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Abstract—With the rise of Internet of Things, end-users
expect to obtain data from well-connected smart devices and
stations through data services being provisioned in distributed
architectures. Such services could be aggregated in a number of
smart ways to provide the end-users and third-party applications
with sophisticated data (e.g., weather data coupled with soil
pollution), resulting in a growing number of service offerings
to be requested. Service offerings that have been shortlisted for
a certain data request (e.g., rainfall in a particular farming
site) need to be ranked according to the end-users’ preference.
Service level agreements, i.e., the mutual responsibilities between
the service provider and its consumers, address this sort of
preference. Unfortunately, provisioning quality-aware services
under this term still stays on the sidelines. In this paper, we
propose a novel service architecture where the service level
agreements shall be: (i) accumulated overtime on IoT service
transactions; (ii) compiled when aggregating IoT services; (iii)
used as a ranking criterion for suggesting IoT service offerings.
We demonstrate our new approach in the service provisioning of
agricultural datasets taken from a farming site of the Mekong
Delta in Vietnam.

Keywords—IoT services, service level agreement, DaaS, recom-
mender systems

I. INTRODUCTION

Service-oriented computing (SOC) combined with the In-
ternet of Things (IoT) technologies leads to a paradigm shift
in computing [1], giving rise to the concept of IoT services
that is merely regarded as a transaction between parties (e.g.
sensor and consumer) [2]. This paradigm shift, as pointed out
in a manifesto over the future research of SOC [3], would
offer a reboot of the SOC research area. IoT is becoming a
newly-emerging enabling platform for data services (Data as
a Service – DaaS). Data provisioning on such a platform is a
game-changer for being distributed in enterprise engineering,
i.e., data could be obtained via services built atop loosely-
coupled IoT smart devices.

As recognized in many researches, distinguishing function-
ally similar services using quality is a key factor [3]. Among
IoT data service offerings that provide a certain kind of data,
the end-users naturally pick up those that are contractually

described in their expected quality. When it comes to IoT
services, as the number of service providers drastically in-
creases, handling service level agreements (SLAs) would play
an even more crucial role in the inter-system orchestration
[4]. To this end, explicitly capturing the SLA for IoT data
services is of paramount importance. Semantically specifying
SLAs and reasoning about them will open the door for an
advanced registry of IoT services equipped with a special
indexing mechanism that facilitates service look-up using both
functional criteria (i.e., what data to be provided) and non-
functional ones (i.e., the finest SLA to be expected). Eventu-
ally, the truly distributed platform that harbors such a service
registry might lead to a new dominating enterprise service-
oriented architecture [1]. From a business point of view, to
match the end-user’s intention, services that are sourced from
weakly-coupled providers might be bundled to yield value-
added service aggregations [5].

The concept of SLA has been investigated substantially
in SOC and enterprise computing, especially for defining and
monitoring SLAs. Our goal in this line of research is to narrow
down the domain to IoT data services while widening the
representation of SLAs, especially in data and data quality
aspects, for IoT data services. A typical SLA stated for an
IoT service might conceptually encapsulate the following items
[4]: reliability (e.g., percentage uptime and other measure-
ments), responsiveness (e.g., how quickly various issues will
be resolved), consequences and expectations (e.g. when SLA
expectations are not met) and exception clauses or constraints
(e.g. when SLA does not apply such as force majeure). To
address IoT services in a wide spectrum, we propose that
an SLA should be described as a mixture of numeric factors
(e.g., payment and error rate) and business parameters (e.g.,
penalty rules). Our way of reasoning about the SLA was
inspired by a grid for measuring service quality perceived
by service customers [6]. This grid, named SERVQUAL,
specifically addresses the assurance, reliability, responsiveness,
tangibles and empathy of a business service. A variant of this
grid developed for evaluating the quality of service [7] has
reinforced the importance of the reliability and the empathy in
measuring customer’s satisfaction. Our definition of the SLA
for the IoT data services targets the customer’s satisfaction.



To handle data delivery, the SLA should keep track of penalty
rules that are articulated in favor of the end-users in case
the end-users do not obtain their expected data. The third
component of the SLA is about costs incurred for consuming
the said IoT services. Assuming that the satisfaction and the
rule-abiding rate of a service could be mined from logs, we
address the following questions in this paper: (a) how the SLA
of a service aggregation could be compiled from the sourced
services? (b) among service offerings that were previously
shortlisted matching the end-user’s intention, which one is the
best in terms of the SLA?

Section II is dedicated to the preliminaries of our work and
its related work. Section III formulates our research statement
using a case-study. In Section IV, we define the SLAs of
IoT data services and proposes SLA-aware algorithms for
looking them up and pinpointing the finest one. Section V
reports our implementation of the proposed SLA-handling
algorithms using real-life data. Section VI concludes the paper
and outlines our future work.

II. BACKGROUND AND RELATED WORK

A. IoT Data Services

In this study, we will delve into the provisioning of cloud-
based IoT data services as a narrowed field of research at the
intersection of the following research lines. DaaS is a new
delivery model for data provisioning to serve data consumers
irrespective of their geographic locations [8], [9]. An IoT
service is merely regarded as a transaction between parties
in an IoT-based architecture [2]. As such, an IoT data service
aims to provide end-users with transaction-based data (e.g.,
data about soil moisture in farms and air quality data). Such
a transaction might be enabled by a cloud platform, giving a
rise to the notion of cloud-based IoT data services. Quality
of data is arguably a critical subject in this research line.
For instance, Badidi [10] proposed an algorithm to evaluate
the DaaS providers based on the quality-of-data requirements
specified by the data consumers for finding appropriate DaaS
providers. Mišura [11] created a model of the data market
to analyze query performance and utilities gained by the
consumers. They concluded that the data market in IoT is an
effective method to distribute measurements and data. Recent
work in this research direction contributes to the concept of IoT
ecosystems and data services [12] [13]. These methods mostly
rely on a centralized solution, namely service registry, which
has long been investigated in the Web-based service-oriented
architecture. Existing work on data marketplaces attempts to
associate quality information with its data sources but the SLA
and contracts are mainly formulated at the marketplace to cope
with costs and data volumes [14].

B. Aggregator Business Model

Many studies suggest that the IoT is expected to change
business processes and pose new challenges [15]. They point
out a major shift from viewing IoT primarily as a technology
platform to seeing it as a business ecosystem, moving from
focusing on a business model to designing an ecosystem. Other
studies, such as Dijkman [16], proposed a business model for
IoT applications based on a template called Business Model
Canvas [17]. They have expanded and adapted this business

model by identifying necessary building blocks and types of
the key IoT participants. Newly-emerging business models for
IoT have created a new opportunity for operating data services
on the cloud platform of the service providers, which are
materialized by the so-called Aggregator Business Model [18].
The idea behind this model is to integrate individual compo-
nent services to create complex ones using cloud computing.
Service aggregations are quite ubiquitous and can be found
in business-to-business and business-to-consumer markets for
products, services and information [19]. In services science
– the cousin discipline of SOC, this topic is investigated
under the terms of services bundling and service constellation.
High-level services might be bundled/constellated to create
innovative service offerings that, for instance, are competitively
priced and bring the consumers convenience [20]. For example,
tourists who take a travel package (as a service bundling)
would benefit from discount while being hassle-free in secur-
ing accommodation and booking their flights [5].

As for IoT data provisioning, the notion of data market-
places has been around for a while with an emphasis on sensor
data [21]. However, these data marketplaces do not focus on
geographically sparse IoT data providers in aqua/agriculture
domains.

C. Monitoring and Aggregating SLAs

Managing and monitoring the SLAs is crucial for maintain-
ing the trustworthiness of a service system or an ecosystem
of the IoT services. Comuzzi et al. [22] seek to regulate
the provisioning of services by operating an architecture that
analyzes the execution log to monitor SLAs. Other work is
concerned with describing SLAs needed for compliance moni-
toring of the application environments involving infrastructure,
platform, and application services [23].

When composing services, we need to aggregate the SLA
of the sourced services. This kind of aggregation has been
studied in the context of business processes [24], composite
services [25] and cloud computing [26]. For IoT data services,
evidences of how an SLA is respected at run-time might
be buried in the massive volume of data provisioned and
the accessibility to the service provider’s computing cloud.
We are in need of an SLA-handling mechanism that plays
a refereeing role by monitoring of, but not interfering with,
data communication between the said service provider and its
end-users.

III. RESEARCH MOTIVATION

A. Case study

The Mekong Delta region of Vietnam displays a variety
of physical landscapes, watercourses interlaced. Shrimp farm-
ing is an important business domain in the Mekong Delta.
This business domain consists of companies, private shrimp
farms, and many other stakeholders, which have benefited the
economy. However, the productivity of farms depends on two
main factors: water quality and climate change. Thus, finding
a solution to monitor these issues is a crucial task. There
are many research institutes, companies and organizations
involved in developing solutions, software and applying new
technologies to increase the production of shrimp and to
reduce the risk due to the climate and water environment



changing. However, data collection is difficult and costly,
especially when data need to be collected in different loca-
tions in the Mekong area. Therefore, we build a case study
of a hypothetical company called MekongDataVendors
which has a platform that supports research units finding data
from shrimp farming and family farms. So, it helps gather
information easier and monitor the quality of water and the
climate change in shrimp farms better. Moreover, bringing IoT
technology closes to farms and farmers creates an opportunity
for farmers, agricultural engineers, and experts work together.
They, being considered the end-users in this scenario, seek
data services from multiple vendors all of whom are connected
thanks to the platform of company MekongDataVendors.
These data services could be invoked from a custom software
product developed for farming monitoring. In other words, the
end-users rely on software development with services while
service vendors commit themselves to software development
for services.

TABLE I: IoT data services being provisioned thanks to an
SLA-aware platform of a company located in the Mekong delta
called MekongDataVendors

Label Data
Services Provider Multi-level Data

Frequency Cost

so1
Water

temperature P 1
cloud

Intermediate Every 60 secs $5

Advanced Every 36 secs $10

so2
Water

pollution P 1
cloud

Basic Every 18 secs $10

Intermediate Every 36 secs $20

Advanced Every 25 secs $25

so3 pH P 2
in−house Basic Every 35 secs $3

so4 Alkalinity P 3
in−house Basic Every 43 secs $10

so5 Salinity P 4
cloud

Intermediate Every 40 secs $20

Advanced Every 25 secs $30

so6 pH P 4
cloud Intermediate Every 20 secs $10

Table I makes a list of data services being offered in
the said platform. Each service is uniquely identified by a
label in the form of so1, so2, etc. presented in the leftmost
column. As for functional aspects, a service comes with a
short name that captures the kind of data to be delivered
and a provider who is registered to the service platform of
company MekongDataVendors. In this case-study, the ser-
vice providers are anonymously denoted as P 1

cloud, P 2
in−house,

P 3
in−house and P 4

cloud. To the right of Table I, we describe the
contractually formulated, multi-level commitments between
these service providers and the end-users. To keep it simple, we
show no more than three levels for these service agreements.
The levels, named basic, intermediate and advanced, simply
state that the more frequent data is delivered to the end-users,
the higher monthly costs incurred. Geographically speaking,
P 1
cloud is located in Kien Giang, P 2

in−house in Kien Luong,
P 3
in−house in Hon Dat, P 4

cloud in Ha Tien. These proper names
represent the rural districts of Kien Giang Province in the
Mekong delta of Vietnam.

Service providers P 2
in−house and P 3

in−house are farmers
who deploy IoT-enabled sensors in their own farming sites
that are located in one of the above-mentioned rural districts.
They invest in IoT technologies for monitoring their agricul-

tural production. These providers decided to put their data
of agricultural production for sale via the service platform
of company MekongDataVendors. They rely on on-site
sensors to provide the end-users with instantaneous readings
of the pH and the alkalinity levels for a localized area. Due to
the lack of computing power and storage, historical levels and
statistics of the pH and alkalinity might not come in handy.
In contrast, the other two providers, denoted as P 1

cloud and
P 4
cloud, harness cloud computing to provide the end-users with

enriched data (e.g., spatio-temporal extrapolation) about water
temperature and water pollution over a relatively large farming
site, which they do not own. Being hi-tech agencies, P 1

cloud
and P 4

cloud obtain the appropriate farm owners’ permission
to operate their IoT devices, networking infrastructure and
cloud servers in certain farming areas. Their business is to
collect large dataset of agricultural production out of which
money might be made thanks to the MekongDataVendors’s
service platform.

As shown in Figure 1, MekongDataVendors connects
the end-users with the aforementioned service providers. The
end-users in this scenario include IoT application developers,
research organizations and governmental agencies. The first
group makes use of the services listed in Table I to compose
service-oriented applications (e.g., wearable , web-based, mo-
bile) for farming monitoring using, for instance, services so1

and so2. Thanks to this service platform, the second group
should be able to obtain agricultural data for scientific purposes
using, for example, services so3 and so6. The third group takes
the advantage of the data obtained through services so4 and
so5 to fine-tune the agricultural extension for family farm or
fisheries development in the area. The actual data services
registered in this platform might be a lot more than what
are simplified and exemplified in Table I, giving the end-
users multiple service offerings. For example, a research lab
interested in pH readings would prefer so6 to so3 as the former
offers slightly more advanced agreement level than the latter.

Eventually, the end-user programmers who develop a
service-oriented application for water monitoring will ask for
data services that are not listed in Table 1. One way to meet
this demand is to aggregate data services that are functionally
related (e.g., so1 and so2 are all about water) to provide more
sophisticated data for a given location (e.g., reporting on the
water temperature and water conductivity of a shrimp pond).
so1 and so2 together as an aggregation of data services would
programmatically come in handy, enabling a practice widely
known as software engineering with services. Aggregating so1

and so2 not only involves mixing their water-related data
but also results in their multilevel SLAs being compiled and
rationalized.

B. Research Statement

The MekongDataVendors’s business model described
in Subsection III-A is in fact not brand new. Böhm et al.
discuss the so-called aggregator business model [18] for IT
provisioning in cloud computing. We bring this concept to
the newly-emerging field of IoT data services. As illustrated
in Figure 1, IoT data service providers are agencies who
produce data to be provided in the form of re-usable ser-
vices, which enable software engineering with DaaS thanks



Fig. 1: An aggregator business model for IoT data services in the Mekong Delta.

to MekongDataVendors, which serves as the aggregator in
this model.

We propose a new solution – IoT data services as a
newly-emerging platform for service delivery – for an old
problem – the aggregator business model in services computing
[18]. In our model, we distinguish between a cloud-based
IoT agency and an in-house IoT station (see Table II). They
use sensors to collect data provided through the computing
environment of the service. The former operates its sensors
over a relatively large area. In contrast, the sensors operated by
the latter are usually installed in a small area. In terms of data
delivery, the cloud-based IoT agency relies on a computing
cloud to perform data conditioning, logging and calculating
statistics (e.g., min/max/mean values) and data enrichment
(e.g., interpolation and extrapolation). The in-house IoT station
comes with small computational power and almost only offers
instantaneous data. These data are usually raw data so the
price may be lower. As for business goals, the cloud-based
IoT agencies produce data for sale while the in-house IoTs
may use their data for agricultural purposes.

As exemplified in Subsection III-A, data services are
subject to aggregation. Our research objectives in this line
of work are twofold. First, data services might be aggregated
in a number of ways to create additional service offerings,
giving rise to the composition of SLAs. Whether the SLA of

TABLE II: Two different kinds of IoT data service providers
that participate in the aggregator business model

Cloud-based IoT Agency In-house IoT Station

Equipments installed in rela-
tively large area

Equipments installed in a lo-
calized area

Do not own any farm in the
area over which it collects
data

Owns a farm in the area over
which it operates

Is computationally powered
for data conditioning, data
enrichment and handling big
volume of data over a sub-
stantial amount of time

Thin computing power for
transferring instantaneous
data

Enriched data Spontanous data

Data is solely for sale Data used for agricultural
purposes and for sale.

an aggregated (data) service can be deducted from the SLA
of its constituent services remains an open question. Second,
individual service offerings and aggregated ones should be
treated equally in such an aggregator platform when it comes
to the service registry. End-users rely on a special look-up



technique of this registry to get access to the service they wish
to consume. Such a look-up technique will yield an ordered
list of service offerings that all meet a certain end-user’s data
request. The order that is effectively in place, enabled by
a function that assigns each element of the list a score, is
supposed to bring the service that best matches the end-user’s
expectation to the front of this short-lived list. Such a scoring
function needs to be formally and algorithmically defined by
means of SLAs registered in the said service platform.

In our previous work, we propose a way to reason about
SLA [27] in terms of satisfaction, price and penalty rules (i.e.,
rules stating what a service provider has to do in case it fails
to deliver its commitments). In this work, we focus on IoT-
enabled data services and take a slightly different approach to
model their SLA. Specifically, we propose that the third SLA
item of a data service is about the extent to which its provider
respects the penalty rules that are functionally declared for the
service in question (see Table III for an illustration).

IV. SLA-AWARE MACHINERY FOR HANDLING SLAS OF
IOT DATA SERVICES

This section presents our formal machinery for reasoning
about service level agreements when aggregating and ranking
data services (Subsection IV-B). We begin this section by
giving some formal definitions (Subsection IV-A).

A. Using Semiring to Represent Service Level Agreements

A semiring is a mathematical structure having two op-
erations that matters on a set. Let’s consider a semiring
A = {〈r, s, c〉| r ∈ R, s ∈ S, c ∈ C} that represents all
SLAs of a service ecosystem, where R,S, C are the sets of
rule-abiding rates, satisfactions and costs respectively in the
following. We first recall the definition of semiring [28].

Definition 4.1: A semiring is a tuple 〈A,⊕,⊗, 0̄, 1̄〉 where

• A is a set and 0̄, 1̄ ∈ A;

• ⊕, called the additive operation. It is a commutative,
associative operation having 0̄ as its neutral element
(i.e. a⊕ 0̄ = a = 0̄⊕ a,∀a ∈ A);

• ⊗, called the multiplicative operation. It is an asso-
ciative operation such that 1̄ is its identity element and
0̄ is its absorbing element (i.e. a⊗0̄ = 0̄ = 0̄⊗a,∀a ∈
A). Moreover, ⊗ distributes over ⊕ (i.e. ∀a, b, c ∈ A,
we have a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c).

An idempotent semiring is a semiring whose additive
operation is idempotent (i.e., a ⊕ a = a). This idempotence
property allows us to endow a semiring with a canonical order
defined as a � b iff a ⊕ b = b. We specify the meaning of
operators ⊕ and ⊗ for reasoning over IoT data services in
Subsection IV-B. Now, let’s define the notions of rule-abiding
rate, satisfaction and cost in the following.

Definition 4.2: A data service is associated with several
penalty rules, which are supposed to be respected in run-time.
The rule-abiding rate (and the breach rate) of a penalty rule
is defined as the ratio of the number of times the said rule is
respected (unrespected) to the total number of times the said
rule is kicked off. Formally, we have rule-abiding rate = 1−

breach rate. A rule-abiding rate of an SLA, or rule-abiding
rate for short (denoted as r), is defined as the minimum value
of rule-abiding rates of all penalty rules concerned.

Example 4.1: In Table I, we assume that the rule-abiding
rates in the multilevel SLA of service so5 are r11 = 0.95,
r12 = 0.96 and r2 = 0.97 where rule r1 is refined into
r11 and r12. Therefore by definition: r1 = min(r11, r12) =
min(0.95, 0.96) = 0.95. In the same way, the rule-abiding
rate of so5 is the minimum value of r1 and r2, as shown in
Table III.
TABLE III: Breakdown of the rule-abiding rates in the SLA
declared for one of the data services presented in Table I

so5 rule’s description Rule-abiding
rates of a rule

r1: The designated stations must send
data uninterruptedly within the agreed-
upon timeframe.

0.95

r11: If data is missing or the latency is
higher than 15 minutes, customers will
receive one hour of service for free.

0.95

r12: If the latency is higher than 30
minutes, the service in question should
be operated by another station for
which the customer will enjoy up to 2
hours of data provisioning for free.

0.96

r2: The yearly cost of monitoring the salin-
ity in the area should not be more than
two thirds of the equipments costs and rent
charges combined.

0.97

Rule-abiding rate of so5 0.95

Definition 4.3: Informally, the satisfaction of a service
perceived by the end-users is about the reliability and empathy
of this service [7]. For IoT data services, the satisfaction is
formally defined as the ratio of the number of successful data
delivery to the total number of service transactions.

Definition 4.4: Let C0 = {c1, c2, ...cn} be the initial set of
values of the cost incurred by data services. By closure of C0,
we mean the smallest set containing all finite summation of
elements in C0: C+

0 = {
∑∞

k=1 (ci1 + ...+ cik)| cik ∈ C0}. As
such, the cost set is defined as C = C+

0 ∩ [0, costmax] , where
costmax is the highest cost that the customer may pay. A cost
(denoted as c) is a payment for a data service, which is an
element of set C.

B. Aggregating and Ranking Data Services by Their SLAs

We proceed in aggregating the SLAs of sourced services.
Suppose that we have n services and consider the i-th service
for which we write Li = {`ij |j = 1, ...,mi} where `ij
represents the the j-th level of its multilevel SLA.

Now, let’s put αi
`ij

to denote the j-th level of the i-th
service’s multi-level SLA where i ∈ [1, n]; j ∈ [1,mi]. This
construct is in fact a triple 〈r, s, c〉 ∈ R × S × C, where
R,S, C are the sets of rule-abiding rates, satisfactions and
costs, respectively.



Definition 4.5: To represent the multi-level SLA of a ser-
vice aggregation, consider a group of aggregated services as
subset of k services {soi| i ∈ I ⊂ [n], |I| = k} each of which
comes with multi-level SLA as exemplified in Table I. Out
of this subset, the Cartesian product of the multi-level SLAs
of the aggregated services is represented by a 2-dimensional
array of size (

∏
i∈I mi) × k, where each element is a triple

〈r, s, c〉. For each given row consisting of k SLAs in this array,
we already know the fixed level `i ∈ Li is defined. Hence we
write 〈ri`i , s

i
`i
, ci`i〉, i ∈ I , for the SLAs in this row. Then we

define the combined SLA (denoted as Ω), over these SLAs as
follows.

Ω =
⊙

i∈I⊂[n]

αi
`i = 〈min

i
ri`i ,min

i
si`i ,

∑
i∈I

ci`i〉. (1)

TABLE IV: Multi-level SLAs of the IoT data services listed
in Table I

Label Data service Multi-level SLA 〈r, s, c〉

so1
Water

temperature
Intermediate 〈93%, 94%, $5〉

Advanced 〈96%, 98%, $10〉

so2
Water

pollution

Basic 〈91%, 90%, $10〉

Intermediate 〈95%, 92%, $20〉

Advanced 〈98%, 93%, $25〉

so3 pH Basic 〈90%, 93%, $3〉

so4 Alkalinity Basic 〈94%, 95%, $10〉

so5 Salinity Intermediate 〈94%, 98%, $20〉

Advanced 〈95%, 98%, $30〉

so6 pH Intermediate 〈95%, 95%, $10〉

Example 4.2: Table IV gives details of the SLA for data
services described in Table I. From this table, we request
a group of services as subset {so1, so4, so5} (i.e. k = 3)
and I = {1, 4, 5}. Suppose that we have L1 = {`11 :
Intermediate, `12 : Advanced}, L4 = {`41 : Basic} and
L5 = {`51 : Intermediate, `52 : Advanced}. Out of this
subset, the Cartesian product of these set is represented by a
2-dimensional array of size (

∏
i∈I mi)×3, which is as follows.

〈r1
`11
, s1

`11
, c1`11〉 〈r

4
`41
, s4

`41
, c4`41〉 〈r

5
`51
, s5

`51
, c5`51〉

〈r1
`11
, s1

`11
, c1`11〉 〈r

4
`41
, s4

`41
, c4`41〉 〈r

5
`52
, s5

`52
, c5`52〉

〈r1
`12
, s1

`12
, c1`12〉 〈r

4
`41
, s4

`41
, c4`41〉 〈r

5
`51
, s5

`51
, c5`51〉

〈r1
`12
, s1

`12
, c1`12〉 〈r

4
`41
, s4

`41
, c4`41〉 〈r

5
`52
, s5

`52
, c5`52〉

For each given row consisting of 3 SLAs, as we already
know the fixed level, we put < ri`i , s

i
`i
, ci`i >, i ∈ I . Hence,

we rewrite the first row as follows.

〈r1
`1
, s1

`1
, c1`1〉 〈r

4
`4
, s4

`4
, c4`4〉 〈r

5
`5
, s5

`5
, c5`5〉

In this row, we apply Formula 1 to determine the combined
SLA and label it as Ωq , where q serves as row indices.

Ω1 = 〈min{r1
`1 , r

4
`4 , r

5
`5},min{s1

`1 , s
4
`4 , s

5
`5}, (c

1
`1 + c4`4 + c5`5)〉

= 〈min{93%, 94%, 94%},min{94%, 95%, 98%}, ($5 + $10 + $20)〉
= 〈93%, 94%, $35〉
We repeat this task for each remaining row in the array.

As a result, Table V presents the combined SLAs for the
following service aggregation so1 (Intermediate), so4 (Basic),
so5 (Intermediate) into Ω1; so1 (Intermediate), so4 (Basic),
so5 (Advanced) into Ω2; so1 (Advanced), so4 (Basic), so5

(Intermediate) into Ω3; so1 (Advanced), so4 (Basic), so5

(Advanced) into Ω4.

TABLE V: Aggregating IoT data services listed in Table I
results in the compilation of their SLAs.

Label Service aggregation Combined SLA 〈r, s, c〉

Ω1 so1 (Intermediate), so4
(Basic), so5 (Intermedi-
ate)

〈93%, 94%, $35〉

Ω2 so1 (Intermediate), so4
(Basic), so5 (Advanced)

〈93%, 94%, $45〉

Ω3 so1 (Advanced), so4 (Ba-
sic), so5 (Intermediate)

〈94%, 95%, $40〉

Ω4 so1 (Advanced), so4 (Ba-
sic), so5 (Advanced)

〈94%, 95%, $50〉

To enable ranking techniques, we aim to make the set of
all SLAs, denoted as A, a totally ordered set. Formally, we
define this total order as: Ωi ≥ Ωj if (rΩi > rΩj ) or (rΩi =
rΩj) ∧ (sΩi > sΩj) or (rΩi = rΩj) ∧ (sΩi = sΩj) ∧ (cΩi ≤ cΩj)
where r: rule-abiding rate, s: satisfaction, c: cost. The relation
“≥” defines a total ordering over the set A. We define the ⊕
operation as the max operation with respect to this order.

The ⊗ operator is the multiplication acting on each com-
ponent an element in the set A differently. The ⊗ operator’s
action onR, S is taking the minimum. The ⊗ operator’s action
on C is ordinary addition. More precisely, let a = 〈r1, s1, c1〉
and b = 〈r2, s2, c2〉, then a⊗ b is defined as follows.

a⊗ b := 〈min {r1, r2} ,min {s1, s2} , c1 + c2〉.
Example 4.3: Table VI shows an ordered list of service

aggregations. Ω3 receives scores first in this list.

TABLE VI: Suggesting data services from the user require-
ments

Rank Label Service aggregation Combined SLA 〈r, s, c〉

1 Ω3 so1 (Advanced), so4 (Ba-
sic), so5 (Intermediate)

〈94%, 95%, $40〉

2 Ω4 so1 (Advanced), so4 (Ba-
sic), so5 (Advanced)

〈94%, 95%, $50〉

3 Ω1 so1 (Intermediate), so4
(Basic), so5 (Intermedi-
ate)

〈93%, 94%, $35〉

4 Ω2 so1 (Intermediate), so4
(Basic), so5 (Advanced)

〈93%, 94%, $45〉

C. Algorithms

Algorithm 2 materializes the total order defined (see Sub-
section IV-B). Algorithm 1 presents the algorithmic logic for



ranking IoT service offerings that were previously selected
based on end-user’s requirements. In Algorithm 1, we make
sure that all service offerings that have been selected should
come with well-defined SLAs before ranking them. Techniques
for selecting services and aggregating services are however out
of the scope of this paper.

Algorithm 1: Ranking IoT data services that match end-
user’s intention by their SLAs

Input: reqs: end-user’s requirements;
Output: An ordered list of services where finest ones should

be in the beginning;
1 begin
2 Lserv ← select IoT data services and service aggregations

that match end-user’s intention described in reqs;
3 foreach rs ∈ Lserv do
4 if rs represents a service aggregation and rs comes

with an undefined SLA then
5 Compute the SLA of rs in accordance with

formula 1 in Definition 4.5;
6 end
7 end
8 Sort Lserv according to the comparison function defined

in Algorithm 2;
9 return Lserv;

10 end

A service offering selected in list Lserv of Algorithm 1
is either an individual data service or a service aggregation.
We mind penalty rules and analyze logs to determine the rule-
abiding rate and the satisfaction of an individual service. As
for service aggregations, we rely on Definition 4.5 to establish
their multilevel SLA.

Algorithm 2: Comparing IoT data services by their SLAs
Input: sla1, sla2: A pair of SLAs to be compared;
Output: an integer value of either: +1 if sla1 is better than

sla2; or zero if sla1 is equivalent to sla2; or -1 if
sla1 is worse than sla2;

1 begin
2 if (sla1.rule-abiding > sla2.rule-abiding) then
3 return +1;
4 end
5 if (sla1.rule-abiding < sla2.rule-abiding) then
6 return -1;
7 end
8 if sla1.rule-abiding = sla2.rule-abiding then
9 if sla1.satisfaction > sla2.satisfaction then

10 return +1;
11 end
12 if sla1.satisfaction = sla2.satisfaction and sla1.cost

< sla2.cost then
13 return +1;
14 end
15 if sla1.satisfaction = sla2.satisfaction and sla1.cost

= sla2.cost then
16 return 0;
17 end
18 return -1;
19 end
20 return -1;
21 end

V. TRACKING IOT DATA SERVICES

Figure 2 depicts how IoT data services are requested and
bound to end-users in our case-study. Services {so1, .., so6}
are diagrammatically enclosed in a cloud area. Each of them
is represented under a rounded rectangle having three com-
partments. The bottom compartment of a service is dedicated
to its provider. Little stars in the cloud area stand for service
aggregations Ω1, ..,Ω4 (fully described in Table V). This figure
features two scenarios. The first scenario, enumerated as {1.1
– 1.2 – 1.3 – 1.4}, illustrates Algorithm 1. More specifically,
a request for an IoT service is submitted in JSON format that
includes the following items (step 1.1): the province of Kien
Giang as a location, monthly cost of $50, data required (water
temperature, alkalinity, etc.). Step 1.2 is about selecting service
offerings that match this end-user’s requirement; step 1.3 –
ranking. Finally, MekongDataVendors suggests appropri-
ate service offerings in step 1.4.

Fig. 2: MekongDataVendors’s platform responds to end-
users’ request of IoT service offerings. Logs in this platform
capture the history of rule-abiding and the success/failure of
data delivery of an individual IoT data service.

The second scenario, identified as {2.1 – 2.2 – 2.3},
explains the data delivery of IoT services being bound to the



Fig. 3: Data provisioning thanks to MekongDataVendors’s platform

end-user and a corresponding tracking mechanism. The ser-
vice platform of MekongDataVendors keeps tracking the
success/failure of data delivery and whether relevant penalty
rules are respected in run-time. This kind of log, together with
blockchain-based protocols, automatically compute the SLAs
of individual IoT services. In this sense, steps 2.2 and 2.3
might be performed in parallel.

Both IoT services and end-user applications are populated
in the Microsoft Azure cloud platform. We collected datasets
of water sampling in agriculture for the period of Feb 2017
– Dec 2017 in the province of Kien Giang. The datasets are
populated in a SQL Server database system. In our future work,
we plan to move the SQL server to a large-scale data retrieval
system such as Google BigQuery.

Fig. 4: Individual IoT data services registered in
MekongDataVendors’s platform.

We have implemented a prototype that tracks data provi-
sioning in the form of IoT data services. Figure 4 shows a

dashboard window displaying IoT services being registered in
MekongDataVendors’s platform.

Fig. 5: Service aggregations that have been sorted by their
SLAs come in handy for the end-users.

Figure 5 demonstrates an ordered list of service aggrega-
tions. Figure 3 is a screenshot of an end-user application that
reports data provisioning from the end-user’s perspective. Each
row in this screenshot represents a data item being delivered.
The highlighted row stands for a failed data delivery (note that
it has an empty data cell).

VI. CONCLUSIONS AND FUTURE WORK

We expect that the deployment of lightweight IoT data
services will be increasing due to the availability of sensors
and platforms for delivering IoT data. For the best exploitation
of the service ecosystem of IoT data, data end-users need
an effective look-up and binding mechanism not only to find
out the right service but also to materialize a communication
channel between service parties. Despite a large number of
service-oriented platforms for data offerings being in opera-
tion, quality-aware provisioning of IoT services still stays on



the sidelines. This paper focuses on IoT-enabled data services
of which SLA plays a central role in determining if a data
service offering is fine enough from the end-user’s perspective.
Given a large number of data service offerings in operation
(and they might be aggregated in a number of ways to create
even more offerings), our work helps the end-users access the
finest services that meet their requirements.

Does handling the SLA equal minding rules plus analyzing
service logs? We formally define the SLA of IoT data services
and propose how they could be logically compiled in service
aggregations. We argue that this kind of the SLA is the
mixture of satisfaction, payment and the extent to which its
service provider abides by penalty rules when provisioning
data. We propose a tracking mechanism to measure the cus-
tomer’s satisfaction and rule-abiding rate defined in the SLA
of individual service offerings. We devise a new approach
to compiling the multilevel SLA of a service aggregation
from those of sourced services. We present algorithms for
looking up the ”finest” service offerings in terms of the SLA.
We demonstrate our work using real-life data of agricultural
production in the Mekong Delta of Vietnam. In the near future,
we will investigate a blockchain-based architecture for trust,
provenance and payment of the IoT service providers with
respect to SLA-handling.
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[11] K. Mišura and M. Žagar, “Data marketplace for Internet of Things,”
in Proceedings of the 1st International Conference on Smart Systems
and Technologies. Osijek, Croatia: IEEE Computer Society, 2016, pp.
255–260.

[12] S. Kubler, J. Robert, A. Hefnawy, K. Främling, C. Cherifi, and
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