
Monitoring and Instrumentation Requests for Fortran, Java, C and C++
Programs

APART
�
Technical Report

Workpackage 1

http://www.fz-juelich.de/apart

Aurora Technical Report

Clovis Seragiotto, Jr., Hong-Linh Truong
Institute for Software Science

University of Vienna�
clovis, truong�@par.univie.ac.at

Thomas Fahringer
Institute for Computer Science

University of Innsbruck
Thomas.Fahringer@uibk.ac.at

Michael Gerndt, Tianchao Li
Institut für Informatik, LRR

Technische Universität München�
gerndt, lit�@in.tum.de

Bernd Mohr
Central Institute for Applied Mathematics

Forschungszentrum Jülich GmbH
B.Mohr@fz-juelich.de

Abstract

Most existing program performance tools for parallel systems are based on built-in instrumentation engines that are not
based on a standard and therefore lack portability to different programming languages. Commonly instrumentation engines
are often bound to specific compilers for specific programming languages, becoming a limiting factor at some stage of a
performance tool‘s lifecycle, restricting its applicability and impeding further developments. As instrumentationengines are
often bound to specific compilers for specific programming languages, extending them to additional programming languages
comes with a high cost, which in turn prevents portability ofhigher-level performance analysis tools.

In previous work we proposed a standardized intermediate representation (SIR) for parallel and sequential programs, cur-
rently covering procedural and object oriented languages.A SIR decouples a performance tool from specific instrumentation
engines under the assumption that the proposed SIR is supported by a large variety of instrumentation engines. In this report
we introduce an XML-based language for monitoring and instrumentation requests named MIR, which in combination with
the SIR defines a comprehensive, portable interface betweenhigher-level performance analysis tools and instrumentation
engines.

1 Introduction

In this document we introduce an XML-based language for monitoring and instrumentation requests named MIR and
describe the format of several kinds of requests used to control the instrumentation and monitoring of an application, as well
as the format of the responses expected from these requests.There are four types of requests that can be used:

� SIR: a request for the SIR of a set of programs in an application;�
The IST Working Group onAutomatic Performance Analysis: Real Toolsis funded under Contract no. IST-2000-28077

1

� Snapshot: a request for the current status of an applicationin execution;

� Instrumentation: a request for instrumenting the application;

� Control: a request for altering the instrumentation of the application or to get the value measured by the instrumentation
code.

The syntactic and semantic rules of these requests and theirresponses are described in the following sections.

2 The SIR Request

A SIR request is used in order to obtain the SIR of one or more programs that make up an application. The SIR generated
can be analyzed and its code region identifiers used to instrument the application; a SIR request also specifies where the
programs must be written back after the SIR has been instrumented.

SIR requests are simple; besides the root element,sirreq, there may be only one other kind of element,resource, which
names the ”files” (more generally speaking, resources) usedto generate the SIR (attributein) and where they should be written
back after the instrumentation (attributeout).

The following DTD describes the syntax of a SIR request

<!ELEMENT sirreq (resource+)>

<!ELEMENT resource EMPTY>
<!ATTLIST resource

in CDATA #REQUIRED
out CDATA #IMPLIED>

The syntax of thein andout attributes is defined byRFC 2396: Uniform Resource Identifiers (URI)[3]. For instance, the
following request could be used to get a program from the Web (along with a file needed to its compilation) and write it on
the local disc:

<sirreq>
<resource in="http://www.fictive.com/mmul.c" out="file:///home/clovis/mmul.c">
<resource in="ftp://anonymous@fictive.com/prototypes.h">

</sirreq>

3 The Snapshot Request

A snapshot requestis used to get information about some entities of an application in execution: sites, nodes, communica-
tors (e.g. for MPI programs [5]), processes, and threads. The request itself is simple and small (it has only the root element,
snapshotreq), while the response may contain not only the entities enumerated above, but also call stacks of the execution.

The following DTD describes the syntax of a snapshot request:

<!ELEMENT snapshotreq EMPTY>
<!ATTLIST snapshotreq

named (true|false) #IMPLIED
stack CDATA #IMPLIED>

The attributenamedspecifies if the snapshot must also contain the names (if available) of the entities in the snapshot, as
the default is the generation of snapshots only with identifiers for these entities. The attributestackspecifies if the call stack
of the execution is wished, and how deep it must be. The default value forstackis zero, that is, no call stack.

The following DTD, which describes the syntax of a snapshot,is more complex, though (the root element issnapshot):

<!ELEMENT snapshot (site*, node*, communicator*, process*, thread*)>

<!ELEMENT site (node*|(communicator*, process*, thread*))>

2

<!ATTLIST site
id CDATA #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT node (communicator*, process*, thread*)>
<!ATTLIST node

id CDATA #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT communicator (process*)>
<!ATTLIST communicator

id CDATA #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT process (thread*|stack*)>
<!ATTLIST process

id CDATA #REQUIRED
name CDATA #IMPLIED>

<!ELEMENT thread (stack*)>
<!ATTLIST thread

id CDATA #REQUIRED
name CDATA #IMPLIED
master (true|false) #IMPLIED>

<!ELEMENT stack (#PCDATA)>

Each entity in a snapshot has a unique identifier that can be used in an instrumentation request, as shown later. The names
of the entities appear if available and if the snapshot request specified the attributenamedwith valuetrue. The attributemaster
is used to specify whether a certain thread in the snapshot isthe master thread in the process, in which case it appears with the
valuetrue (the default value isfalse. It makes sense only for applications with multithreaded processes (e.g. using OpenMP
[2], hybrid OpenMP/MPI, multithreaded MPI). Finally, eachstackelement describes, in an application dependent format, a
stack frame. The maximum number ofstackelements in athreador processelement is limited by the value of the attribute
stackin the snapshot request.

The following example shows a snapshot request for a Java program and the snapshot received as answer:

<snapshotrequest named="true" stack="3">

<snapshot>
<thread id="15" name="AWT-EventQueue-0">

<stack>java.lang.Object.wait</stack>
<stack>java.awt.EventQueue.getNextEvent</stack>
<stack>java.awt.EventDispatchThread.pumpOneEventForHierarchy</stack>

</thread>
<thread id="16" name="DestroyJavaVM"/>
<thread id="1" name="main"/>

<stack>java.lang.Thread.join</stack>
<stack>App.main</stack>

</thread>
</snapshot>

4 The Instrumentation Request

Instrumentation requestsare issuedbeforeor during the program execution so as to instrument an application. They may

3

refer to code regions (using identifiers obtained from a SIR document) and entities like processes and threads (using identifiers
obtained from a snapshot document).

The code generated through an instrumentation request is called aprobe. A probehas, at every instante, a value associated
to it, which corresponds either to the last value measured bythe probe or to the aggregation of this value and previously
measured values. This value will be called hereprobe value.

Each probe receives also a unique identifier calledprobe identifier, which can be used to retrieve the probe value, as well
as to alter the probe or even remove it.

The following DTD describes the syntax of an instrumentation request. The definition of the elementssite, node, commu-
nicator, process, threadwas omitted, as it is the same as in the snapshot request (Section 3).

<!ELEMENT instrreq (
codeRegion?,
metric*,
event*,
measuring?,
site*, node*, communicator*, process*, thread*)>

<!ATTLIST instrreq
activated (true|false) #IMPLIED
flush (true|false) #IMPLIED>

<!ELEMENT codeRegion EMPTY>
<!ATTLIST codeRegion

from CDATA #REQUIRED
to CDATA #IMPLIED>

<!ELEMENT metric EMPTY>
<!ATTLIST metric

name CDATA #REQUIRED>

<!ELEMENT event EMPTY>

<!ELEMENT measuring (aggregate*)>
<!ATTLIST measuring

delivery CDATA #IMPLIED
destination CDATA #IMPLIED
interval CDATA #IMPLIED
duration CDATA #IMPLIED>

<!ELEMENT aggregate EMPTY>
<!ATTLIST aggregate

function (AVERAGE|MAXIMUM|MINIMUM|SUM|VARIANCE) #IMPLIED>

The root of an instrumentation request is the elementinstrreq. Inside it the following elements are allowed:

� Thecode regionelement, with the attributesfromandto. These attributes contain the identifier of aunit or codeRegion
element in a SIR, and delimit the beginning and end of a regionto be monitored in the input program. Some metric will
be measured at the beginning and at the end of the region, and theprobe valuewill be the difference between these two
values. If theto or thefrom element is omitted, then the metric will be measured only at the beginning or at end of the
code region (no difference will be computed).

The concept of ”valid” region, however, is application dependent - one instrumentation tool may allow to define a
region that begins in a function and ends in other, while another tool not.

� Themetricelement, defining which metric should be measured for the region of interest. Severalmetricelements may
be present in a single instrumentation request. Possible values for metrics depend on specific implementations (see
Section 8).

4

� Theeventelement, indicating that event traces must be generated forthe region of interest. The format of the event
traces remains to be defined and is not covered in this specification.

� Themeasuringelement, which defines:

– how often, in milliseconds, measurements must be done (attribute interval). The default value is zero, which
means that the measurements are done only when the code region defined with thecodeRegionelement is exe-
cuted.

– how often, in milliseconds, values measured are automatically delivered (attributedelivery). The default value is
zero, which means that the values are not automatically delivered; they must be retrieved through acontrol request
(see Section 5). The value -1 has a special meaning: the values are delivered every time they are measured.

– where values measured must be delivered (attributedestination). Values are always delivered asmeasurement
documents (see Section 6), but the default value for thedestinationattribute is application dependent. The format,
though also application dependent, must follow the URI syntax [3].

– how long, in milliseconds, a measurement takes (attributeduration). The default is zero; a non-zero value T
means that the measurement must be done at instant K, then at instant K + T, and that the difference between the
two values measured must become the probe value.

A measuring element may containaggregateelements, to indicate that measurements must be grouped according to
certain statistic functions (AVERAGE, MINIMUM, MAXIMUM, SUM, andVARIANCE). If no aggregateelement is
specified, or if it is specified with no function, then the probe value will always be the last value measured; otherwise,
it will be the value returned by one of these functions (or values, if more than one function is specified).

A measuringelement without attributes and without anaggregateelement is invalid, while an instrumentation request
containing only themeasuringelement defines new default values for interval, duration, delivery, destination, and
aggregate. To such a request no probe identifier is assigned.

� The thread, process, communicator, node, andsiteelements, specifying the identifiers of threads, processes, commu-
nicators, nodes, and sites for which measurements must be taken. The format of an identifier for any of these elements
must be obtained from a snapshot document (see Section 3). Two symbols, however, have a special meaning for an
identifier: the asterisk, which means ”all”, and the question mark, which means ”the current entity” (or ”the entity
doing the measurement”). For instance,<process id="*"> means that the measurement must be taken for all
processes related to the application, while<process id="?"> means that the metric must be measured only in one
process, namely the one that is doing the measurement itself. Question marks are useful, for instance, when taking
measurements for a code region. In fact, if an instrumentation request specifies a code region but no entity, the question
mark is assumed as ”identifier” for the elementsthread, process, communicator, node, andsite.

Note that there is a difference between a request that specifies
<process id="P1"/>
and one that specifies
<process id="P1">

<thread="*">
</process>.
The first request asks for one single value, measured for the processP1, while the second request asks for several
values, one for each thread of processP1.

An instrumentation request may also have two attributes:flushandactivate. When theflushattribute has the valuetrue,
the current instrumentation request is flushed, together with all the previous instrumentation requests where the attributeflush
was falseor absent. One particular consequence is that only now SIRs may be parsed back to source code (now also with
instrumentation code). The attributeactivate, if specified with the valuetrue, indicates that the measurements must start as
soon as the instrumentation is flushed. When the value isfalse (or the attribute is absent), the probe starts inactive, anda
control request (see Section 5) will be needed to activate it.

The response to an instrumentation request is aprobedocument, the syntax of which is defined as follows:

<!ELEMENT probe EMPTY>
<!ATTLIST probe

id CDATA #REQUIRED>

5

The attributeid of a probe is the identifier of the instrumentation request; it may be used later in a control request and also
to identify a value in a measure document (see Section 6).

The following example shows how to measure the number of times the threads1045and1032blocked to enter in a critical
section. This value is measured every time any thread executes the code region with identifierc1, and the maximum of the
values measured is sent every second to the file ”/tmp/foo.txt”.

<instrreq>
<codeRegion from="c1"/>
<metric name="BLOCKED_COUNT"/>
<measuring

delivery="1000"
destination="file:///tmp/foo.txt"
<aggregate function="MAXIMUM"/>

</measuring>
<thread="1045"/><thread="1032"/>

</instrreq>

If we used�thread id=”?” � instead, the metric BLOCKEDCOUNT would be measured for each thread, but the mea-
surements for any thread� would be taken only when� executed the code regionc1. By using�thread id=”*” �, however,
the measurements would be taken for all threads every timeanyof them executed the code regionc1.

5 The Control Request

A control requestis used to access the probe created through aninstrumentation request. With control requests and the
probe identifiers returned by theinstrumentation requests(see Section 4) it is possible to change the instrumentationor
retrieve the values it measures.

The root of a control request is thectrlreq element. The DTD giving the syntax of control requests is given below:

<!ELEMENT ctrlreq (
probe+,
metric*,
measuring?,
site*, node*, communicator*, process*, thread*)>

<!ATTLIST ctrlreq
flush (true|false) #IMPLIED
action (VALUE|ACTIVATE|DEACTIVATE|RESET|REMOVE) #REQUIRED>

� Theprobeelement specifies, with the attributeid, the identifier returned by a previous instrumentation request. Several
probeelements may be specified in the same request.

� Theactionattribute defines the effect of this control request on the probe(s). Possible actions are:

– VALUE: The last value measured (or the last aggregation) is returned as ameasurementdocument (see Section 6);
the instrumentation does not change.

– ACTIVATE: The measurements start to be taken for the specified probe(s). If they already were active, nothing
happens.

– DEACTIVATE: The measurements stop to be taken for the specified probe(s). The perturbation generated by the
probe(s) should be minimal.

– RESET: Resets the aggregations associated with the specified probe(s). All the measurements taken for that
probe(s) until the moment of this request will be forgotten,as if the probe had just been inserted.

– REMOVE: Invalidates the specified probe, possibly removing the instrumentation.

� The attributeflush, as well as the elementsmetric, measuring, site, node, communicator, process, and thread are
equivalent to their counterparts in a instrumentation request. If left unspecified, the previous settings associated with
the specified probe(s) remain unaltered.

6

The following example removes the probesp1andp2:

<ctrlreq>
<probe id="p1"/> <probe id="p2"/> <action type="REMOVE"/>

</ctrlreq>

This example returns the last value measured for probep2:

<ctrlreq>
<probe id="p2"/><action type="VALUE">

</ctrlreq>

Finally this example changes the probep3 to measure every 4 seconds the time that communicatorcb spent sending
messages:

<ctrlreq>
<probe id="p3"/>
<action type="RESET"/>
<metric name="NET_SEND"/> <!-- NET_SEND means time spent sending messages -->
<measuring interval="4000"/>
<communicator id="cb"/>

</ctrlreq>

6 The Measurement Document

The response to a control request whose action has the typeVALUE, as well as the document sent automatically if the
probe is associated to a delivery interval different from zero, is ameasurementdocument, the syntax of which is defined as
follows:

<!ELEMENT measurement (measurement)*>
<!ATTLIST measurement

probeId CDATA #IMPLIED
siteId CDATA #IMPLIED
nodeId CDATA #IMPLIED
communicatorId CDATA #IMPLIED
processId CDATA #IMPLIED
threadId CDATA #IMPLIED
value CDATA #IMPLIED>

A measurementdocument is generated from a set of tuples (probeId, siteId,nodeId, communicatorId, processId, threadId,
metric, value), wherenull is also a possible value for siteId, nodeId, communicatorId, processId, and threadId (in a pure
sequential program, for instance, all of them can benull). Each tuple corresponds either to the value measured for some
metric or to an aggregation of values (average, maximum, minimum, sum, variance); for the aggregations average, sum, and
variance, siteId, nodeId, communicatorId, processId and threadId will always be null.

In order to generate the document in a compact form, the following algorithm is applied (where we calllast defining
requestthe instrumentation request that created a probe or the control request that last modified it):

1. Generation: For each tuple, ameasurementelement is generated using the values in the tuple as the values of the
respective attributes in the element (note that there is no attribute formetric).

2. Sorting:

� If two measurementelements� � and� � have the same value for the attributeprobeIdbut different values for
the attributesiteId, then� � must appear in the document before�� if the site in� � was neither an asterisk nor
a question mark and it has been specified before the site in�� in the last defining request of the corresponding
probe. A similar rule is applied if twomeasurementelements have:

7

– the same value for the attributesprobeIdandsiteIdbut different values for the attributenodeId;

– the same value for the attributesprobeId, siteId, andnodeIdbut different values for the attributecommunica-
torId;

– the same value for the attributesprobeId, siteId, nodeId, andcommunicatorIdbut different values for the
attributeprocessId;

– the same value for the attributesprobeId, siteId, nodeId, communicatorId, andprocessIdbut different values
for the attributethreadId.

� If two measurementelements� �, generated from tuple
��, and� � , generated from tuple

��, have the same values
for the attributesprobeId, siteId, nodeId, communicatorId, processId, andthreadId, then� � must appear in the
document before� � if the metric in

�� was specified before the metric in
�� in the last defining request of the

corresponding probe. This rule guarantees that the metric ameasurement elementrefers to can always be inferred
from the last defining request.

3. Compression:

� Remove what can be inferred from the last defining request:

– The attributeprobeId is removed from allmeasurementelements if the document contains values for only
one probe.

– An attributesiteId, nodeId, communicatorId, processIdandthreadIdis removed if its value isnull or if the
last defining request for the probe did not specify an aggregation and used neither an asterisk nor a question
mark as identifier of the corresponding site, node, communicator, process or thread.

� Merge elements that have attributes in common:
For each attribute� in the list (probeId, siteId, nodeId, communicatorId, processId, threadId) in this order, if�
measurementelements (� � �) have the same value for the attribute� , then they will be replaced by a single
measurementelement with only the attribute� and its value and, nested within this new element, the previous�
measurementelements without the attribute� .

� If there is still more than onemeasurementelement, a new ”root”measurementelement, without any attribute, is
generated to nest the othermeasurementelements.

The following example shows an instrumentation request that measures the number of threads for the communicators
c1 (containing the processesp1 andp2) andc2 (containing the processp3), as well as a possiblemeasurementdocument
generated for the values measured (comments between	!– and –� are not generated):

<instrreq>
<metric name="THREAD_COUNT"/>
<communicator id="c1"><process id="*"/></communicator>
<communicator id="c2"><process id="*"/></communicator>

</instrreq>

<measurement>
<measurement> <!-- communicator c1 -->

<measurement processId="p2" value="3"/>
<measurement processId="p1" value="4"/>

</measurement>
<measurement> <!-- communicator c2 -->

<measurement processId="p3" value="5"/>
</measurement>

</measurement>

If the instrumentation request had specified theaggregateelement with the attributefunction= MAXIMUM, themeasurement
document would be simply:

<measurement communicatorId="c2" processId="p3" value="5"/>

8

7 Errors

Responses to requests may also returnerrors instead of a normal answer according to the following syntax:

<!ELEMENT errors (error)+>
<!ELEMENT error (#PCDATA)>

where eacherror element contains an application-dependent error message.For example,

<errors> <error>File not found: mm.c</error> </errors>

8 Metrics

Each metric has a unique name. The attributenamein the elementmetricspecifies the unique name of the metric. Metric
can be timing (e.g. wallclock time), counter (e.g. number offunction calls), and hardware counter (e.g. L2 cache misses
provided by PAPI [1]). Currently, the name and the number of metrics supported are dependent on specific implementationsof
the instrumentation and monitoring tool. Each implementation should provide ametric catalogthat documents its supported
metrics. As a performance tool may work with different instrumentation and monitoring tools, a metric may need to be
associated with a name space.

Table 1 displays an example of metrics that can be supported by a monitoring tool for Java programs (time is always given
in milliseconds).

Metric Name Description
WC TIME Wallclock time.
CPU TIME CPU time.
LOADED CL TOTAL Number of classes loaded since the application started.
LOADED CL CURR Number of classes currently loaded.
UNLOADED CL Number of classes that have been unloaded.
COMP TIME Time spent with just-in-time compilation.
GC COUNT The total number of garbage collections that have occurred.
GC TIME The accumulated garbage collection time in milliseconds.
HEAP MEM USAGE Amount of used heap memory, in bytes.
NON HEAP MEM USAGE Amount of used non-heap memory, in bytes.
NON FINALIZED OBJECTS Number of objects for which finalization is pending.
THREAD COUNT The current number of live threads.
DAEMON THREAD COUNT The current number of live daemon threads.
THREAD WAITED COUNT Total number of times a thread has waited for notification (that is, number

of invocations to the method wait).
THREAD WAITED TIME The accumulated time a thread has waited for notification.
BLOCKED COUNT Total number of times a thread blocked to enter or reenter

a critical section.
BLOCKED TIME The accumulated time a thread has blocked to enter or reenter

a critical section.
NET SEND Time spent sending messages through the network.
NET BYTES SEND Number of bytes sent through the network.
NET BLOCKED SEND Time spent waiting to send the first byte when writing to the network.
NET RECV Time spent receiving messages without blocking.
NET BYTES RECV Number of bytes received through the network.
NET BLOCKED RECV Time spent waiting for the first byte when reading from the network.
NET INIT Time spent initializing connections.
NET END Time spent finalizing connections.

Table 1. Example of metrics measured for Java programs.

9

9 DTD to XML Schema Translation

Generic rules for translating DTDs to XML schemas can be found in [4]; in addition, the type restrictions shown in Table
2 should also be used.

Element Attribute Type in the XML Schema

thread omp-master boolean
resource in anyURI

out anyURI
snapshot named boolean

measuring delivery nonNegativeInteger
destination anyURI

interval nonNegativeInteger
duration nonNegativeInteger

measurement value decimal
instrreq, ctrlreq flush boolean

Table 2. Types to be used when converting to XML Schema the elements and attributes of the DTD describing
the MIR grammar

.

10 Conclusion

This document has defined a set of requests and responses to beused in the communication with instrumentation engines.
The use of these requests can greatly reduce the dependency of a performance tool on a specific instrumentation engine
without restricting the capabilities of neither of them.

It must be noted that an instrumentation engine does not needto fully support all of the possible requests in this document
to be ”MIR compatible”. For instance, it may be impossible toremove instrumentation that has been statically inserted;
therefore, a tool for static instrumentation may still support the MIR format, just without supporting all its features.

As XML documents may be lengthy, we tried to reduce the average size of requests and responses, although it has always
been clear that they will never be so small as a binary format tuned for a specific application, language, and platform. This
overhead can however be not so important when compared to theportability achieved through the use of MIR.

References

[1] PAPI - Performance Application Programming Interface.http://icl.cs.utk.edu/papi/.

[2] OpenMP Fortran Application Program Interface Version 2.0.
http://www.openmp.org/specs/mp-documents/fspec20.pdf.

[3] RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax. http://www.ietf.org/rfc/rfc2396.txt.

[4] A Conversion Tool from DTD to XML Schema. http://www.w3.org/2000/04/schemahack.

[5] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the MPI message passing
interface standard, Parallel Computing, 22(6):789-828, Sept 1996

10

