
P4SINC – An Execution Policy Framework for
IoT Services in the Edge

Phu H. Phung1, Hong-Linh Truong2, and Divya Teja Yasoju1
1 Intelligent Systems Security Lab,

Department of Computer Science, University of Dayton, USA
http://academic.udayton.edu/PhuPhung/

2 Distributed Systems Group, TU Wien, Austria
truong@dsg.tuwien.ac.at

Abstract—Internet of Things (IoT) services are increasingly
deployed at the edge to access and control Things. The execution
of such services needs to be monitored to provide information
for security, service contract, and system operation management.
Although different techniques have been proposed for deploying
and executing IoT services in IoT gateways and edge servers,
there is a lack of generic policy frameworks for instrumentation
and assurance of various types of execution policies for IoT
services. In this paper, we present P4SINC as an execution policy
framework that covers various functionalities for IoT services
deployed in software-defined machines in IoT infrastructures.
P4SINC supports the instrumentation and enforcement of IoT
services during their deployment and execution, thus being
leveraged for other purposes such as security and service contract
management. We illustrate our prototype with realistic examples.

I. INTRODUCTION

To support on-demand IoT sensing and distributed analytics
in the edge together with large-scale computation and analytics
in clouds, mobile-edge computing, fog computing, and edge
computing models [1], [2], [3] have been developed for
several applications in building management, crowdsensing,
geosports, to name just a few. The basic tenet of these models
is that software components – performing sensing, analytics or
controls – will be deployed from centralized clouds to IoT and
edge resources, such as IoT gateways, edge servers, and micro-
data centers. State-of-the-art tools allow us to easily deploy
such software components, called IoT units in this paper,
which are part of IoT services. Furthermore, several works
have been focused on IoT service and application composition,
such as [4]. However, few works have been developed to
support generic execution policy that enables service contracts
and trustworthiness aspects of IoT services deployed in IoT
and edge infrastructures. Researchers have emphasized widely
that enforcing execution policies for IoT is a crucial point [5].

A. Motivation

Let us consider a real-world scenario where a Telco com-
pany has several Base Transceiver Stations (BTSs) whose
equipment need to be monitored: HVAC, backup electricity
systems, and electricity generators. The Telco has deployed an
IoT infrastructure for thousands of BTSs. In each BTS, there

is an IoT gateway running Raspberry PI; this gateway has
connected to sensors and actuators interfacing to equipment
in the BTS. IoT software units read data from hardware
sensors and send the data to the cloud through a MQTT
(Message Queuing Telemetry Transport) broker. From the
cloud, management services send commands to the equipment
via IoT software units through the broker.

In our case, the Telco company has outsourced the main-
tenance of the HVAC for third-party companies. Any third-
party maintenance company will deploy its IoT service which
includes a thousand instances of (the same) IoT units in IoT
gateways. This service not only monitors the HVAC but also
controls HVAC in each BTS. If HVAC has a problem, the
performance of the BTS will be impacted.

In this real-world scenario, the outsourced IoT units must be
granted appropriate access to the gateways to function prop-
erly. When deployed on IoT gateways/edge servers, IoT units
of the IoT service can perform any action/request. However,
if an IoT unit contains bugs or unknown vulnerabilities, it can
affect the security and performance of the BTS. For example,
the IoT unit might read data from some sensors that it should
not be allowed, might read data from allowed sensors too
often, or might send data to a cloud service in an untrusted or
non-compliant destination. In current tools, there is no control
or mechanism to enforce such policies.

As we increasingly deploy software components of IoT
services from the cloud to IoT gateways and edge servers, it
is important to provide generic mechanisms to enable multi-
purpose service contracts, security, and access controls for
such IoT services. However, IoT infrastructures nowadays
have multiple types of gateways, sensors/actuators with differ-
ent protocols. Thus, to assure the execution policy, it is very
challenging, if not impossible, to focus on individual types
of gateways and sensors/actuators. Similarly, edge servers
also have different capabilities. In this paper, we envisage
the software-defined machine (SDM) [6] abstracting various
underlying IoT and edge resources to be developed and
adopted widely [7]. SDMs simplify the interface to Things
via a set of APIs for data, control, execution and connectivity
and we believe that execution policies support should focus
on SDMs which encapsulate underlying functionalities of IoT



gateways and edge servers for IoT units. Basically, it calls for
a new approach to deal with generic execution policies for IoT
services deployed on SDMs.

B. Contributions

We introduce an execution policy framework – called
P4SINC (Policy for Servicing IoT, Network Functions, and
Clouds) – that covers
• Generic policy model and specifications for SDMs: Due

to the diversity and complexity of underlying IoT devices
and software units, policies need to be generic enough to
support high-level interactions in IoT services. Our execu-
tion policy specification covers the generic functionality
of SDMs that enable different purposes, such as security
and service contract management.

• Management of diverse types of policy utilities: in IoT,
we need to utilize different utilities to enforce security
policies due to the diversity of IoT units. We propose
and implement an integrated framework to allow instru-
mentation and deployment of IoT units using different
policy utilities for different types of policies and units.

• Dynamic enforcement mechanisms: enforcement must be
dynamic due to the change of IoT deployment and exe-
cution. We provide enforcement mechanisms to enforce
policies per IoT unit, SDM and IoT service as a whole.

The rest of this paper is organized as follows: Section II
describes our P4SINC framework. Examples and experiments
are given in Section III. We discuss related work in Section
IV, and present the conclusion and future plan in Section V.

II. P4SINC EXECUTION POLICY FRAMEWORK

A. Machine Profile for Execution Policy

Fig. 1 presents stakeholders and their needs with regard
to the execution policies. We have IoT services and units
developed and deployed by the IoT Service Provider who uses
SDM Profile (and its APIs) exposed by the IoT Infrastructure
Provider. The IoT Service User utilizes IoT services so it just
concerns with the APIs offered by the IoT Service Provider
and other service constraints. The IoT Infrastructure Provider
and the IoT Service Provider care about the SDM APIs utiliza-
tion and they monitor SDM APIs to support, e.g., security and
service contract, and profiling. To enable different purposes for
these stakeholders, we have to capture the SDM Profile and
use the profile for policy instrumentation and enforcement.

IoT Service 
User

Software-Defined 
Machine

IoT Devices

Cloud-based IoT 
Service Store

IoT Service 
Provider

IoT 
Infrastructure 

Provider

develop 

IoT 
Service deploy

exposes profile

requests

uses

manages

Fig. 1. Stakeholders with IoT services and infrastructures.

We use the main concepts of Software-Defined Machine
(SDM) in [6] to abstract underlying resources for developing
suitable execution policies. Each SDM is associated with a
profile. Conceptually, a profile of an SDM (pSDM) includes
a set of APIs categorized into different categories of func-
tionality. The pSDM model allows the IoT services to be
developed and monitored IoT resources, independent of each
particular platform. In our framework, pSDM is an input for
the instrumentation service to instrument the IoT services. In
this paper, however, we assume that policies are given to us
in defined forms that we can parse and perform according to
instrumentation and monitoring. In this sense, we focus on the
low-level policies and leave the high-level policy specification
for the future work. We use JSON (http://www.json.org/)
format for pSDM.

B. Framework Overview

IoT Unit

Policy Template

Instrumentation
Service

IoT Unit

Policy-enabled 
IoT Services

Deployment 

Policy Utilities

Policy 
Monitor

 SDM Profile
APIs

Input

Input Output

Policy Utility

IoT Unit

Policy Utility

Input
Input

 IoT Resource 
Management 

Service

Platform profile, existing gateways capability 

Software Defined Machine

Input

Policy-ebabled 
IoT Services

Policy 
Monitoring 

Service

Reconfiguration
Service

Policy Instance

Input

Input

Fig. 2. P4SINC Framework Architecture

An IoT unit can be deployed and executed in different
gateways/edge servers. As such, our proposed framework
is designed to support for multiple gateways/edge servers
architecture. This means that each instance of IoT services
might be enforced by different policies for different gateways.

Fig. 2 depicts the overview of our proposed framework. IoT
services and their units are stored in external repositories (e.g.,
Github) and marketplaces. An IoT service can be described
in terms of a topology of IoT units. Before deploying IoT
services, their IoT units are instrumented based on the policy
specification, which describes types of policies that should be
enforced at runtime. The policy specification is provided by
our framework (see § II-C) and defined by the SDM owner.

Since there are different types of IoT units and policies,
in our conceptual framework, we provide different types of
utilities (see § II-D) to handle appropriate policy enforcement.
When instrumenting IoT services, the instrumentation service
will find suitable Policy Utilities for defined policy based on
the specification. Depending on the situation, the instrumen-
tation process will insert calls of utilities into the IoT units
and modify the topology of IoT services to make sure that
the topology also includes suitable utilities so that they can be
deployed or activated for the IoT units at runtime.



After instrumentation, policy enforcement code is injected
into IoT services, called policy-enabled IoT services. These
policy-enabled IoT services and possible policy utilities can
be deployed to IoT gateways as usual by an external Deploy-
ment Service. In our design, we use SALSA [8] for service
deployment; IoT services, their units and other artifacts, such
as required Policy Utilities, are described in dependency
topologies using TOSCA.

Each IoT unit will be controlled by a local (inlined) refer-
ence monitor resided inside the unit. The local Policy Monitor
maintains local policy specifications for each single unit and
all units in the same SDM. Policy Monitor will communicate
with a (global) Policy Monitoring Service which enforces the
IoT services as a whole. The local monitor must be invoked
when an IoT unit starts and can start, stop, suppress or replace
an action in an IoT unit. In general, the monitor can stop the
execution of the whole IoT service if the service violates a
policy.

C. Execution Policy Specification

Policy

+name: String
+capability: Capability

DataAmount

+ amount: int
+ unit: 
<Amount-Unit-List>
+ inteval: Interval

Whitelist

+ accesslist: <list>

Lifetime

+ time: int
+ unit: 
<Lifetime-Unit-List>

Times

+times: int
+interval: 
Interval

Interval

+times: int

Capability

+capabilityType
+resource
+interface

Fig. 3. Execution Policy Model

One goal of our framework is to provide a general and
extensible policy specification that can be used (enforced) on
different platforms represented through SDMs. To this end,
we define a high level execution policy specification, which
is based on the capability of SDM profile. Fig. 3 depicts
our conceptual policy model for the specification. In this
model, a policy is mapped with an each action, which is a
capability provided by SDMs. There are several metrics that
are associated with each policy. In this work, we consider the
following metrics for policies: data amount (the amount of
data that an IoT service can read or write), times (the number
of times an action in an IoT service can be invoked), whitelist
(a list of string values that are allowed to for a particular
action), and lifetime (time to live of an IoT service). More
metrics of execution policy can be extended. There are two
parts in our policy specification: (1) a policy template that
maps a capability in SDM to a low-level API call and its
policy metrics in our policy model, and (2) a policy instance
that IoT unit users can specify concrete policy values to
be enforced at runtime. We use JSON to define the both
specification as it can be extensible and platform-independent.
A policy template example is illustrated in Listing 1. In this

Listing 1. A simple policy template example for data access through
capability DataPoint.get.

1 ” P o l i c y T e m p l a t e ” :
2 [{ ” a c t i o n ” : ” D a t a P o i n t . g e t ” ,
3 ” p o l i c i e s ” : [{ ” DataAmount ” :
4 {” d e s c r i p t i o n ” : ” L i m i t t h e d a t a amount a c c e s s ” ,
5 ” u n i t ” : ” By tes ”} } ,
6 {” W h i t e l i s t ” :
7 {” d e s c r i p t i o n ” : ” ” ,
8 ” u n i t ” : ” s t r i n g ”}} ,
9 {” Times ” :{ ” d e s c r i p t i o n ” : ” ” ,

10 ” u n i t ” : ” number ” ,
11 ” sub−m e t r i c ” : ” i n t e r v a l ”
12 }}
13 ]
14 }]

example, we illustrate several execution policies with different
metrics for a single action “DataPoint.read”, which is mapped
to specific low-level and platform-dependent APIs in a SDM
profile. To perform the enforcement of execution policy, each
item in a policy template must be provided with concrete
values, forming a policy instance. A policy instance example
of the above template is shown in Listing 2, which specifies
a policy that limits an IoT service to read a certain device,
and to read a maximum amount of data per day in a BTS. We
leave formal specification with extensible metrics for future
work.

Listing 2. A simple policy instance example that limits the data access.
1 {” p o l i c i e s ” : [{ ” a c t i o n ” : ” D a t a P o i n t . g e t ” ,
2 ” m e t r i c s ” : [{ ” DataAmount ” : ” 100 ”} ,
3 {” W h i t e l i s t ” : [ ” l i s t 1 ” , ” l i s t 2 ” ]}
4 {” Times ” :{ ” v a l u e ” : ” 2 ”}}
5 ]
6 } ,
7 { . .} ]
8 }

D. Policy Utilities

In runtime enforcement, to support runtime policy checks,
there are policy states and values. For example, in a policy
such as “limit the data read amount to 10MB”, 10MB is the
policy value. During the execution, the enforcement mecha-
nism has to keep track of the amount of data read, which
is a policy state. Whenever the data read event happens, the
policy state will be checked with the policy value for violation.
If the violation happens, the runtime checks might suppress
the event, otherwise it might update the state.

Runtime policy enforcement using inlined reference moni-
tors normally combines policy states and values (to check pol-
icy violation at runtime) normally by program variables within
the application. This kind of approach is platform specific
as the variables must be implemented in the application. To
support the requirement of platform independence, we propose
to separate the code from the policy states and values. Policy
values provided from the user-specific policy and the states for
the policy will be encoded by separate entities, called software-
defined policy utilities. As our framework supports different
gateways/sensors in various platforms, we need an instance
of an utility for a particular platform. Moreover, our policy
utilities also support reporting messages to cloud automatically
for policy monitors.

We propose software-defined policy utilities that handle
runtime policy checks for different policy metrics such as data



amount, times, execution lifetime, whitelist on a particular
platform. The operations include checking policy violations
and updating and transitioning policy states for later checks.
In future work, we will develop a platform independent policy
utility profile as a software-defined concept, which can be used
for any SDM IoT infrastructure.

The set of policy utilities consists of two parts: in-service
policy utilities and gateway policy manager. In-service policy
utilities are implemented as services to control metrics such as
amount, times, permissions and also control the execution of
the corresponding IoT service, i.e., stop, suppress, truncate an
action. When an IoT service starts, an in-service policy con-
troller is invoked. This controller will establish a connection
to a gateway policy manager to register the service and check
policy at gateway level when needed.

E. Instrumentation Service

This service takes a policy template and instance in above
specification, policy utility meta-data, an IoT service and its
topology as inputs, and instrument the code of the IoT service
to produce a new IoT service topology with instrumented IoT
units. The key algorithm in this service includes finding an
appropriate policy utility to inject to the IoT service and invoke
an instrumentation module to perform the code transformation
to embed the policy and utilities into the code of IoT service
as a monitor so that corresponding actions in the IoT service
can be controlled and the policy can be enforced at runtime.

Given an IoT service, SDM and policy utilities profile, and
policy specification, the core of this proposed framework is
to instrument the IoT service to inject the policy code into
the service to transform it into a policy-enabled IoT service.
The conceptual model of this process is depicted in Fig. 2.
In our considered IoT scenarios, IoT services are developed
and stored in the cloud and are ready to be executed on an
SDM. Therefore, the source code of the service might not
be available. The instrumentation service should deal with
binary or intermediate languages such as bytecode to inject
the policy checks. We adopt the aspect-oriented programming
(AOP) paradigm [9] to implement this instrumentation process.
AOP is a programming paradigm that allows the separation of
cross-cutting concerns by adding additional code (advice) to a
program without modifying the program code itself. To date,
AOP is supported for almost all programming languages.

Within the Instrumentation Service, we have developed
an instrumentation tool that has a transformation module
to transform the high-level policy specification into a low-
level AOP language. The transformation is based on (1)
SDM profile, (2) Policy template, and (3) policy instance as
described in the previous steps. After the transformation, the
instrumentation tool will automatically invoke an appropriate
utility (based on the description in the SDM profile) to perform
the instrumentation to inject policy code into IoT units.

The deployment and execution of the policy-enabled IoT
services are as the same as original IoT ones, as we embed
the policy utilities and necessary runtime libraries for a specific
platform into the IoT services. A policy instance is also

Listing 3. Pseudo code of runtime enforcementat at a capability execution
point:

1 / / p o l i c y u t i l i s an i n s t a n c e o f P o l i c y U t i l s f o r t h e IoT u n i t
2 / / c a p a b i l i t y i s t h e s i g n a t u r e o f t h e c a p a b i l i t y
3
4 f o r e a c h m e t r i c m wi th in
5 p o l i c y u t i l . g e t M e t r i c s ( c a p a b i l i t y )} do {
6 / / check i f t h e m e t r i c i s d e f i n e d i n t h e p o l i c y i n s t a n c e
7 i f p o l i c y u t i l . e x i s t (m, c a p a b i l i t y ){
8 p o l i c y u t i l . e n f o r c e (m, c a p a b i l i t y ) ;
9 } e l s e s k i p ;

10 proceed ( ) ; / / e x e c u t e n o r m a l l y

provided for a particular policy-enabled IoT service at the
deployment phase so that it can be accessible at runtime.

F. Runtime Enforcement

IoT units are deployed in different IoT gateways and each
unit might be executed by different users. An IoT unit executed
by a user needs user-specific policy inputs so that the unit can
be monitored and enforced by the policy. User-specific policy
inputs are expressed in a policy instance associated with a
particular IoT unit instance. As depicted in Fig. 2, a policy
instance, together with a policy-enabled IoT unit, is one of
the inputs for the Deployment Service to deploy the secure
IoT unit to an IoT gateway. When being executed, an inlined
reference monitor in a policy-enabled IoT unit connects to the
policy to enforce the defined policy.

1) Policy Instance: A policy instance contains user-specific
policy value inputs expressed in a policy file associated with a
policy-enabled IoT unit. When the unit is executed, the policy
utility inlined in it will check the values in the policy instance
to enforce the policy. Similar to the policy template introduced
in Listing 1, a policy instance is encoded in a JSON format
with a list of policy object, which contains a capability action
and a list of policy metrics and values. Listing 2 illustrates a
simple policy instance that limits the data access to the amount
of 100 MB.

In each policy-enabled IoT unit, all the policy checks
and enforcement code are implemented in a policy utility
(PolicyUtils), which has been introduced in Section II-D.
The code first checks if a metric has policy input value defined
the policy instance and if so invoke the policy utility to enforce
the value. The enforce function maintains and compares the
runtime parameters versus the policy input values in the policy
instance. If there is any policy violation, the execution will be
suppressed, otherwise, it proceeds normally. The pseudo code
in Listing 3 illustrates this enforcement process.

G. Extensibility

Our policy enforcement framework is extensible for new
capabilities. When a gateway or edge computing system pro-
vides a new capability or instruction for IoT units to function,
its corresponding SDM profile is updated. With such a new
update, there is no modification in the Instrumentation Service.
A policy template for an IoT unit with the new capability will
have the same specification, only a new object is added to
the template. Using the policy template, the Instrumentation
Service can instrument the IoT unit regularly. The deployment
phase is the same as before. A policy instance is provided
when an IoT unit is requested to be deployed and executed.



The runtime enforcement mechanism is also the same as
before.

The process of deployment on a new gateway is straight
forward. Using a deployment service such as SALSA [8], each
policy-enabled IoT unit embedded with the policy utilities,
runtime libraries, and a policy instance is deployed as the same
method and can be executed normally.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

P4SINC is an open source: code and experimental examples
are continuously updated at https://github.com/SINCConcept/
P4SINC. We used an open source implementation of SDM for
IoT gateways1 APIs to evaluate our framework. These APIs
have been implemented as a set of Java libraries providing
programmatic access to sensors and actuators through a dae-
mon process that directly interfaces the underlying hardware.
Although we perform experiments on Java, our conceptual
model is platform-independent. In this work, we leverage the
AspectJ tool, an aspect-oriented tool for Java, to perform
the instrumentation process. We note that this instrumentation
process is also platform-independent as the Instrumentation
Service can invoke a similar tool for a specific platform.

A. Implementation and Experimental Set Up

We have developed and reused a number of IoT units with
various functionalities, including read data from several data
points, implemented in the above-mentioned SDM prototype
for IoT gateways. The applications are packed into jar files
and deploy them on a gateway/edge computing system.

We utilize a Raspberry PI to emulate a gateway. In our
experiment, when the user wants to request an IoT unit to be
executed in the gateway, she specifies a policy instance and
the link in the cloud of the IoT unit, and invoke our framework
to perform the request. We have developed several execution
policies representing the design of our policy specification
presented previously including limiting data amount access,
the number of times an action can be invoked and a whitelist
of IDs that an IoT service can access.

In addition to the utilities to handle different metrics for
execution policies, we have also developed a message com-
munication functionality as a part of policy utilities. In this
implementation, any messages from the policy enforcement
will be posted to the cloud via a MQTT broker so that the
IoT service provider can see the activities. We use an MQTT
broker implemented with https://www.cloudmqtt.com/ in our
emulation and the Google BigQuery for storing IoT data.

We have developed a web-based system implementing
our Instrumentation Service. The system allows the users to
provide an IoT service packed in a Java jar file, SDM
profile and policy instance in JSON files. The output of this
system is the instrumented jar with policy enforcement code
and corresponding policy utilities and necessary runtime Java
libraries. In future, we will extend this system as a cloud-
based service that allows the users to compose policies to

1https://github.com/tuwiendsg/SoftwareDefinedGateways

perform the instrumentation process on the cloud. This cloud-
based Instrumentation Service can be easily combined with
the Deployment Service to form a complete eco-system for
execution policy enforcement.

B. Evaluation

We have evaluated our implementation by testing origi-
nal IoT services and instrumented ones (policy-enabled IoT
services). We ran the original and then policy-enforced IoT
services with some particular policy instances by deploying
and executing them in different systems including a virtual
machine and a Raspberry PI. As mentioned earlier, the policy
checks at runtime have been logged on the MQTT broker,
through a function of policy utilities. We have modified the
original IoT services to violate the policies and we have
verified that the violation messages are logged on the MQTT
server and the violated actions are suppressed from execution
(while the IoT service is still running).

To illustrate how this instrumentation module and the
proposed framework work in practice, let us reconsider the
motivated scenario mentioned in the introduction, where the
Telco company allows to deploy an IoT service from the
outsourced HVAC company run on Telco’s SDMs. Assume
that the IoT service contains an unknown vulnerability that
allows attackers to inject malicious code to e.g., steal data
and to abuse the resource by reading too much data. As
discussed earlier, standard security mechanisms cannot prevent
the attack because it resides inside the service (and its units)
and unknown. In our proposed framework, before an IoT
service can be deployed, the IoT infrastructure provider defines
a policy template and some policy instances e.g., limit the
data read, and then requests the instrumentation service to
weave the policy code to the IoT units. There are some policy
values specified by the user when she executes the service,
in this example, the destination of data to be sent (which
is implemented as a whitelist policy utility). Thus, data read
and send behaviors are monitored at runtime by the security
checks and policy utilities injected by the Instrumentation
Service so that they comply with the defined policies. As
a result, even though this cannot prevent the code injection
due to the unknown vulnerability, the monitor can ensure that
no data leak nor resource abuse happen thanks to the policy
enforcement.

IV. RELATED WORK

Runtime policy enforcement techniques have been explored
widely in the literature. One such technique is to use a refer-
ence monitor that mediates the interactions of the application
on the host environment to enforce runtime policies, e.g., [10],
[11], [12]. While the approaches can enforce fine-grained
security policies, they are not applicable to the dynamic and
complex execution environments of IoT infrastructures as we
are investigating in this research. In [13], an enforcement
of generic security policy is introduced. However, the poli-
cies only support on input/output of a program therefore it
is not applicable for IoT infrastructures. Some frameworks



allow code running in mobile devices/gateways but do not
support runtime policy enforcement. For example, ThinkAir
[14] allows mobile code to be executed in its environment, and
provides a profiler to monitor execution of mobile code but
no generic execution policy has been discussed and presented.
In this work, we aim to provide a generic policy model that
can enforce execution, security/privacy or service contract
policies. Several present techniques allowing policies and
code integrated within a program is presented in e.g., [15].
Their solutions are generic so in principle such techniques
can be applied for IoT software components. However, these
techniques are not suitable as IoT applications that might be
used for different IoT infrastructures.

Policy Languages: Several works introduce policy lan-
guages and related tools that can enforce security policies
for software, however, the languages are platform-specific.
Moreover, these languages do not support IoT infrastructures.
Standard policy languages such as WS-SecurityPolicy, Role-
Based Access Control, or Attribute-Based Access Control
only support coarse-grained access control policies, which are
inadequate to address application-level attacks and generic
execution policies.

IoT Security: As the IoT has been deployed widely in
practice, IoT security is a big concern in society [16]. Big
industry players such as ARM, Symantec are cooperating to
build standard for the IoT. Cisco has proposed a security
framework for IoT infrastructures [17]. In addition, several
works in the literature (e.g., [18], [19], [20]) proposed security
solutions for IoT infrastructures. However, these proposals
focus on security and privacy for a specific IoT platform.
In P4SINC, we investigated on enforcing generic execution
policies that include security and privacy, and also service
contract management crossing multiple IoT platforms.

V. CONCLUSIONS AND FUTURE WORK

Generic execution policies are strongly needed for en-
abling IoT services deployed in IoT infrastructures. We have
presented the P4SINC framework which includes a generic
execution policy specification and a set of tools to enable
the instrumentation and enforcement of policies through the
deployment and execution of IoT services. Initial results have
shown that our framework can help to enable different types
of policies typically seen in security and service contract
management. Our experiments and examples are currently
conducted in a small-scale that need to be improved. We
are currently concentrating on the implementation of the
proposed framework for various complex IoT services and
infrastructures.

Acknowledgments: This work was partially supported by
the University of Dayton Research Council Seed Grant and
the European Commission in terms of the U-Test H2020
project (H2020-ICT-2014-1 #645463). We would like to thank
Vishal Panwar at University of Dayton for implementing the
Instrumentation Service.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proceedings of the first edition of the
MCC Workshop on Mobile Cloud Computing. ACM, 2012, pp. 13–16.

[3] “Mobile-Edge Computing – Introductory Technical White Paper,”
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge
computing - introductory technical white paper v1%2018-09-14.pdf,
September 2014.

[4] P. Persson and O. Angelsmark, “Calvin – Merging Cloud and IoT,”
Procedia Computer Science, vol. 52, pp. 210 – 217, 2015, the 6th Inter-
national Conference on Ambient Systems, Networks and Technologies
(ANT-2015), the 5th International Conference on Sustainable Energy
Information Technology (SEIT-2015).

[5] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 37–42, Sep. 2015.

[6] H.-L. Truong and S. Dustdar, “Principles for Engineering IoT Cloud
Systems,” Cloud Computing, IEEE, vol. 2, no. 2, pp. 68–76, Mar 2015.

[7] A. Brring, S. Schmid, C. K. Schindhelm, A. Khelil, S. Kbisch,
D. Kramer, D. L. Phuoc, J. Mitic, D. Anicic, and E. Teniente, “Enabling
IoT Ecosystems through Platform Interoperability,” IEEE Software,
vol. 34, no. 1, pp. 54–61, Jan 2017.

[8] D.-H. Le, H.-L. Truong, G. Copil, S. Nastic, and S. Dustdar, “SALSA:
A Framework for Dynamic Configuration of Cloud Services,” in Pro-
ceedings of IEEE 6th International Conference on Cloud Computing
Technology and Science (CloudCom), 2014, Dec 2014, pp. 146–153.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in ECOOP,
1997, pp. 220–242.

[10] R. Joiner, T. Reps, S. Jha, M. Dhawan, and V. Ganapathy, “Efficient
runtime-enforcement techniques for policy weaving,” in Proceedings of
Symposium on Foundations of Software Engineering (FSE 2014). ACM,
2014, pp. 224–234.

[11] K. Havelund and G. Rosu, “Efficient monitoring of safety properties,”
Int. J. Softw. Tools Technol. Transf., vol. 6, no. 2, pp. 158–173, 2004.

[12] P. H. Phung and D. Sands, “Security Policy Enforcement in the OSGi
Framework Using Aspect-Oriented Programming,” in Proceedings of
32nd Annual IEEE International Computer Software and Applications
Conference, July 2008, pp. 1076–1082.

[13] M. Ngo, F. Massacci, D. Milushev, and F. Piessens, “Runtime En-
forcement of Security Policies on Black Box Reactive Programs,” in
Proceedings of POPL 2015. ACM, 2015, pp. 43–54.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012 Proceedings IEEE, March
2012, pp. 945–953.

[15] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama, “Faceted
execution of policy-agnostic programs,” in Proceedings of the Eighth
ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security (PLAS ’13). ACM, 2013, pp. 15–26.

[16] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen,
and S. Shieh, “IoT Security: Ongoing Challenges and Research Oppor-
tunities,” in Proceedings of The 7th IEEE International Conference on
Service-Oriented Computing and Applications, Nov 2014, pp. 230–234.

[17] “Cisco Security Research & Operations. Securing the Internet of Things:
A Proposed Framework,” Online: http://www.cisco.com/c/en/us/about/
security-center/secure-iot-proposed-framework.html, July 2016.

[18] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the Internet of Things,” Math-
ematical and Computer Modelling, vol. 58, no. 56, pp. 1189 – 1205,
2013.

[19] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S. Nepal, “Internet
of Things (IoT): Smart and Secure Service Delivery,” ACM Trans.
Internet Technology, vol. 16, no. 4, pp. 22:1–22:7, Dec. 2016.

[20] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexIoT: Towards Providing Contextual Integrity to
Appified IoT Platforms,” in Proceedings of The Network and Distributed
System Security Symposium 2017 (NDSS’17), 2017.


