Towards a Resource Slice Interoperability Hub for
IoT

Hong-Linh Truong
Faculty of Informatics, TU Wien, Austria
E-mail: hong-linh.truong @tuwien.ac.at

Abstract—Interoperability for IoT is a challenging problem
because it requires us to tackle (i) cross-system interoperability
issues at the IoT platform sides as well as relevant network
functions and clouds in the edge systems and data centers
and (ii) cross-layer interoperability, e.g., w.r.t. data formats,
communication protocols, data delivery mechanisms, and perfor-
mance. However, existing solutions are quite static w.r.t software
deployment and provisioning for interoperability. Many middle-
ware, services and platforms have been built and deployed as
interoperability bridges but they are not dynamically provisioned
and reconfigured for interoperability at runtime. Furthermore,
they are often not considered together with other services as a
whole in application-specific contexts. In this paper, we focus
on dynamic aspects by introducing the concept of Resource
Slice Interoperability Hub (rsiHub). Our approach leverages
existing software artifacts and services for interoperability to
create and provision dynamic resource slices, including IoT,
network functions and clouds, for addressing application-specific
interoperability requirements. We will present our key concepts,
architectures and examples toward the realization of rsiHub.

I. INTRODUCTION

The increasing, complex [oT applications built from various
functionality of IoT, network functions and clouds have created
many calls for IoT interoperability. A recent special issue [1]
has presented many aspects of and solutions for IoT interoper-
ability. Several works and standardization organizations have
started to look at specific IoT interoperability issues. However,
most of IoT interoperability solutions are static compared
with dynamic changes of underlying systems: IoT interoper-
ability issues are solved in advance by introducing software
that are pre-deployed for specific uses. Such software might
solve certain interoperability issues but we lack techniques to
provision and configure such software for application-specific
needs as well as to combine such software with other solutions
to provide on-demand interoperability bridges. This can be
observed through the use of pre-deployed protocol bridges
[2], semantic data conversion hub[3], sensor data syntax and
metadata [4], to name just a few.

We look at another perspective: can we solve IoT interoper-
ability at runtime when a client needs a set of IoT resources,
network function resources and cloud resources but these
resources are not interoperable w.r.t. the client’s requirements
due to certain reasons. Here the notion of resources in our
work is not just about infrastructural ones, like virtual ma-
chines with CPU and memory. Resources can be data, firewall,
cloud virtual machines, cloud database, streaming processing
service, etc. Resources are provided or can be provisioned by

different providers and are exposed through services; resources
can be services with well-defined interfaces (e.g., based on
REST or MQTT). Therefore, with such capabilities resources
can be acquired and controlled for on-demand interoperability
solutions. Fortunately, such capabilities are the norm nowadays
in IoT, edge and cloud systems. In our view, applications
(clients), which need IoT resources, mostly data produced by
IoT devices and control of such devices, will require various
types of resources: in addition to the IoT resources, network
functions resources at the edge and cloud resources are also
required. Therefore, in the view of such applications, a set of
IoT resources, network function resources and cloud resources
should be provisioned and managed for the application re-
quirements. In our work, a resource slice is a set of resources
established for a specific application in a specific context.

The key issue is how to make such a set of resources
interoperable, e.g., for delivering IoT data for the application
based on its specific context. This will involve very complex
tasks as our approach for IoT interoperability is dynamic: we
do not assume that all resources and providers have known
existing services for enabling interoperable protocols, data
format, etc. At runtime, we expect the interoperability tool
to augment the client’s resources with new resources to deal
with interoperability problems. Previously, we have developed
basic services for harmonizing IoT, network functions, and
cloud resources [5]. We can interface to various other services
to receive information about resources (e.g., Google machines,
networks and data service). We can also connect to repositories
to download artifacts and provision corresponding resources
based on that artifacts, e.g. pull an image from a Docker
repository. Leveraging these facilities, this paper proposes
a concept of resource slices for IoT interoperability. We
introduce Resource Slice Interoperability Hub (rsiHub) which
includes techniques and services for gathering metadata about
resources and for dealing within on-demand provisioning of
slices and interoperability bridges. This paper presents key
concepts for rsiHub and examples, paving the way for the
realization of rsiHub in the future.

The rest of this paper is organized as follows. Related
work is presented in Section II. Section III presents scenarios,
models, and rsiHub and its concepts. In Section IV we present
core issues of the rsiHub. We illustrate examples in Section
V. We conclude the paper in Section VI.

II. RELATED WORK

The key difference between our work and existing works
for IoT interoperability is the dynamic, on-demand interoper-
ability support. Existing works mainly focus on static protocol
and data translation solutions to achieve IoT interoperability .
For such solutions, usually interoperability issues are identified
in advance and corresponding solutions are developed and
deployed. Thus these solutions are hard to reconfigured and
they are used in specific deployment. Furthermore, they rarely
leverage advanced techniques

The special issue [1] presents various interoperability solu-
tions. All of them can be possibly used in our work as we can
discover existing solutions through metadata and determine
if they are suitable for runtime interoperability. In [3] the
authors present a hub-based approach for IoT Interoperability.
This Hub includes various data conversion features. However
it is not about dynamic solution of using resource slices like
our work. We could assume that this Hub is also one service
provider that we can use to deal with the interoperability. In
[6] the authors show architectures and use cases for platform
interoperability. Their approach is to assume that IoT devices
will connect to the right interoperable platforms and services,
which are pre-deployed, to ensure interoperability. This is
different from our approach in which we select resources and
deploy and control resources to support interoperability. In
[2] a detailed analysis and proposal for protocols translator
has been given. Our work is not focused on providing such
protocol translator but collecting information about them and
manage them(including artifact) so that when we have a
problem, we provision such translator. In this view, we are
the user of such translators.

III. RESOURCE SLICE INTEROPERABILITY HUB
A. Running Motivating Scenarios

Scenario 1 — IoT Camera Video Analytics: Consider a
city like Da Nang, Vietnam. We have many public and private
cameras providing real-time video data. These cameras are
exposed through ToTCameraService by providers (public
organizations or individuals). The video camera as well as its
individual video files are resources in our concept. Consider
two specific clients need to access camera data for two hours
for all possible cameras close to a place (e.g., due to a football
event or an accident). Practically, these camera resources are
diverse, e.g., w.r.t quality of data and transmission protocols.
Furthermore, the clients need data a different ways: client;
needs all data pushing into a storage (e.g., Google) and
another component will trigger video analytics using serverless
functions listening changes in the storage. clients needs to
obtain data directly from a broker (e.g., Kafka') and push
video, using Trigger, into instances of its Python video
analytic application OpenCVVA running atop, e.g., docker
containers. Since such clients require and process video on-
demand with different requirements, we might face several
interoperability issues at runtime:

Uhttp://kafka.apache.org/

e ToTCameraService and cameras might change the
data delivery mechanisms, e.g., from pushing video to
clients into pulling data from clients.

o Quality of data: near-realtime video records might vary
from 1 minute to 5 minutes.

« Clients might need as many as possible videos in a very
fast time, instead of latest video from all camera, due to
the criticality of the mission.

o Network firewalls and storage might need to be changed
due to the situation that the client has to serve.

Many of these problems cannot be solved in advance but at
runtime by requiring extra, suitable resources to be provisioned
and/or existing resources to be reconfigured.

Scenario 2 — IoT for seaport operations: The above-
mentioned scenario deals with the same type of data (video),
although data might have different formats, quality, etc. An-
other scenario is for the operation of the seaport where we
have various IoT providers, e.g., vessels in shipping, cranes
in port terminals, emergency services, and hauliers, as well as
potential edge computing system providers (providing services
for network functions and edge analytics, based on edge
computing/fog computing models), and cloud services?. Each
provider might use different platforms, especially for those
providing data through IoT technologies. For this scenario, an
example of clients which need resource slices could be: an
emergency response client requires [oT resources for status of
cranes, vessels and hauliers, cloud/edge resources for video
analytics of obstacles, traffics and presence, [oT resources for
control cranes, and network resources for ensuring network
performance and reliability during a specific context (e.g., an
accident in the port).

B. Models

Let RS = {r;} be a resource slice. We use RS(c) to denote
a resource slice specified/needed by a client ¢, whereas we use
RS;(c) to denote the interoperable resource slice based on
RS(c); RS(c) C RSi(c). For interoperability purpose, a re-
source is represented by r(DP, CP, MT) where DP = {dp;}
is a set of data points dp, CP = {cp;} is a set of control
points cp that are associated with r, and MT = {m¢t} is a set
of metadata. For example, a camera is a resource —r., which
can offer DP(r.) = {dpa,dp.} where dp, will return all
possible videos and dp. will return the current video (e.g., the
latest, near-realtime video). r. can has cp, which is used to
control the camera (resource) to put a video to a storage (also
a resource). Given a management service S (also a resource),
S can provide a set of resources R = {r} that allows clients
to use r € R by invoking corresponding DP(r) and C'P(r).
Each mt € MT is represented by (name,value). We use
metadata to capture various information.

We use the above-mentioned notions for all types of re-
sources. For example, network functions and cloud services
have control points and data points, although network function

2This scenario is from the

inter-iot-project.eu/

INTER-IoT project — http://www.

Video Analytics Service

DataConversion'
loTCamera ______..----="" > Service \Openc\/\/A
Service

loTCamera "
---------------------- (e

Container

loTCamera)
Service JTTTTTTI e »(PullPushBridge \OPE"CWA

Container

Fig. 1. Typical resources in client slice and new resources
(DataConversionService and PullPushBridge) for interoperability

services might not support various data points like IoT or
cloud resources. A client ¢ might require, e.g., dp. from all
possible 10T resources r, e.g., all latest video from all cameras
managed by ToTCameraService to be available in Google
Storage. In this case, we need to control the service S to send
data to the storage by calling cp,, for all 7. or to pull the video
from r. by using dp.. Here, for c the slice consists of only 7,
Google Storage and serverless function-as-a-service (FaaS):
RS(c) = {rci, GoogleStorage, FaaS}. Another client might
have a slice as RS(c) = {r.i, Kafka,Trigger, Container
in which r.i, Kafka, Container are provided by existing
providers and Trigger is deployed on-demand.

Since resource slices for an application can be very com-
plex, we are not focusing on automatically building resource
slice structures of RS(c). We assume that the structure of
RS(c) exists, e.g., provided by the client. Furthermore, we
will focus only certain forms of the slice as these forms are
typical in IoT applications w.r.t [oT data analytics and controls:

« many-to-one: this is typically for the integration of may
data points to a single place (e.g., data broker or client).

« one-to-one: typical one-to-one interaction for data points
and control points (e.g., to convert data from one form
to another form or to perform a protocol translation)

« one-to-many: it is typical for controlling (e.g., the client
controls many resources) and data dissemination (e.g.,
from the broker to different processing resources).

An RS(c) can have multiple of such forms. In a typical
situation, we can ask service providers to provision RS(c).
However, we can have different interoperability problems
based on analyzing MT; of r; € RS(c), e.g., the data
transfer protocol is not suitable. Thus, interoperability bridges
— (composite) software artifacts or resources — need to be
determined to solve such problems. Assume that we can find
an interoperability bridge element, ibe € R or ibe from
software artifacts that can solve an interoperability problem.
Then we can augment RS(c) with IBE(c) = {ibe;} to create
RS;(c). Using runtime provisioning and configuration, we can
provision RS;(c). Figure 1 shows an example of a typical
slice and a slice with augmented resources for interoperability.
Obviously, it does not easy to find out I BE(c) and configure
IBE(c) and RS(c) working together but it is a different issue
not in this paper.

C. Integration Requirements

For the work in creating resource slices for interoperability,
we have identified basic requirements for us to obtain enough
information about possible artifacts and resource providers:

1) Artifacts for interoperability:: Often many types of
software artifacts are available for runtime interoperability,
for example, data conversion libraries. Such artifacts might be
available only for IoT interoperability purposes as well as for
general purposes. Furthermore, these artifacts can be deployed
as services but due to many reasons they are not deployed at
the time the client needs the slice.

2) Instances of resource provider:: Providers are suitable
for 10T Interoperability in our concepts; they are IoT, cloud
and network function services. They might be also services
dedicated for IoT interoperability. For such providers, first,
we need ResourcePublishAPI for querying all possi-
ble resources. Second, we need ResourceControlAPI
for controlling resources, such as provisioning, configura-
tion, etc. of resources. For example, given an IoTService
hosted in localhost, /camera/list can be used to
list all cameras, /camera//current/now will be the
data point for current video for the resources, whereas
/camera/list is for all possible camera resources and
camera/:cameraName will be the API for pushing the
video to Google Storage. Given these two sets of APIs, we
can query and control resources using data points and control
points.

D. Resource Slice Interoperability Hub Architecture

We introduce the conceptual architecture named Resource
Slice Interoperability Hub (rsiHub), which includes services,
software artifacts and algorithms to ensure resource slice in-
teroperability. Figure 2 describes the current design of rsiHub.
Main services are:

e Local Management Service is to interface to IoT, network
function and cloud providers.

o Global Management Service is for the application and
other middleware to control IoT devices, networks and
services and acquire IoT data.

o Interoperability Recommendation Service is used for
checking and finding bridges for interoperability and
presenting workflows of configuration and provisioning
of resources for interoperability.

o Resource Slice Management Service is introduced to sup-
port slice management by provisioning and configuring
slices.

The Local and Global Management Services can be leveraged
from HINC [5] by extending information models and query/-
control protocols. In the next section, we describe key ideas for
recommendation and provisioning on-demand interoperability.

IV. RUNTIME IOT INTEROPERABILITY
A. Enriching Client’s Resource Slice for Interoperability

1) Interoperability analytics: Interoperability Analytics
component will take the metadata of resources and determine

rsiHub Client

—

Resource Slice Interoperability Hub (rsiHub)

APIs (REST, AMQP)

{

!

Interoperability Recommendation Service Resource Slice Management Service Global Management Service
Interoperability Interoperablllty i I Resource Query
Analytics Bridge S lce Slice Control anagement
Software Artifact Management reation anagement
control/query ' data
i

Cloud Messaging Broker

v A

Local Management

N Local Management Service
Service

Plugin

& Control

Local
Local Management Service Repository

R
PR

v

\ \

S S S S,

Resource Provider

Resource Provider

Resourc‘ Provider

ﬁewall Rroker

Data Buffer &
Filter

Network Function Provider Cloud Provider

Fig. 2. Overview of the Resource Slice Interoperability Hub

interoperability issues. Examples of issues could be: (i) exist-
ing an IoT resource whose data format differs from the one
required by the client, (ii) disparate data delivery frequencies
between IoT resources, or (iii) incompatible data transferring
protocols among resources. In supporting interoperability ana-
lytics and suggestions, we will rely on resource metadata and
existing software artifact metadata and a catalog of possible
situations that can be checked for interoperability. Information
in the catalog can be simple, e.g., the information about
software/resource that can be used to map one data source
to another data. In the catalog, complex information about
solutions will be presented by (i) a set of provision tasks to
provide missing resources based on existing software artifacts
and (ii) requests of new sources from existing providers, and
(iii) reconfiguration tasks of existing resources. For this, we
will obtain metadata from existing resources as well as from
providers and from Software Artifact Repository. Here it is
important to note that software artifacts should be annotated
with metadata indented for supporting interoperability. We de-
fine an Interoperability Bridge Pipeline (IBP) as a composition
of resources which are not required by the client in its resource
slice, but are needed to deal with interoperability problems. For
a client’s resource slice RS(c), we have a set of ibp € IBP,
each ibp will be established by provisioning suitable software
artifacts and/or resources from existing providers; each ibp
includes a set of interoperability bridge elements ibe.

2) Metadata: For interoperability, we consider various
types of metadata, not just about syntax and semantics of IoT

data for using data conversion and alignment services. The
following types of metadata are important for interoperability:
Data quality: examples of data quality are accuracy, timeli-
ness, up-to-dateness [7]. Such metadata characterize the data
that IoT devices/services provide to the client. We need to con-
sider them, as two sources of data might not be interoperable
if their quality is not compatible. In this view, we apply data
quality check for a set of data points. Given a set of dp; € DP
that have the same types of data, e.g. video, and dp; connect to
the same type of receivers (e.g. brokers or client applications),
we will check the quality of data from dp;.

Data delivery frequency: this is related to how data would be
delivered. For example, some [oT temperature sensors might
deliver data within 1 minute, whereas others would be within
5 minutes. They might create some interoperability problems
when a client receives data from IoT sensors of different
frequencies. Given a set of data points dp; of a resource and
connected to the same place, e.g. the message broker, we will
check whether their frequencies are compatible.

Data compliance regulations: certain resources will deliver
data based on some regulations (such as, data has to be within
Europe). In our scenario, due to the situation, resources in
Google may be used for analytics, thus network functions
for firewall should allow sending data to Google. Otherwise,
normally, it would be no image of humans will be sent
(creating slice should not violate, e.g., by using US-based
cloud services in the resource slice).

Data transfer protocols: given a set of dp; and possible

software artifacts and existing resources for data transfers,
there is a protocol mismatch. Given certain data formats
and protocols, it is possible to deploy components to bridge
different protocols. This might invoke not only on-demand
services for communication, but also data transformation. Note
that in our generic work, protocols might be low-level, such as
MQTT, but also high-level, such as pull or push of video. Thus
important information about protocols should be captured.

In our rsiHub, the above-mentioned types of metadata can
be described either in metadata associated with resources or
in specific data contracts.

3) Interactions: a slice consists of IoT resources, network
function resources and cloud resources. Such resources are
managed by individual providers and made available for the
client by rsiHub. Interoperability Recommendation Service
checks interoperability and suggests possible Interoperability
Bridge Pipelines (IBPs). Figure 3 describes steps in supporting
the construction of IBPs:

e Data Transformation: such as if the client requests the
data delivery in JSON, but the data is in CSV. In this case
we can utilize data pipeline techniques to transform data.
For implementation, various existing services as well as
tools, such as Logstash3, can be used. This task will be
done at the slice creation.

e Protocol Translation for Data Delivery: there are dif-
ferent delivery protocols and we need some protocol
bridges. This can be achieved by using multi-protocol
data delivery platforms but might need middleware to
bridge different protocols. For example, an IoT resource
provides data through MQTT, but the client needs data
through REST. In this case, we can deploy an MQTT
broker and ingest components (e.g., an ingestion service
takes data from MQTT to Google BigQuery*). We will
perform this task at the same time of slice creation.

e Data Quality: different IoT data sources have incompat-
ible data quality. To make them interoperable, certain
tasks might need to be invoked, such as removing bad
data. This task might be done at runtime, by leveraging
complex IoT data monitoring.

The above-mentioned tasks are just a few selected ones.
Other tasks could be involved into guaranteeing reliability of
networks using network functions or complex event processing
to filter bad data.

B. Provisioning and Configuration

We distinguish two situations of provisioning and config-
uration of resource slices. First, there exist software artifacts
for performing the interoperability but the resource has not
been deployed and no service for that. For example, we have
an ingest client that can take data images from Kafka and
move the images into Google Storage but this ingest client has
not been started, while Kafka is already available. Second,
existing services have capabilities to support interoperability

3https://www.elastic.co/products/logstash
“https://cloud.google.com/bigquery/

but their resources have not yet provisioned or need to be
reconfigured. For example, a middleware has a plug-in for
performing protocol translation, like in [2], but the plug-in
has not provisioned because it has no request.

1) Step 1 — Provisioning: Provisioning is carried out when
resources for i¢bp is not available from existing providers. In
this case, rsiHub will perform the deployment for resources of
1bp by utilizing available infrastructures. This requires rsiHub
to interface to existing cloud providers, edge providers and net-
work function infrastructure providers. In our prototype, these
providers have REST APIs for us to provision containers and
VMs. The provisioning will be two steps: first provisioning the
infrastructural resources and second provisioning the software
services resources.

2) Step 2 — Orchestrating services: When a r is required by
a client, the corresponding provider of r will deploy r for the
client. Through data points and control points we can request
the provider to reconfigure r or we can directly reconfigure r.

Currently, for configuration and deployment, we rely on
state-of-the-art deployments using Docker with Kubernetes
and Docker Swarm . We are using popular tools like Chef and
Ansible for configuration. Furthermore, to orchestrate control
of multiple resources, we use Airflow.

V. TOWARDS IMPLEMENTATION AND EXAMPLES

We are currently implementing rsiHub. In this section we
give some examples towards the realization of our ideas. We
build our examples by developing and utilizing various IoT,

network functions and cloud providers®.

A. BTS Slice

We consider the Base Transceiver Stations (BTS) analytics
in which a client wants to receive certain types of alarms
from BTS and analyze. In our current work, a simple resource
slice will include data points of (virtual) BTS sensors, MQTT
brokers, ingest clients, and cloud database. Let us consider that
the BTS monitoring is outsourced for different maintainers. It
means their data formats are different. Furthermore, different
vendors might use different data serialization mechanisms to
save bandwidths. Figure 4(a) describes an example of possible
slices in normal cases. However, as we have different types
of IoT data formats (JSON, CSV and binary data), in order
to support interoperability at runtime, we will need to add
(i) DeseralizedBinDatalIngestClient — a runtime
deserialization library provided by corresponding providers,
(i) JSONDataIngestClient — a data pipeline conversion
using Logstash, leading to the new interoperable resource slice
shown in Fig 4(b)”. Such new sources can be determined by
checking metadata of data points of BTS sensors.

Shttps://airflow.apache.org/

The basic components — IoT Units — and services — utilizing units — are
available at https://github.com/rdsea/IoTCloudSamples

"We have sample of BTS normal slice under https:/github.com/rdsea/
IoTCloudSamples/tree/master/examples/simpleBTS. However, the example of
enhanced resource slice is currently being developed.

R ! Check Deploy and
i > esources slice > i

> > - ———|

Client Query Resources Interoperability —— No- Configure all

resources
A
Yes
. Data Search for data
No- Data Quality -4———No. ransfer Protoco -—N Transformation Yes| transform

Problem

Problem

solutions

(]

Problem

Create
Interoperability
Bridge Pipeline

Search for
Protocol Bridge
Solutions

Search for Data
Quality Solutions

?

Fig. 3. Interactions in solving interoperability

CSV BTS
sensors /7N
../ MQTT) CSVData Google
/,--- DataSubscriber } -- ----
csveTs .~
sensors
(@)

JSON BTS MQTT " JSONData
---->»> DataSubscriber }---- IngestClient
CSVBTS \ MQTT ..p(Datasubscriber} - g CSVData

sensors K Broker IngestClient

Binary BTS\ . {) OeserializedBinData
- DataSubscriber }- | IngestClient
(b)

Fig. 4. BTS example: (a)with typical resource slice, (b)interoperable resource
slice due to different data formats

Google
- BigQuery

B. Video Camera Slice

This example, we consider resource slices for video process-
ing in Scenario 1. Given a situation, e.g., fire, various clients
e.g., the traffic management, nearby hospital, and police,
want different resource slices. Figure 5 gives an example
of a resource slice RS(c) with also interoperability bridge
elements. Typically, we have IoT providers with cameras
that can push data into Kakfa and Trigger can sub-
scribe data from Kafka and invoke OpenCVVA — OpenCV?®
Video Analytics. IoTCameraProviders have interfaced
to our systems so that we have information about metadata,
data points, and control points. All of these services and
artifacts — Kafka, Trigger and OpenCVVA — are used
often and pre-deployed. However, due to the changes of new
IoTCameraService and cameras, for many data points
about video, the IoTCameraService will not push the
video to any other system but one has to pull (download)
the video. In this situation, the interoperability problem is
due to change of data delivery mechanisms. We detect that

8https://opencv.org/

---------------------- p D Y 2
Service

< Container
loTCamera
Service /™ ~_{pullPushBridae) - - ... Temporary ——invoke——
Data (Google

Storage) ----pushed data----»

Fig. 5. Camera Example

we need a PullPushBridge for such data points. Suitable
PullPushBridge is then deployed to allow us to get the
data from such data points. All of this can be done on-
demand at runtime. In Figure 5, we have Pul1lPushBridge
implemented using Google Storage as backend but one can
also implement PullPushBridge using a simple Airflow
with pull and push operators®.

VI. CONCLUSIONS AND FUTURE WORK

Our main idea for this paper is that we need to support dy-
namic interoperability solutions for IoT. This can be achieved
by leveraging the concept of resource slices which are built
atop existing software artifacts and resources. In this paper we
have presented the Resource Slice Interoperability Hub (rsi-
Hub) for IoT interoperability. We described the architecture,
key components and examples. Our current work is to focus
on two aspects: the prototype of slice recommendation and
slice provisioning. The implementation work is continued to
be updated in https://github.com/SINCConcept/HINC.
Acknowledgments: This work is partially supported by the
INTER-IoT project through the subproject INTER-HINC. We
are grateful to Lingfan Gao and Bunjamin Memishi for
prototype implementation and discussion. Duc-Hung Le and
Nanjangud Narendra provide useful ideas about HINC used
for rsiHub implementation. The-Vu Tran provides information
about cameras in Da Nang.

9The IoTCameraService is available at https:/github.com/rdsea/
IoTCloudSamples/tree/master/IoTCloudUnits/IoTCameraDataProvider. How-
ever, we have not made the Pul1PushBridge available.

(1]

[2]

[3]

(4]

(5]

(6]

(71

REFERENCES

G. Fortino, M. Ganzha, C. Palau, and M. Pa-
przycki, “Interoperability in the internet of things,”
https://www.computer.org/web/computingnow/archive/
interoperability-in-the-internet- of- things-december-2016-introduction,
December 2016.

H. Derhamy, J. Eliasson, and J. Delsing, “Tot interoperability: On-demand
and low latency transparent multiprotocol translator,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1754-1763, Oct 2017.

M. Blackstock and R. Lea, “Tot interoperability: A hub-based approach,”
in 2014 International Conference on the Internet of Things (I0T), Oct
2014, pp. 79-84.

M. Milenkovic, “A case for interoperable iot sensor data and meta-data
formats: The internet of things (ubiquity symposium),” Ubiquity, vol.
2015, no. November, pp. 2:1-2:7, Nov. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2822643

D. Le, N. C. Narendra, and H. L. Truong, “HINC - harmonizing
diverse resource information across iot, network functions, and clouds,”
in 4th IEEE International Conference on Future Internet of Things and
Cloud, FiCloud 2016, Vienna, Austria, August 22-24, 2016, M. Younas,
I. Awan, and W. Seah, Eds. IEEE Computer Society, 2016, pp.
317-324. [Online]. Available: https://doi.org/10.1109/FiCloud.2016.52
P. Pace, R. Gravina, G. Aloi, G. Fortino, k. Fides-Valero, G. Ibanez-
Sanchez, V. Traver, C. E. Palau, and D. C. Yacchirema, “Tot platforms
interoperability for active and assisted living healthcare services support,”
in 2017 Global Internet of Things Summit (GIoTS), June 2017, pp. 1-6.
C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, 1st ed. Springer Publishing Company, Incorporated,
2010.

