Online Interaction Analysis Framework for Ad-hoc
Collaborative Processes in SOA-based Environments

Hong-Linh Truong and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{truong, dustdar}@infosys.tuwien.ac.at

Abstract. Today’s collaboration in e-science and business environments is no
longer limited to the boundary of a single organization. People belonging to dif-
ferent organizations collaborate together to achieve a common goal by establish-
ing virtual teams. The current trend is to rely on SOA-based tools and services
for virtual teams and their collaborative processes because SOA offers many tech-
nologies to simplify the integration and interoperability of services belonging to
different organizations and to allow the user to easily access existing services
and tools. In complex environments comprising distributed software services and
people, we need to understand how people and software services interact in or-
der to adapt activities and services to the change of their operating environments
as well as to allow them to self-manage their behaviors during the collabora-
tion. We observed that there is a lack of tools supporting the analysis of interac-
tions in such ad-hoc collaborative processes at runtime. In this paper we present
our VOIA(Vienna Online Interaction Analysis) framework which aims at analyz-
ing interactions within collaborative processes in SOA-based environments. We
present a comprehensive list of interaction metrics and patterns associated with
ad-hoc collaborations and techniques used to determine these metrics and pat-
terns. We discuss how metrics and patterns can be used in process adaptation and
illustrate VOIA’s capabilities with several experiments.

1 Introduction

Today’s collaboration in e-science and business environments is no longer limited to
the boundary of a single organization. People belonging to different organizations col-
laboratively work together to achieve a common goal. In this context, they establish a
team, often a virtual team [1], and conduct a collaborative process implementing their
common goal. The current trend is to rely on SOA (Service-Oriented Architecture) to
implement tools and services for virtual teams and their collaborative processes be-
cause SOA offers many technologies to simplify the integration and interoperability of
services belonging to different organizations and to allow the user to easily access ex-
isting services and tools. Examples of such SOA-based collaboration tools and services
are the inContext [2], ECOSPACE [3] and COIN [4] systems. Given these systems, one
important aspect is to understand how people and software services interact in order to
adapt activities of people and software services to the change of their operating environ-
ments as well as to allow them to self-manage their behaviors during their collaboration.
Hence, metrics and patterns associated with interactions are a valuable source of infor-
mation. An interaction metric is a quantitative measure that can be used to characterize

and evaluate how an individual service or human is involved in interactions with an-
other service or human'. We consider an interaction pattern as a reoccurring structure
of interactions that is analyzed from a set of interactions, for example, the interactions
among a set of services might follow a one-to-many model [5].

While existing research has been focused on defining and detecting patterns in
workflows [5—11], most of them concentrate on rigid, well-defined processes and work-
flows in businesses and aim at supporting offline workflow mining. Support for runtime
analysis of patterns in dynamic collaboration environments has got little attention. In
complex, dynamic collaboration environments, ad-hoc collaboration processes are not
pre-defined; their dynamic, ad-hoc activities are defined on-demand. These activities
may be combined with well-defined workflows and composition patterns, but not nec-
essarily. In such environments, metrics and patterns characterizing the collaboration and
its activities are relevant because they can provide valuable insights into the collabora-
tive process to support runtime adaptation. However, existing offline mining techniques
are not suitable because they are not designed (and cannot be tested) with evolving
collaborative processes. Existing mining techniques typically require complete log data
and do not deal with runtime aspects, such as runtime processing data from various ser-
vices and runtime provisioning of interaction metrics and patterns. Furthermore, most
existing work focus on either human-to-human interactions (e.g., social networks anal-
ysis) or service-to-service interactions (e.g., performance analysis or service interaction
pattern analysis), whereas SOA-based collaboration environments include diverse types
of interactions among humans and services that should be considered together.

Runtime analysis of interactions in such environments poses many research chal-
lenges. First, data is obtained and analyzed while the collaborative process just contin-
ues to evolve as new activities emerge. This requires us to deal with different types of
events collected at different levels, such as activities, interactions and service-specific
events. Secondly, metrics and patterns have to be determined for both humans and soft-
ware services according to different needs of clients, such as determining metrics and
patterns based on collaboration contexts, e.g., in individual, group or the whole collab-
oration levels, and on user-specific conditions, e.g., in particular time period and with
a specific threshold. All these challenges imply that runtime analysis frameworks must
be flexible and customized: new metrics and patterns analyses can be easily added and
analysis requests are user-customized. Currently, there is a lack of such frameworks
supporting tools for detecting metrics and patterns in collaborative work. Providing
such metrics and patterns to clients at runtime is what motivates our work. In this pa-
per, we contribute to techniques to support online interaction analysis for collaborative
processes in SOA-based environments, namely (1) a classification of interaction met-
rics and patterns covering human-to-human, human-to-service, and service-to-service
interactions at different levels, and (2) the design and implementation of a flexible and
customizable software framework supporting runtime interaction analysis.

The rest of this paper is organized as follows: Section 2 presents related work. We
describe a motivating scenario in Section 3. Preliminaries on terminologies and models
are presented in Section 4. Section 5 describes a holistic view of interaction metrics
and patterns. The architecture and implementation of VOIA is presented in Section 6.

! for metric definition, see http://en.wikipedia.org/wiki/Metrics, last access: 26 August 2008

Interaction analysis techniques are detailed in Section 7. Section 8 presents experiments
to demonstrate VOIA. Section 9 summarizes the paper, presents remaining issues, and
gives an outlook to the future work.

2 Related Work

In our work, we develop techniques to determine metrics and patterns in collabora-
tive processes carried out by teams. A collaborative process includes various activities
which are associated with humans, artifacts, and software services. Our approach is to
study the interaction at multiple levels of abstraction, from the way how humans use ser-
vices, to how services interact with each other, and how a human interacts with another
human through the utilization of services.

Some existing works analyze and define patterns for workflows and services [8, 5]
and (performance) metrics for workflows [12]. Understanding workflows and business
processes has attracted a lot of research efforts. This includes, for example, research
on performance monitoring and analysis of workflows [13, 12] and on mining of work-
flow logs [6]. Tools and techniques for monitoring and analyzing performance of Web
services focus on extracting logs comprising of service invocations and analyzing the
logs to provide performance metrics. However, they focus on metrics associated with
individual services, rather than with interaction patterns. When analyzing performance
metrics associated services, we apply well-defined metrics from existing works, such
as in [12], and focus on the analysis of patterns.

Recent work on mining workflow logs, especially work done by van der Aalst et al.,
has introduced several novel techniques to determine the relationship between humans
and services. ProM [6] introduces many process mining features. Information can be
shown, e.g., using social network and clustering. Several issues such as analyzing the
conformance between a process model and its execution logs [14] are addressed. [15]
discusses how to apply process mining to less structured processes in CSCW (Computer
Supported Cooperative Work) systems. These works, however, do not support online
analysis of dynamic collaborations. We note that although activity-based collaboration
systems exist [16], they do not support the analysis of the collaboration.

In our previous works [17, 11, 10], we focus on the analysis of patterns in well-
defined workflows and email activities. In [17], we have discussed the importance of
mining patterns at multiple levels of abstraction. These papers addressed Web service
logging, workflow structure discovery and session reconstruction. Patterns, like proxy
and broker, and social network were presented and patterns, like proxy and broker, were
detected from social networks. We have reused previous patterns. However, neither the
analysis of patterns in collaborative work in SOA-based environments nor the online
interaction analysis has been performed. In particular, the analysis of patterns in this
paper differs from these works. Patterns are not detected from social networks but from
streams of events during runtime. Furthermore, these works focus on the analysis of
particular patterns, rather than provide a classification of patterns and metrics and a
generic software framework which is flexible and customizable.

Recently, the concept of complex event processing (CPE) [18] has been utilized to
analyze complex events in SOA environments. However, CPE frameworks, such as Es-

per [19], just provide fundamental tools for handling complex events and existing work
focuses on detecting service behaviors through events. We utilize Esper for filtering and
matching events and implementing primitive metrics and patterns analysis.

In this paper, we focus on analyzing patterns for collaborative work, rather than on
the definition of patterns which are well addressed elsewhere [8]. One of the major dif-
ferences between our work and existing work is that existing work focuses on offline
analysis with the assumption that logs are produced by existing workflow systems. Our
work differs as we focus on online analysis. Our assumption is that in modern collab-
oration, collaborative work is continuously being performed. Thus, interaction analysis
tools are required during runtime.

3 Collaboration Scenario and Research Approach

In our work, we consider dynamic collaboration environments in which teams utilize
different collaboration services for their collaborative work. Team members define and
perform activities which require the involvement of many other services and humans.
The upper part of Figure 1 illustrates the dynamic collaboration environment, for exam-
ple, in the inContext project [20]. In such an environment, both humans and software
services exist. Humans use services to perform their activities, while services can in-
teract with each other to fulfil requests from humans. Services will follow the SOA
model, thus they can be easily integrated together, providing seamless access virtu-
ally from anywhere. The SOA-based service model also simplifies the monitoring and
maintenance of services, making the acquisition of multiple sources of log information
at different levels in the widely distributed system possible and easier.

Using services, people perform their collaboration, of which processes are typi-
cally not modeled beforehand. Furthermore, the execution of collaborative processes
is continuous and evolving, thus in many cases we will not know in advance when a
process finishes. Interactions between humans and services are highly concurrent and
distributed as multiple activities are executed in parallel. These activities involve ser-
vices and people spanning different geographical locations and organizations. There-
fore, offline analysis, which either requires complete, centralized information or the
completion of the process in order to analyze the process, is not suitable. In addition,
the need for adapting activities of and resources for collaboration is required at runtime,
due to highly dynamics of modern collaborations (e.g., team member is often on the
move). Thus, online analysis techniques are more suitable. The middle part of Figure 1
shows that the Online Interaction Analysis analyzes log events obtained from services
and provides metrics and patterns back to the services in the dynamic collaboration
environment.

However, online interaction analysis for such an environment is a very challenging
task due to highly concurrent and distributed actions, such as concurrent executions of
distributed services, concurrent interactions among services and humans, and concur-
rent requests from various clients. Which metrics and patterns associated with inter-
actions are useful for optimizing collaborative work and resources used for the work
at runtime? How can we correlate metrics and patterns from different levels of col-
laboration context, such as individual, group and the whole collaboration? How do we

Ad-hoc collaborative processes in SOA-based environments

;

Document Repositor
Seryice

Meeting Scheduling 755K Assignment
Service Service

Location
Service

User & Team
Management Service

Logs/
P /

‘ Online Interaction Analysis S FICS/PttEMS

lews,, I
Group 1 Group ... ‘ ‘ Group n ‘
T |
\
| Individual 1] | Individual ... | [Individualm |
l \
[Patiorns |

Holistic view of metrics and patterns

Fig. 1. Online interaction analysis environment and metrics/patterns view

support the customization of metrics and patterns analysis so that different clients can
utilize the metrics and patterns differently? How to handle diverse events from various
services? How to manage and provide these metrics and patterns to concurrent clients
at runtime? We propose to provide a holistic view of patterns and metrics associated
with services and interactions at multiple levels, ranging from the individual (services
or human), to the group (of humans or services or the mix of them), and to the whole
collaboration. The bottom part of Figure 1 shows the holistic view of interaction met-
rics and patterns that are associated with interactions. Then, we determine metrics and
patterns based on different levels, client requests and periods of time, and provide and
manage XML-based metrics and patterns at runtime.

4 Models

Before describing metrics and patterns and the analysis framework, in this section, we
present our models of activities and services and humans in collaborations and data
required for the interaction analysis.

4.1 Activity, Service, and People in Collaboration

In our model, collaboration is defined as a joint work between different people. Collab-
oration can be simple, e.g., including only a single task like review of a document,

or complex, e.g., a real project. An activity describes a task of a collaboration, for exam-
ple, review a document. An activity may consist of sub activities, but we do not
distinguish between atomic activity and composite activity. An activity specifies various
related information required for the execution of the activity. An activity instance rep-
resents all information associated with a particular execution of an activity; information
includes, for example, start and end times, initiator, and associated service instances.
An activity might be associated with a set of activity instances. Given an activity, we
capture all changes in activities and activity instances in activity events.

A collaboration service is a service that is used in the collaboration; collaboration
services are involved in the execution of activities. Collaboration services can be used
to communicate between two team members, suchas Notification Service and
Instant Messaging,tohostfiles suchas Document Repository Service,
and to store and manage activities such as Activity Store Service. Further-
more, there are middleware services which provide facilities for the operation of the
collaboration such as Service Registryand Logging Service.Inourmodel,
we assume that services are well-defined based on the SOA principle. Most services are
SOAP-based or RESTful (however, in our implementation, we tested only with SOAP-
based services). Service instance is a particular deployment and running of a service
in a particular hosting environment. A service invocation is a particular invocation of
a service operation of a service instance. Information about service invocations is cap-
tured in interaction events. An interaction event consists of information related to the
invocation, such as request and response message, service endpoint reference, consumer
endpoint reference, etc., which are captured at the level of the hosting environment with-
out the knowledge of service instances (e.g., by using SOAP intercepting mechanism).
Furthermore, a service instance can also provide application-specific events about its
operation. We call such events service events.

During a collaboration, people can initiate an activity, perform an activity or receive
a message and handle the message sent by other people. In our model, we assume that
a person defines a flow of activities that he/she has to perform. In our work, activities
within a collaboration might be modeled in advance and executed in a pre-defined order
or defined on-demand. Therefore, we do not assume that the structure of the collabora-
tion and its execution order are known beforehand. Rather, we consider a collaboration
to be a set of activities. The goal of this paper is to use online analysis techniques to
detect metrics and patterns associated with interactions among humans and services in
collaborations, but not on the detection of the process structure of the collaboration (like
the work on discovering workflow structure from logs [21]). How to execute, manage
and change the activities and the flow of activities are beyond of the scope of this paper.

4.2 Data for Interaction Analysis

To analyze collaboration processes, we rely on three sources of events: activity events,
interaction events, and service events. In the following, we discuss the structure of data
used in our online interaction analysis.

Each activity in our model is identified by a unique act ivityURI. When an ac-
tor performs an action to change the status of an activity, such as executing or dele-
gating the activity, an event will be fired. In principle, we can use any activity model

in collaboration, such as IBM UAM (Unified Activity Model) [16], Caramba [22] or
the inContext Activity Model? to define activities. In our implementation, we use the
inContext Activity Model which can be used to describe artifacts, involved people, and
resources in detail. Given an activity event describing actions related to activities and
activity instances, we assume that the activity event includes activityU R1.

As mentioned before, an activity event describes changes in an activity and activity
instance. This kind of event is captured by the Activity Store Service which
maintains existing activities and by Activity Execution Service which exe-
cutes the activity. Listing 1.1 presents a sample of an activity event which indicates that
an activity has been created.

<activityEvent xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
actionURI="http://www.in-context.eu/ns/action/tCoordinationAction#6575"
activityURI="http://www.in-context.eu/Activity/Activity#226"
timestamp="1207840402595">

<ExecutedByFoafAgent>

http: //www. vitalab .tuwien.ac.at/projects/incontext/TEST_LINHI#Martin

</ExecutedByFoafAgent>

<CoordinationType>

<ActivityChangeType>Create</ActivityChangeType>

</CoordinationType>

</activityEvent>

Listing 1.1. Example of an activity event

The second source of data used in the analysis is the interaction event which is
captured in the Web services hosting environment. By using Web services handlers and
SOAP interceptors, we can collect low level data of Web services invocations, such as
SOAP messages. From this data, interaction events are generated and provided as an
input for the analysis process. Activity events can be correlated to interaction events by
using activityURI (for example, in the inContext project, the client modified the
SOAP message header to include activity-related information). Listing 1.2 presents an
example of an interaction event.

<InteractionEvent>
<clientEndpoint>85.18.48.34</clientEndpoint>
<messageCorrelationID>000a1460 —25ba—4fa8 —b766—9c3b50aa8c2b</ messageCorrelationID>
<messageType>Response</messageType>
<serviceEndpoint>http: //srvweb02.softeco.it/cgi—bin/SOAP. cgi/Eadt/Tasks/DocService
</serviceEndpoint>
<eventSourceID>AL—invoke@128.131.172.208</eventSourcelD>
<timeStamp>1207212091812</timeStamp>

</InteractionEvent>

Listing 1.2. Example of interaction event in which not all entries are available

The third source of events is service event which is provided by specific services.
This type of events is optional and dependent on specific services. Since our goal is to
provide a client-customized mining system, VOIA is designed to accept specific service
events. However, the analysis of the patterns and metrics related to service-specific
events are left to the client.

2 http://www.in-context.eu/uploads/files/20070530D4.2v1.0Design20and20implementation20
of20Context20Tunnelling.pdf

5 A Holistic View of Interaction Metrics and Patterns

Understanding interactions among humans and services in collaborative work high-
lights characteristics of not only individual humans and services but also of groups of
them as well as the whole collaboration. For providing useful information in under-
standing interactions and in adapting the collaboration based on interactions, we focus
on defining and providing quantitative information associated with interactions.

We classify three kinds of interactions associated with humans and services within
the dynamic collaboration environments:

— Service-to-service interaction: is the interaction between two services, e.g., a ser-
vice s; calls another service s;.

— Human-to-service interaction: is the interaction between a human and a service,
e.g., how services are selected and used by a human. By saying human-to-service
interaction, we mean a person needs and uses a service for his/her activities.

— Human-to-human interaction: is the interaction between human and human, e.g.,
how a team member interacts with another one in order to perform activities. We de-
termine interactions between two persons only by means of analyzing services they
use in their communication and collaboration, e.g., Notification Service.

This classification differs from other works which focus on either human-to-human in-
teractions (social networks) or service-to-service interactions by considering all types
of interactions among humans and services. This consideration is necessary as these
types of interactions are inherent in collaboration processes. Metrics and patterns are
associated with these types of interactions. However, unlike other works which typi-
cally do not consider global versus local views on metrics and patterns, in our work, for
each type of interaction, metrics and patterns are determined for specific time period
at three levels: individual (for individual human or service), group (a team or a set of
services), and collaboration (all available services and humans within a collaboration).
This way takes into account the context of the collaboration in determining the metrics
and patterns. The main reason is that interactions of a particular human or service are
dependent on the context of the collaboration, such as a human might typically act as a
proxy in a group but not in another group or within a set of services, a service might be
well utilized, but not in the global view. Therefore, metrics and patterns characterizing
the interactions should be determined differently. The metrics and patterns associated
with three types of interactions at three levels provide a holistic view of interaction met-
rics and patterns in VOIA. This view allows us to utilize metrics and patterns differently,
dependent on specific purposes and contexts.

Note that the list of patterns and metrics is non exhaustive and many of them are
common, well-understood and presented in literature [17, 11, 10, 6, 8, 5, 12]. Depending
on specific needs, these patterns and metrics are utilized differently. However, VOIA
aims at providing a rich catalog of metrics and patterns suitable for different clients.
We would like to stress that the main objective of VOIA is not to define patterns and
metrics but provide a framework which the determination of new patterns and metrics
can be easily plugged in.

Table 1 presents metrics and patterns associated with service-to-service interactions.
Many performance metrics at individual level are well-defined, e.g. in [12]. At the group
level, we determine many novel patterns.

Level

Metric/Pattern Name

Description

Individual

ExecutionTime
NumServiceCalls
NumUnavailableCalls
NumPFailureCalls
NumConsumers

The average execution time of a service.
The number of invocations of a service.

The number of times unavailability.

The number of failures.

The number of consumers that call a service.

Group

Servicelnteraction

UsageDistribution
UsagelsolatedPattern

UsageCompositePattern

OneToManyPattern

The interaction between two
ServiceInteraction(s;, s;), represents
ber of times that service s; calls service s;.
The percent of usages distributed among services.
Reflect whether a service is typically used in an isolated
manner. Let S; be a set of services invoked by a service
s. Service s is in an isolated manner when count(S;) <
7 where ServiceInteraction(s,s;) > 0,Vs; € S;. 7
is a user-defined threshold and count(S;) is the number
of services in the set S .

Reflect whether a service is typically used together
with other services in activities. Let S; be a set
of services invoked by a service s. Service s is in
a composite manner when count(S;) > 7 where
Servicelnteraction(s,s;) > 0,Vs; € S;, Tis a
user-defined threshold.

Related to one-to-many invocation, also called as one-
to-many send, multicast, or scatter [5]. Let S; be a set
of services invoked by a service s. Service s and S; are
in this pattern when Servicelnteraction(s,s;) > T,
Vs; € S;, within a period of time ¢. ¢t and 7 are user-
defined values.

services,
the num-

Collaboration

as in the Group level

Similar to those in the group level but they are deter-
mined based on all information available in the collabo-
ration.

Table 1. Examples of interaction metrics and patterns for service-to-service

Table 2 describes metrics and patterns related to human-to-service interactions.
Metrics and patterns are determined by analyzing humans who initiated or invoked
services in their activities.

Table 3 describes metrics and patterns related to human-to-human interactions. In
particular, we focus on metrics and patterns associated with broker, proxy, master/slave

interactions.

Level Metric/Pattern Name |Description

Individual ~ |UsageTime Describe how much time that a human uses a service.
NumHumanServiceCalls |Number of service invocations initiated by a human.
TypicalServiceUsageTime|Identify the typical usage time that a human uses a ser-
vice by eliminating outliers and calculating the mean
value of a data set of UsageTime for the service.
UsageCompositePattern |Reflect whether a set of services is used together by a
human. Services {s1,- -+, s, } are considered in this
pattern when they are called by a human h in a pre-
defined period of time.

Group HumanServicelnteraction |The interaction between a human and a service,
HumanServiceInteraction(h, s), represents the
number of times that human A calls service s.

UsageDistribution Given a human, it reflects the usage distribution
among services he/she calls.
DurationUsage Determine the typical usage time that a human uses a
service.
Collaboration |as in the Group level Similar to those in the group level but they are deter-
mined based on all information available in the col-
laboration.

Table 2. Examples of human-to-service interaction metrics and patterns

6 VOIA Architecture and Implementation

Figure 2 depicts the architecture of VOIA which includes many components and pro-
vides Web services interfaces. In our architecture, the Event Preprocessing of VOIA ac-
cepts different types of events, such as Activity Event, Service Event, and
Interaction Event, and pre-processes these events suitable for VOIA’s Metric/-
Pattern Detection. These events are collected at different services, such as Activity
Service,Logging Service,Communication Service,andAccess Layer.
As mentioned before, events consist of data collected at different levels, ranging from
Web middleware/container level (by using Web Handlers and SOAP interceptors, such

as Interaction Event) to application level (by capturing application logs, such

as Service Event).

Events processed by Event Preprocessing are passed to Metric/Pattern Detection
which determines primitive metrics and patterns. The Metric/Pattern Detection ana-
lyzes events based on a set of pattern specifications and templates stored in Pattern
Specification and Template to identify which metrics or patterns occurred. Such deter-
mined metrics and patterns are passed to the Interaction Analysis which provides high
level analysis of patterns and metrics for interactions. During runtime, clients of VOIA
can specify pattern specifications and submit the specifications to the VOIA service
which informs the clients when patterns/metrics met the specifications exist. Thus, the
clients can utilize the resulting metrics and patterns for online adaptation. The end-user
can use the VOIA portal to manage VOIA and explore results produced by VOIA.

We have implemented the core of VOIA and provide it as a Web service based on
JAX-WS[23]. The Web service provides fundamental interfaces for other clients to send

Level Metric/Pattern Name Description

Individual NumCallers Number of callers.
NumCallees Number of callees.
Numlnteractions Number of interactions.

NumAssignedActivities |Number of assigned activities.
NumDelegatedActivities |Number of delegated activities.

BrokerIndicator Determines the broker role of an individual.
ProxyIndicator Determines the proxy role of an individual.
MasterIndicator Determines the master/slave role of an individual.
Group Totallnteractions Total number of interactions.
AvgNumCallers Average number of callers in a group.
AgvNumCallees Average number of callees in a group.
AvgNumHumanInActivity | Average number of human involved in an activity.
BrokerPattern Related to broker pattern [10], including number of
broker patterns, the structure of the broker pattern.
ProxyPattern Related to proxy patterns [10], including number of
proxy patterns,the structure of the proxy pattern.
MasterSlavePattern Related to master/slave pattern [10], including num-

ber of master/slave patterns, the structure of the mas-
ter/slave pattern.

CoauthoringPattern Related to co-authoring pattern, including the struc-
ture of co-authoring pattern. Two members h; and h;
are in a coauthoring pattern when they both work on
the same n activities, n is a user-defined value.
Collaboration |as in the Group level Similar to those in the group level but they are deter-
mined based on all information available in the col-
laboration.

Table 3. Examples of interaction metrics and patterns for human-to-human interaction

events and pattern specifications and templates. VOIA can subscribe other services,
such as Logging Service, to be informed with events or any services can send
events to VOIA via a pre-defined interface. The Metric/Pattern Detection employs the
Esper engine [19] to process events based on pattern expressions.

7 Analysis Techniques

The fundamental difference between our approach and existing ones is that our inter-
action analysis is conducted online. The metrics and patterns discussed in Section 5
are provided by either Metric/Pattern Detection or Interaction Analysis components,
depending on the complexity of the analysis. The first component is used to determine
primitive metrics and patterns which can be identified by applying pattern specification
and template directly. The latter implements complex analyses which require different
algorithms besides the primitive metrics and patterns.

As the data used for the analysis concurrently arrives in a stream of events, primitive
patterns and metrics will be determined on the fly. For any analysis, a time window -
specifying a period of time - or space window - specifying a number of events - or

-

Document / Service Explorer Management
\Repository Service / (\\Managemeng/»’

Vienna Online Interaction Analysis Portal

o invocation invocation Metrics/
\/ Context \ &- Patterns, 3 .
\Mianagemeny\/ S : e Interaction Analysis
B | Notification
/" Activity E \ Access Layer j-"‘lnteracnon
9 i 4 Event :
_ Service J "=e=-. y - * . Metric/Pattern
o= S TTeeeal i --#& Event Preprocessing :
Activity Evenb e e e e e ===
— il a3l _—-:"’ﬁ Detection
/ . . b o= o -
(Logging Service e Event===Sorice Evert [NNNNNNEE T
5 - o = " <
Event_ { Communication .* & —
(&) \ Service j' Historical Pattermn
oy Y istorica Specification
Reposito Result and Template
. S - - Ha- pidt
~ SOA-based Collaboration Services Vienna Online Interaction Analysis Service

Fig. 2. Vienna Online Interaction Analysis (VOIA)

a combination of time and space windows will be specified. Together with the level
(individual, group, or the collaboration), they determine the context of the analysis.

7.1 Primitive Metric and Pattern Detection

The Metric/Pattern Detection utilizes a set of predefined pattern specification and pat-
tern templates in order to determine relevant metrics and patterns. We have defined sev-
eral pattern specifications and templates based on that well-known metrics and patterns
can be determined. Each pattern specification or template is described by

— Pattern name: is used to identify a pattern specification or template

— Result handler: is used to handle the result of a pattern specification or template.

— Fattern expression: is used to filter events and determine primitive metrics and pat-
terns. It is described in Event Processing Language (EPL) [24].

All pre-defined pattern specifications and templates are stored in Pattern Specification
and Template in XML form. A new pattern template can be defined by specifying the
above-mentioned information. Unless we need specific treatment for pattern result han-
dler, generic handler can be used. A result handler actually implements the algorithm
to determine the corresponding pattern/metric. Result handlers adhere a pre-defined in-
terface defined by VOIA so that a new handler can be plugged into VOIA. Note that
VOIA provides mechanism for writing handlers.

Given a pattern specification/template, VOIA will create an EPL statement and a
result handler object using a reflection mechanism. When events arrive to VOIA, in the
Event Preprocessing component, a CEP engine which is developed atop Esper will use
pattern expressions to process as well as to filter relevant events. Then, the engine passes
processed events to corresponding result handlers. Depending on pattern expressions,
some primitive patterns can be detected in the Event Preprocessing whereas the result
handler will process patterns and metrics and provide results. The result is described
in XML. For primitive metrics and patterns, we provide a generic result handler that

provides the result of a specification or template. Note that by “primitive metrics and
patterns”, we mean metrics and patterns which can be directly determined by issuing
EPL-based pattern specification and template to the Event Preprocessing. There are
metrics and patterns as well as other high level information associated with interactions
which need particular analysis besides EPL-based pattern specification and template.

To explain how primitive patterns/metrics can be detected, let us consider that a
client would like to determine a NumHumanServiceCalls (how many time a hu-
man calls a service). Listings 1.3 and 1.4 describe one example of the corresponding
pattern expression and the resulting metric. In Listing 1.3, an EPL-based request is used
to select all humans (determined by userID) and services they use (determined by
serviceEndpoint) from interaction event in the last 30 minutes and then to return
only humans who call a service more than 10 times. The corresponding result is given
in Listing 1.4. Although it is a simple example, various parameters can be customized
to detect the metric for different purposes.

<pattern name="NumHumanServiceCalls" resulthandler="voim.NumberServiceCallHandler">
select userID, count(serviceEndpoint) as NumHumanServiceCall, serviceEndpoint from
InteractionEvent.win:time (30 min) group by serviceEndpoint, userID
having count(serviceEndpoint) > 10
</pattern>

Listing 1.3. Example of query for determining NumHumanServiceCall when a
human uses a service more than 10 times in last 30 minutes

<NumHumanServiceCalls>
<userID>
http: //www. vitalab .tuwien.ac.at/projects/incontext/TEST_LINHI#Linh
</userID>
<serviceEndpoint>http: // madrid. vitalab .tuwien.ac.at:8080/axis2/
services/activityservice</serviceEndpoint>
<NumHumanServiceCall>13</NumHumanServiceCall>
</NumHumanServiceCalls>

Listing 1.4. Example of a NumHumanServiceCalls result

7.2 Complex Interaction Analysis

The use of Metric/Pattern Detection helps to identify several patterns and metrics at run-
time. However, many high-level information cannot be obtained from this component,
for example, social network of people or a network of service interactions. The Inter-
action Analysis is used to analyze interaction information which cannot be determined
by using pattern specifications or templates directly. The Interaction Analysis utilizes
information provided by Metric/Pattern Detection and provides high-level information.
A result handler in Interaction Analysis component will receive events which are the
output of Metric/Pattern Detection handlers and will analyze these events to provide
interaction metrics and patterns. Table 4 presents some high level analyses provided.

7.3 Extensibility and Customization of Interaction Analysis

Extensibility and customization are two major requirements for VOIA as different anal-
yses are required for different purposes and because in dynamic collaboration environ-
ments various types of events can be used for detecting metrics and patterns. There are

Name Description

ServicelnteractionNetwork|Describe interaction network between services. We use
ServiceInteraction(s;,s;) to build the network of service
interactions in which the node is a service, the edge is the
interaction between two services.

HumanlInteractionNetwork | Describe the social network between human. We use NumClallees,
NumClallers and NumlInteractions in human-to-human met-
rics to build the network. We can also further identify which is a
typical service used for the interaction between two persons.
HumanInAllActivity Describe a network mapping activities to humans. This can be used
to detect different types of activities typically performed by a hu-
man. Detailed information can be, e.g., the type of activities that a
person typically performs.

Table 4. Example of high level interaction analyses

two ways to provide new interaction mining analysis: by providing new pattern spec-
ification and template and by developing a new plugin. In the first case, the client of
VOIA can utilize existing result handlers and focus on writing the specification and
template that detect their interesting metrics and patterns. This way is particular useful
when dealing with service-specific events. In this case, a new pattern specification and
template can be submitted to VOIA service during runtime. VOIA is acting like a met-
rics and patterns processing engine. In the latter case, a new plugin can be developed
and straightforwardly integrated into VOIA, by (1) providing a pattern specification or
template, and (2) a result handler which implements a generic handler interface pro-
vided by VOIA. Based on that, a new entry for Pattern Specification and Template can
be created and VOIA will execute the new plugin.

7.4 Managing and Providing Resulting Metrics and Patterns

To access analysis results during runtime, any client can query or subscribe the results
hold in a result handler based on pattern name by invoking Web services operations.
Results can be also sent to the client based on notification mechanism. Thus, clients can
easily obtain mining results from our framework to perform runtime adaptation.

Given a pattern or metric detected at a specific time, typically such a metric and
pattern will be delivered to the corresponding client who initiates the pattern specifi-
cation/template. However, we also manage such pattern and metric for later use. The
information is stored in Historical Results. As in online analysis, a result handler will
have a new result when events meet pattern specification or template. First, each re-
sult handler will keep only n latest results; n is pre-defined. Instead of providing a big
XML document including analysis results, we provide a collection of small documents
which are also used as events to notify interested clients. Each result is associated with
a timestamp. When a result is determined based on space (e.g., number of events in a
window) or time (time period associated with a window), we associate the result with
the time window to identify the valid period of the result. We do not merge results pro-
vided by a handler into a big document. Instead, the list of results will be stored into

an XML database. Management features can be used to remove unneeded results. As
many results are produced at runtime, aggregating them into a more meaningful infor-
mation is challenging. Currently, we consider them only historical data and let the client
analyze the historical results for its own purpose. For accessing historical data, clients
just specify a time period together with an XQuery-based request and a pattern name.

8 Experiments

In this section, we present some experiments to illustrate how VOIA can provide useful
metrics and patterns for understanding and adapting collaboration environments. Our
experiments are based on the inContext testbed including various collaboration ser-
vices such as Document Repository Service, Notification Service,
and Activity Service. All of them are SOAP-based services. We gathered events
from collaborations executed in the inContext testbed and analyzed the collected events.
To test VOIA’s functionalities and performance, we performed two experiments.

In the first experiment, we analyzed events produced by the inContext testbed. These
events were generated from the usage of different services during the integration and
testing of the inContext system. Thus, patterns might or might not reflect some use
cases®. Most events in this experiment are interaction events. In the second experiment,
we randomly generated a collaboration based on a tree of activities. The tree of activities
is generated based on (1) a list of 11 users, a list of 3 roles, 5 levels of a tree, average
number of activities per level is 5, a list of more than 20 real services, a list of possible
human activity handling strategies including delegate, split, perform, reject, assign.

Figure 3 presents a snapshot of the service interaction network from the first exper-
iment(for brevity, we removed the hosting URI from the graph). This network evolves
during the runtime analysis. The information is provided in XML and exported into
a dot format visualized by GraphViz*. From that information, we can determine how
services were used and then devised service selection strategies. We then examined
how humans use services. Listing 1.5 presents the result of human-to-service calls for
UserTest which is used to access data from two services. Of more than 20 Web ser-
vices in the testbed, only TeamService and DocumentService are interacted
with UserTest. It is due to the fact that these services were used by the user to ac-
quire the information about other people and to store and search relevant documents.
Such activities still involve heavily humans. The information obtained from this type of
analysis can be useful, e.g., for determining typical services used by team members to
improve runtime service provisioning strategies.

In the second experiment, we examined the proxy pattern. Listing 1.6 presents the
result of proxy indicator pattern. Out of 971 activity events, 38 proxy cases were found.
For each person involved, we can determine who typically acts as a proxy. This kind of
analysis can be useful, for example, for selecting team members and determining trust
in collaborative networks of enterprises.

‘<NumHumanServiceCalls>

3 The inContext system includes real services and a research system for the EU project inContext
* http://www.graphviz.org/

Servicel nteractions=3
Servicel nteractions=918

Servicelnteractions=226 -
Servicel nteractions=65
Servicel nteractions=447

- Servicelnteractions=6

Servicel nteractions=1
icelnteractions=1

Fig. 3. A snapshot of service interaction network detected

<entry>
<userID>UserTest</userID>
<serviceEndpoint>
http: //oslo.vitalab .tuwien.ac.at:8080/axis2/services/TeamService
</serviceEndpoint>
<NumHumanServiceCall>57</NumHumanServiceCall>
</entry>
<entry>
<userID>UserTest</userID>
<serviceEndpoint>
http: //srvweb02.softeco.it/cgi—bin/SOAP. cgi/Eadt/Tasks/DocService
</serviceEndpoint>
<NumHumanServiceCall>256</NumHumanServiceCall>
</entry>
</NumHumanServiceCalls>

Listing 1.5. Example of human-to-service NumHumanServiceCalls metrics

<ProxyIndicator total="38" at="13.04.2008_15:00:21">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Martin" value="7">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Schahram" value="11">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Vasko" value="2">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Florian" value="2">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Atif" value="3">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Sharig" value="3">
<ProxyIndicator name="http://.../incontext/TEST_LINHl#Lukasz" value="3">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Christoph" value="3">
<ProxyIndicator name="http://.../incontext/TEST_LINH1#Linh" value="2">
<ProxyIndicator name="http://.../incontext/TEST_LINHl#Kamran" value="2">

</ProxyIndicator>

Listing 1.6. Example (simplified) of proxy-related metrics for people

To test the performance of the engine, we wrote a test client that reads events from
local file systems and invokes the VOIA service. The test was performed in an Intel
Centrino Duo Core 1.83 GHz, 2GB RAM, Windows XP notebook with 10 patterns.

Overall, VOIA can handle a high volume of events in a time-responsive manner: it took
9035 ms to process 6775 interaction events (in the first experiment) and 2218 ms for
971 activity events (in the second experiment).

9 Conclusions

Motivated by the lack of online interaction analysis tools in collaborative work and the
need of acquiring insightful information for runtime adaptation of collaborative work-
ing environments, we presented VOIA (Vienna Online Interaction Analysis) framework
which is capable of detecting and providing metrics and patterns associated with human
and service in dynamic collaborations. The main contribution of our work is that we
provide a Web service-based system that is capable of performing runtime analysis of
interaction patterns and metrics. We have provided a rich view of metrics and patterns
associated with interactions that spans different levels, including individual, group, and
collaboration views, and that characterizes different types of interactions, including
service-to-service, human-to-service, and human-to-human. Our system is flexible and
customizable, allowing for the inclusion of new analysis and supports client-customized
mining. If clients of VOIA understand the structure of their events, they can also define
pattern specifications and templates for determining patterns and metrics at runtime. By
supporting online analysis, VOIA can provide useful information for runtime adaptation
in collaborative working environments.

Various future steps have to be done to fully support online interaction analysis of
collaborative processes in SOA-based environments. We are working on determining
trust in collaborations in networks of enterprises based on our proposed metrics and
patterns. While online analysis allows the client to freely define the analysis they want,
the challenge is how to manage the result of different analyses. Currently, we have
just stored the result, thus advanced techniques for managing mining results will be
studied. Our future work foresees to provide further testing of the systems and support
more types of events. We will enhance the pattern specification and template catalog
by incorporating new patterns. Another major effort is to perform runtime adaptation
based on patterns that motivates this work, but has not been addressed in this paper.

Acknowledgements : We thank Christoph Dorn, Robert Gombotz and Daniel Schall
for fruitful discussion on the interaction mining and their assistance in the implementa-
tion of VOIA framework. We thank anonymous reviewers for their fruitful and extensive
reviews. This research is partially supported by the European Union through the FP6
project inContext and the FP7 project COIN.

References

1. Lipnack, J., Stamps, J.: Virtual teams: reaching across space, time, and organizations with
technology. John Wiley & Sons, Inc., New York, NY, USA (1997)

2. Truong, H.L., Dustdar, S., Baggio, D., Corlosquet, S., Dorn, C., Giuliani, G., Gombotz, R.,
Hong, Y., Kendal, P., Melchiorre, C., Moretzky, S., Peray, S., Polleres, A., Reiff-Marganiec,
S., Schall, D., Stringa, S., Tilly, M., Yu, H.: incontext: A pervasive and collaborative working
environment for emerging team forms. In: SAINT, IEEE Computer Society (2008) 118-125

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. ECOSPACE: eProfessionals Collaboration Space: (http://www.ip-ecospace.org/) Last ac-

cess: 14 April 2008.

. COIN: Enterprise Collaboration and Interoperability: (http://www.coin-ip.eu/) Last access:

28 Nov 2008.

. Barros, A.P,, Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In van der

Aalst, W.M.P,, Benatallah, B., Casati, F., Curbera, F., eds.: Business Process Management.
Volume 3649. (2005) 302-318

. van der Aalst, WM.P,, van Dongen, B.F., Giinther, C.W., Mans, R.S., de Medeiros, A.K.A.,

Rozinat, A., Rubin, V., Song, M., Verbeek, HM.W.E., Weijters, A.J.M.M.: Prom 4.0: Com-
prehensive support for eal process analysis. In Kleijn, J., Yakovlev, A., eds.: ICATPN. Vol-
ume 4546 of Lecture Notes in Computer Science., Springer (2007) 484-494

. Zdun, U., Hentrich, C., van der Aalst, WM.P.: A survey of patterns for service-oriented

architectures. IJIPT 1(3) (2006) 132-143

. van der Aalst, W.M.P,, ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.. Workflow

patterns. Distributed and Parallel Databases 14(1) (2003) 5-51

. Gombotz, R., Dustdar, S.: On web services workflow mining. In Bussler, C., Haller, A., eds.:

Business Process Management Workshops. Volume 3812. (2005) 216-228

Dustdar, S., Hoffmann, T.: Interaction pattern detection in process oriented information
systems. Data Knowl. Eng. 62(1) (2007) 138-155

Dustdar, S., Hoffmann, T., van der Aalst, W.M.P.: Mining of ad-hoc business processes with
teamlog. Data Knowl. Eng. 55(2) (2005) 129-158

Truong, H.L., Dustdar, S., Fahringer, T.: Performance metrics and ontologies for grid work-
flows. Future Generation Comp. Syst. 23(6) (2007) 760-772

Zhang, P., Serban, N.: Discovery, visualization and performance analysis of enterprise work-
flow. Comput. Stat. Data Anal. 51(5) (2007) 2670-2687

Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1) (2008) 64-95

van der Aalst, W.M.P.: Exploring the cscw spectrum using process mining. Advanced Engi-
neering Informatics 21(2) (2007) 191-199

Cozzi, A., Farrell, S., Lau, T., Smith, B.A., Drews, C., Lin, J., Stachel, B., Moran, T.P.:
Activity management as a web service. IBM Syst. J. 45(4) (2006) 695-712

Dustdar, S., Gombotz, R.: Discovering web service workflows using web services interaction
mining. International Journal of Business Process Integration and Management 1(4) (2006)
256-266

Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2001)

EsperTech - Esper: Event Stream and Complex Event Processing: (http://esper.codehaus.org)
Last access: 14 April 2008.

The inContext project: (http://www.in-context.eu) Last access: 12 April 2008.

van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models
from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9) (2004) 1128—
1142

Dustdar, S.: Caramba - a process-aware collaboration system supporting ad hoc and collab-
orative processes in virtual teams. Distributed and Parallel Databases 15(1) (2004) 45-66
Java Specification Request 224: Java API for XML-Based Web Services (JAX-WS):
(http://www.jcp.org/en/jsr/detail 2id=224) Last access:14 April 2008.

EPL Reference: Clauses: (http://esper.codehaus.org/esper-
2.0.0/doc/reference/en/html/epl_clauses.html) Last access: 15 April 2008.

