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Abstract—Advances in the Internet of Things (IoT) enable a
huge number of connected devices that produce large amounts
of data. Such data is increasingly shared among various
stakeholders to support advanced (predictive) analytics and
precision decision making in different application domains like
smart cities and industrial internet. Currently there are several
platforms that facilitate sharing, buying and selling IoT data.
However, these platforms do not support the establishment and
monitoring of usage contracts for IoT data. In this paper we
address this research issue by introducing a new extensible
platform for enabling contract-aware IoT dataspace services,
which supports data contract specification and IoT data flow
monitoring based on established data contracts. We present
a general architecture of contract monitoring services for
IoT dataspaces and evaluate our platform through illustrative
examples with real-world datasets and through performance
analysis.

Keywords-10T, Thing-as-a-Service, Data Contract, Monitoring,
Quality of Data, Quality of Service.

I. INTRODUCTION

The number of IoT devices has increased drastically in the
past few years, providing various types of IoT data. Let us
consider the following scenario in which there is a network
of hundreds or maybe even thousands of devices which
provide different types of measurements (e.g., air temperature,
atmosphere pressure, and air quality). For example, in the
Array of Things project, different Things are installed to
monitor Chicago’s environment [1]. In this scenario different
stakeholders might be interested in different types of data
produced by these devices: local news agencies might be
interested in temperature recordings, universities and research
institutes might be interested in air quality data, and public
health institutes might be interested in the measurement of
contaminants in the air.

Nevertheless, all stakeholders have one thing in common:
they need to make sure that they get and use the data based
on certain constraints w.r.t. quality of data, data usage, price,
to name just a few. These constraints can be specified in data
contracts. For example, in [2], a conceptual view on sharing
IoT data among different companies has been outlined to
emphasize the importance of contracts. Therefore, we must
ensure, that different data contracts can be negotiated and
concluded for different data produced by different Things.
However, assuming that 1 to n data contracts can be
concluded, and each data contract is concluded for the data

Hong-Linh Truong
Distributed Systems Group, TU Wien
Vienna, Austria
truong @dsg.tuwien.ac.at

produced by 1 to m Things, a lot of different data contracts
can exist. Furthermore, each of these data contracts can have
different data contractual clauses (e.g., different subscription
periods and different price). Thus, data contracts for IoT are
very complex and it is not clear how such contracts would be
established, monitored and enforced in such a conceptual view.
Existing IoT data platforms have not supported such contracts
adequately. The main challenge in these scenarios is to monitor
(big) data flows for different data contracts according to their
contractual clauses in real-time. Allowing the monitoring of
the data flow for a data contract enables the involved parties
to detect data contract violations at runtime. For example if
a data contract is concluded for a certain type of quality of
data (e.g., schema completeness) and the submitted data flow
does not meet the expected values, then this could be detected
almost in real-time or only with a short delay, while data is
still being transferred and the data contract subscription period
is still running.

Multiple IoT platforms and data marketplaces (e.g., tilepay
[3], MARSA [4] and BDEX [5]) have been created to facilitate
IoT data sharing, purchasing and selling. These platforms offer
a variety of features like multiple pricing models and near
real-time data transfer, however, they are limited regarding the
data contract management (covering activities from individual
data contract negotiation and until the delivery of data flows
met contract terms). Our work is motivated by the absence
of contract-aware platforms, which enable the monitoring of
the data flow of individual data contracts in IoT dataspaces.
As we discuss in the related work, there are many industrial
systems that enable the development of IoT dataspace/hub,
such as Microsoft IoT [6], Amazon IoT [7], Predix.io [8],
etc., these systems lack tools and services to allow the
incorporation of services required for contract establishment
and monitoring. The main contributions of this paper are: (i)
a new extensible framework for data contract management,
which takes into account both technical and business aspects
to allow the monitoring of individual IoT data contracts, and
(i1) an extensible architecture, which supports the extension
with custom microservices for data contract monitoring.

The remainder of this paper is organized as follows:
Section II of this paper presents the background and related
work. Section III describes the new proposed framework
and architecture. In Section IV-A we describe our prototype
implementation. In Sections IV-B and IV-C we describe our



experiments and present our evaluation. Finally, in Section V
we summarize the paper and outline future work.

II. BACKGROUND AND RELATED WORK
A. Background and Approach

Dataspaces have been already introduced as an “abstraction
of data management” and as a “data co-existence approach”
[9]. We define an IoT dataspace as the dataspace, where
all kind of data is available from multiple IoT devices or
Things, which all belong to multiple providers. Like in the
current state of the art in IoT data ingestion and management,
we consider IoT dataspaces implemented using concepts of
data hubs: streams of [oT data are aggregated in centralized
clouds or distributed edge servers via queues and eventually
data are stored or relayed to other data nodes (consumers or
integrators). Examples are to utilize industrial data hubs like
DeviceHub.net [10], IBM Internet of Things - Big Data &
Analytics Hub [11] and Equinix Data Hub [12].

In some cases, people might be interested to purchase
data produced by some devices during a specific time period
(e.g., quality of seawater for lobster farms during the raining
seasons). In these cases data, which is produced by Things, is
traded. This can be also related to Thing-as-a-Service, because
data produced by different Things is bought/sold for a limited
period of time.

1) IoT Data Contracts: To trade data (produced by Things),
we must use data contracts for sharing, purchasing and selling
data. In Truong et al. [13] the main properties of data contracts
were investigated. Several properties of data contracts have
been presented such as data rights, quality of data, regulatory
compliance, pricing model, and control and relationship. We
adopt them for IoT data contracts in this paper.

2) Quality of Data: The quality of data (QoD) is one aspect
that can be taken into account for data contracts, because
IoT data has certain quality attributes. The challenge here
is to measure the QoD, as part of data contract monitoring.
Multiple dimensions have been associated with respect to
data quality [14], [15], [16], [17], [18]. One of them is data
completeness, which is generally defined as “the extent to
which data are of sufficient breadth, depth, and scope for
the task at hand” [16]. For our new proposed data contract
model (see also Section III) we consider schema completeness
measured in percent, because in some cases, where an IoT
data transmission message consists of multiple attributes, if
one attribute is missing, the whole message might become
worthless (e.g., a GPS device broadcasting information, but
due to some error the latitude is missing or NULL).

Another metric in our data contract model is data
conformity, which “describes how well data adheres to
standards and how well it’s represented in an expected format”
[19]. The expected data format can play an important role,
especially when processing data (e.g., if the data is not in the
expected format, then the data might not be processed).

The challenge to measure data completeness and conformity
for a transmitted message lies in knowing the exact structure
(or model) of the message (i.e., what attributes exist and what

data types they have). In our work, conceptually, we access
structure information from systems with registered Things,
such as HINC [20] or AWS IoT Registry'.

Our data contract also supports data currency which
indicates “how promptly data is updated” [14]. For example,
in a smart city, in highly polluted industrial areas, when
purchasing air quality data, e.g., for the measurement of
contaminants, the data values are expected to be current, if
the values are delivered with a delay of e.g., a few hours, the
data might be worthless.

3) Quality of Service (QoS): Besides the QoD, the QoS
can also be bound to be part of a data contract. For example
Things are expected to provide different measurements within
a certain frequency. Furthermore, it might be in the interest
of the involved parties of a data contract to find out if the
expected broadcasting frequency does not equal the actual
broadcasting frequency.

B. Related Work

In [21] quality data metrics for relational data stream
management systems are discussed. Essentially, such metrics
are important for data contracts. Other papers like [18]
surveyed, presented and discussed data quality metrics and
evaluation methods for sensors and IoT. Our work differs
as we do not focus on methods for evaluating QoD but
support QoD in the contract by incorporating existing methods
for evaluating QoD. Challenges in QoD in smart cities are
discussed in [22]. Our framework could be utilized to address
some aspects in these challenges.

Several platforms have been developed for purchasing and
selling data produced by IoT devices. MARSA is a dynamic
cloud-based marketplace for near real-time human-sensing
data [4]. This platform supports near real-time delivery of
data from consumers to buyers [4] and multiple cost models.
However, it does not support the individual negotiation of the
data contractual terms and the monitoring of such contracts.
If a user wants to provide and buy data at the same time,
two different accounts are necessary since the platform strictly
distinguishes between these two types of users. Another
platform is BDEX [5], which supports the monitoring of the
data exchange but no individual contract conclusion.

Industry systems, like Microsoft Azure IoT, Amazon IoT,
and Google 10T, have “IoT data hubs” which include brokers
and data ingest clients that store data into different types of
databases but do not support IoT data contract management.
IoT dataspaces can be seen as similar to [oT data hubs, because
in an IoT dataspace large amounts of data are produced by
multiple IoT devices. We implemented a scalable architecture
based on messages brokers and microservices to support
individual data contract conclusion. Through a provided API
our components can be plugged in to existing IoT data hubs
in order to support individual data contract conclusion and
monitoring. As a proof-of-concept we developed a prototype
which can run on its own and act as an IoT data hub.

Thttp://docs.aws.amazon.com/iot/latest/developerguide/
iot-thing-management.html



III. CONTRACT-AWARE PLATFORM FOR 10T DATA
A. Architecture

In our framework, we consider Things that publish data to
IoT data hubs. Figure 1 illustrates our view on IoT dataspaces.
In an IoT dataspace, multiple IoT devices — called Things
— produce different types of data. An IoT provider can own
several Things and might want to sell his/her data to different
data consumers. Hence in an IoT dataspace, with the help
of our system (discussed later), data from different providers
will be handled as Data Packages according to specific data
contracts and will be delivered to the consumers.
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Fig. 1: IoT Dataspace Concept

To support data contract monitoring and enforcement, we
developed a microservice-based architecture, shown in Figure
2. All microservices can be scaled and run on their own in
different types of virtual environments and they are managed
through a ServiceHandler. The ServiceHandler provides a
plug-in API for integrating multiple microservices of different
types, including custom made, which makes our architecture
easily extensible by custom services. We developed two types
of microservices: Monitoring and DataContract microservice.
With the microservice architecture, instances of services in our
framework can be easily deployed into virtual machines and
containers to deal with the scale of IoT dataspaces. For the
sake of simplicity, we are assuming that all IoT data stream
messages are published to message brokers/queues from where
they can be consumed. Different Things might publish the data
to separate queues or to the same queue. We further assume
that multiple queues can be grouped together to form data
nodes.

The Monitoring microservice is responsible for continuous
consumption of all data stream messages from data nodes.
One Monitoring microservice instance can be configured to
consume all messages from one data node. After messages
are consumed, they are automatically redistributed to all
relevant subscribers (in accordance to established data
contracts). While redistributing messages, QoD and QoS
metrics can be computed and verified by the Monitoring
microservice. The DataContract microservice is responsible
for negotiating and concluding data contracts. All operations
regarding data contracts are run through this service. Finally,
the ServiceHandler provides an APl for accessing the

functionality of the current microservices. This makes the
whole framework capable of being integrated with other
platforms or data hubs.

B. Data Contract Negotiation

Figure 3 presents interactions among different stakeholders
and services in order to negotiate and establish a contract.
Possible customers can be either persons or software.
Providers want to register Things in order to be able to
sell data. Both providers and customers are interested in
negotiating data contracts within a dataspace. Furthermore,
once a data contract is concluded, it can be in the interest
of both parties to monitor the data flow of the purchased data.

Data contracts can be used to specify contractual terms
when purchasing or selling data. Many possible pricing models
can exist (e.g., pay per transaction and per data size), however,
for the proof of concept we choose a pay per subscription
period pricing model (e.g., 10 EUR for the data produced by
a Thing for one month).

As described in Truong et al. [13] data contracts consist
of data contract terms and values. Based on the proposed
data contractual clauses in [13], we modeled data contracts to
contain a few representative terms as data contractual clauses
(see Table I). As proposed in Truong et al. [13] we use term
values as single values, a set or a range of values.

Category Term(s)

Data Rights Derivation, Collection, Reproduction,
Commercial Usage

Quality of Data Completeness, Conformity, Average
Message Age, Average Message Currency

Quality of Service Availability

Pricing Model Price, Subscription Period

Purchasing Policy Contract Termination, Shipping, Refund

Control and Relationship | Warranty, Indemnity, Liability, Jurisdiction

TABLE I: Data Contractual Terms

An example of a data contract is provided in Listing 1. In
our contract, the contract clauses, e.g., in Table I, are present
together with a list of all Things IDs, for which the data
contract was concluded. Such IDs can be obtained through
meta-data of registered Things. Furthermore, the QoD and QoS
clauses bound to the Things of a data contract are associated
with QoD/QoS metrics in a separate document.

Listing 1: Data Contract Example

”_id”: 757f57a770a975a2cc7f52cc5”,
“metalnfo”: {
“contractld ”:
“creationDate ”
“active”: false ,
”partylAccepted ”:
”party2Accepted :
“revision”: 4,
Ppartylld”: ”...”,
“party2Id”: 7...”

” ”

”201’6710706 00:11:037,

true ,
true ,

”dataRights”: {

”derivation”: true ,
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Fig. 3: Interactions in contract establishment

”collection”: true,
“reproduction”: false ,
”commercialUsage”: false

“pricingModel ”: {
”price”: 3,
“currency ”: “EUR”,
”transaction”: false ,
“numberOfTransactions”: null,
”subscription ”:
”startDate ”: ”2016—10—-07 00:00:00”,
”endDate”: ”2016—10—08 00:00:00” }

}

”controlAndRelationship”: {
”warranty ”: ”None”,
”indemnity ”: ”None”,
”liability ”: ”None”,
”jurisdiction”: “AustriaVienna”

“purchasingPolicy ”: {

”contractTermination”: ”Automatic”,
”shipping”: ”Automatic”,
“refund”: ”None”

}
}

“thinglds ”: [{”thingld”: ~...”,}, ...]

From these clauses the following terms are negotiable:
data rights, pricing model, purchasing policy, control and
relationship. Based on these properties individual data
contracts can be negotiated and concluded. Every data
consumer can propose a data contract for the purchase of data
produced by n Things, where the values of the negotiable
terms can be freely set. The Thing provider receives the
proposal and can either accept it immediately or send a counter
proposal with modified terms values. This process goes on
until both parties accept all terms of the data contract, which
represents the point at which the data contract is established.

Once a data contract is established, all relevant data (from
all relevant Things) is published to all relevant subscribers
for the data contract subscription period. All data contracts
are stored in the database and can be accessed through an
API through the data contract microservice. This way multiple
services can access data contracts, even custom made.

C. Data Contract Monitoring

This service is responsible for redistributing all incoming
data from all data nodes according to all concluded data
contracts and, if enabled, the monitoring of the QoD and
the QoS of the data flow. There are two main challenges
here: (1) data redistribution, because m data contracts can
be concluded for n Things and (2) data monitoring, because
n Things can produce ¢ different types of data. In order to
deal with these challenges we design contract-aware operators
for IoT datahubs. We define an operator to be an operation
which is always applied to the data stream. For the previously
mentioned two challenges we develop two operator types: data
operators opp and monitoring operators op,s. Data operators



— opp: apply all necessary operations on the data stream
to redistribute the data correctly to all subscribers according
to all data contracts. Depending on the situation, multiple
data operators can be applied for a single contract; thus data
operators can be combined into data pipelines. For example we
apply a filtering operation opp,. for each Thing that is to be
monitored to filter out all relevant data contracts. Monitoring
operators — op,y: define monitoring operations for streaming
data. Monitoring operators can be implemented by plug-ins
configured along with data operators. For the data quality
assurance we have two categories: opys (QoD) for the QoD
monitoring and opys(QoS) for the QoS monitoring.

We developed a scalable Monitoring microservice as a
possible solution for the previously mentioned challenges. To
avoid a possible monitoring overhead, the monitoring can be
limited to a certain time period (i.e., sample period), however
the time period is not explicitly defined and can theoretically
range from a few milliseconds to the complete data contract
subscription period. During the data contract subscription
period, multiple monitoring operations can be performed.

Each instance of the Monitoring microservice receives a
list (from the ServiceHandler) of the message brokers/queues
and Things it is responsible for monitoring and redistributing
the messages. Afterwards a filtering operation is applied, to
filter out all relevant data contracts that need data redistribution
and might need data monitoring. As discussed previously, one
challenge is to always have a valid list of data contracts and of
subscribers, because a lot of data can be produced in a short
period of time (e.g., hundreds of sensors broadcasting data
every 100 ms) and applying a filtering operation, or going to
the database for each message, would require too much time
and could lead to high data currency values. As a possible
solution we implemented a component which retrieves all
relevant data contracts and Things from the database and
caches them into a map. This map is refreshed periodically
(e.g., every 60 seconds) or as soon as data contracts expire
or new ones are concluded. As the received messages are
consumed, they are first redirected to all relevant subscribers
and afterwards, if the current time is within the sample
monitoring time QoD and QoS metrics can be computed.
Our proposed solution for the data monitoring is illustrated
in algorithm 1 (opp(QoD) is the operation for the meta-
model traversal and QoD computation and opp;(QoS) is the
operation for the QoS computation).

The structure of the messages, which are produced by
a Thing, is described using a meta-model. For the sake
of simplicity and as a proof of concept, we provided a
simple simple service and GUI to enable the specification
and management of the meta-model of a Thing during the
registration of Things, so that the Monitoring microservice, can
deal with any JSON data, as long as the meta-model is known.
However, as a possible extension for a custom component, it
could be an option to retrieve the meta-model or exchange
Things information with other platforms, e.g., we are currently
integrating HINC [20].

Our meta-model specification consists of a list of attributes.

Algorithm 1 Algorithm for monitoring data contracts

Input: thingsList, nrOfConsumers, allDataContracts
Output: void
LOOP thingsList
1: for thing in thingsList do
2:  dataContractList = opp,. (thing)
LOOP nrOfConsumers

3:  for consumer in nrOfConsumers do

4 start consumer and consume message from
thing.queue
messageReceivalTime = currentTime;
deliver message to subscriber
if (currentTime in sampleMonitoringTime)
then

8: messageDeliveryTime = currentTime;

9: opp (QoD)(thing.metaModel, message);

10: opr (QoS)(thing, message ReceivalTime);

11: end if

122 end for

13: end for

14: return

Each attribute has a certain type, which might be primitive
(e.g., integer, boolean) or not (e.g., attribute containing an
object) and a certain value (e.g., 1 for integer, or another
attribute as the instance of an object). Having all this
information, the quality of data of a message can be computed.
Algorithm 2 shows how the completeness and the conformity
of a message can be computed based on the meta-model of a
message.

Algorithm 2 Algorithm for traversing the meta-model and
computing QoD - op,,1

Input: metaModel, message

Output: completeness, conformity
completeness := true; con formity := true;
{loop all metaModel attributes }

1: for attribute in metaModel do

2:  if (message not contains attribute.name) then

3 completeness := false;

4: continue;

5. else

6 cAttr = message.attribute

7 if (cAttr.dataType = attribute.dataType) then

8 con formity:= false;

9

: end if
10:  end if
11:  if (attribute.dataType is not primitive Type) then
12: traverseMetaModel(attribute.metaM odel,
message.attribute);
13:  end if
14: end for
15: return




If the expected frequency of the produced messages of a
device is known, then the availability can be computed based
on that frequency and based on the message receival time.
One possible solution for the computation of the availability
is illustrated in Algorithm 3 (where f. = expected frequency,
trmr = first message receival time, t,,, = message receival
time, m, = number of expected messages, m; = number of
total received messages).

Algorithm 3 QoS computing algorithm - op;,2

Input: thing, t,.,

Output: thing.monitoredqos
availability := 0;

. fe 1= thing.fe;

. if (thing.monitoredgos '= NULL) then
tfmr = thing.monitoredqos.t fm;;
At =ty = tpmes Me = At/ fo; met;
thing.monitoredqos.me = Me;
thing.monitoredqos.m++;
thing.monitoredqos.availability := my [ me;

else
thing.monitoredqos.tym, = tmy;

10:  thing.monitoredqos.m, = 1;

R A A ol e

11:  thing.monitoredqos.m; := 1;

12:  thing.monitoredqos.availability = 1;
13: end if

14: return

D. Contract Monitoring Trail

As presented in the previous subsection, the data flow,
produced by Things, can be monitored for a certain period
of time (sampling). This approach (monitoring for a certain
time period) has been chosen in order to be able to supply
quality metrics while data contracts are still running and the
subscription period is not over. During the subscription period
of a data contract, multiple monitoring periods can exist, which
leaves a contract monitoring trail. These monitored values
are grouped together and stored in the database. The contract
monitoring trail can be accessed any time through the API of
the Service Handler, even while computations are still running.

IV. EXPERIMENTS
A. Prototype

We have implemented a prototype as a proof-of-concept
for the previously proposed architecture which can run on its
own and act as an IoT data hub?. We use MongoDB for storing
contracts as documents. We developed the ServiceHandler and
the microservices using Apache Camel. We choose Apache
Camel due to its support for multiple enterprise integration
patterns and the possibility of using and integrating different
technologies. All microservices and the ServiceHandler run
on an integrated Jetty server. The microservices and the
ServiceHandler communicate with each other via REST
services. As a queue we choose Apache ActiveMQ.

2the prototype is available at: https:/github.com/e0725439/idac

B. Illustrative Examples

Message Meta-Model | Thing Information Pricing Model | Data Rights
Purchasing Policy = Control and Relationship

Quality of Data and Quality of Service

Quality of Data

Enable standard monitoring
Completeness (in %) 98.0
Conformity (in %) 98.0
Accuracy (in %) 98.0
Consistency (in %) 98.0
Timeliness (in ms) 10000.0
Quality of Service

Broadcasting Frequency (in ms) 10000
Availability (in %) 98.0

+ Back

Fig. 4: Example of defining data contracts

We emulated data transmissions from one dataspace
consisting of 3 Things of three different types: (1) temperature
sensor DS18B20, (2) water quality sampling data downloaded
from [23], and (3) mobile device measurements obtained with
[24]. In order to simulate continuous data transmissions, we
sent the data to a message broker every 10 seconds.

We emulated several contracts for Things; each includes
basic information: device ID, the meta-model of the produced
messages, the broadcasting frequency, quality of data attributes
(e.g., completeness and conformity) and quality of service
attributes (e.g., availability). We applied two negotiation steps
in each case: one data contract proposal, one counter proposal
and one acceptance.

Figure 4, presents an example of defining contracts with
different terms for different metrics; these terms are associated
with Things via meta-information about Things. Figure 5
presents the dashboard through which one can observe contract
monitoring. In this example a data contract was monitored,
which consisted of data produced by two temperature sensors.
Both Things had the expected broadcasting frequency of 10
seconds, but the devices were configured to broadcast data
every 10 resp. 11 seconds, which resulted in an availability of
100% resp. 90%. In practice for large-scale IoT dataspaces,
violations detected through contract monitoring data will be
communicated to the consumers through APIs and/or saved
into trails that can be retrieved.

From the dashboard and API, contracts can be also rated
and we also provide features to recommend possible contracts
given a new data from Things (the contract recommendation is
out of scope of this paper). This demonstrates the extensibility
of our framework by custom components.

These illustrative examples show that our prototype can
serve as a possible solution to overcome the described
problem and its challenges from Section I. We successfully
negotiated and established individual data contracts, consisting
of different data contractual clauses for the purchase of data



Monitored Quality

Monitoring Start

01.12.2016 11:36:00.559+0100

Monitoring End 01.12.2016 12:12:49 171+0100
Monitored Quality of Data
Thing ID 20161129181024966635145489979
Number of samples 201
Messages Completeness (in %) 100,000 Monitored Quality of Service
Messages Conformity (in %) 100,000 Availability (in %) 90,909
Average Message Age (in ms) 15.013,537 First Message Receival 2016-12-01711:36:00.542+01:00
Average Message Currency (in ms) 16.384,599 Last Message Receival 2016-12-01T12:12:40.691+01:00
Thing ID 20161129182406341815071596069 Availability (in %) 100,000
Number of samples 221 First Message Receival 2016-12-01T11:36:00.598+01.00
Messages Completeness (in %) 100,000 Last Message Receival 2016-12-01T712:12:40.701+01:00
Messages Conformity (in %) 100,000
Average Message Age (in ms) 13.523,946
Average Message Currency (in ms) 14579 392

Fig. 5: Data contract monitoring dashboard

produced by Things. Furthermore, once the data contracts were
established, we were able to successfully monitor the data
stream for each concluded contract. Finally, we also extended
our framework by a custom recommendation component.

C. Performance Analysis

In this section we are going to evaluate different
performance aspects of our prototype to demonstrate its
reliability and stability. The prototype was completely
deployed and evaluated in two environments: (1) a virtual
server with the following properties: CentOS 7.2, Kernel: 64-
bit, Intel(R) Xeon(R) CPU E5-2620 @2.00GHz, 2 cores, 8
GB RAM and (2) physical machine with Win. 10 x64, CPU:
Intel(R) Core(TM) i3 CPU M370 @2.4GHz, 8 GB RAM. All
system settings were chosen to demonstrate the performance
and the reliability of the prototype, even when running within
limited environments.

The first set of performance tests were conducted to evaluate
the average computation time for the QoD and QoS for
100 data contracts, each consisting of one Thing, for 100
respectively 1000 messages produced by the three types of
Things mentioned in the previous section. These performance
tests run in environment (2) and were executed by calling
the computation component directly (i.e., no messages were
read/sent from/to any message broker).

The experiments properties and results are as follows (where
t is the Thing type - see Section IV-B, n is the number
of Things, m the number of produced messages per Thing,
f the broadcasting frequency in ms and t,,4 is the average
computation time in ms of the QoD and QoS metrics for one
single message):

e t=1,n=100, f =100, m = 100, {4,y = 1.46

e t=1,n=100, f =100, m = 1000, {4,y = 1.07

e t=2,n=100, f =100, m = 100,%40y = 1.38

e t=2,n=100, f =100, m = 1000, ¢4,y = 1.01

e t=3,n =100, f =100, m = 100, ¢4y = 1.77

e t=23,n=100, f =100, m = 1000, t4pg = 1.20s
This results demonstrate that the computation of QoD and QoS
metrics is not a time consuming task.

To further evaluate the performance of the monitoring
component and the caused monitoring overhead in addition
to simple message redistribution we conducted 12 further
performance tests in environment (2) simulating real data
transmissions and data contracts. For each of the previously
mentioned Thing types 4 tests were conducted. In each of these
4 cases either 10 or 20 Things broadcasted data to either one
or two message queues. In all cases each Thing was bound to
a different data contract and for all Things a minimum number
of 1000 messages were consumed. The results are shown in
Figure 6 (where R stands for the time in milliseconds needed
to read a message and redistribute it and M stands for the
time used for the computation of the quality): the monitoring
overhead ranges from approx. 32% to approx. 38%.

The fact that all messages are first redistributed and
afterwards, if enabled, the quality is computed, and the fact
that all operations are in the milliseconds range (all below 60)
proves that data stream monitoring is negligible when dealing
with no real-time data transmissions.

We conducted further performance tests in environment (1)
to evaluate the behavior and performance of the DataContract
microservice. All tests have been run using Apache JMeter,
which enables multiple parallel calls to a single REST service
and monitors automatically the following metrics: average,
minimum and maximum response time, error percentage and
throughput (i.e., number of successfully processed requests).

A negotiation process was simulated by each thread. This
process consisted of 5 negotiation steps: 2 data contract
offers, 2 counter-offers and 1 data contract establishment. All
used data was generated by simulating and logging a few
representative scenarios with the GUI, taking the respective
data (JSON objects) and changing the IDs of the objects.

The results of the performance tests are shown in Table II.
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Fig. 6: Monitoring overhead

We run 4 sets of performance tests consisting of 10, 20, 40 and
80 parallel threads. In total 500, 1000, 2000 and 4000 requests
were sent and processed successfully error free. As we can
see, especially from the results of the last performance test,
all recorded metrics indicate a stable system behavior, even
when running within a limited environment with a high amount
of requests. Although we have not executed our tests with
many computing resources, the above results demonstrates
the stability and performance of our prototype implementation
even when running within a limited environment with different
types of data contracts and different types of Things.

Test Nr. 1 2 3 4
Threads 10 20 40 80
Ramp-Up Period (s) 10 10 10 10
Loop Count 10 10 10 10
Average (ms) 59 52 62 106
Min (ms) 36 36 37 43
Max (ms) 223 122 393 815
Standard Deviation 25.06 | 11.80 | 19.99 | 57.30
Error (%) 0.00 0.00 0.00 0.00
Throughput 41.7 82.5 | 156.8 | 269.1

TABLE II: Performance of data contract negotiation

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a contract-aware IoT
framework, which supports data contract management and
monitoring for IoT dataspaces. Our platform is designed using
the microservice model to deal with different scales of IoT
dataspaces. Although we have not integrated our framework
with existing IoT data hubs, we tested our framework with
emulated sensors using real-world datasets and presented
the usefulness and the performance of our frameworks for
continuous QoD and QoS monitoring in IoT contracts.

Our future work is to integrate our framework with
real-world IoT hubs, like from Azure and Amazon. One
important aspect is to integrate with Things service providers
to obtain meta-data about Things, such as using HINC [20].
Furthermore, we plan to utilize existing stacks, such as
Logstash, Streamsets, and Influx to implement contract-aware
operators, enabling testing of our framework in a very large-
scale IoT environment.
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