Monitoring and Instrumentation Requests for Fortran, Java, C and C++
Programs

APART*Technical Report
Workpackage 1

http://www.fz-juelich.de/apart

Aurora Technical Report

Clovis Seragiotto, Jr., Hong-Linh Truong Thomas Fahringer
Institute for Software Science Institute for Computer Science
University of Vienna University of Innsbruck

{clovis, truong @par.univie.ac.at Thomas.Fahringer@uibk.ac.at

Michael Gerndt, Tianchao Li Bernd Mohr

Institut fur Informatik, LRR Central Institute for Applied Mathematics
Technische Universitat Minchen Forschungszentrum Julich GmbH
{gerndt, litt @in.tum.de B.Mohr@fz-juelich.de
Abstract

Most existing program performance tools for parallel spsseare based on built-in instrumentation engines that ate no
based on a standard and therefore lack portability to déferprogramming languages. Commonly instrumentationrergyi
are often bound to specific compilers for specific prograngié@mguages, becoming a limiting factor at some stage of a
performance tool's lifecycle, restricting its applicalbiland impeding further developments. As instrumentagiogines are
often bound to specific compilers for specific programmimgleages, extending them to additional programming langsag
comes with a high cost, which in turn prevents portabilithigher-level performance analysis tools.

In previous work we proposed a standardized intermedigieesentation (SIR) for parallel and sequential programs; ¢
rently covering procedural and object oriented language$IR decouples a performance tool from specific instruntienta
engines under the assumption that the proposed SIR is sigpjdoy a large variety of instrumentation engines. In thjzon
we introduce an XML-based language for monitoring and imstentation requests named MIR, which in combination with
the SIR defines a comprehensive, portable interface bethigher-level performance analysis tools and instrumeatat
engines.

1 Introduction

In this document we introduce an XML-based language for mooinig and instrumentation requests named MIR and
describe the format of several kinds of requests used to@dhe instrumentation and monitoring of an applicaticanell
as the format of the responses expected from these reqibst® are four types of requests that can be used:

¢ SIR: arequest for the SIR of a set of programs in an applicatio

*The IST Working Group outomatic Performance Analysis: Real Tom$unded under Contract no. IST-2000-28077

e Snapshot: a request for the current status of an applicetiexecution;
e Instrumentation: a request for instrumenting the appbecat

e Control: arequest for altering the instrumentation of thel@ation or to get the value measured by the instrumetati
code.

The syntactic and semantic rules of these requests anddispionses are described in the following sections.

2 The SIR Request

A SIR request is used in order to obtain the SIR of one or margnams that make up an application. The SIR generated
can be analyzed and its code region identifiers used to msimtithe application; a SIR request also specifies where the
programs must be written back after the SIR has been instiigde

SIR requests are simple; besides the root elensimég, there may be only one other kind of elemeetsource which
names the "files” (more generally speaking, resources) tasgeinerate the SIR (attribut® and where they should be written
back after the instrumentation (attribugat).

The following DTD describes the syntax of a SIR request

<l ELEMENT sirreq (resource+)>

<! ELEMENT r esource EMPTY>
<! ATTLI ST resource
i n CDATA #REQUI RED
out CDATA #| MPLI ED>

The syntax of then andout attributes is defined bRFC 2396: Uniform Resource Identifiers (URB]. For instance, the
following request could be used to get a program from the Vaidn@ with a file needed to its compilation) and write it on
the local disc:

<sirreqg>
<resource in="http://ww.fictive.com nmul.c" out="file:///home/clovis/nmul.c">
<resource in="ftp://anonynmous@i ctive. coni prototypes. h">

</sirreg>

3 The Snapshot Request

A snapshot requess used to get information about some entities of an apjidicamh execution: sites, nodes, communica-
tors (e.g. for MPI programs [5]), processes, and threads.r&fuest itself is simple and small (it has only the root eletn
shapshotre}j while the response may contain not only the entities ematad above, but also call stacks of the execution.

The following DTD describes the syntax of a snapshot request

<! ELEMENT snapshotreq EMPTY>

<! ATTLI ST snapshotreq
naned (true|fal se) #l MPLI ED
st ack CDATA #| MPLI ED>

The attributenamedspecifies if the snapshot must also contain the names (ifad@) of the entities in the snapshot, as
the default is the generation of snapshots only with idemsiffor these entities. The attribigckspecifies if the call stack
of the execution is wished, and how deep it must be. The defalule forstackis zero, that is, no call stack.

The following DTD, which describes the syntax of a snapsisahore complex, though (the root elemensigpshat

<! ELEMENT snapshot (site*, node*, conmunicator*, process*, thread*)>

<! ELEMENT site (node*|(communi cator*, process*, thread*))>

<I ATTLI ST site
i d CDATA #REQUI RED
name CDATA #| MPLI ED>

<! ELEMENT node (conmuni cator*, process*, thread*)>
<! ATTLI ST node

i d CDATA #REQUI RED

name CDATA #| MPLI ED>

<! ELEMENT comuni cat or (process*)>
<! ATTLI ST comuni cat or

i d CDATA #REQUI RED

name CDATA #l MPLI ED>

<! ELEMENT process (thread*|stack*)>
<! ATTLI ST process

i d CDATA #REQUI RED

nanme CDATA #l VPLI ED>

<! ELEMENT thread (stack*)>
<I' ATTLI ST t hread
i d CDATA #REQUI RED
name CDATA #l MPLI ED
master (true|fal se) #l MPLI ED>

<! ELEMENT stack (#PCDATA) >

Each entity in a snapshot has a unique identifier that candxinsan instrumentation request, as shown later. The names
of the entities appear if available and if the snapshot reigpecified the attributgamedwith valuetrue. The attributenaster
is used to specify whether a certain thread in the snapstiw imaster thread in the process, in which case it appedrshveit
valuetrue (the default value ifalse It makes sense only for applications with multithreadestpsses (e.g. using OpenMP
[2], hybrid OpenMP/MPI, multithreaded MPI). Finally, eastackelement describes, in an application dependent format, a
stack frame. The maximum numbersihickelements in dhreador processlement is limited by the value of the attribute
stackin the snapshot request.

The following example shows a snapshot request for a Jagagmoand the snapshot received as answer:

<snapshotrequest naned="true" stack="3">

<snapshot >
<thread i d="15" nanme="AW- Event Queue-0">
<stack>j ava. | ang. Qbj ect . wai t </ st ack>
<st ack>j ava. awmt . Event Queue. get Next Event </ st ack>
<st ack>j ava. awt . Event Di spat chThr ead. punpOneEvent For H er ar chy</ st ack>
</t hread>
<t hread id="16" name="DestroyJavavVM'/ >
<thread id="1" name="nmai n"/>
<stack>j ava. | ang. Thread. j oi n</ st ack>
<st ack>App. mai n</ st ack>
</t hread>
</ snapshot >

4 The Instrumentation Request

Instrumentation requestsre issuedbeforeor during the program execution so as to instrument an applicatiopy Tiray

refer to code regions (using identifiers obtained from a S18udhent) and entities like processes and threads (usingfides
obtained from a snapshot document).

The code generated through an instrumentation requedtad egprobe A probehas, at every instante, a value associated
to it, which corresponds either to the last value measurethéyprobe or to the aggregation of this value and previously
measured values. This value will be called her@be value

Each probe receives also a unique identifier cgtiexdbe identifiey which can be used to retrieve the probe value, as well
as to alter the probe or even remove it.

The following DTD describes the syntax of an instrumentatisquest. The definition of the elemesite, node commu-
nicator, processthreadwas omitted, as it is the same as in the snapshot requestofsayt

<l ELEMENT instrreq (

codeRegi on?,

metric*,

event *,

measuri ng?,

site*, node*, communi cator*, process*, thread*)>
<! ATTLI ST instrreq

activated (true|fal se) #l MPLI ED

flush (true|fal se) #l MPLI ED>

<! ELEMENT codeRegi on EMPTY>
<! ATTLI ST codeRegi on

from CDATA #REQUI RED

t o CDATA #| MPLI ED>

<! ELEMENT netric EMPTY>
<I ATTLI ST metric
name CDATA #REQUI RED>

<! ELEMENT event EMPTY>

<! ELEMENT neasuri ng (aggregate*)>
<I ATTLI ST neasuri ng
delivery CDATA #| MPLI ED
destinati on CDATA #l MPLI ED
i nterval CDATA #| MPLI ED
duration CDATA #| MPLI ED>

<! ELEMENT aggregate EMPTY>
<I ATTLI ST aggregat e
function (AVERAGE| MAXI MUM M NI MUM SUM VARI ANCE) #I MPLI ED>

The root of an instrumentation request is the elentesitreq Inside it the following elements are allowed:

e Thecode regiorelement, with the attributefsom andto. These attributes contain the identifier afrait or codeRegion
elementin a SIR, and delimit the beginning and end of a reidre monitored in the input program. Some metric will
be measured at the beginning and at the end of the regionhaptbbe valuewill be the difference between these two
values. If theto or thefrom element is omitted, then the metric will be measured onlhatteginning or at end of the
code region (no difference will be computed).

The concept of "valid” region, however, is application deg@ent - one instrumentation tool may allow to define a
region that begins in a function and ends in other, while lagatool not.

e Themetricelement, defining which metric should be measured for thionegf interest. Severahetricelements may
be present in a single instrumentation request. Possililesdor metrics depend on specific implementations (see
Section 8).

e Theeventelement, indicating that event traces must be generatethéaregion of interest. The format of the event
traces remains to be defined and is not covered in this spatafic

e Themeasuringelement, which defines:

— how often, in milliseconds, measurements must be donebatitrinterval). The default value is zero, which
means that the measurements are done only when the code dedined with thecodeRegiorelement is exe-
cuted.

— how often, in milliseconds, values measured are autoniigtidelivered (attributedelivery). The default value is
zero, which means that the values are not automaticallyeteld; they must be retrieved througbantrol request
(see Section 5). The value -1 has a special meaning: thesvatealelivered every time they are measured.

— where values measured must be delivered (attridestination. Values are always delivered ageasurement
documents (see Section 6), but the default value foddstinatiorattribute is application dependent. The format,
though also application dependent, must follow the URI ay{i3].

— how long, in milliseconds, a measurement takes (attributetion). The default is zero; a non-zero value T
means that the measurement must be done at instant K, thestaaitiK + T, and that the difference between the
two values measured must become the probe value.

A measuring element may contaaggregateelements, to indicate that measurements must be groupecddaug to
certain statistic functions®VERAGE MINIMUM, MAXIMUM, SUM, and VARIANCE. If no aggregateelement is
specified, or if it is specified with no function, then the peokalue will always be the last value measured; otherwise,
it will be the value returned by one of these functions (oueal if more than one function is specified).

A measuringelement without attributes and without aggregateelement is invalid, while an instrumentation request
containing only themeasuringelement defines new default values for interval, duratiaiivdry, destination, and
aggregate. To such a request no probe identifier is assigned.

e Thethread processcommunicatornode andsite elements, specifying the identifiers of threads, processssmu-
nicators, nodes, and sites for which measurements muskée.tiihe format of an identifier for any of these elements
must be obtained from a snapshot document (see Section 3).symbols, however, have a special meaning for an
identifier: the asterisk, which means "all”, and the questioark, which means "the current entity” (or "the entity
doing the measurement”). For instaneg@r ocess i d="*"> means that the measurement must be taken for all
processes related to the application, wkiter ocess i d="?" > means that the metric must be measured only in one
process, namely the one that is doing the measurement iQekstion marks are useful, for instance, when taking
measurements for a code region. In fact, if an instrumemaiiquest specifies a code region but no entity, the question
mark is assumed as "identifier” for the elemetiiead processcommunicatornode andsite

Note that there is a difference between a request that sgecifi
<process id="P1"/>
and one that specifies
<process id="P1">
<t hr ead="*">
</ process>.
The first request asks for one single value, measured fornbeepsP1, while the second request asks for several
values, one for each thread of proc@ds

An instrumentation request may also have two attribuieshandactivate When theflushattribute has the valuteue,
the current instrumentation request is flushed, togethtbrailithe previous instrumentation requests where thibateflush
wasfalseor absent. One particular consequence is that only now SkERshm parsed back to source code (now also with
instrumentation code). The attribuaetivate if specified with the valugrue, indicates that the measurements must start as
soon as the instrumentation is flushed. When the valfi@ise (or the attribute is absent), the probe starts inactive,aand
control request (see Section 5) will be needed to activate it

The response to an instrumentation requesijpigaedocument, the syntax of which is defined as follows:

<! ELEMENT pr obe EMPTY>
<l ATTLI ST probe
i d CDATA #REQUI RED>

The attributad of a probe is the identifier of the instrumentation requéstiay be used later in a control request and also
to identify a value in a measure document (see Section 6).

The following example shows how to measure the number oftitine thread4045and1032blocked to enter in a critical
section. This value is measured every time any thread eagthé code region with identified, and the maximum of the
values measured is sent every second to the file "/tmp/fijo.tx

<instrreqg>
<codeRegi on fron¥"cl"/>
<metric nanme="BLOCKED COUNT"/>
<measuri ng
del i very="1000"
destination="file:///tnp/foo.txt"
<aggregate function="MAXI MUM'/ >
</ nmeasuri ng>
<t hr ead="1045"/ ><t hr ead="1032"/ >
</instrreqg>

If we used<thread id="?" > instead, the metric BLOCKEIZCOUNT would be measured for each thread, but the mea-
surements for any thre&dwould be taken only whe®# executed the code regi@i. By using<thread id="*" >, however,
the measurements would be taken for all threads everyamgef them executed the code regioh

5 The Control Request

A control requestis used to access the probe created througinstrumentation requestWith control requests and the
probe identifiers returned by thiestrumentation requestsee Section 4) it is possible to change the instrumentation
retrieve the values it measures.

The root of a control request is tlo&rlreq element. The DTD giving the syntax of control requests igilelow:

<l ELEMENT ctrlreq (
probe+,
metric*,
measuri ng?,
site*, node*, communi cator*, process*, thread*)>
<I ATTLI ST ctrlreq
flush (true|false) #l MPLI ED
action (VALUE| ACTI VATE| DEACTI VATE| RESET| REMOVE) #REQUI RED>

e Theprobeelement specifies, with the attribuitk the identifier returned by a previous instrumentation esguSeveral
probeelements may be specified in the same request.

e Theactionattribute defines the effect of this control request on tlude(s). Possible actions are:
— VALUE The last value measured (or the last aggregation) is retLas aneasuremerdocument (see Section 6);
the instrumentation does not change.

— ACTIVATE The measurements start to be taken for the specified ploldé{key already were active, nothing
happens.

— DEACTIVATE The measurements stop to be taken for the specified profdi(s)perturbation generated by the
probe(s) should be minimal.

— RESET Resets the aggregations associated with the specifiec(@®)obAll the measurements taken for that
probe(s) until the moment of this request will be forgot@n|f the probe had just been inserted.

— REMOVE Invalidates the specified probe, possibly removing thiumsentation.
e The attributeflush as well as the elementaetric measuring site, hode communicatoy process and thread are

equivalent to their counterparts in a instrumentation estulf left unspecified, the previous settings associatiédl w
the specified probe(s) remain unaltered.

The following example removes the prolelsandp2:

<ctrlreg>
<probe id="pl"/> <probe id="p2"/> <action type="REMOVE"/ >
</ctrlreg>

This example returns the last value measured for ppabe

<ctrlreg>
<probe id="p2"/><action type="VALUE">
</ctrlreg>

Finally this example changes the prop@to measure every 4 seconds the time that communicdtepent sending
messages:

<ctrlreg>
<probe id="p3"/>
<action type="RESET"/>
<metric nane="NET_SEND'/> <!-- NET_SEND neans tinme spent sendi ng nessages -->
<measuring interval ="4000"/>
<conmuni cator id="ch"/>
</ctrlreg>

6 The Measurement Document

The response to a control request whose action has thewpelE, as well as the document sent automatically if the
probe is associated to a delivery interval different fromozés ameasuremerdocument, the syntax of which is defined as
follows:

<! ELEMENT neasurenent (neasurenent)*>
<I ATTLI ST measur enment

probel d CDATA #| MPLI ED
siteld CDATA #| MPLI ED
nodel d CDATA #| MPLI ED
comuni cat or | d CDATA #l MPLI ED
processld CDATA #| MPLI ED
threadld CDATA #| MPLI ED
val ue CDATA #| MPLI ED>

A measuremerdocument is generated from a set of tuples (probeld, siteldeld, communicatorld, processld, threadld,
metric, value), wheraull is also a possible value for siteld, nodeld, communicatgtdcessld, and threadld (in a pure
sequential program, for instance, all of them camb#). Each tuple corresponds either to the value measured foe so
metric or to an aggregation of values (average, maximumipmim, sum, variance); for the aggregations average, suth, an
variance, siteld, nodeld, communicatorld, processld arebidld will always be null.

In order to generate the document in a compact form, theviwlig algorithm is applied (where we cdlist defining
requesthe instrumentation request that created a probe or theateatjuest that last modified it):

1. Generation: For each tuple, aneasuremenglement is generated using the values in the tuple as thesaluthe
respective attributes in the element (note that there igtmibuite formetric).

2. Sorting:

¢ If two measurementlementsn; andms, have the same value for the attribygbeldbut different values for
the attributesiteld thenm; must appear in the document befang if the site inmn; was neither an asterisk nor
a question mark and it has been specified before the site iim the last defining request of the corresponding
probe. A similar rule is applied if twmmeasuremerglements have:

— the same value for the attributpsbeldandsiteld but different values for the attributeodeld

— the same value for the attributpmbeld siteld andnodeldbut different values for the attribummmunica-
torld;

— the same value for the attributpsobeld siteld nodeld andcommunicatoricbut different values for the
attributeprocessigl

— the same value for the attributpmobeld siteld, nodeld communicatorldandprocessidout different values
for the attributehreadld

¢ If two measuremerglementsn;, generated from tuplg , andm.,, generated from tuplg, have the same values
for the attributegrobeld siteld nodeld communicatorldprocessi¢g andthreadld thenm; must appear in the
document beforen, if the metric int; was specified before the metric #p in the last defining request of the
corresponding probe. This rule guarantees that the metnieasurement elemengfers to can always be inferred
from the last defining request.

3. Compression:

¢ Remove what can be inferred from the last defining request:

— The attributeprobeldis removed from almeasuremerglements if the document contains values for only
one probe.

— An attributesiteld, nodeld communicatorldprocessidandthreadldis removed if its value iswll or if the
last defining request for the probe did not specify an aggi@yand used neither an asterisk nor a question
mark as identifier of the corresponding site, node, comnataicprocess or thread.

e Merge elements that have attributes in common:
For each attributé in the list (probeld, siteld, nodeld, communicatorld, prssld, threadld) in this order, 4f
measurementlements«{ > 1) have the same value for the attribitethen they will be replaced by a single
measuremerglement with only the attribute and its value and, nested within this new element, the pusvio
measuremerglements without the attribute

o If there is still more than onmeasuremerglement, a new "rootineasuremerglement, without any attribute, is
generated to nest the othmeasuremerdglements.

The following example shows an instrumentation request ieasures the number of threads for the communicators
c1 (containing the processgd andp2) andc2 (containing the procegs3), as well as a possiblmeasuremendocument
generated for the values measured (comments betwkeand = are not generated):

<instrreqg>
<metric nanme="THREAD COUNT"/ >
<communi cator id="cl"><process id="*"/></conmmuni cat or >
<communi cat or id="c2"><process id="*"/></conmuni cat or >
</instrreqg>

<measur enent >
<measur enent > <!-- comunicator cl -->
<nmeasur enent processld="p2" val ue="3"/>
<measur ement processld="pl" val ue="4"/>
</ neasur erment >
<measur enent > <!-- communicator c2 -->
<nmeasur enent processld="p3" val ue="5"/>
</ measur enent >
</ measur enent >

If the instrumentation request had specifieddhgregateslement with the attributiinction= MAXIMUM, themeasurement
document would be simply:

<measur ement comuni catorl d="c2" processld="p3" val ue="5"/>

7 Errors

Responses to requests may also returars instead of a normal answer according to the following syntax

<! ELEMENT errors (error)+>
<! ELEMENT error (#PCDATA) >

where eaclerror element contains an application-dependent error messagexample,

<errors> <error>File not found: mmc</error> </errors>

8 Metrics

Each metric has a unique name. The attrimamein the elemeninetric specifies the unique name of the metric. Metric
can be timing (e.g. wallclock time), counter (e.g. numbefurfction calls), and hardware counter (e.g. L2 cache misses
provided by PAPI [1]). Currently, the name and the number effrios supported are dependent on specific implementaifons
the instrumentation and monitoring tool. Each implemeateshould provide anetric catalogthat documents its supported
metrics. As a performance tool may work with different instientation and monitoring tools, a metric may need to be
associated with a name space.

Table 1 displays an example of metrics that can be suppoytadionitoring tool for Java programs (time is always given
in milliseconds).

Metric Name Description

WC_TIME Wallclock time.

CPU.TIME CPU time.

LOADED_CL_TOTAL Number of classes loaded since the application started.
LOADED_CL_CURR Number of classes currently loaded.

UNLOADED_CL Number of classes that have been unloaded.

COMP-TIME Time spent with just-in-time compilation.

GC_.COUNT The total number of garbage collections that have occurred.
GC_TIME The accumulated garbage collection time in milliseconds.
HEAP_.MEM_USAGE Amount of used heap memory, in bytes.

NON_HEAP_.MEM_USAGE Amount of used non-heap memory, in bytes.

NON_FINALIZED -OBJECTS | Number of objects for which finalization is pending.
THREAD_COUNT The current number of live threads.

DAEMON_THREAD_COUNT | The current number of live daemon threads.
THREAD_WAITED_COUNT | Total number of times a thread has waited for notificatioat(th, number
of invocations to the method wait).

THREAD_WAITED _TIME The accumulated time a thread has waited for notification.
BLOCKED_COUNT Total number of times a thread blocked to enter or reenter
a critical section.
BLOCKED_TIME The accumulated time a thread has blocked to enter or reenter
a critical section.
NET_SEND Time spent sending messages through the network.
NET_BYTES.SEND Number of bytes sent through the network.
NET_BLOCKED_SEND Time spent waiting to send the first byte when writing to thievoek.
NET_.RECV Time spent receiving messages without blocking.
NET_BYTES.RECV Number of bytes received through the network.
NET_BLOCKED_RECV Time spent waiting for the first byte when reading from theaoek.
NET_INIT Time spent initializing connections.
NET_END Time spent finalizing connections.

Table 1. Example of metrics measured for Java programs.

9 DTD to XML Schema Translation

Generic rules for translating DTDs to XML schemas can be oiar{4]; in addition, the type restrictions shown in Table
2 should also be used.

| Element | Attribute [Typeinthe XML Schemd

thread omp-master boolean
resource in anyURI
out anyURI
shapshot named boolean

measuring delivery nonNegativelnteger
destination anyURI

interval nonNegativelnteger

duration nonNegativelnteger
measurement value decimal
instrreq, ctrlreq flush boolean

Table 2. Types to be used when converting to XML Schema the elements and attributes of the DTD describing
the MIR grammar

10 Conclusion

This document has defined a set of requests and responsesgedm the communication with instrumentation engines.
The use of these requests can greatly reduce the dependeaqgyesformance tool on a specific instrumentation engine
without restricting the capabilities of neither of them.

It must be noted that an instrumentation engine does nottodetly support all of the possible requests in this documen
to be "MIR compatible”. For instance, it may be impossiblerémnove instrumentation that has been statically inserted;
therefore, a tool for static instrumentation may still sapgphe MIR format, just without supporting all its features

As XML documents may be lengthy, we tried to reduce the awesie of requests and responses, although it has always
been clear that they will never be so small as a binary foromad for a specific application, language, and platformsThi
overhead can however be not so important when compared ftkeility achieved through the use of MIR.

References

[1] PAPI - Performance Application Programming Interfab#p://icl.cs.utk.edu/papi/.

[2] OpenMP Fortran Application Program Interface Versiod.2
http://www.openmp.org/specs/mp-documents/fspec20.pd

[3] RFC 2396: Uniform Resource Identifiers (URI): Generia@&x. http://www.ietf.org/rfc/rfc2396.txt.
[4] A Conversion Tool from DTD to XML Schema. http://www.w@g/2000/04/schemiaack.

[5] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-perforntam portable implementation of the MPI message passing
interface standard, Parallel Computing, 22(6):789-828t 3996

10

