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Abstract—Hybrid Diversity-aware Collective Adaptive Systems (HDA-
CAS) are a new generation of socio-technical systems where both
human and machine peers collectively participate in complex cognitive
and physical tasks. These systems are characterized by the funda-
mental properties of hybridity and collectiveness, hiding from users
the complexities associated with managing the collaboration and co-
ordination of human-machine teams. The SmartSociety platform is a
set of integrated software components that jointly provide a number of
advanced HDA-CAS functionalities. As part of the CAS initiative, we
have developed a programming model and Java APIs that make the use
of those functionalities easy and accessible to application developers. In
this paper we present the SmartSociety programming model elements,
including the principal contributions — Collectives and Collective-based
Tasks. We describe and discuss their functionality, implementation and
runtime environment. Finally, we qualitatively evaluate the programming
model and the language constructs with respect to the desired HDA-
CAS properties.

Index Terms—socio-technical systems, collective adaptive systems,
crowdsourcing, social computing, programming model

1 INTRODUCTION

We have recently witnessed the evolution of conventional social
computing and the appearance of new classes of socio-technical
systems, which attempt leveraging human expertise for carry-
ing out intellectually challenging tasks [1, 2, 3, 4, 5, 6]. This
type of systems is opening up the possibility for novel forms
of interaction, collaboration and organization of labor, building
upon the complementary strengths of humans and computers. The
state-of-the-art, however, is limited to systems using computers
to support and orchestrate purely human collaborations, usually
based on patterns of work that can be predictably modeled before
the execution (Section 6). The innovative approach considered in
this paper implies blurring the line between human and machine
computing elements, and considering them under a generic term
of peers — entities that provide different functionalities under
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different contexts; participating in collectives — persistent or short-
lived teams of peers, representing the principal entity performing
the computation (task).

Peers and collectives embody the two fundamental properties
of the novel approach: hybridity and collectiveness, offered as
inherent features of the system. Systems supporting these prop-
erties perform tasks and computations transparently to the user by
assembling or provisioning appropriate collectives of peers that
will perform the task in a collaborative fashion. We call the whole
class of these emerging socio-technical systems Hybrid Diversity-
Aware Collective Adaptive Systems (HDA-CAS). Engineering and
managing such systems is a challenging task, as they present
coordination and communication problems that go well beyond
what state-of-the-art solutions can tackle. This is particularly
apparent when we consider participating humans not merely as
computational nodes providing a service at request, but put them
on an equal footing and allow them to actively drive computations.

In this paper we present the programming framework and
the API for accessing and using the SmartSociety' Platform?,
a novel HDA-CAS supporting a wide spectrum of collaboration
scenarios — from simple, independent crowdsourcing tasks to fully
human-driven collaborations involving non-trivial execution plan
composition with constraint matching and human negotiations
(e.g., ride-sharing, collaborative software development).

The paper describes how the presented programming frame-
work design tackles the fundamental HDA-CAS novelty require-
ments and showcases how the introduced language constructs
can be used to encode and execute hybrid collaborations on the
SmartSociety platform. In the previous version of this paper [7] we
presented the main concepts of a programming model for HDA-
CASs. The major additions with respect to the previous work are:
(1) the description of a complete implementation of the presented
model into an actual, working framework; (ii) the contrivance and
implementation of a set of demonstrative examples highlighting
the main functionalities and how they can be used to design and
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manage HDA-CASs; and (iii) an evaluation of the framework’s
ability to effectively support application developers in program-
ming collective tasks.

The paper is organized as follows: In Section 2, we present
the fundamental concepts of HDA-CAS systems and the concrete
executable context of the programming framework — the Smart-
Society HDA-CAS. In this section we also define the fundamental
design requirements that we later use in the evaluation section. In
Section 3, the principal programming model elements are intro-
duced and their functionality is described. Section 4 presents the
associated programming API. The evaluation of the programming
model and the API is presented in Section 5. Related work is
described in Section 6 and contrasted to our approach. Finally,
Section 7 concludes the paper and points out future directions.

2 HYBRID COLLECTIVE ADAPTIVE SYSTEMS
2.1 Concepts

The focus of our work is on technical support for performing
collective activities (tasks) using augmented hybrid collectives.
After analyzing the way the current state-of-the-art agent-based
systems, workflow systems and socio-technical/crowdsourcing
platforms combine human and machine/software elements (peers)
for performing complex collaborative activities we were able to
observe two general approaches: modeling machine peers to re-
semble human peers, and modeling humans to be able to cooperate
with software peers. The former approach is typical of agent-
based systems, where complex software peers are modeled to
imitate human peers in an effort to simulate or delegate human
behavior/functionality. However, such approaches need to make a
large number of assumptions regarding the communication, repre-
sentations, computational and coordination mechanisms in order
to bootstrap the collaborative activity. We end up with elaborate
computational agents, which are, however, restricted exclusively
to the foreseen, application-specific collaboration scenarios.

The latter approach models the humans as machine elements in
an attempt to include humans into existing workflow/orchestration
platforms. Through this simplification and reduction of human
peers to an API, we willingly renounce the extraordinary cognitive
and creative capabilities that a human can provide in order to
include it in an existing system. Such approaches are able to
support complex collaborative activities if the execution plan (ex-
ecution steps, execution order and conditions, executing roles) is
known at design-time. Both approaches seem to lack the versatility
required when attempting to manage collective collaborations
spanning both human and software elements in the physical world,
where the environment, peers and the workflow itself are volatile.
Therefore, the challenge of SmartSociety was to design an HDA-
CAS that would be appropriate for such environments.

The following are therefore the principal defining properties
of the SmartSociety HDA-CAS which also needed to be reflected
in the programming model as its design requirements:

a) Collectiveness — Individual peer is secondary to the
group/team. The collective is the first-class entity managed by
the platform. b) Hybridity — The platform supports a mixture
of different types of peers (humans, software services, devices)
working in concert within the same collective. ¢) Diversity —
The platform is able to manage heterogeneous peers towards a
common collective goal, by composing or aligning their individual
diverging characteristics, abilities and goals. d) Adaptivity — The
platform is able to dynamically compose and execute runtime
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Fig. 1: SmartSociety platform users and architecture. Program-
ming framework elements outlined.

(ad-hoc) workflows, as opposed to executing static, predefined
workflows. ¢) Human orchestration — Closely related to the
previous point, the human orchestration refers to possibility of
human peers determining and actively influencing (adapting) the
workflow at runtime. This is especially important for solving
cognitive, creative, artistic problems. f) Privacy compliance —
The platform discloses as little private information about the
peers as required to take part in the collective activity. The
peer’s preferences and terms of participation are transparent and
respected by the platform.

Furthermore, the SmartSociety Platform was designed to han-
dle complex collaborative tasks, where the complexity is not
reflected in the numerosity of the participants, but the complexity
of the tasks. Unlike the embarrassingly-parallel tasks typical of
conventional crowdsourcing, we put focus on neighborhood-scale
collectives with up to O(10?) participants.

2.2

The SmartSociety platform, shown in Figure 1, is a software
framework intended for use by the following user roles:

Implementation — the SmartSociety Platform

1) Users — external human clients or applications who need a
complex collaborative human-machine task performed.

2) Peers — human or machine entities participating in task
executions managed by a platform application.

3) Developers — external individuals providing the business
logic in form of programming code that is compiled and
executed on the platform as a platform application.

The platform acts as intermediary between users and peers,
providing a collaborative task execution environment and work-
force management functionality. Note that the same physical
person can act at the same time both as a user and a peer.
The platform offers a variety of commonly used coordination,
orchestration, communication and incentivization mechanisms as
ready-made concepts exposed through the programming API.

Interested human peers register their profiles with the platform
and enlist for performing different professional activities. The
platform uses this data for locating and engaging peers into
different collaborative efforts. In case of human peers, the plat-
form asks for an explicit approval, enabling the peer engagement
under a short-term contractual relationship. In case of a software
peer, the services are contracted under conventional service-level



agreements (SLAs). Registered users are the basis from which
appropriate peers are selected to take part in collectives, which
then execute collaborative tasks. A collective is composed of a
team of peers along with a collaborative environment assembled
for performing a specific task. The environment consists of a set
of software communication and coordination tools. For example,
as described in [8], the platform is able to set up a predefined
virtual communication infrastructure for the collective members
and provide access to a shared data repository (e.g., Dropbox
folder). The complete collective lifecycle is managed by the
platform in the context of a SmartSociety platform application
(Fig. 1). A platform application consists of different modules,
one of which is a SmartSociety program — a compiled module
containing the externally provided code that: a) implements the
desired business logic of the user; b)) manages the communication
with the corresponding user applications; and c) relies on libraries
implementing the programming model to utilize the full function-
ality of the platform. Through a user application, users can submit
task requests to the platform. The user application communicates
with the corresponding platform application.

Platform Architecture & Functionality

A simplified, high-level view of the SmartSociety platform ar-
chitecture is presented in Fig. 1. The rectangular boxes rep-
resent the key platform components. The principal component-
interoperability channels are denoted with double-headed arrows.
Communication with peers is supported via popular commercial
services (e.g., Twitter, Dropbox, Android cloud messages). User
applications contact the platform through the REST API compo-
nent. All incoming user requests are served by this module that
dispatches them to the appropriate SmartSociety program, which
will be processing and responding to them. The program is a Java
application making use of SmartSociety platform’s programming
model libraries, which in turn expose the functionality of different
platform components:

PeerManager (PM): Central peer data-store (peer-store) of
the platform. Manages all peer and application information and
allows privacy-aware access and sharing of the peer/collective data
among platform components and applications. Details on how the
PeerManager is implemented can be found in [9].

Orchestration Manager (OM): Component in charge of orches-
trating collaborative activities among human peers. OM’s core
functionalities [10] (also reflected in the programming model)
are: a) Composition — generating possible execution plans to
meet user-set constraints and optimize wanted parameters; and b)
Negotiation — coordinating the negotiation process among human
peers leading to the changes in the execution plan and the overall
agreement and ultimate acceptance of the plan.

Incentive Server (IS): An independent component that monitors
and motivates peer participation through controlled interventions,
using machine learning methods to adapt to various contexts [11].
It supports two modes of operation: a) Sustained incentivization
over a longer period of time where the IS algorithms monitor
participation and through machine learning determine optimal
intervention times and types of incentive messages that are sent to
peers; and b) Per-task incentivization, where actual SmartSociety
applications prompt incentivization via IS and determine the target
group and possibly intervention times.

Communication and Virtualization Middleware: The mid-
dleware named SMARTCOM is used as the primary means of
communication between the platform and the peers and among
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the peers. It supports the typical messaging middleware function-
alities (delivery, routing, transformation) thus virtualizing peers by
homogenizing the communication with both human and software-
based peers to the remainder of the platform [8]. SMARTCOM is
tightly integrated into the programming model, where it is used to
allow collective communication, peer negotiations and setting up
of collaborative environments.

3 PROGRAMMING FRAMEWORK
3.1 Runtime Environment & Execution Model

The developer who wishes his/her application deployed
on the SmartSociety platform provides a set of classes
(Application, TaskRequestDefinition, TaskRunner,
SmartSocietyApplicationContext) in a Java jar file. The
provided classes specify: a) actual business logic of the new
application; b) the runtime context of the application (e.g.,
initialization and configuration parameters for handlers (Sec. 3.2,
loading of predefined collective kind definitions); c) the logic
for interpreting and (un)marshalling the requests and responses.
Upon submission, a set of Docker containers are created. The
main one will be running the application. The submitted jar is
injected into this container. Remaining containers are created
for deploying other platform components. A new application ID
is generated and assigned to the application. The application is
then registered as a user with special access privileges with other
platform components. Finally, the runtime initializes the context,
the application-specific URL endpoint, and starts the application.

Whenever a request is received via the URL endpoint it is
interpreted according to the TaskRequestDefinition to pro-
duce a new TaskRequest which represents the main input for our
programming model. Figure 2 illustrates this process. For each
request a thread is started, executing the application’s arbitrary
business logic from the TaskRunner class. When this logic
requires some collaborative processing the developer uses the
programming model library constructs to create and concurrently
execute a Collective-based Task (CBT) — an object encapsulating
all the necessary logic for managing complex collective-related
operations on the SmartSociety platform: team provisioning and
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assembly, execution plan composition, human participation nego-
tiations, and finally the execution itself. During the lifetime of
a CBT, various Collectives related to the CBT are created and
exposed to the developer for further (arbitrary) use in the remain-
der of the code outside of the context of the originating CBT
or its lifespan. Developer can communicate with the collectives,
incentivize them, persist them, and combine them to produce new
collectives to pass as inputs to other CBTs.

3.2 Task Management

A collective-based task (CBT) is the element of the programming
model keeping the state and managing the lifecycle of a collective
task. A CBT instance is always associated with a TaskRequest
containing input data and possibly a TaskResult containing the
outcome of the task. Both are very generic interfaces meant to
hide from the programming model the application-specific format
of the input and output data, respectively. In fact, the programming
model is designed to be fask-agnostic. This is in line with the gen-
eral HDA-CAS principle that unconstrained collaboration should
be supported and preferred when possible. This design choice was
made to allow subsequent support of different task models which
will be interpretable by the application-specific Orchestration
Manager, or by human peers directly. This is arguably at the same
time a weakness of our approach, making it vulnerable to possible
accidental or purposeful misinterpretations. However, we believe
that it is a necessary sacrifice to make in order to achieve an
effective inclusion of humans into hybrid collaborations.

A CBT can be processed in one of the two collaboration
models — (on demand and open call); or a combination of the
two, as specified by the developer. Table 1 lists the allowed
combinations and describes them in more detail.

on_demand = true A open_call = true

A collective of possible peers is first provisioned, then a set of possible execution plans
is generated. The peers are then asked to negotiate on them, ultimately accepting one
or failing (and possibly re-trying). The set of peers to execute the plan is a subset of
the provisioned collective but established only at runtime.

on_demand = true N\ open_call = false

The expectedly optimal collective peers is provisioned, and given the task to execute.
The task execution plan is implicitly assumed, or known before runtime. Therefore no
composition is performed. Negotiation is trivial: accepting or rejecting the task.

on_demand = false A\ open_call = true

“Continuous orchestration”. No platform-driven provisioning takes place. The entire
orchestration is fully peer-driven (by arbitrarily distributed arrivals of peer/user
requests). The platform only manages and coordinates this process. Therefore, neither
the composition of the collective, nor the execution plan can be known in advance, and
vary in time, until either the final (binding) agreement is made, or the orchestration
permanently fails due to non-fulfillment of some critical constraint (e.g., timeout).
Note that in this case the repetition of the process makes no sense, as the process lasts
until either success or ultimate canceling/failure.

on_demand = false A open_call = false
Not allowed/applicable.

TABLE 1: CBT collaboration models and selection flags

At CBT’s core is a state machine (Fig. 3) consisting of
states representing the eponymous phases of the task’s lifecycle:
provisioning, composition, negotiation and execution.
An additional state, continuous_orchestration, is used to
represent a process combining composition and negotiation under
specific conditions, as explained in Table 1. The collaboration
model selection flags are used in state transition guards to skip
certain states. Each state consumes and produces input/output col-
lectives during its execution. All these collectives get exposed to
the developer through appropriate language constructs (Listing 5)
and are subsequently usable in general program logic.

4

Each state is associated with a set of handlers with predefined
APIs that needs to be executed upon entering the state in a
specific order. The handlers registered for a specific application
are assumed to know how to interpret and produce correct formats
of input and output data, and wrap them into TaskRequest and
TaskResult objects. By registering different handler instances
for the states the developer can obtain different overall execution
of the CBT. For example, one of the handlers associated with
the execution state is the ‘QoR’ (quality of result) handler. By
switching between different handler instances, we can produce
different outcomes of the execution phase. Similarly, by register-
ing a different handler, an OM instance with different parameters
can be used. The programming model libraries provide a set
of default handlers exposing the ground platform functionalities,
such as orchestration and negotiation algorithms provided by the
Orchestration Manager or provisioning algorithms (e.g., [12]).
Concrete handlers are registered at initialization for each CBT
type used in the application.

Provisioning state: The input to the state is the CBT input
collective specified at CBT instantiation (often a predefined col-
lective representing all the peers accessible to the application). In
our case, the process of provisioning refers to finding a set of
human or machine peers that can support the computation, while
being optimized on e.g., highest aggregate set of skills, or lowest
aggregate price. See [12] for examples of possible provisioning
algorithms. Provisioning is crucial in supporting hybridity in
the programming model, because it shifts the responsibility of
explicitly specifying peer types or individual peers at design time
from the developer onto the provisioning algorithms executed
at runtime, thus making both human and machine-based peers
eligible depending on the current availability of the peers and
the developer-specified constraints. The bootstrapping aspect of
provisioning refers to finding and starting a software service,
or inviting a human expert to sign up for the participation in
the upcoming computation; and setting up the communication
topology among them via SMARTCOM (cf. Sec. 3.5). The output
of the state is the ‘provisioned’ collective, that gets passed on to
the next state during the execution.

Composition state: The composition process calculates fea-
sible task execution plans, consisting of ordered activities (steps)
required to process the given task and associated performer peers.
Generation of execution plans is usually a task-specific, non-trivial
problem involving advanced planning and constraint satisfaction
algorithms, going well beyond the scope of this paper; the de-
scription of the currently offered composition algorithms can be
found in [10]. If there is no requirement of optimality, then a
human peer can be used to compose an ad-hoc, non-optimal plan.
From the programming model’s perspective, however, it suffices to
know the required inputs and outputs of this state: the input is the
‘provisioned’ collective from the previous state, while the output
is a list of collectives ‘negotiables’, associated with composed
execution plans, which get passed on to the following state.

Negotiation state: Involves selecting one or more execution
plans passed as inputs from the composition state and enacting
a negotiation process on them. If the state is entered directly
from the provisioning state, the execution plan is implied, and
assumed to be implicitly understood by participating peers. The
negotiation is a complex collaborative process involving human
peers, members of the collective associated with the plan, ex-
pressing their participation conditions and (potential) participation
acceptance. How exactly a negotiating process unfolds is guided
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by the negotiating pattern specified by the developer. For example,
the pattern may stipulate that at a given time only one plan can
be actively negotiated, and that the participation in this plan must
be reached through the consensus of all peers belonging to the
associated collective. An alternative pattern may allow negotiation
of multiple plans in parallel, and termination of the negotiation
process as soon as one plan is accepted by a simple majority. The
output of the negotiation process is the single ‘agreed’ collective
and the associated execution plan.

Continuous orchestration state: Continuous orchestration
(cf. Table 1) does not separate composition and negotiation, but
rather allows continuous switching between (re-)composing and
negotiating. Each new task request submitted by user re-triggers
composition, allowing the peers to temporarily accept plans and
later withdraw, until the plan is ultimately considered accepted
and thus becomes ready for execution, or ultimately fails. Note
that repetition of this state is not applicable, because repetition
is generally done in case of remediable failures, but in this
case the orchestration lasts until the execution starts (a non-
revocable success) or a non-revocable failure is detected (e.g., a
ride to work makes no sense after working hours have already
begun). As continuous orchestration is completely human-driven,
the developer is expected to specify only the reference collective
while the planning and negotiations are handled by the peers. The
output is the ‘agreed’ collective (a subset of the input one) and the
associated execution plan.

As an example of real-world continuous orchestration, assume
a ride sharing scenario: users submit driving offers, peers submit
passenger offers. An execution plan in this case is the description
of the possible route along with information on vehicle, driver
and passengers for each route section. If enough requests are
submitted, a number of plans matching hard (time/destination)
constraints are generated. However, a number of soft constraints
influence the human negotiations: drivers prefer different pas-
sengers (due to personal preferences or price); passengers prefer

adaptation policy  description

ABORT Default. Do nothing, and let the fail state lead to total failure.

REPEAT Repeats the corresponding active state, with (optionally) new
handler(s).

REPROVISION Tl'al’l'sl'tl()l"l into provisioning state, with (optionally) a new
provisioning handler.

RECOMPOSE Repeat the composition, with (optionally) a new handler.

TABLE 2: CBT adaptation policies.

different rides depending on the vehicle, fellow-passengers, cost,
duration and the number of transfers. All potential driver/passen-
ger peers are allowed to participate in negotiations for multiple
plans in parallel, and to accepting or withdraw from multiple plans
while they are valid. As soon as all required peers accept it, the
plan is considered agreed. However, the plan can exist in agreed
state, but still revert to non-agreed if some peers change their mind
before the actual execution takes place. Furthermore, this affects
other plans: if a passenger commits to participating in ride A, then
ride B may become non-agreed if his presence was a required
condition for executing the ride B. When the actual plan (ride)
finally starts executing, or its scheduled time is reached, the plan
is non-revocable; if it is in addition in agreed state, it can get
executed. Otherwise, the orch_fail state is entered. More details
on the supported orchestration algorithms are provided in [10].

Execution state: The execution state handles the actual pro-
cessing of the agreed execution plan by the ‘agreed’ collective. In
line with the general HDA-CAS guidelines, this process is will-
ingly made highly independent of the developer and the program-
ming model and let be driven autonomously by the collective’s
member peers. Since peers can be either human or software agents,
the execution may be either loosely orchestrated by human peer
member(s), or executed as a traditional workflow, depending on
what the state’s handlers stipulate. For example, in the simplified
collaborative software development scenario shown in Listing 5
both CBTs are executed by purely human-composed collectives.
However, the testTask CBT could have been initialized with
a different type, implying an execution handler using a software
peer to execute a test suite on the software artifact previously
produced by the progTask CBT. Whether the developer will
choose software or human-driven execution CBTs depends pri-
marily on the nature of the task, but also on the expected execution
duration, quality and reliability. In either case, the developer is
limited to declaratively specifying the CBT’s type (handlers), the
required the termination criterion and the Quality of Results (QoR)
expectations. The state is exited when the termination criterion
evaluates to true. The outcome is ‘success’ or ‘failure’ based on
the value of QoR metric. In either case, the developer can fetch the
TaskResult object, containing the outcome, and the evaluation of
the acceptability of the task’s quality.

Fail states: Each of the principal states has a dedicated failure
state. Different failure states are introduced so that certain states
can be re-entered, depending on what the selected adaptation pol-
icy specifies. Some failure states react only to specific adaptation
policies; some to none.

Adaptation policies

An adaptation policy is used to enable re-doing of a particular
subset of CBT’s general workflow with different functionality
and parameters, by changing/re-attaching different/new handlers
to the CBT’s states, and enabling transitions from the failure states
back to active states. The policies are triggered upon entering



failure states, as shown in Figure 3. The possible transitions
are marked with dotted lines in the state diagram, as certain
policies make sense only in certain fail states. Adaptation policies
allow for completely changing the way a state is executed. For
example, by registering a new handler for the provisioning
state a different provisioning algorithm can be used. Similarly,
a new handler installed by the adaptation policy can in a repeated
negotiation attempt use the “majority vote” pattern for reaching
a decision, instead of the previous “consensus” pattern. Natively
supported predefined policies are described in Table 2. Only a
single adaptation policy is applicable in a single failure state
at a given time. If no policy is specified by the developer, the
ABORT policy is assumed (shown as full-line transition in CBT
state machine diagram).

3.3 Collective Management

The notion of “collective” in HDA-CAS terminology sometimes
denotes a stable group or category of peers based on the common
properties, but not necessarily with any personal/professional rela-
tionships (e.g., ‘Java developers’, ‘students’, ‘Vienna residents’);
in other cases, the term refers to a team — a group of people
gathered around a concrete task. The former type of collectives is
more durable, whereas the latter one is short-lived. Therefore, we
make following distinction in the programming model:

Resident Collective (RC): is an entity defined by a persistent
peer-store identifier, existing across multiple application execu-
tions, and possibly different applications. Resident collectives can
also be created, altered and destroyed fully out of scope of the
code managed by the programming model. The control of who
can access and read a resident collective is enforced solely by
the ‘peer-store’ (in our case the PeerManager component). For
those resident collectives accessible from the given application, a
developer can read/access individual collective members as well
as all accessible attributes defined in the collective’s profile. When
accessing or creating a RC, the programming model either passes
to the peer store a query and constructs the corresponding object
from returned peers, or passes an ID to get an existing peer-store
collective. In either case, in the background, the programming
model will pass to the peer-store its credentials. The peer store
then decides based on the privacy rules which peers to expose
(return). For example, for the requested collective with ID “Vi-
ennaResidents’ we may get all Vienna residents who are willing
to participate in a new (our) application, but not necessarily all
Vienna residents from the peer-store’s DB. By default, the newly-
created RC remains visible to future runs of the application that
created it, but not to other applications. The peer-store can make
them visible to other applications as well. At least one RC must
exist in the application, namely the collective representing all peers
visible to the application.

Application-Based Collective (ABC): Differently than a res-
ident collective, an ABC’s life cycle is managed exclusively by
the SmartSociety application. Therefore, it is not possible (and
is meaningless) to access an ABC outside of the application’s
execution context. The ABCs are instantiated: a) implicitly —
by the programming model libraries as intermediate products of
different states of CBT execution (e.g., ‘provisioned’, ‘agreed’);
or b) explicitly — by using dedicated collective manipulation
operators to clone a resident collective or as the result of a set
operation over existing Collectives. Also differently than resident
collectives, ABCs are atomic and immutable entities for the de-
veloper, meaning that individual peers cannot be explicitly known
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or accessed/modified from an ABC instance. The ABCs embody
the principle of collectiveness, making the collective an atomic,
first-class citizen in our programming model, and encouraging the
developer to express problem solutions in terms of collectives and
collective-based tasks, rather than single activities and associated
individuals. Furthermore, as collective members and execution
plans are not known at design time, this enhances the general
transparency and fairness of the virtual working environment,
eliminating subjective bias.
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Fig. 4: Differences between RCs and ABCs. ABCs are atomic to
the Developer, although the Developer is able to manipulate and
create new descending ABCs.

One of the reasons for introducing the concept of collectives
with the described properties is to prevent the User/Developer
from using individual human peers as mere computing/processing
nodes being assigned activities to perform, instead favoring a
more ethical (teamwork) approach. Furthermore, the distinction
and existence of both RC and ABC Collective models (Fig. 4)
allows a trade-off between hand-picking the team members and
the flexibility offered between a platform-managed collective
provisioned based on user’s requirements. The rationale in the
latter case is similar to cloud computing — the user specifies
the infrastructural requirements and constraints and the platform
takes care to provision this infrastructure, without letting the user
care about which particular VM instances are used and changed.
Different use-cases, privacy and fairness policies may dictate or
favor the choice of one Collective type over the other. For
example, when assembling an input collective of experts for a
CBT, the User may require to use as source the RC representing
the peers with whom the User had positive previous experiences
with. Although this seems like a reasonable request, over time
the peer community might start exhibiting the characteristics of a
scale-free network due to the preferential attachment method of
choosing the collective members [13]. This, in turn, may lead to
discouragement of less prominent peers, and in overall, increase
the attrition rate. To prevent this, the fairness policy of the applica-
tion/platform enforced at the peer store may prevent handpicking
of peers, and impose the use of ABCs provisioned transparently
to the Developer/User in accordance with the fairness policy (e.g.,
round-robin or random peer assignment with reputation threshold).



This is important for establishing attractive and competitive virtual
crowd marketplaces [14].

3.4 Peer Management
Personal Data Management and Privacy Compliance

In order to fulfill the HDA-CAS design requirement of privacy
compliance, the programming framework inherits the privacy
features of the PeerManagr component described in [9]. It allows
the programming framework to fetch peer profiles from the peer-
store through a privacy-enforcing PM API containing only the
data (possibly semantically obfuscated) previously approved by
the user himself (upon signing up and creating the profile) for use
by that particular application. By performing the queries through
the PM intermediary, the programming framework is not allowed
to access nor can it perform queries over non-approved peer/col-
lective attributes. The most of the privacy-assurance responsibility
is thus delegated to the PM.

The attribute definitions are provided within the collective
kind. It is a set of collective attribute descriptors supplied at the ap-
plication registration time and subject to approval by the platform
operator. If approved, the collective kinds used by the application
are referenced in the SmartSocietyApplicationContext class
that is used to initialize the application. Thereafter, the developer
can access those attributes directly from the application’s code
through the ABC.get/setAttribute() methods. Note that the
use of these methods cannot override the original privacy settings —
originally obfuscated/hidden data is still not accessible, and setting
a user attribute cannot override an original attribute.

For the purposes of testing and usage in non-privacy-critical
environments, the programming framework additionally imple-
ments a local MongoDB-based peer-store implementing the same
PM API but without privacy enforcement. The local peer-store can
also be used to cache the PM peer profiles for faster access.

3.5 Communication Management

As mentioned in Section 2.2, the programming framework now
directly incorporates a fully-fledged communication middleware
SMARTCOM, allowing it to perform advanced collective commu-
nication in the background transparently to the developer. While a
broader description of the offered functionalities goes beyond the
scope of this paper (provided as [8] for reference), we would like
to briefly discuss the capabilities that set apart the SMARTCOM
and, consequently, the programming framework from the existing
state-of-the-art.

By supporting a single communication endpoint model, but
different delivery channels, the framework is able to communi-
cate with heterogeneous peers during the various CBT lifecy-
cle phases (e.g., inviting peers at provisioning, task acceptance
during negotiations, termination determination during execution).
Each individual peer can use personally stipulated communication
protocols and modes to interact with the framework/application,
e.g., a human peer can communicate via email and Twitter inter-
changeably, receive task descriptions and track progress through
a web application, and communicate with other peers within the
collective through a dedicated mobile app. Human peers can make
use of software peers in the collective, serving as collaborative and
utility tools. For example, a software service like Dropbox can be
used as a common repository for sharing artifacts.

This rich communication model is regulated through the use of
privacy and delivery policies. Each peer can individually stipulate
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a set of privacy policies which regulate: a) times at which the
platform may communicate with the peer (e.g., working days 09-
17h); and b) blacklisted message senders (to avoid becoming a
member of collective with unwanted peers). On the other hand, the
developer or the programming framework can stipulate different
delivery policies for peers and collectives. The policy determines
what constitutes a successful delivery: in case of peers — with
respect to different delivery channels; in case of collectives —
with respect to collective members. The programming framework
supports out of the box a number of basic policies, such as best
effort (TO_ANY) or exhaustive (TO_ALL). In practice, the delivery
policies allow us to fine-tune the sensitivity and reliability of the
communication with collectives. For example, we can consider
that a whole collective has been notified if a single member
(perhaps the leader) has been notified of an event; we can request
delivery reports, or repeat delivery attempts. Taken together, the
privacy and delivery policies are a versatile mechanism to combine
and match the preferences of both peers and the developer. They
are both storable both in the local as well as in the PM peer-store.

3.6

The programming model uses the Incentive Server’s per-task
incentivization mode (Sec. 2.2) to provide the incentivization
functionality through the programming model. In this mode, the
IS relies on external components for providing the incentivization
logic and application conditions, and limits itself to providing
the delivery of motivational messages in a privacy and ethically-
compliant way. This allows the IS to be used in arbitrary sce-
narios/applications (unlike the sustained incentivization mode,
when IS functions as a fully independent, but application-specific
component that needs to be manually set up).

Incentive management

{ "target_collective_ID": 4853,
[T, T2, ... Tnl, # optional
["someID", {incentive-specific params}] }

"timestamps":
"inc_type":

Listing 1: Setting up an incentive intervention through IS.

Due to the high scenario-specificity of incentives, the program-
ming framework currently does not itself provide any incentive
logic and management capabilities. Instead, in order to remain
task agnostic, the responsibility for specifying the type of incen-
tives, the target peers, and the intervention timing is left to the
developer using the programming API, who can explicitly trigger
the incentive campaign over a certain collective when deemed
appropriate:

e cbt.incentivize(incType [, times])

The currently active collective of the CBT upon invocation
of incentivization is considered as the target collective (e.g., the
initial input collective if the CBT is in the provisioning state). If
no timings are specified (as a sequence of timestamps), a single
immediate intervention is triggered. In the future, a finer grained
and automated timing specification will be implemented, allowing
to declaratively specify incentive strategies to coincide with the
execution of specific CBT handlers, as incentives often need to
be focused to a specific phase and collective of the CBT’s life
cycle (e.g., at repeated execution of provisioning, or only during
the negotiation/execution). Alternatively, the developer can invoke
the incentivization directly on a collective (see Listing 6):

o targetCollective.incentivize(incType [, times])

In order to invoke the IS incentivization intervention (List-
ing 1) the PM is assumed as intermediary, not only to uniquely



identify the collective’s members via the collective ID, but also
to prevent unsolicited incentivization messages to the peers that
have opted out. Internally, the IS also uses a private SMARTCOM
instance to handle communication with the peers.

Here are two incentivization examples to illustrate the current
incentivization capabilities:
1) CBT is executing and we are at 80% of the allowed execution
time, but a certain subset of the agreed peers has not performed
their part of the job. Isolate only those as the target collective and
try to motivate them to contribute.
2) CBT has finished executing successfully, and the developer
wants to foster future relationship with the peers that took part by
instructing the IS to issue reminders about how appreciated their
contribution was 3x within next 6 months.

4 PROGRAMMING API

The functionality of the programming model is exposed through
various associated language constructs constituting the SmarSo-
ciety Programming API. Due to space constraints, in this section
we do not describe the full API, which is rather provided as a
separate document’. Instead, we describe the supported groups
of constructs and their functionality, and some representative
individual methods. The examples in Section 5.2 showcase the
use of these constructs.

CBT instantiation: This construct allows instantiating CBTs
of a given type, specifying the collaboration model, inputs (task
request and input collective) as well as configuring or setting
the non-default handlers. In order to offer a human-friendly and
comprehensible syntax in conditions where many parameters need
to be passed at once, we make use of the nested builder pattern to
create a “fluent interface”.

CBT lifecycle operations: These constructs allow testing for
the state of execution, and controlling how and when CBT state
transitions can happen. Apart from getters/setters for individual
CBT selection (state) flags, the API provides a convenience
method that will set at once all flags to true/false:

e setAllTransitionsTo(boolean tf)

Since from the initial state we can transition into more than
one state, for that we use the method:
e void start() - allows entering into provisioning or

continuous_orchestration state (depending which of them is
the first state). Non-blocking call.

Furthermore, CBT implements the Java 7 Future interface*
and preserves its semantics. This offers a convenient and familiar
syntax to the developer, and allows easier integration of CBTs with
legacy code. The Future API allows the developer to control and
cancel the execution, and to block on CBT waiting for the result:

o TaskResult get() — waits if necessary for the computation to com-
plete (until isDone() == true), and then retrieves its result. Blocking
call.

o TaskResult get(long timeout, TimeUnit unit) - same as
above, but throwing appropriate exception if timeout expired before the
result was obtained.

e boolean cancel(boolean mayInterruptIfRunning) - attempts
to abort the overall execution in any state and transition directly to the
final fail-state. The original Java 7 semantics of the method is preserved.

e boolean isCancelled() — Returns true if CBT was canceled before
it completed. The original Java 7 semantics of the method is preserved.

Listing 6 (:3-5, 7, 16, 21, 28) shows the usage of some of the
constructs.

3http://tinyurl.com/smartsoc-prog-api
4http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
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CBT collective-fetching operations: As explained in Sec. 3.3,
during the CBT’s lifecycle multiple ABCs get created (‘input’,
‘provisioned’, ‘negotiables’, ‘agreed’). These constructs serve as
getters for those collectives. At the beginning of CBT’s lifecycle,
the return values of these methods are null. During the execution,
the executing thread updates them with current values. Listing 5
(:20-21) shows examples of these constructs.

Collective manipulation constructs: These constructs allow
instantiations of RCs by running the queries on the peer-store
(PeerManager), or by creating local representations of already
existing peer-store collectives with a well-known ID. We assume
that the peer-store checks whether we are allowed to access the
requested collective, and filters out only those peers whose privacy
settings allow them to be visible to our application’s queries.

e ResidentCollective createFromQuery(PeerMgrQuery q,
string to_kind) — Creates a collective by running a query on the
PeerManager.

o ResidentCollective createFromID(string ID, string
to_kind) — Creates a local representation of an already existing
collective on the PeerManager, with a pre-existing ID.

This group also contains methods for explicitly instantiating
ABCs. Due to specific properties of ABCs (Sec. 3.3), they can
only be created through cloning or set operations from already
existing collectives (both RCs and ABCs). These operations are
performed in a way that preserves atomicity and immutability.
Finally, a method for persisting the collectives at the peer-store is
also provided.

e ABC copy(Collective from, [string to_kind)] - Creates an
ABC instance of kind to_kind. Peers from collective from are copied
to the returned ABC instance. If to_kind is omitted, the kind from
collective from is assumed.

e ABC join(Collective master, Collective slave, [string
to_kind)]) — Creates an ABC instance, containing the union of peers
from Collectives master and slave. The resulting collective must be
transformable into to_kind. The last argument can be omitted if both
master and slave have the same kind.

e ABC complement(Collective master, Collective slave,
[string to_kind)]) — Creates an ABC instance, containing the
peers from Collective master after removing the peers present both in
master and in slave. The resulting collective must be transformable into
to_kind. The last argument can be omitted if both master and slave
have the same kind.

e void persist() — Persist the collective on peer-store. RCs are already
persisted, so in this case the operation defaults to renaming.

Listing 5 (:1-2, 19-22) shows examples of these constructs.

5 EVALUATION

The implementation of the programming framework refers to
the two principal elements — the programming API and the
programming model libraries (including the various subcompo-
nents required to integrate the functionality of other SmartSociety
platform components). In this section we present a qualitative
evaluation of the two elements, and an initial performance eval-
uation. This is a common evaluation methodology during the de-
velopment and prototyping phase [15, 16] when the immaturity of
the implemented prototype would affect the validity of a full-scale
quantitative evaluation. For evaluating the programming model,
we analyze the fulfillment of the the HDA-CAS design require-
ments formulated in Section 2.1 by presenting and discussing an
example suite covering the said properties. For evaluating the pro-
gramming API, we perform an analysis of language characteristics
with respect to functionality and usability. Finally, we assess the
gained performance and conciseness improvements when using
the presented programming model. Comparative analysis was not
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applicable in this case, due to nonexistence of similarly expressive 1 /+ mmitialize the library handler for conmtinuous orchestration coH3

models (Section 6). The source code of the programming frame-
work, as well as of the presented examples is provided via our
repository”.

5.1 Programming Model Evaluation

Table 3 shows the coverage of HDA-CAS design requirements by
the evaluation examples that are presented in the continuation.

Ex. 1 Ex. 2 Ex. 3 Ex. 4
Hybridity v v
Diversity v v
Adaptivity v
Collectiveness v v
Privacy-compliance v v v
Human orchestration v v v

TABLE 3: Coverage of HDA-CAS design requirements.

Example 1

A user posts a question to the platform about restaurants with
specific eating options in the vicinity. The question is processed
by the platform application representing our example and returned
to the user. The processing collective is hybrid, as it involves
software services (Google/Yelp) that are queried for restaurants
as well as human peers queried via email or Twitter in accordance
with their personal delivery and privacy policies. The orchestra-
tion (plan composition) is software-managed — the workflow is
predetermined, and there is no need for negotiation. The workflow
prescribes how the queries are dispatched and how the replies are
aggregated (e.g., preference for human replies if high reputation or
multiple matching answers from more than two peers; otherwise,
preference for the software peer reply).

The relevant application code for performing such a task is
short and straightforward (Listing 2). Note that the code for collec-
tive provisioning and execution (aggregation) is already packaged
within the CBT handlers, which form part of the programming
library, meaning that the developer only needs to provide the
parameters to use them. While the collective itself is hybrid,
there is no direct collaboration (collectiveness) between the peers.
This scenario therefore simulates the conventional crowdsourcing
scenarios, where a task is solved through microtask parallelization
with a predefined workflow without human orchestration.

*/
provisioning.AskSmartSocietyProvHandler (N)

/* Initialize and parameterize provided library handlers
pH1 = ...pf.cbthandlers.
eH1 = ...pf.cbthandlers.

cH1 ...pf.cbthandlers.

new
new execution.AskSmartSocietyExecHandler ()

new composition.AskSmartSocietyExecHandler (5, T)
TaskRequest taskReq = ... ;
Collective nearbyPeers =
ABC.createFromQuery (new CollectiveQuery(requestor.location, ...));
TaskFlowDefinition tfd =
TaskFlowDefinition.onDemandWithOpenCall (pH1,cH1,null,eH1)
.withInputCollective (nearbyPeers);

CollectiveBasedTask cbt =
CBTBuilder.from(tfd).withTaskRequest (taskReq).build ();

cbt.start ();

return cbt.get (10, TimeUnit.MINUTES);

Listing 2: Hybrid, crowdsourced answering with SmartSociety.

Example 2

In this example, we extend the previous example to include
adaptivity and human orchestration. In particular, we want to
allow local experts to select the top-pick restaurant among the

Shttps://gitlab.com/smartsociety/programming-framework
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18 /*...

* coH3 delegates orchestration to the platform component OM */
TaskRequest rideRequest = new RideRequest.parseJSON(input);

CollectiveBasedTask cbt =
CBTBuilder.from(TaskFlowDefinition.usingContinuousOrchestration (coH,
.withTaskRequest (rideRequest)
.build O);

null))

cbt.start ();
if (cbt.get() != null) {...}

Listing 4: Ride-sharing scenario.

list of proposed ones. However, this scenario presents an issue, in
that the local expert may be unavailable or slow in responding,
which could result in a failure of the whole task. In such cases,
we need a failover strategy. The programming model offers 2
possibilities in this case: a) detect the delay/failure through the
use of the CBT API and do an arbitrary corrective action, e.g.,
create a new CBT with different parameters, perhaps along with an
incentivization intervention to increase the likelihood of success,
or simply apologize to the user for failing; or b) define an
adaptation policy to take an automated corrective action (in our
case failover to the scenario from Example 1). Listing 3 shows the
relevant code snippet variant b). We provide the source code for
both variants in our repository.

cH2, eH1, eH2.
Failover handler eH1

/* Initialize library handlers -- pH2,

* eH2 uses human orchestration. (from Ex. 1). x/
TaskRequest taskReq = ... ;
Collective nearbyPeers = ...;
pH2 = pH2.onFail (AdaptationPolicy.REPEAT, Phi);
TaskFlowDefinition tfd =
TaskFlowDefinition.onDemandWithOpenCall (pH2, cH2, null, eH2)
.withInputCollective (nearbyPeers);

CollectiveBasedTask cbt =
CBTBuilder.from(tfd).withTaskRequest (taskReq).build ();

cbt.start ();

*/

Listing 3: Human orchestration and adaptation.

Example 3

This example simulates a simplified ride-sharing application. Each
interested party submits ride requests to the application, either as a
driver offering a ride, or as a passenger seeking to take a ride and
share the costs. A ride request contains the following information:
[driver/passenger, origin, destination, departure time, arrival time,
price/contribution, seats offered/requested]. Upon each submission
of a ride request, the platform re-runs the composition algorithm
that creates new feasible ride plans in terms of timing/seats/route
constraints being met. Viable plans are then put on negotiation
between potential peer participants. After each individual ride
request, acceptation, non-responding or refusal new plans can be
generated or existing ones invalidated/undecided. The platform,
therefore, needs to continuously adjust the state. As described in
Section 3.2, in the course of the SmartSociety project a fully-
fledged set of algorithms were developed for handling particular
this class of problems [10]. They are made readily available to any
developer through the programming API, i.e., through the CBT’s
continuous orchestration mode, making the necessary developer-
side coding extremely simple (Listing 4).

The developer initializes the appropriate CBT type, by spec-
ifying a library-provided handler for continuous orchestration.



Upon each new ride request, a new instance of this CBT is
instantiated. In the background, the parameters of the requested
ride are forwarded to the OM, triggering anew the ride matching,
plan generations and possible new negotiation. Ultimately, some
rides and the corresponding CBTs will succeed (with ‘agreed’
collective representing the passengers), while others will fail. It is

up to the developer to decide what will be the arbitrary application |

logic in both cases (e.g., updating the user reputation, charging for
the ride).

Compared to the previous two examples, this one is not |
characterized by hybridity. Namely, only 2 peer types are present ,
and both are human peers. On the other hand, the peers are ’

characterized by a great diversity in goals (destination, times,
acceptable costs). These types of optimization problems are in-
herently difficult for humans to handle, as they involve too many

variables to consider. For this reason, the platform is taking over 2
this complex computational burden and leaving it to the developer 3

1

to provide the remainder of the application’s business logic suited 33

to his needs. On the other hand, the platform is not actively :

searching for humans and engaging them, but merely reacting to
human requests. In this respect, the execution is truly human-
orchestrated at runtime.

Example 4

Example 4 (Listing 5) illustrates® another important class of
tasks — intellectually-challenging (engineering, creative) collective
tasks. A programming (software engineering) task is the prime
example of such a problem. The simplified scenario used in this
example assumes submitting a natural language description of
a Java software artifact that the platform application needs to
produce for an external user. The software artifact is produced
by a simplified 2-stage methodology — the artifact is first coded
by collective members submitting to a joint repository, then tested
against externally provided unit tests. Since they involve primarily
human experts with diverse skills, such tasks are not characterized
by much hybridity but by a high diversity. In order to solve such a
task successfully, the team first needs to be carefully assembled to
contain compatible expert roles. This means that the provisioning
phase needs to offer advanced matching algorithms. In our case,
we make use of the in-house developed algorithm [12] for fuzzy
skill matching inside the provisioning handler, hiding the collec-
tive formation complexity from the developer. The TaskRequest
swImplTaskReq needs to contain the requested number of experts
and natural-language (fuzzy) descriptions of the required skills
(e.g., <"Java EE developer", "very good">).

Unlike the previous examples, here we deal with a purely
on-demand task — a problem at hand that needs to be solved by
peers actively located and engaged by the platform. This implies
that peers cannot self-initiatively apply for participation, nor is
there a plan composition phase. Instead, the plan is determined
collectively by the provisioned peers through unmanaged (direct)
communication based on the understanding of the task as provided
in the task request, implying that the overall orchestration is
human-driven. In order to support the communication require-
ment, the programming framework puts at peers’ disposal the
collective communication capabilities described in Section 3.5.

To save space, the accompanying code snippet is partial and shared with
the Collective’s API evaluation example from the Section 5.2, shown in
Listing 5. Full implementation is provided in the repository.
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/* Initialize library handlers pH4, nH4, eH4dev, eHdtest */

// parameterize handlers

nH4 = nH4.withArguments(NegotiationPattern.AGREEMENT_THRESHOLD, 0.5);

Collective javaDevs =
ResidentCollective.createFromQuery (myQuery ("JAVA_DEV");

CollectiveBasedTask progTask =
CBTBuilder.from(TaskFlowDefinition.onDemandWithoutOpenCall (pH4, nH4,
.withInputCollective (javaDevs))
.withTaskRequest (swImplTaskReq).build ()

eH4dev)

progTask.start ();

/% . assume negotiation on progTask done .o*/
Collective testTeam; //will be ABC
if (progTask.isAfter(CollectiveBasedTask.State.NEGOTIATION)) {
// out of provisioned devs, use other half for testing
testTeam = Collective.complement( progTask.getCollectiveProvisioned(),
progTask.getCollectiveAgreed () );
}

while (!progTask.isDone()) { /* do stuff or block */ }

nH4 = nH4.withArguments(NegotiationPattern.AGREEMENT_THRESHOLD, 1.0);
CollectiveBasedTask testTask =
CBTBuilder.from(TaskFlowDefinition.onDemandWithoutOpenCall (null,nH4,
.withInputCollective (testTeam))
.withTaskRequest (new TaskRequest (progTask.get()))
.build ) ;

eH4test)

if (testTask.get().QoR() < 0.7) return TaskResponse.FAIL;

Listing 5: Software engineering scenario.

5.2 Programming API Evaluation
Collective API

Consider the software engineering scenario introduced in Sec. 5.1-
Ex. 4, partially depicted in Listing 5. First, the developer creates a
RC javaDevs containing all accessible Java developers from the
peer-store. This collective is used as the input of the progTask
CBT. progTask is instantiated as an on-demand collective task,
meaning that the composition state is omitted. The output of the
provisioning state is the ‘provisioned’ collective, a CBT-built
ABC collective, containing the selected programmers. Since it is
atomic and immutable, the exact programmers which are members
of the team are not known to the application developer. The
negotiation used in the example requires from the peers simply
to agree or reject participating in the task, and will form an
‘agreed’ collective out of the first 50% peers who give acceptance.
After the progTask’s execution this ABC becomes exposed to the
developer, who uses it to construct another collective testTeamby
set operations (:21-22), containing Java developers from the ‘pro-
visioned’ collective that were not selected into the ‘agreed’ one.
This collective is then used to perform the second CBT testTask,
which takes as input the output of the first CBT (:32).

Collective-Based Task API

Listing 6 shows some examples of interaction with a CBT. An on-
demand CBT named cbt is initially instantiated. For illustration
purposes we make sure that all transition flags are enables (true by
default), then manually set do_negotiate to false, to force cbt to
block before entering the negotiation state, and start the CBT
(:3-5). While CBT is executing, arbitrary business logic can be
performed in parallel (:7-10). At some point, the CBT is ready to
start negotiations. At that moment, for the sake of demonstration,
we dispatch the motivating messages to the members of the
collective manually (:12-14) instead through the incentivization
functionality, and let the negotiation process begin. Finally, we
block the main thread of the application waiting on the cbt to
finish or the specified timeout to elapse (:20-21), in which case we
explicitly cancel the execution (:28).
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CollectiveBasedTask cbt = /%... assume on_demand = true ... %/
//optional

cbt.setDoNegotiate (false);

cbt.start ();

while (cbt.isRunning() && !cbt.isWaitingForNegotiation()) {
//do stuff...
}

for (ABC negotiatingCol :
negotiatingCol.send(
new SmartCom.Message("Please accept this task"));

cbt.getNegotiables () {

}

cbt.setDoNegotiate (true);

7 TaskResult result = null;

try {
//blocks until dome,
result = cbt.get (5,

but max 5 hours:

TimeUnit .HOURS);

/* ... do something with result ... */

2 Ycatch(TimeoutException ex) {

if (cbt.getCollectiveAgreed() != null){
cbt.getCollectiveAgreed().incentivize (
new IncentiveServer.IncStrategy.SimpleThanks ("Thanks anyway"));
¥

cbt.cancel (true);

Listing 6: Controlling CBT’s lifecycle.

5.3 Performance & Usability Evaluation

An approximate quantitative insight into the productivity improve-
ments can be given by considering the lines of code (LOC) metric
for the two scenarios that were previously implemented by the
project partners in plain Java, using the same platform compo-
nents, but without the use of the programming framework (PF),
and comparing them with the functionally equivalent Examples 2
and 3 presented in Section 5.1. As shown in Table 4, the use of the
programming API drastically reduces the amount of newly-written
code, which is usually concurrent and error-prone, often boiler-
plate and repetitive. As a consequence, the principal business logic
can be encoded in a concise and easily understandable, human-
readable manner, further simplifying debugging and subsequent
changes, as well as integration with legacy code.

Scenario LOC without PF LOC with PF improvement
Example 2 ~ 3.5K < 0.5K > 7X
Example 3 ~ 40K < 1K > 40x

TABLE 4: Overview of conciseness and productivity improve-
ments when using the Programming Framework (PF).

The number and diversity of the platform’s components and
supported scenarios prevented us from establishing a single com-
prehensive scalability and performance assessment benchmark for
the entire platform. Instead, the two most critical subcomponents
in terms of scalability (for messaging and continuous orchestra-
tions) were individually evaluated in [10] and [8], respectively, on
“neighborhood-scale” 0(103) collectives. While the messaging
throughputs proved scalable and satisfactory for the targeted
collectives (3200 — 5000msg/sec), the existing continuous or-
chestration algorithms have proven feasible for collective sizes
up to 100 participants due to long execution times (~ 30min),
consequence of their high computational complexity. However,
our in-field test pilots in Israel and Italy have shown that in
practice most collectives fall in this category. Furthermore, most
real-life complex tasks involving humans have execution times
in the order of hours and a drastically lower concurrency, mak-
ing our orchestration algorithms fully applicable. Due to space
restrictions, further details are presented in the cited papers.

6 RELATED WORK

Here we present an overview of relevant classes of socio-technical
systems, their typical representatives, and compare their princi-
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pal features with the SmartSociety programming model. Based
on the way the workflow is abstracted and encoded the ex-
isting approaches can be categorized into three groups [5]: a)
programming-level approaches; b) parallel-computing approaches;
and ¢) process modeling approaches.

Programming level approaches focus on developing a set of
libraries and language constructs allowing general-purpose appli-
cation developers to instantiate and manage tasks to be performed
on socio-technical platforms. Unlike SmartSociety, the existing
systems do not include the design of the crowd management
platform itself, and therefore have to rely on external (commercial)
platforms. The functionality of such systems is effectively limited
by the design of the underlying platform. Typical examples of
such systems are CrowdDB [17] and AutoMan [2]. CrowdDB
outsources parts of SQL queries as Amazon Mechanical Turk mi-
crotasks. Concretely, the authors extend traditional SQL with a set
of “crowd operators”, allowing subjective ordering or comparisons
of datasets by crowdsourcing these tasks through conventional
micro-task platforms. From the programming model’s perspective,
this approach is limited to a predefined set of functionalities
which are performed in a highly-parallelizable and well-know
manner. AutoMan integrates the functionality of crowdsourced
multiple-choice question answering into the Scala programming
language. The authors focus on automated management of an-
swering quality. The answering follows a hard-coded workflow.
Synchronization and aggregation are centrally handled by the
AutoMan library. The solution is of limited scope, targeting only
the designated labor type. Neither of the described systems allows
explicit collective formation, or hybrid collective composition.

Parallel computing approaches rely on the divide-and-conquer
strategy that divides complex tasks into a set of subtasks solv-
able either by machines or humans. Typical examples include
Turkomatic [18] and Jabberwocky. For example, Jabberwocky’s
[1] ManReduce collaboration model requires users to break down
the task into appropriate map and reduce steps which can then
be performed by a machine or by a set of humans workers.
Hybridity is supported at the overall workflow level, but individual
activities are still performed by homogeneous teams. In addition,
the efficacy of these systems is restricted to a suitable (e.g.,
MapReduce-like) class of parallelizable problems. In practice they
rely on existing crowdsourcing platforms and do not manage the
workforce independently, thereby inheriting all the underlying
platform’s limitations.

The process modeling approaches focus on integrating human-
provided services into workflow systems, allowing modeling and
enactment of workflows comprising both machine and human-
based activities. They are usually designed as extensions to
existing workflow systems, and therefore can perform certain
peer management. The currently most advanced systems are
CrowdLang [3], CrowdSearcher [4] and CrowdComputer [5].
CrowdLang brings in a number of novelties in comparison with
the previously described systems, primarily with respect to the
collaboration synthesis and synchronization. It enables users to
(visually) specify a hybrid machine-human workflow, by com-
bining a number of generic (simple) collaborative patterns (e.g.,
iterative, contest, collection, divide-and-conquer), and to generate
a number of similar workflows by differently recombining the
constituent patterns, in order to generate a more efficient workflow
at runtime. The use of human workflows also enables indirect
encoding of inter-task dependencies. The user can influence which
workers will be chosen for performing a task by specifying a



predicate for each subtask that need to be fulfilled. The predicates
are also used for specifying a limited number of constraints based
on social relationships, e.g., to consider only Facebook friends.
The PPLib [6] similarly uses the principle of process recombi-
nation, but supports automated recombination and composition
of subprocesses (operators) in search of an optimal process for a
given task. In a similar vein, CrowdSearcher presents a task model
composed of a number of elementary crowdsourcable operations
(e.g., label, like, sort, classify, group), associated with individ-
ual human workers. Such tasks are composable into arbitrary
workflows, through application of a set of common collaborative
patterns which are provided. This allows a very expressive model
but on a very narrow set of crowdsourcing-specific scenarios. This
is in full contrast with the more general task-agnostic approach
taken by the SmartSociety programming model. The provisioning
is limited to the simple mapping “l microtask <> 1 peer”. No
notion of collective or team is not explicitly supported, nor is
human-driven orchestration/negotiation. Finally, CrowdComputer
is a platform allowing the users to submit general tasks to be
performed by a hybrid crowd of both web services and human
peers. The tasks are executed following a workflow encoded
in a BPMN-like notation called BPMN4Crowd, and enacted by
the platform. Tasks are assigned to individual workers through
different ‘tactics’ (e.g., marketplace, auction, mailing list).

7 CONCLUSIONS & FUTURE WORK

In this paper we presented a novel framework for effectively
programming hybrid diversity-aware collective adaptive systems
(HDA-CASs). The framework reflects the defining HDA-CAS
properties and exposes to the developer the platform’s function-
ality though an intuitive API. The platform is able to host user-
provided applications and to manage collaborative computations
on their behalf. Even if related systems allow a certain level of
runtime workflow adaptability, they are limited to patterns that
need to be foreseen at design-time. Our approach differs from
these systems by extending the support for collaborations spanning
from processes known at design-time to fully human-driven, ad-
hoc runtime workflows. The spectrum of supported collaboration
models and runtime workflow adaptability are exposed through
the newly introduced “CBT” and “Collective” constructs. The
CBT is task-agnostic, delegating the responsibility of providing
a mutually-interpretable task description to the developer, which
allows the construct to be generally applicable for the entire
class of collaborative activities supported by the platform. Under
the hood of CBT, the programming framework offers advanced
composition of execution plans, coordination of the negotiation
process and virtualization of peers. The Collective construct,
coming in two flavors (RC and ABC), highlights the collective
aspect of the task execution and prevents assigning individuals
to workflow activities. At the same time, it allows the platform
to enforce desired privacy and fairness policies, and prevents
exploiting human peers as individual processing nodes. The core
platform components are currently being evaluated in-field, by
providing a ride-sharing application for the commuters between
the city of Milan and the Cremona province in northern Italy.
The future work will include the integration of more advanced
incentive management models into the programming model.
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