Standardized I nter mediate Representation for Fortran, Java, C and C++
Programs

APART*Technical Report
Workpackage 1

http://www.fz-juelich.de/apart

Aurora Technical Report

Clovis Seragiotto, Jr., Hong-Linh Truong Thomas Fahringer

Institute for Software Science Institute for Computer Science

University of Vienna University of Innsbruck
{clovis, truong @par.univie.ac.at Thomas.Fahringer@uibk.ac.at

Bernd Mohr Michael Gerndt, Tianchao Li
Central Institute for Applied Mathematics Institut fur Informatik, LRR
Forschungszentrum Julich GmbH Technische Universitat Munchen
B.Mohr@fz-juelich.de {gerndt, lit @in.tum.de
Abstract

When building a performance analysis tool, one usually s¢edelect an instrumentation engine for a specific program-
ming language. Instrumentation engines commonly travemsaternal, mostly non-portable program representationider
to insert probes that collect performance information dgriexecution of an instrumented program. Performance aigly
tools are built on non-standardized instrumentation eegirwhich forces performance tools to develop separatdaues to
instrumentation engines and adjust to different interratglprogram representations, one for every different insientation
engine. In the context of the Apart working group, we degignenique intermediate program representation named SIR as
an XML-language, which we propose as a standard to be usedlénga variety of performance analysis tools. The basic
idea of SIR is to provide a standardized intermediate prograpresentation that must be supported by a large variety of
instrumentation engines covering the most important progning languages. SIR has been defined thus far for Fortran,
C, C++, and Java thus we demonstrated that SIR comprises rottedural and object-oriented programming languages.
Through a SIR, performance analysis tools no longer havaljosato different program representations for every défe
instrumentation engine. Moreover, in combination with anstardized instrumentation request language, a compigkien
interface between performance analysis tools and instruat®n engines is described.

1 Introduction

Many performance tools rely on performance informatiorefbeads, trace files, etc.) commonly obtained by statigally
strumenting the source code or dynamically instrumentingx@cutable. Static instrumentation frequently imposaesgiler
dependencies, whereas dynamic instrumentation may depesgmbol table information and is also very much hardware

*The IST Working Group outomatic Performance Analysis: Real Toml$unded under Contract no. IST-2000-28077



specific. In the worst case performance tool developers tabeild separate instrumentation engines for every difier
programming language, a tedious and time consuming effort.

In this document we proposeStandardizedntermediatdRepresentation as an interface between instrumentatidnesg
and higher-level performance tools. The SIR is intendecetam abstract representation for procedural and objeetaxdl
programs. Basically, a SIR contains information abouestents and directive types (e.g. OpenMP) with very littlaie
on their structures. Higher-level performance tools comiyonly need to know the type of a statement in order to make a
decision about specific instrumentation requests or padoce analysis.

Moreover, higher-level performance tools can request gremation of a SIR for arbitrary source programs. The perfor
mance tool can then traverse the SIR and request the ingitatios of specific code regions. Important is that the getican
of a SIR based on a specific input program as well as the actstalimentation is done by an external tool. On the basis of
the SIR, higher-level performance tools are provided wittigh-level and portable instrumentation/profiling/monitg in-
terface for a broad variety of programming languages witllealing with low-level details such as instrumentatioacing,
etc.

In this document we describe the format of a SIR for Fortrani@sa, C and C++ programs applicable not only to source
codes but also to binaries generated from a program writtené of these languages. As extensive support already éaist
traverse XML documents, we chose to define the SIR based on. XML

1.1 Term Definitions

An XML documents a well-formed data object according to the XML specificatjl]. An XML document contains at
least oneelementand each element may have a seatifibutesand may be nested within other elements. The (unique)
element in the XML document that is not nested is calledtlot elementFor instance, in

<staff>
<enpl oyee matr="B001" nane="John Doe" narri edTo="A003"/>
<enpl oyee matr="B002" nane="John Snmith"/>
<enpl oyee matr="A003" nane="Jane Doe" narri edTo="B001"/>
</staff>

<staff> and<employee are elements, whilmatr, nameandmarriedToare attributes of the elemeremployes.

A DTD (Document Type Definition) is a set of markup declaratiora ttefines the grammar for a class of XML docu-
ments. An XML document that has an associated DTD and compiigh it is said to bevalid. For example, the previous
example is valid according to the following DTD:

<! ELEMENT staff (enployee)+> <!-- neaning: a staff elenent may contain one -->
<l-- or nore enpl oyee elenents -->
<! ELEMENT enpl oyee EMPTY> <!-- neani ng: an enpl oyee el ement nmay not contain -->
<l-- any text or nested el enent -->
<! ATTLI ST enpl oyee <!-- meaning: an enployee elenent: -->
mat r | D #REQUI RED <I-- nmust have the attribute matr, a string not -->
<I-- used as the value of any other ID-attribute -->
<l-- in the same XM docunent -->
name CDATA #REQUI RED <I-- nust have the attribute nane, a string -->
marriedTo | DREF #| MPLIED <!-- may have the attribute marriedTo, a string -->
<I-- with the same val ue of any other -->
<l-- ID-attribute in the sane XML docunent-->

In the following, DTD will be used to define thgrammarof SIR documents, but note that DTD cannot describe all
semantic rules and restrictions specificated in this docime

DTDs have a limited datatype capability and a different ayrftom XML documents; this motivated the development of
XML schemago which the DTD grammar can be converted using the rulegatiéh 4.

2 SIR Description

A SIR is an XML document representing a Fortran 95, Java, C+er grogram (referred to simply asput programin
the rest of this document). A valid SIR may contain sevenaég/of elements, the most important of which sireunit, and



codeRegionAll the elements are described in detail in this sectionicilalso gives the markup declarations (element type
declarations and attribute-list declarations) that mostgose the DTD describing the syntax of SIRs.

A tool that generates SIRs does not need to represent allealsndlescribed in this specification in order to be SIR
compliant; nevertheless, the tool must document thateifjgnerated SIR does not contain a certain element or agyitis
is not because the element is absent in the input prograrbgoatse the tool chose to ignore it.

2.1 The Element sir

The root of any SIR is given by sir element. Asir element must specify:

e the "main” language the input program is written in (for erste, if a Java program uses native C functions, the language
must be Java, not C);

e at least one group (for instance, a class; see Section 2a2pargram unit (for instance, a function; see Section 2.3).

Moreover, if it is known that the program communicates withes programs (processes or threads) by sending and receiv-
ing messages, thmessagePassirajtribute may be specified with the valtrae (default:false); similarly, if communication
is done (also) through shared memory, sharedMemorgttribute may be specified with the valtrae (default:false.

The markup declarations representing these requirementg\en below:

<l ELEMENT sir (variable*, (group|unit)+)>
<I ATTLI ST sir
| anguage (fortran|javalc|cpp) #REQU RED
nmessagePassing (true|fal se) #l MPLI ED
sharedMenory (true|fal se) #l MPLI ED>

2.2 The Elements group and inheritance

Thegroupelement is used to represent an organizational, non-exigleuinit;

e modules in Fortran;

e packages, classes, interfaces, array types, and enumain Ja

e namespaces and classes, as well as structs and unionsfthatdethods, in C++.
Any groupelement must specify:

¢ the type of the group it represents (with the attrikiypes);

¢ a unique identifier (with the attribuid).

The type used for Java arrays and enums and for C++ strucisrmas isclass while the type used for C++ namespaces
is package

A groupelement may also specify the name of the group it represesitsq the attribut@ame and the internal name the
compiler assigned to the represented group (with the ate&ibternal). In C++, aliases of namespaces are ignored, as well
as any alias for a class, struct or union name createdtygtidef This rule holds also for struct and union names in C.

A groupelement contains also zero or m@m®upelements and zero or mouait elements.

The declaration of variables (or fields) is represented thitghelemenvariable described in Section 2.5.

When representing a class or interfacgraup element may specify superclasses and superinterfaces thgirelement
inheritance this element accepts either the identifier or the name oparslass or superinterface (with the attributkand
namerespectively). The name must be used when the identifiertiavaidlable, since determining such an identifier may not
be trivial.

Finally, agroupmay contain docationelement, to provide where the group has been declared (sders2.6). If the URI
of a location in agroupelement is left unspecified (or the entire location elementyl if the immediate element containing
this group element is either group element representing a class or interface, aniéelement representing a method, one
must assume that the URI of both elements (container anddjdstthe same.

The requirements for groupelement in a DTD are given below:



<! ELEMENT group (inheritance*, |ocation?, variable*, (group|lunit)*)>
<! ATTLI ST group

id | D #REQUI RED

type (nodul e| package]| cl ass|interface) #REQU RED

name CDATA #l MPLI ED

i nternal CDATA #l MPLI ED>

<! ELEMENT i nheritance EMPTY>
<! ATTLI ST i nheritance

id | DREF #| MPLI ED

nane CDATA #l| MPLI ED>

The language of the input program imposes certain additi@strictions; one should assume that these restrictions a
also respected in thgroupelements of any SIR (although this is not enforced):

e agroupelement representing a Fortran module may not contairgeoyp element;
e agroupelement for C++ may be nested only igeupelement representing a namespace;

e in agroupelement representing a Java classjtiheritanceelement must always be specified (except if the represented
class igava.lang.Object

e the nameelement is never specified ingroup element representing a Java anonymous classir{teeal element,
however, may be);

o the name of a Java class or interface magtbe fully specified (that is, it mustot contain package names), as the full
name can be always derived from the SIR structure. In paaticoested classes must not contain the name of the class
they are nested within.

2.3 The Elements unit and alias

Theunitelement is used to represent:

o functions, subroutines and the main program in Fortran;
e methods in Java and C++;

e functionsin C and C++.
Any unit element must specify:

¢ the type of the unit it represents;

e a unique identifier.

A unit element specifies, through the attribntame the name of the unit it represents. Tinat element may also specify
the language of the unit represented (attridateguagg, which is useful when representing C methods linked to dava
Fortran programs. It may also specify an internal, comyzksigned name for the unit it represents (attriboternal).
Furthermore, ainit element must specify the attributestrumentablevith the valuefalse(the default igrue) if the tool that
generates the SIR knows that the unit cannot be later instnted (e.g, it is a library function, but the instrumentatiool
can only instrument the source code). Finally, the attabirtual must appear with the valdealse(the default igrue) if, and
only if, one of the following conditions is true:

¢ theunit element represents a Java method declared as private;

e theunit element represents a C++ method not declared as virtual.



Nested in aunit element there is zero or moumit elements, zero or moigroup elements, and zero or mocedeRegion
elements. Similar tgroup elements, anit element may also containlacation element, to provide the location where the
unit has been declared (see Section 2.6). If the URI of ailmeéh aunit element is left unspecified (or the entire location
element), and the immediate element containinguhiselement is either group element representing a class or interface,
or aunit element representing a method with the same languageug¢tribne must assume that the URI of both elements
(container and nested) is the same.

The declaration and use of variables are represented vatbl#mentsariableandvariableRef described in Section 2.5.
When representing a method, function or subroutineniaelement must specify the method (or function, or subrolitine
signature by specifying the attribudegumentsand suplying the identifiers of variables, as describedial§ection 2.5.

When representing a Fortran function or subroutinena element may specify a name under which the function or
subroutine may also be called using #lias element.

Note that the fact a function or methodidine is ignored.

The syntactic requirements foruait element in a DTD are given below:

<l ELEMENT unit (alias?, location?, variable*, argunents*, variabl eRef*,
(group| uni t| codeRegi on) *) >
<I ATTLI ST uni t
id | D #REQUI RED
type (function|subroutine|programn net hod) #REQUI RED
name CDATA #| MPLI ED
argunent s | DREFS #| VPLI ED
virtual (true|false) #l MPLIED
i nternal CDATA #| MPLI ED
| anguage (fortran|javalc|cpp) #l MPLIED
i nstrunentabl e (true|fal se) #l MPLIED
>
<! ELEMENT al i as (#PCDATA) >

The language of the input program imposes certain additimsérictions; one should assume that these restrictioms a
also respected in thait elements of any SIR (although this is not enforced):

¢ only aunit element representing a Fortran function or subroutine neagdsted within ainit element representing a
Fortran subroutine, function, or main program;

o the nesting level founit elements in &ir element representing a Fortran program is at most 2;

e for Java and C++ programs, the name used iruthieelement representing a constructor must be the same nanhe use
in thegroupelement representing the class where the constructor leasdeelared;

¢ for Java programs, the name used indhé element representing a class or interface initializer rha&tlt; clinit&gt;.
The "correct” name would beclinit>, but the characters and> may not be used in an element’s attribute;

o for Java programslt; init&gt; must be the name used in theit element representing an instance initializer;

e agroup element may be nested withinuait element only if the first represents a Java class and the dexdava
method (but even if a class is declared inside a method, itheagpresented simply nested within the class the method
is member of);

¢ only unit elements representing Java classes, Java methods andt©rismoay be nested within group element
representing a Java class;

e aunitelement may not be nested within anotbait element if thesir element represents a C or C++ program.



2.4 The Elements codeRegion, callee, expression, loopControl, lower, upper, stride,
and scheduling

A codeRegiomlement is used to represent a sequence of specific exexptalgiram statements and directives int.
Any codeRegiorlement must specify:

¢ the type of the program statement it represents in the inmgirpm (elementyps);

e a unique identifier (elemeid).

A codeRegiorelement contains zero or more nestetieRegiorelements and zero or more nestpdup elements (in
Java, it is allowed that a class is declared inside a metlibaiay also contain:

¢ alocationelement to provide the location of the represented progtataraent (see Section 2.6);

¢ acalleeelement, giving the identifier or the name of a method invakeal function or subroutine called (details under
the itemcall, below);

e anexpressiorelement, giving information about an expression (or exgoes) evaluated before the represent code
region executes (more details below);

¢ aloopControlelement, giving information about the start, stop, andantnt expression (or expressions) evaluated by
certain kinds of loop constructs (details under the iteap, below).

e elementyariableandvariableRetfo represent the declaration and use of variables (destinb®ection 2.5).

Because of the complexity and diversity of the differenglaages and programming models, we do not intend to define a
fixed set of allowed types thattmdeRegiorlement must follow. In fact, different instrumentors mayé their own favorites
on what types of code regions are distinguished. Howeveherfollowing, we do provide a predefined set of types based
on our experiences, which should be regarded only as a reeonfation rather than a full specification. In the rest of this
document, &odeRegiorlement with a certain type will be called an XodeRegiorlement for brevity.

e assignment
Corresponds to an explicit scalar assignment in the inpognam, that is, using the operaterand, in the case of
Java, C and C++, also the operaters-, ——, + =, * =, and so on (see the typectorbelow for vector assign-
ments). Multiple assignments in a single statement (fikéled = (file = openFile()) == NULL) should be
represented by using nestexpressiorelements, but may be also represented by expanding thenassigs to several
assignmentCodeRegietements (respecting the evaluation order). See an examBktion 3.

e block
Some language constructs are composed by several bloakisisknce, théf construct is composed by tiigen else
if (in Fortran), ancelseblocks, and the construcssvitchand SELECTare composed by several blocks to be executed
depending on the value of an expression. Instead of creatimayv kind of block for each of these constructs, the SIR
just defines the generic tyjdock which can be used in any situation. A block can also be usegpt@sent an arbitrary
sequence of statements in the input program which canna&resented by any of the types described in this section.
o if
Corresponds to thié construct in Java, C, C++, and Fortran. #l@odeRegiorlement has one or more nesteieRe-
gion elements, the type of which must beock The codeRegiorelements inside the firéflockCodeRegiorlement
corresponds to thi part of theif construct, and the oth&ockCodeRegiorlements, if present, to tredseor else if
part. EactblockCodeRegioalement (except the one corresponding to the "else” patiaif ftonstruct) may contain
also anexpressiorelement representing the constructs that are evaluated irespective condition (see an example in
Section 3). The expression evaluated inifigart of anif construct may be also represented ap@eRegiorlement
immediately before theodeRegiorelement representing theconstruct; the use of a nestespressiorelement is
preferred, though.
Note: else ifis allowed only in Fortran; therefore, when representing\aa,JC or C++ program, at most two blocks are
allowed nested within aiiCodeRegiorelement.



e switch
Corresponds to thewitch construct in Java, C or C++, and to tis&LECTconstruct in Fortran. TheodeRegion
elements nested within @witchCodeRegioalement must have the tyfdock each of them corresponds to a "case”
(including the "default case”) of thewitchor SELECTconstruct. The presence or absence of an implicit jump aétein
"case” must be inferred from the language attribute ofithior sir element containing thewitchCodeRegioalement.
Moreover, aswitchCodeRegioalement may have orexpressiorelement representing the condition evaluated by the
switchor SELECTconstruct (as imxpressiorelements foifCodeRegiorelements). Although the use of arpression
element is the preferred way of representing such a comditimay also be represented bg@deRegioimmediately
before thecodeRegiomepresenting thewitchor SELECTconstruct.

¢ loop
Corresponds to any kind of loop in the input prografor, while, do...whilein Java, C and C++DO, DO WHILE
(but not FORALL) in Fortran. AloopCodeRegiorlement may have either axpressiorelement representing the
stop condition evaluated by the represented loop congtasdhexpressiorelements foifCodeRegiorelements) or a
loopControlelement representing the start, stop and increment expnsss these three kinds of loop construdts:
(Java, C and C++DO (Fortran). An example is shown in Section 3.

e jump
Corresponds to an unconditional jump in the input prograregk continue andreturnin Java, C and C++hrow
in Java and C++gotoin C and C++, andsO TQ CYCLE EXIT, and RETURNiIn Fortran). Note that a call to
the functionlongjmpis not considered a jump. If the return construct being regméed returns a value computed
from an expression declared in front of the return stateptbrg expression should be represented iregpression
element nested within theimpCodeRegian Alternatively, it may also be represented as one or noodeRegion
elements immediately before thenpCodeRegioalement representing theturn construct. The same is valid for the
representation of throw constructs, that is, the exprassionputing the object to be thrown may be represented either
as a nested element within thenpCodeRegioar as one or moreodeRegiomlements immediately before it.

e call
In Fortran, corresponds to a function or subroutine calba statement for dynamic storage allocation or deallopatio
(ALLOCATE, DEALLOCATE, and NULLIFY). In C, it correspondsta function call, and in C++ to a function call,
dynamic storage allocation and deallocatioew and deletg or a method invocation. In Java, it corresponds to a
method invocation or dynamic storage allocatioaw).
The creation of class instances, which usually includesdhya allocatioranda method (constructor) invocation, must
be represented as a singl@lCodeRegionas if only the constructor were invoked.
Nested within ecallCodeRegiorlement there must be oralleeelement giving either the identifier of the function,
subroutine or method invoked (or "supposed” to be invokethancase of virtual methods) or, if the identifier is not
available, the name of the invoked unit. In C++, when allmgabr deallocating memory for a type that cannot be
represented asumitin the SIR (likeint), the callee will benewor delete respectively. Arexpressiorelement may also
appear nested within@llCodeRegiorlement, indicating assignments and other function calfsethod invocations
that are performed before the represented call is exectitedesults of which will be used as arguments of the call
or invocation. Alternatively (but not preferably) thesesigements and calls (or invocations) may be represented as
codeRegiorlements appearing immediately before ¢bedeRegiomepresenting a call or invocation.
In indirect calls (for instance, with function pointersly the signature of the method invoked must be specified for
the callee. See an example in Section 3.

¢ io (Fortran specific)
Corresponds to an 10 statement in Fortran (like PRINT or ORPBMN with callCodeRegionexpressiorelements may
appear nested within doCodeRegiono represent other function calls performed before the #festent is executed.

e try, catch (Java and C++ specific), finally (Java specific)
Correspond to the construcy...catch...finallyn Java ottry...catchin C++.

e where (Fortran specific)
Corresponds to theVHEREconstruct in Fortran. AvhereCodeRegioalement has onexpressiorelement, which
represents the condition evaluated by WiHEREconstruct (in the same way tlegpressiorelement foiifCodeRegion



elements), and one or two nesteidckCodeRegioalements. TheodeRegiomlements inside the firtlockCodeRe-
gioncorrespond to thevherepart in theWHEREconstruct, while the secormockCodeRegiagrif present, corresponds
to theelsewhergart.

o forall (Fortran specific) Corresponds to tR®RALLconstruct in Fortran. Like bopCodeRegiaraforallCodeRegion
element may havelaopControlelement representing the start, stop and increment expnassgt may also contain an
expressiorelement representing the condition ("scalar mask”) evallifor each iteration.

e vector (Fortran specific) Corresponds to an explicit veetssignment in the input program. vectorCodeRegion
may contain also aexpressiorelement representing functions called before the assightake place (for instance,
C =log(A)).

Furthermore, motivated by OpenMP [4], we also defined a sgaddllel...codeRegionsvhich can, in fact, be applied
to any similar shared-memory paradigm. Table 1 shows thepingpmpf OpenMP directives to the correspondipeyal-
lel...codeRegions

| OpenMP directive] parallel...codeRegion in SIR

PARALLEL parallelRegion
DO parallelLoop
SECTIONS paralleSsections
SINGLE parallelSingle
WORKSHARE parallelWorkshare
MASTER parallelIMaster
CRITICAL parallelCriticalSection
ATOMIC parallelAtomic
BARRIER parallelBarrier
FLUSH parallelFlush
ORDERED parallelOrdered

Table 1. Mapping from OpenMP directives to parallel...codeRegions

e parallelRegion
Corresponds to a code region executed by several threadsaligb.

e parallelLoop
Corresponds to a work-sharing construct that distributesterations of a loop among several threads. The loop is
represented by a nestbpCodeRegiorlement. Aschedulingelement may also be nested to inform the scheduling
type (static, dynamic, guided, or runtime) and, if applleabhe chunk to be used. Finally, if threads that finish the
work they have been assigned do not need to wait until otmeatis also finish their work, thwaitattribute must be
specified with the valutrue (default:falsg).

e parallelSections
Corresponds to a work-sharing construct that distributesskecution of several code regions among several threads.
Nested within such aodeRegiorelement there may be onblockCodeRegion®ach of which representing a code
region that is assigned to a thread. If threads that finiskvtirk they have been assigned do not need to wait until other
threads also finish their work, tm®waitattribute must be specified with the valuee (default: falsg.

e parallelSingle
Used to group a sequence of code regions that must be exdputady one thread; this sequence is represented by
one or moreeodeRegiorlements nested within thearallelSingleCodeRegioff the other threads do not need to wait
that the thread that executes the code regions finishes its ¥ nowait attribute must be specified with the value
true (default:falsé.

e parallelWorkshare
Corresponds to a work-sharing construct that distributesskecution of several code regions among several threads.



Nested within gparallelWorkshareCodeRegidhere may be any number obdeRegiorelements (of any type); the
way the execution of the code regions is distributed amorgatls depends on the library that implements the construct.
If threads that finish the work they have been assigned doeweat to wait that other threads also finish their work, the
nowaitattribute must be specified with the valwee (default:falsé.

e parallelMaster
Used to group a sequence of code regions that must be exdnutaaly one thread, called the master thread; this
sequence is represented by one or ntm@eRegiomlements nested within thparalle-masterCodeRegion

e parallelCriticalSection
Used to represent a critical section. Nested within thiselet there may be any numberaddeRegiorelements. A
unique name may be specified (in the attriberigcalSectionNamkto identify a set of critical sections that must be ex-
ecuted by only one thread at a time. Among plagallel...CodeRegionshis is currently the only one that may be used
nested within &ir element representing a Java program. In Java, howevengt ia general possible, at compile time,
to determine a name to give to tharallelCriticalSectionCodeRegiohut the expression evaluated to compute the lock
to be acquired should be represented either axpressiorelement nested within thgarallelCriticalSectionCodeRe-
gion(preferred way) or as one or mazedeRegiorelements immediately before tharallelCriticalSectionCodeRegion
element representing tisgnchronizeadonstruct.

e parallelAtomic
Used to inform that an assignment is performed atomicalstBd within garallelAtomicCodeRegioslement there
may be only oneodeRegiorlement, namely aassignmentCodeRegiomhich must represent the atomic assignment.
Atomicity achieved through library invocations (for inste, using the package java.util.concurrent.atom) must be
represented ordinarily with@allCodeRegion

e parallelBarrier
Corresponds to a language construct that synchronizés@dids within the dynamic scope of a parallel region. Besrie
used through library invocations must be represented arilras acallCodeRegion

o parallelFlush
Corresponds to an explicit construct that provides comisist between a thread (the one that executes the construct)
and the main memory.

e parallelOrdered
Corresponds to a construct that ensures that a sequencdefegions "is executed in the order in which iterations
would be executed in a sequential execution” of a loop [4]sti¥e within aparallelOrderedCodeRegidhere may be
any number otodeRegiomrlements (of any type).

As we said, the types of the code region are language andagmoging model specific and can not be fully specified by
the above recommended list. However, the above defined sgies could be the basis for a custom definition.

The requirements for @deRegiorlement in a DTD are given below. Note that the DTD does nad G@mnot) enforce
semantic rules involving thgype attribute ofcodeRegiorelements, like the fact that eallee element may appear only
immediately inside @allCodeRegiomlement.

<! ELEMENT codeRegi on (cal | ee?, |ocation?,
vari abl e*, variabl eRef*, schedul i ng?,
(expression| |l oopControl)*, (codeRegion|group)*)>
<! ATTLI ST codeRegi on
id | D #REQUI RED
t ype CDATA #REQUI RED
critical Secti onNane CDATA #l| MPLI ED
noWait (true|fal se) #l MPLI ED
>
<l-- The reconmended code region types include
(bl ock| assign|loop|if|sw tch|where|junmp|call|try|catch|finally|forall]|vector
par al | el Regi on| paral | el Loop| paral | el Secti ons| parall el Si ngle



par al | el Wor kshare| paral | el Master| parallel Critical Section|
paral | el Atonic|parallelBarrier|Parallel Flush| Parall el O dered|
vector|forall)

-->

<! ELEMENT cal | ee EMPTY>
<I ATTLI ST cal | ee
i d | DREF #| VPLI ED
nane CDATA #l| MPLI ED
>

<! ELEMENT expressi on ((codeRegi on| group) +)) >
<! ELEMENT | oopControl (I ower?,upper?,stride?)>

<! ELEMENT | ower (codeRegi on+)>
<! ELEMENT upper (codeRegi on+)>
<! ELEMENT stride (codeRegi on+)>

<! ELEMENT schedul i ng EMPTY>

<! ATTLI ST schedul i ng
type (static|dynan c|gui ded|runtinme) #REQU RED
chunk CDATA #| MPLI ED>

The order oktodeRegiorlements in thair, as well as the way they are nested, reflect the syntactidal and nesting of
the represented program statements in the input prograsirtfepresents. For instance, if the program statement (oesegu
of program statement) appears in the input program before the program statemeséfmuence of program statemenf)
then thecodeRegiorlement representing must appear in the SIR before tbedeRegiomlement representing.

2.4.1 Open Issues Regarding the unit Element
e Templates in C++ and Java are not represented
e Overloaded operators in C++ are not represented, althdwgytmhay represent rather complex functions.

e Extra compiler information
Sometimes, it is possible to determine through compilelyaigthe real method that is going to be invoked (or a set
of possible methods). The same is valid for indirect functialls. For instance:

if (condition) nmyfunction = max el se nyfunction = mn;
x = nyfunction(10, 20);

or
Shape s;
if (condition) s = new Circle(...) else s = new Square(...);

s.draw();

Even if the compiler has this information, it cannot be repreed in the SIR.

o firstprivate, lastprivate, reduction in OpenMP
It is not clear if they should be represented in the SIR.

10



2.5 The Elements variable and variableRef

The variable element represents the definition of a variable (scalar @yar Each variable must have an attribute of
uniqueid, and can have optional attributes likename atypg anddimensions If dimensiongs defined as -1 or if it is
omitted, then the variable is simply a scalar. For arrayss|dtver bound and upper bound of each dimension can be spkcifie
with one nested elemedimension while theindexattribute indicates which dimension is being describede Hipe used
for avariableelement is language dependent (that is, this specificaties dot dictate the name under which the type of an
variable must be represented), but it should be used centlisthroughout the input program representation.

As usual, thdocationelement informs where a variable is declared in the inpugiznm.

The DTD segment fovariableelement is given below:

<! ELEMENT vari abl e (location?, dinmension*)>
<! ATTLI ST vari abl e
id | D #REQUI RED
name CDATA #| MPLI ED
t ype CDATA #l MPLI ED
di mensi ons CDATA #l| MPLI ED
>
<! ELEMENT di nensi on EMPTY>
<! ATTLI ST di nensi on
i ndex CDATA #REQUI RED
upper Bound CDATA #REQUI RED
| ower Bound CDATA #REQUI RED
>

As method, function and subroutine arguments are in fadabkes, they are also represented as such; in addition, the
attributeargumentsf a unit will contain a list of identifiers referring to thenables that are arguments in the unit.

References to variables in each unit and code region aregepied byariableRefelements. EachiariableRefelement
must specifytargetld which is used to identify the variable that it referencelse Dptional attributeaccessTypean also be
supplied to indicated if the variable is read, written, ottbd’he DTD segment forariableRelement is given as follows:

<! ELEMENT vari abl eRef EMPTY>
<! ATTLI ST vari abl eRef

targetld | DREF #REQUI RED

accessType ( read | wite | readwite ) #l MPLI ED
>

2.6 The location Element

A locationelement represents the location of a unit, a program statemeariable declaration, a directive or a sequence
of program statements and directives in a file. Tdation element contains attributes for representing the staet kine
start column, the end line and the end column the representig occupies in a "file” (not necessarily all of them need to
appear in the element). The location of a file is given by thebate uri, and does not need, in fact, to refer to a file, but
to any resource. If the resource where the represented satidined is not the same as the resource a nested unit, program
statement or directive is defined, thieationelement in the nested unit or program statement must alspewnified.

The requirements for lacationelement in a DTD are given below:

<! ELEMENT | ocati on EMPTY>

<I ATTLI ST | ocati on
startLi ne CDATA #l MPLI ED
st art Col uim CDATA #| MPLI ED
endLi ne CDATA #| MPLI ED
endCol uim CDATA #l| MPLI ED
uri CDATA #| MPLI ED>

An example that uses thecationelement is shown in Section 3. The syntax afraattribute can be found in [5].

11



3 Examples

Figure 1 shows two ways of representing several assignrappesaring in a single statement, as well as how variables are
represented.

int fail ed;
FI LE* f;
failed = (f = fopen("file.txt", "r+")) !'= NULL

(a) C code

<unit type="function" name="fopen" arguments= "v1 v2"
i nstrument abl e="fal se" id="ul">
<variabl e type="char*" id="v1"/>
<vari abl e type="char*" id="v2"/>
</unit>

<vari abl e type="integer" nane="failed" id="v3"/>
<vari abl e type="FILE*" name="f" id="v4"/>
<codeRegi on type="assignnment" id="al"> <l-- failed = ... -->
<vari abl eRef targetld="v3" accessType="wite"/>
<vari abl eRef targetld="v4" accessType="read"/>
<expressi on>
<codeRegi on type="assignnent" id="a2"> <l-- f = ... -->
<vari abl eRef targetld="v4" accessType="wite"/>
<expressi on>
<codeRegi on type="call" id="cl"> <!-- fopen() -->
<cal l ee id="ul"/>
</ codeRegi on>
</ expr essi on>
</ codeRegi on>
</ expressi on>
</ codeRegi on>

(b) SIR mapping using the elememtpression

<codeRegi on type="call" id="cl"> <l-- fopen() -->
<cal l ee id="ul"/>

</ codeRegi on>

<codeRegi on type="assignnent" id="al"> <l-- f = ... -->
<vari abl eRef targetld="v4" accessType="wite"/>

</ codeRegi on>

<codeRegi on type="assignnent" id="a2"> <!-- failed = ... -->
<vari abl eRef targetld="v3" accessType="wite"/>
<vari abl eRef targetld="v4" accessType="read"/>

</ codeRegi on>

(c) SIR mapping without the elemeatpression

Figure 1. Two ways of mapping multiple assignments to SIR

Figure 2 illustrates the mapping of inheritance and cowestig of Java classes, as well as method (in this case, ootwfy
invocations.

12



package exanpl e;

cl ass MyCl ass extends java.awt .Button
i npl ements Runnabl e, java.awt.event. KeyLi stener {

MyC ass(String s) { super(s); }

(a) Java code

<group type="package" nane="java" id="pl">
<group type="package" nane="lang" id="p2">
<group type="interface" name="Runnable" id="i1"/>
</ group>
<group type="package" nane="awt" id="p3" instrumentabl e="fal se">
<group type="class" nanme="Button" id="cl">
<unit type="nethod" nane="Button" arguments="v1" id="nml">
<variabl e type="java.lang. String" id="v1"/>
</unit>
</ group>
<group type="package" nane="event" id="p4">
<group type="interface" nane="KeyListener" id="i1"/>
</ group>
</ group>
</ group>
<group type="package" nane="exanple" id="p5">
<group type="cl ass" nane="MWd ass" id="c2">
<unit type="nethod" name="Md ass" id="nR">
<codeRegi on type="call" id="cr1">
<cal lee id="nl">
</ codeRegi on>
</unit>
</ group>
</ group>
(b) SIR mapping

Figure 2. How inheritance and constructor invocation are mapped

Figure 3 illustrates the mapping of drconstruct in C to aifCodeRegionincluding the use of the elemertckCodeRe-
gion, calleg andexpression

13



it (f(n) >g(m) {

a = 10;
} else {
flag = fal se;
}
(a) C code
<I-- assune that the id of f is "f" and the id

<codeRegi on type="if" id="i1l">
<codeRegi on type="bl ock" id="i2">
<expressi on>
<codeRegi on type="call" id="i3">
<callee id="f"/>
</ codeRegi on>
<codeRegi on type="call" id="i4">
<cal lee id="g"/>
</ codeRegi on>
</ expressi on>
<codeRegi on type="assighnent" id="i5"/>
</ codeRegi on>
<codeRegi on type="bl ock" id="i6">
<codeRegi on type="assignnent" id="i7"/>
</ codeRegi on>
</ codeRegi on>

(b) SIR mapping

of gis "g" -->
<l--if (...) -->
<l-- f(n) -->
<t-- g(m -->
</-- a=10 -->
<l-- else -->
<l-- flag = false -->

Figure 3. How if constructs and function calls are mapped

Figure 4 illustrates the mapping of a FORALL loop in FortraraloopCodeRegiorincluding the use of thimopControl

element.

14



FORALL (i = fg(5):gh(100):hi(2), j = 4:m(8))

END FORALL

(a) Fortran code
<l-- assune that the functions have identical ids and nanes -->
<codeRegi on type="Iloop" id="il1l">
<l oopControl > <l-- | -->
<l ower> <!-- fg(5) -->
<codeRegi on type="call" id="i2">

<cal lee id="fg"/>
</ codeRegi on>

</ | ower >
<upper> <!-- gh(100) -->
<codeRegi on type="call" id="i3">

<cal | ee id="gh">
</ codeRegi on>

</ upper >
<stride> <!-- hi(2) -->
<codeRegi on type="call" id="i4">

<callee id="hi"/>
</ codeRegi on>

</stride>
</l oopControl >
<l oopControl > <l--j -->
<upper> <l-- m(8) -->
<codeRegi on type="call" id="i5">

<callee id="m"/>
</ codeRegi on>
</ upper >
</l oopControl >

</ codeRegi on>
(b) SIR mapping

Figure 4. How FORALL is mapped

Figure 5 shows the mapping of pointer functionsin C.

15



void sort(void *array, int size, int (*cnmpfunc)(const void *, const void *)) {

cnpfunc(a, b);

(a) C code

<unit type="function" name="sort" argunents="v1l v2 v3" id="f1">
<vari abl e nane="array" type="void*" id="v1"/>
<vari abl e nane="si ze" type="int" id="v2"/>
<vari abl e name="cnpfunc" type="(int)(const void *, const void *)" id="v3"/>

<codeRegi on type="call" id="c2">
<cal l ee id="ul"/>
</ codeRegi on>

</unit>
(b) SIR mapping

Figure 5. How pointer functions are mapped

Figure 6 shows the mapping of overloaded functions in Fortra

| NTERFACE PHI
FUNCTI ON | PHI ( X)

I NTEGER | PHI, X
END FUNCTI ON | PHI

FUNCTI ON RPHI ( X)
REAL RPHI, X
END FUNCTI ON RPHI
END | NTERFACE PHI
I function contents not inportant

(a) Fortran code

<unit type="function" name="|IPH " argunents="v1" id="f1">
<vari abl e nane="X" type="| NTEGER" id="v1"/>
<al i as>PHI </ al i as>

</unit>
<unit type="function" name="RPH " argunents="v2" id="f2">
<vari abl e name="X" type="REAL" id="v2"/>
<al ias>PHI </ al i as>
</unit>
(b) SIR mapping

Figure 6. How overloaded functions in Fortran are mapped

Finally, figure 7 shows a piece of Fortran code mapped to a 8tRiding thelocation element, and also how an IO
statement is mapped to an element in the SIR.

16



file F1.f90
col um 123456789012345678901234

line 1: SUBROUTI NE f ( x)

line 2: REAL :: X

line 3: | NCLUDE " F2. f 90"
li ne 4: END SUBROUTI NE f

file F2.f90
col um 12345678901234567890
line 1: PRI NT *, foo(1l)
(a) Fortran code
<l-- assune that the id of PRINT is "print" and the id of foois "foo"-->

<unit type="subroutine" name="f" id="il">
<l ocation startLine="1" startCol um="5" endLi ne="4" endCol utm="20"
uri="file:///hone/joelprograns/F1.f90"/>
<codeRegi on type="io" id="i2">
<l ocation startLine="1" startCol um="5" endLi ne="1" endCol um="19"
uri="file:///honel/joelprograns/F2.f90"/>
<expr essi on>
<codeRegi on type="call" id="i3">
<l ocation startLine="1" startCol um="14" endLi ne="1" endCol um="19"/>
<cal l ee id="fo0"/>
</ codeRegi on>
</ expressi on>
<callee id="print"/>
</ codeRegi on>
</unit>

(b) SIR mapping

Figure 7. How 10 statements in Fortran are mappend, including location information

4 DTDto XML Schema Translation

An XML schemas itself an XML document that describes the structure amgtrains the contents of XML documents by
following the XML schema language specificatif#]. It substantially reconstructs and considerably edtstle capabilities
found in XML DTDs (but does not allow to define semantic rulébear). The corresponding XML schema for the DTD
shown in Section 1.1 could be:

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena" >
<xs: el enent nanme="enpl oyee" >
<xs: conpl exType>
<xs:attribute name="matr" type="xs:|1D" use="required"/>
<xs:attribute name="nanme" type="xs:string" use="required"/>
<xs:attribute nane="nmarriedTo" type="xs:|DREF"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el enent name="staff">
<xs: conpl exType>
<xs: sequence maxQccur s="unbounded" >
<xs: el enent ref="enpl oyee"/>

17



</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

Rules for translating DTDs to XML schemas can be found inif8addition, the type restrictions shown in Table 2 should
be used.

| Element | Attribute | Type in the XML Schemd

location startLine nonNegativelnteger
startColumn nonNegativelnteger
endLine nonNegativelnteger
endColumn nonNegativelnteger
url anyURI
scheduling chunk positivelnteger
variable | dimensions nonNegativelnteger
dimension index positivelnteger
dimension | lowerBound integer
dimension| upperBound integer

Table 2. Types to be used when converting to XML Schema the elements and attributes of the DTD describing
the SIR grammar

5 Conclusion

This document has shown how to represent programs in sdaagages using a neutral format defined in XML; this
approach not only reduces the dependence of performanisesioa specific instrumentation engine, but also incredsss t
portability, making it possible to support new languages iastrumentations tools at low cost.

Nevertheless, a compromise was sometimes necessary intordeify under a single SIR element several constructs
that fundamentally represent the same idea. For example+gtgrammer may find strange that a namespace is called a
"package”, and an object-oriented purist might complaat trtall element is used to represent a method invocation. Another
problem is that not always a lowest common denominator cdou&l; some concepts are specific for only one language or
paradigm and do not have a parallel in other languages.

We must also note that not everything thahbe represented with SIRustbe represented. For example, when generating
the SIR from a binary, only little information will be availe except for the program structure and the function cdltee
SIR in this case will be extremely reduced, but it will sti# balid.

Admittedly, much potentially useful information for perfoance analysis is not covered by this representation. \Wa/be
however, that the benefits of having a common format accdptestveral instrumentation engines justify these omission
with little or no effort, performance tools could change tagget language or platform, or even be extended to analyde a
compare programs running in heterogeneous environments.

References

[1] Extensible Markup Language (XML) 1.0 (Second Editiohitp://www.w3.org/TR/REC-xml.
[2] XML Schema Part 1: Structures. http://www.w3.org/TRtschema-1.
[3] A Conversion Tool from DTD to XML Schema. http://www.wd@g/2000/04/schemiaack.

[4] OpenMP Fortran Application Program Interface Versiod.2
http://www.openmp.org/specs/mp-documents/fspec20.pd

[5] RFC 2396: Uniform Resource Identifiers (URI): Generia@&x. http://www.ietf.org/rfc/rfc2396.txt.

18



