variable
id ID #REQUIRED
name CDATA #IMPLIED
type CDATA #IMPLIED
dimensions CDATA #IMPLIED

>
<!ELEMENT dimension EMPTY>
<!ATTLIST dimension
index CDATA #REQUIRED
upperBound CDATA #REQUIRED
lowerBound CDATA #REQUIRED

>

As method, function and subroutine arguments are in fact variables, they are also represented as such; in addition, the
attributeargumentsof a unit will contain a list of identifiers referring to the variables that are arguments in the unit.

References to variables in each unit and code region are represented byvariableRefelements. EachvariableRefelement
must specifytargetId, which is used to identify the variable that it references. The optional attributeaccessTypecan also be
supplied to indicated if the variable is read, written, or both. The DTD segment forvariableRefelement is given as follows:

<!ELEMENT variableRef EMPTY>
<!ATTLIST variableRef

targetId IDREF #REQUIRED
accessType (read | write | readwrite) #IMPLIED

>

� �� ��� ���

��	 � ����	

A locationelement represents the location of a unit, a program statement, a variable declaration, a directive or a sequence
of program statements and directives in a file. Thelocation element contains attributes for representing the start line, the
start column, the end line and the end column the representedcode occupies in a ”file” (not necessarily all of them need to
appear in the element). The location of a file is given by the attributeuri, and does not need, in fact, to refer to a file, but
to any resource. If the resource where the represented code is defined is not the same as the resource a nested unit, program
statement or directive is defined, thelocationelement in the nested unit or program statement must also be specified.

The requirements for alocationelement in a DTD are given below:

<!ELEMENT location EMPTY>
<!ATTLIST location
startLine CDATA #IMPLIED
startColumn CDATA #IMPLIED
endLine CDATA #IMPLIED
endColumn CDATA #IMPLIED
uri CDATA #IMPLIED>

An example that uses thelocationelement is shown in Section 3. The syntax of auri attribute can be found in [5].

11

3 Examples

Figure 1 shows two ways of representing several assignmentsappearing in a single statement, as well as how variables are
represented.

int failed;
FILE* f;
failed = (f = fopen("file.txt", "r+")) != NULL;

(a) C code

<unit type="function" name="fopen" arguments= "v1 v2"
instrumentable="false" id="u1">

<variable type="char*" id="v1"/>
<variable type="char*" id="v2"/>

</unit>
...
<variable type="integer" name="failed" id="v3"/>
<variable type="FILE*" name="f" id="v4"/>
<codeRegion type="assignment" id="a1"> <!-- failed = ... -->
<variableRef targetId="v3" accessType="write"/>
<variableRef targetId="v4" accessType="read"/>
<expression>

<codeRegion type="assignment" id="a2"> <!-- f = ... -->
<variableRef targetId="v4" accessType="write"/>
<expression>

<codeRegion type="call" id="c1"> <!-- fopen() -->
<callee id="u1"/>

</codeRegion>
</expression>

</codeRegion>
</expression>

</codeRegion>

(b) SIR mapping using the elementexpression

<codeRegion type="call" id="c1"> <!-- fopen() -->
<callee id="u1"/>

</codeRegion>
<codeRegion type="assignment" id="a1"> <!-- f = ... -->
<variableRef targetId="v4" accessType="write"/>

</codeRegion>
<codeRegion type="assignment" id="a2"> <!-- failed = ... -->
<variableRef targetId="v3" accessType="write"/>
<variableRef targetId="v4" accessType="read"/>

</codeRegion>

(c) SIR mapping without the elementexpression

Figure 1. Two ways of mapping multiple assignments to SIR

Figure 2 illustrates the mapping of inheritance and constructors of Java classes, as well as method (in this case, constructor)
invocations.

12

package example;

class MyClass extends java.awt.Button
implements Runnable, java.awt.event.KeyListener {

MyClass(String s) { super(s); }
...

}

(a) Java code

<group type="package" name="java" id="p1">
<group type="package" name="lang" id="p2">

<group type="interface" name="Runnable" id="i1"/>
</group>
<group type="package" name="awt" id="p3" instrumentable="false">

<group type="class" name="Button" id="c1">
<unit type="method" name="Button" arguments="v1" id="m1">

<variable type="java.lang.String" id="v1"/>
</unit>

</group>
<group type="package" name="event" id="p4">
<group type="interface" name="KeyListener" id="i1"/>

</group>
</group>

</group>
<group type="package" name="example" id="p5">
<group type="class" name="MyClass" id="c2">

<unit type="method" name="MyClass" id="m2">
<codeRegion type="call" id="cr1">

<callee id="m1">
</codeRegion>

</unit>
...

</group>
</group>

(b) SIR mapping

Figure 2. How inheritance and constructor invocation are mapped

Figure 3 illustrates the mapping of anif construct in C to anifCodeRegion, including the use of the elementsblockCodeRe-
gion, callee, andexpression.

13

if (f(n) > g(m)) {
a = 10;

} else {
flag = false;

}

(a) C code

<!-- assume that the id of f is "f" and the id of g is "g" -->
<codeRegion type="if" id="i1"> <!-- if (...) -->
<codeRegion type="block" id="i2">

<expression>
<codeRegion type="call" id="i3"> <!-- f(n) -->

<callee id="f"/>
</codeRegion>
<codeRegion type="call" id="i4"> <!-- g(m) -->

<callee id="g"/>
</codeRegion>

</expression>
<codeRegion type="assignment" id="i5"/> <!-- a = 10 -->

</codeRegion>
<codeRegion type="block" id="i6"> <!-- else -->
<codeRegion type="assignment" id="i7"/> <!-- flag = false -->

</codeRegion>
</codeRegion>

(b) SIR mapping

Figure 3. How if constructs and function calls are mapped

Figure 4 illustrates the mapping of a FORALL loop in Fortran to a loopCodeRegion, including the use of theloopControl
element.

14

FORALL (i = fg(5):gh(100):hi(2), j = 4:mn(8))
...

END FORALL

(a) Fortran code

<!-- assume that the functions have identical ids and names -->
<codeRegion type="loop" id="i1">
<loopControl> <!-- i -->

<lower> <!-- fg(5) -->
<codeRegion type="call" id="i2">

<callee id="fg"/>
</codeRegion>

</lower>
<upper> <!-- gh(100) -->
<codeRegion type="call" id="i3">

<callee id="gh">
</codeRegion>

</upper>
<stride> <!-- hi(2) -->
<codeRegion type="call" id="i4">

<callee id="hi"/>
</codeRegion>

</stride>
</loopControl>
<loopControl> <!-- j -->

<upper> <!-- mn(8) -->
<codeRegion type="call" id="i5">

<callee id="mn"/>
</codeRegion>

</upper>
</loopControl>
...

</codeRegion>

(b) SIR mapping

Figure 4. How FORALL is mapped

Figure 5 shows the mapping of pointer functions in C.

15

void sort(void *array, int size, int (*cmpfunc)(const void *, const void *)) {
...
cmpfunc(a, b);
...

}

(a) C code

<unit type="function" name="sort" arguments="v1 v2 v3" id="f1">
<variable name="array" type="void*" id="v1"/>
<variable name="size" type="int" id="v2"/>
<variable name="cmpfunc" type="(int)(const void *, const void *)" id="v3"/>
...
<codeRegion type="call" id="c2">

<callee id="u1"/>
</codeRegion>
...

</unit>

(b) SIR mapping

Figure 5. How pointer functions are mapped

Figure 6 shows the mapping of overloaded functions in Fortran.

INTERFACE PHI
FUNCTION IPHI(X)

INTEGER IPHI, X
END FUNCTION IPHI

FUNCTION RPHI(X)
REAL RPHI, X

END FUNCTION RPHI
END INTERFACE PHI
! function contents not important

(a) Fortran code

<unit type="function" name="IPHI" arguments="v1" id="f1">
<variable name="X" type="INTEGER" id="v1"/>
<alias>PHI</alias>
...

</unit>
<unit type="function" name="RPHI" arguments="v2" id="f2">
<variable name="X" type="REAL" id="v2"/>
<alias>PHI</alias>
...

</unit>

(b) SIR mapping

Figure 6. How overloaded functions in Fortran are mapped

Finally, figure 7 shows a piece of Fortran code mapped to a SIR including thelocation element, and also how an IO
statement is mapped to an element in the SIR.

16

file F1.f90

column 123456789012345678901234
line 1: SUBROUTINE f(x)
line 2: REAL :: x
line 3: INCLUDE "F2.f90"
1ine 4: END SUBROUTINE f

file F2.f90

column 12345678901234567890
line 1: PRINT *, foo(1)

(a) Fortran code

<!-- assume that the id of PRINT is "print" and the id of foo is "foo"-->
<unit type="subroutine" name="f" id="i1">
<location startLine="1" startColumn="5" endLine="4" endColumn="20"

uri="file:///home/joe/programs/F1.f90"/>
<codeRegion type="io" id="i2">

<location startLine="1" startColumn="5" endLine="1" endColumn="19"
uri="file:///home/joe/programs/F2.f90"/>

<expression>
<codeRegion type="call" id="i3">

<location startLine="1" startColumn="14" endLine="1" endColumn="19"/>
<callee id="foo"/>

</codeRegion>
</expression>
<callee id="print"/>

</codeRegion>
</unit>

(b) SIR mapping

Figure 7. How IO statements in Fortran are mappend, including location information

4 DTD to XML Schema Translation

An XML schemais itself an XML document that describes the structure and constrains the contents of XML documents by
following theXML schema language specification[2]. It substantially reconstructs and considerably extends the capabilities
found in XML DTDs (but does not allow to define semantic rules either). The corresponding XML schema for the DTD
shown in Section 1.1 could be:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="employee">

<xs:complexType>
<xs:attribute name="matr" type="xs:ID" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="marriedTo" type="xs:IDREF"/>

</xs:complexType>
</xs:element>
<xs:element name="staff">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element ref="employee"/>

17

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Rules for translating DTDs to XML schemas can be found in [3];in addition, the type restrictions shown in Table 2 should
be used.

Element Attribute Type in the XML Schema

location startLine nonNegativeInteger
startColumn nonNegativeInteger

endLine nonNegativeInteger
endColumn nonNegativeInteger

url anyURI
scheduling chunk positiveInteger

variable dimensions nonNegativeInteger
dimension index positiveInteger
dimension lowerBound integer
dimension upperBound integer

Table 2. Types to be used when converting to XML Schema the elements and attributes of the DTD describing
the SIR grammar

.

5 Conclusion

This document has shown how to represent programs in severallanguages using a neutral format defined in XML; this
approach not only reduces the dependence of performance tools on a specific instrumentation engine, but also increases their
portability, making it possible to support new languages and instrumentations tools at low cost.

Nevertheless, a compromise was sometimes necessary in order to unify under a single SIR element several constructs
that fundamentally represent the same idea. For example, a C++ programmer may find strange that a namespace is called a
”package”, and an object-oriented purist might complain that acall element is used to represent a method invocation. Another
problem is that not always a lowest common denominator can befound; some concepts are specific for only one language or
paradigm and do not have a parallel in other languages.

We must also note that not everything thatcanbe represented with SIRmustbe represented. For example, when generating
the SIR from a binary, only little information will be available except for the program structure and the function calls.The
SIR in this case will be extremely reduced, but it will still be valid.

Admittedly, much potentially useful information for performance analysis is not covered by this representation. We believe,
however, that the benefits of having a common format acceptedby several instrumentation engines justify these omissions:
with little or no effort, performance tools could change thetarget language or platform, or even be extended to analyse and
compare programs running in heterogeneous environments.

References

[1] Extensible Markup Language (XML) 1.0 (Second Edition).http://www.w3.org/TR/REC-xml.

[2] XML Schema Part 1: Structures. http://www.w3.org/TR/xmlschema-1.

[3] A Conversion Tool from DTD to XML Schema. http://www.w3.org/2000/04/schemahack.

[4] OpenMP Fortran Application Program Interface Version 2.0.
http://www.openmp.org/specs/mp-documents/fspec20.pdf.

[5] RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax. http://www.ietf.org/rfc/rfc2396.txt.

18

