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Abstract—Recently, we have witnessed numerous benefits of
exploiting Cloud Computing models and technologies in the
context of the Internet of Things and Edge Computing. However,
utility-based provisioning paradigm, one of the most important
properties of Cloud Computing, is yet to be realized in emerging
IoT Cloud systems. In this paper, we introduce a novel mid-
dleware, which provides comprehensive support for multi-level
provisioning of IoT Cloud systems. The main features of our
middleware include: i) A generic, light-weight resource abstrac-
tion mechanism, which enables application-specific customization
of Edge devices; ii) Support for automated provisioning of Edge
resources and application components in a logically centralized
manner, via dynamically managed APIs; and iii) Flexible provi-
sioning models that enable self-service, on-demand consumption
of the Edge resources. We evaluate our middleware using real-life
applications in the domain of building management systems.

I. INTRODUCTION

Recently, Cloud Computing and the Internet of Things
(IoT) have been converging ever stronger, sparking creation
of very large-scale, geographically distributed systems, called
IoT Cloud systems [1]–[3]. IoT Cloud systems intensively
exploit Cloud Computing models and technologies, predom-
inantly by utilizing large and remote data centers, but also
nearby Cloudlets [4], [5] to enhance resource-constrained Edge
devices (e.g., in terms of computation offloading [6]–[8] and
data staging [9]) or to provide an execution environment for
cloud-centric IoT applications [10], [11].

One of the main advantages of Cloud Computing is reflected
in its support for self-service, on-demand resource consump-
tion, where users can dynamically allocate appropriate amount
of infrastructure resources (e.g., computing or storage) re-
quired by an application [12], [13]. To date, we have witnessed
numerous benefits of this utility-based provisioning model in
terms of more flexible and cheaper IT operations [14]. There-
fore, it would be natural to expect that this flagship property
of Cloud Computing would be inherited by IoT Cloud, as
well. Unfortunately, this is still not the case, because current
approaches dealing with IoT Cloud provisioning mostly focus
on providing virtualization solutions for the Edge devices,
such as IoT gateways [15]–[17]. Although device virtualization
is one of the preconditions for utility-based provisioning,
such approaches are usually intended to support a specific
task, e.g., data integration or data-linking, and largely rely
on rigid provisioning models. This inherently prevents con-
suming IoT Cloud infrastructure resources as generic compute
or storage utilities and requires rethinking existing support

for: i) representing the IoT Cloud infrastructure resources,
ii) managing their configuration and deployment models, as
well as iii) composing low-level resource components into
usable infrastructures, capable to support novel application
requirements.

In this paper, we continue our line of research towards
utility-based provisioning of IoT Cloud systems by intro-
ducing a novel provisioning middleware for IoT Cloud. Our
middleware builds on the previously introduced concepts and
frameworks [18], [19], extending them with comprehensive
support for scalable multi-level provisioning of IoT Cloud
systems. The main features of our middleware include: i) A
generic, light-weight resource abstraction mechanism, based
on software-defined gateways, which enables application-
specific customization of Edge devices; ii) Support for auto-
mated provisioning of Edge resources and application compo-
nents in a logically centralized manner, via dynamically man-
aged APIs; and iii) Flexible provisioning models that enable
self-service, on-demand consumption of the Edge resources.

The remainder of the paper is organized as follows: Sec-
tion II presents a motivating scenario, background and main
research challenges. In Section III, we introduce our middle-
ware and discuss its architecture in detail. Section IV outlines
the main runtime mechanism for multi-level provisioning.
Section V describes experimental results and outlines current
prototype implementation. In Section VI, we discuss the
related work. Finally, Section VII concludes the paper and
gives an outlook of our future research.

II. MOTIVATION & BACKGROUND

A. Scenario

Let us consider a case of Building Management System
(BMS), which provides applications to manage various build-
ing facilities, such as HVAC systems, elevators and emergency
alarms. SAPP is a BMS application developed in collaboration
with our industry partners1. It is written in Sedona [20] and
it is responsible to monitor environmental conditions within
buildings and to regulate the HVAC facilities accordingly.
Figure 1 shows a high-level system architecture of SAPP
application. The solid arrows show typical propagation of
sensory data within the SAPP. The dashed elements represent
IoT Cloud infrastructure resources and the dashed arrows

1http://pcccl.infosys.tuwien.ac.at/
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Fig. 1. Overview of SAPP architecture.

illustrate deployment of main application components. SAPP
is highly distributed and executes atop both the Edge devices
(e.g., IoT gateways) and the Cloud infrastructure. Generally,
the Edge part of application’s business logic is responsible
for obtaining sensory readings from building facilities and
performing initial data processing. The processed data is then
transmitted over the network (Wi-Fi or 3G) to the Cloud
for further processing. Finally, SAPP’s Cloud services invoke
actions, such as to notify a user or to perform remote actuation,
e.g., regulate water pressure.

The BMS is a large-scale, geo-distributed system respon-
sible for managing hundreds of buildings. It executes atop
complex IoT Cloud infrastructure that includes: (i) various
Edge devices, such as sensors, actuators and gateways, which
are installed throughout the buildings, (ii) network elements,
and (iii) cloud services, e.g., for complex event processing,
NoSQL data storage, and streaming data analysis. Since BMS
service provider is usually not the owner of physical infrastruc-
ture, e.g., Edge devices installed in buildings, the IoT Cloud
infrastructure is consumed by BMS as a utility and it needs
to be dynamically provisioned to satisfy BMS requirements.
In this context, we define infrastructure provisioning in a
broader sense [21], particularity involving a set of activities
performed by developers and operations managers to prepare
infrastructure resources and system/application components,
bringing the system to a state where it is usable for the end
user.

Unfortunately, most of contemporary approaches dealing
with IoT Cloud provisioning [15]–[17] provide only partial
solutions in terms of available tools, frameworks and middle-
ware. These approaches do not fully account for the inherent
properties of IoT Cloud infrastructures, such as heterogene-
ity, geographical distribution, and the sheer scale of such
infrastructures. As a result, system integrators and operations
managers have to rely on provisional solutions, which require
combining multitude of provisioning techniques, such as man-
ual, script- and service-based provisioning. Additionally, many
of these approaches implicitly assume manual logging into
Edge devices or even physical on-site presence, making them
hardly feasible in practice. The issue is further exacerbated due
to a strong dependence of IoT Cloud applications on specific
properties of the underlying Edge devices (e.g., available
sensors) and novel resource features, which also need to be

considered during application provisioning. Therefore, con-
suming IoT Cloud infrastructure as a utility and provisioning
even a simple application such as our SAPP is a challenging
task.

B. Background

Previously we have introduced a conceptual model for
software-defined IoT Cloud systems [18]. The core con-
cept of the provisioning model is software-defined IoT unit.
The software-defined IoT units describe IoT Cloud resources
(e.g., virtual sensors), their runtime environments (e.g., IoT
gateways) and capabilities (e.g., communication protocols or
data point controllers). Such units are used to encapsulate
infrastructure resources and to abstract their provisioning in
software. To this end, they expose well-defined APIs and
can be composed at different levels, creating virtual runtime
infrastructures for IoT Cloud applications. The main purpose
of such software-defined IoT Cloud infrastructures is to enable
utility-based provisioning of IoT Cloud resources by providing
a uniform view on the entire resource pool, as well as by
allowing IoT Cloud applications to customize and consume
those resources dynamically and on-demand.

In [19], we have presented a cloud-based provisioning
framework for provisioning IoT Cloud applications. The
framework provides a scalable provisioning controller, which
is responsible for managing, deploying and installing appli-
cation components in Edge devices. Further, the introduced
framework provides mechanisms to manage the Edge devices,
e.g., to register new devices and detect disconnected devices.
One of the distinguishing features of IoT Cloud systems is
infrastructure virtualization layer and there is a number of
existing approaches that deal with Edge devices virtualiza-
tion, exposing such devices to the upper layers on different
levels of abstraction. However, suitable tools and frameworks
that provide support for managing the virtualized IoT Cloud
resources remain largely underdeveloped. Therefore, a com-
prehensive provisioning middleware is required in order to
provide a uniform representation of the underlying (virtual)
infrastructure resources, as well as to enable utility-based
delivery and consumption of such resources in a logically
centralized manner.

C. Research Challenges and Provisioning Middleware Re-
quirements

Utility-based provisioning is a well-established and proven
concept in Cloud Computing [12], [22]. Among other things
it requires: on-demand, self-service usage models; enabling
ubiquitous access to a shared pool of configurable resource,
which can be customized to exactly meet application require-
ments; as well as autonomous and automated allocation of the
consumed resources. However, given the previously described
properties of IoT Cloud, realizing these features in the context
of IoT Cloud systems is a non-trivial task creating a number
of challenges that need to be addressed.

One of the main challenges is to support on-demand, self-
service usage model, because it requires support for uniform



interactions with the large-scale, heterogeneous IoT Cloud re-
source pool. This could potentially be achieved by virtualizing
and encapsulating the IoT Cloud resources into well-defined
APIs and allowing users to access such resources on multi-
ple levels of abstraction. However, in this case provisioning
middleware needs to provide support for a non-trivial task of
managing such virtual resources, their APIs and mediating all
the communication with heterogeneous devices.

Assuming that IoT Cloud resources are accessible in a
uniform manner, another challenge is to enable the users to
automatically provision IoT Cloud resources. However, strong
dependencies of IoT Cloud applications on specific properties
of the underlying devices and novel resource features intrin-
sically prevent from consuming IoT Cloud infrastructure as
traditionally generic compute or storage utilities. This requires
providing comprehensive provisioning support on multiple lev-
els such as infrastructure-, platform- and application-level. One
way to achieve this is to utilize provisioning workflows [23].
The main advantage of the workflow approach is that it
supports nested provisioning workflows, which are well suited
for multi-level provisioning. However, to support execution
of the provisioning workflows for a large resource pool the
middleware needs to enable elastically scalable execution of
provisioning tasks.

Enabling ubiquitous access to the large, geographically-
distributed resource pool is yet another challenge since it
demands a logically centralized interaction with underlying
devices. However, since the underlying devices are inherently
dispersed, the middleware needs to be distributed across the
resource-constrained devices, thus optimized for such con-
strained execution environments. Moreover, to support cus-
tomizing such resources, the middleware needs to support
management of application components and configuration
models, but it also needs to provide suitable mechanisms to
dynamically deliver them to the Edge devices.

III. IOT CLOUD PROVISIONING MIDDLEWARE

The main purpose of our provisioning middleware is to
facilitate implementing and executing provisioning workflows
in IoT Cloud systems, by addressing the previously-described
challenges. To this end, the middleware provides a set of
runtime mechanisms and does most of the “heavy lifting” to
support the users in implementing and executing provisioning
workflows in large-scale software-defined IoT Cloud systems,
without worrying about scale, geographical distribution and
heterogeneity of those systems. The support for the multi-
level provisioning is thoroughly discussed in Section IV. At
the moment it is important to note that IoT Cloud provisioning
involves two main tasks: i) allocating and deploying Software-
Defined Gateways (SDG), which are special type of aforemen-
tioned software-defined IoT units and ii) customizing software-
defined gateways with application-specific artifacts.

Figure 2 gives a high-level architecture overview of our
middleware. Generally, the provisioning middleware is de-
signed based on the microservices architecture [24] and it
is distributed across the Cloud and Edge devices. The main
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Fig. 2. Architecture overview of the provisioning middleware.

components of the provisioning middleware include: i) the
Software-Defined Gateways, ii) the Provisioning and Virtual
Buffers Daemons that run in Edge devices and iii) the Provi-
sioning Controller which runs in the Cloud. In the remainder
of this section, we discuss these components in more detail.

A. Software-defined Gateways

Software-defined gateways (SDGs) are one particular type
of our software-defined IoT units. Their main purpose is to
support virtualizing IoT Cloud compute resources, most no-
tably Edge devices, in order to provide isolated and managed
application execution environments. Our middleware does
not support building custom SDGs from scratch. Instead it
provides SDG prototypes and mechanisms to customize them,
based on application-specific requirements. At their core the
SDG prototypes define an isolated runtime environment for the
SDGs and application-specific components. The main purpose
of the SDG prototypes is to provide isolated namespaces, as
well as limit and isolate resource usage, such as CPU and
memory. Therefore, the SDG prototypes are used to bootstrap
higher-level SDG functionality. In Figure 3 the double line
shows virtual boundaries of the SDG prototypes. It is impor-
tant to mention that SDG prototypes do not propose a novel
virtualizaton solution. Instead they rely on proven techniques,
namely kernel-supported virtualization approaches, which of-
fer a number of light-weight execution environments/drivers
such as LXCs, libvirt-sandbox or even chroot. Such environ-
ments are generally referred to as containers that can be used
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Fig. 3. Software-defined gateway architecture.

to “wrap” the SDGs. Conceptually, virtualization choices do
not pose any limitations, because by utilizing well-defined
APIs, our SDGs can be dynamically configured, provisioned,
interconnected and deployed, at runtime. The SDG prototypes
are hosted in the IoT Cloud and enriched with functional
and provisioning capabilities, which are exposed via the well-
defined APIs. There is a number of middleware components
(cf. Figure 3), which are preinstalled in each SDG prototype in
order to support such APIs. Next, we discuss these components
in more detail.

1) Artifact Packages: Generally, IoT Cloud applications
consist of different application components and supporting
files (e.g., libraries and binaries), which we refer to as
application-specific artifacts. Such artifacts are deployed, con-
figured and executed inside software-defined gateways. Our
provisioning middleware does not make any assumptions
about application model or concrete artifact implementations.
However, in order to enable automated artifacts provisioning,
it requires them to be packaged as shown in Figure 4.
There are two important things to mention here. First, the
Artifact Package needs to contain a set of provisioning di-
rectives with all the necessary instructions, such as installing
and uninstalling the package. When a provisioning workflow
submits a provisioning directive, the middleware maps the
request to a concrete implementation of the provisioning
directive. To support implementing such directives, in our
previous work we have provided a light-weight provisioning
DSL [25]. Second, the packages contain meta-information
such as artifacts’ hardware requirements and exposed APIs.
The specification of the APIs is optional, but it is needed by the
middleware if an application decides to delegate management
of its configuration models, as we discuss subsequently.

2) Configurations Container: In order to support centrally
managed configuration models and dynamic feature composi-

tion, besides managing application binaries our provisioning
middleware is responsible to maintain application-specific
configurations. As shown in Figure 4, application configuration
models are treated as special components of artifact packages.
By decoupling the configuration models from the functional
artifacts, we can treat them as any software-defined IoT unit.
Each SDG is equipped with a Configurations Container that
is responsible to store configuration models, actively listen
for configuration changes (when new or updated configura-
tion models are registered) and apply the new configuration
directives, e.g., by restarting an OS service.

In order to support a full fledged, dynamic feature com-
position, the configuration container can act as a plug-in
system, based on the inversion of control principles. It provides
mechanisms to bind application artifacts, based on supplied
configurations or to redefine them when the configurations
change. The container initially binds functional artifacts based
on the configuration models and continuously listens for
configuration changes applying them on the affected functional
artifacts accordingly. The runtime changes are achieved by
invalidating affected parts of the existing dependency tree
and dynamically rebuilding them, based on new configuration
directives. This feature is especially useful for managing
communication protocols, which are provided by Cloud and
Device Connectivity components (cf. Figure 3). However, to
support dynamic feature composition, our middleware requires
application artifacts to be wrapped in well-defined APIs,
which are known to the provisioning container. Since this
imposes some limitations, this feature is optionally provided
by our middleware. The main advantage of this approach
is that it allows for updating only the configuration models
without updating the entire artifact package, thus enabling
flexible customizations and dynamic configuration changes
without runtime interrupts as well as significantly reducing
communication overhead.

3) Provisioning Agent: All packages that are not prein-
stalled in Edge devices have to be provisioned by the middle-
ware during runtime. For this purpose, our middleware pro-
vides a light-weight Provisioning Agent, which is preinstalled
inside SDGs. The agent continuously runs in each SDG and
manages local artifact packages. The main responsibility of the
provisioning agent is to periodically inspect the Provisioning
Controller’s (cf. Figure 2) update queue, download the artifact
packages and execute directives referenced in provisioning
workflows. Additionally, the agent acts as a local interpreter
of the provisioning directives specified via our provisioning
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Fig. 4. Artifacts package structure.



DSL [25]. Finally, the agent is responsible to handle var-
ious requests initiated by the Provisioning Controller. This
is achieved by triggering the required actions in SDGs such
as creating a snapshot of the current device state via the
SDGMonitor and uploading the snapshot to the Controller. The
SDGMonitor is discussed in more detail later in this section.

4) Device Connectivity: The SDGs are deployed to Edge
devices with limited privileges, in the sense that they are not
permitted to directly access the hardware. An obvious reason
for such limitation is security, but also resource contentions
and customization requirements, since we can have multiple
SDGs executing simultaneously in the same Edge device. In
order to enable applications to access the underlying devices,
e.g., sensors, SDGs offer the Device Connectivity component.
The main part of the device connectivity component is an SDG
endpoint, which exposes the devices to SDGs and enables
service-based interaction with them. The SDG endpoint is a
single point of interaction with the underlying Virtual Buffers
Daemon (cf. Figure 3) and at the moment, it is defined
up to the transport layer. For this reason the device con-
nectivity component provides a pluggable connectivity layer,
which is by default preconfigured with our custom, REST-
like application-level protocol. In the current prototype we
also support CoAP and MQTT communication protocols, but
the device connectivity can be easily extended by plugging in
other application-level protocols, such as sMAP [26].

B. Edge Device Middleware Support

In order to support management of SDGs in Edge devices,
our middleware provides light-weight components that are
preinstalled and continuously run inside the Edge devices. The
most important components are the Virtual Buffers Daemon
and the Provisioning Daemon, shown in Figure 2 on the right-
hand side.

1) Virtual Buffers Daemon: We have discussed how our
software-define gateways can be used to virtualize Edge
devices compute resources. However, since SDGs run with
reduced privileges, the middleware also needs to virtualize
accessing the low-level devices such as sensors and actuators.
To this end it provides the Virtual Buffers Daemon (VBD). The
main purpose of the VBD is to mediate the communication
with the devices connected to a field bus (e.g., via Modbus,
CAN, SOX/DASP, I2C or IP-based) and to provide a virtually
exclusive access to such device. In general, the VBD acts
as a multiplexer of the data and control channels, enabling
the SDGs to have their own view of and define custom
configurations for such channels. For example, a software-
defined gateway can configure sensor poll rates, activate a
low-pass filter for an analog sensory input or configure unit
and type of data instances in the stream.

Figure 5 depicts a simplified UML diagram of the VBD’s
most important components. The main concept behind VBD
is the VirtualBuffer. Generally, the main goal of the virtual
buffers is to provide virtual representation of sensors and
actuators. They wrap the DeviceDrivers and share common
behavior with them, which is inherited through the Component
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I2CDriverImpl
wraps

SystemTimer
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AdapterChain Adapter
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Fig. 5. Simplified UML diagram of Virtual Buffers Daemon.

Interface. For example, they can be initialized, shutdown and
released. Both the buffers and the drivers lifecycle is managed
by the VirtualBuffersManager. Moreover, a virtual buffer is
associated with a set of Gatherers and can contain an optional
AdapterChain. Generally, a gatherer is a higher level repre-
sentation of a port. For example, in case of a sensing device
the gatherer represents the most recent value of the hardware
interface. To support SDG-specific configurations such as
sensor poll rate, filters or scalers, each virtual buffer can have
an AdapterChain associated with it. Adapter chains reference
different Adapters, which are specified and parametrized via
the BuferConfig. For example, a raw sensing value is passed
through the adapter chain before being delivered to a SDG.
Finally, the VBD is responsible to instantiate and maintain an
open communication channel with software-defined gateways
(via the SDGConnection) and keep track of the mappings
among the SGDs and their VirtualBuffers.

2) Provisioning Daemon: So far, we have tacitly assumed
that SDGs are readily available in Edge devices. However, this
is naturally not the case and the SDGs need to be dynamically
allocated, instantiated and deployed to the Edge devices. These
tasks are shared responsibility of the Provisioning Daemon and
the Provisioning Controller.

At its core the Provisioning Daemon has a light-weight httpd
server that enables a bidirectional communication between the
Provisioning Controller and the Edge devices (i.e. SDGs). It
is designed as a pluggable component, which relies on the
existing support for managing shared hosting domains (i.e.,
containers) such as Docker, LXD or virsh. The most important
components of the Provisioning Daemon are an invocation
mapper and a set of plug-in components called Connectors.



Among other things, the invocation mapper is responsible
to handle the provisioning directives form the controller and
map them to the corresponding Connector, as well as to
obtain the required SDG prototypes form the Repositories (cf.
Figure 2) and locally manage their images. The connectors
act as wrappers of the underlying mechanisms for managing
SDGs, exposing them to the invocation mapper via uniform
APIs. Therefore, to use a different virtualization solution for
SDGs, one only needs to develop the needed connector and
register it with the invocation mapper.

Moreover, the Provisioning Daemon mediates the commu-
nication with the SDG provisioning agents. To support this,
it manages local network interfaces of SDGs and behaves
like a transparent proxy for all inbound communication. Re-
garding outbound communication the Provisioning Daemon
treats monitoring responses in a particular manner. It intercepts
the monitoring information delivered by SDGMonitors and
enriches it with the current device state information, which
is delivered by the MonitoringAgent (cf. Figure 2). The
MonitoringAgent is used to collect meta information about the
SDGs, but also to continuously monitor the underlying system
via available interfaces in order to provide dynamic device
information. To this end, it executes a sequence of runtime
monitoring actions to complete the dynamic device state-
snapshot. For example, such actions include: currently avail-
able disk space, available RAM, firewall settings, environment
information, list of processes and daemons, as well as a list of
currently installed and running SGDs. The created snapshots
are transmitted to the Provisioning Controller periodically or
on request. The device snapshot is also used by the aforemen-
tioned invocation mapper in order to determine if a new SDG
can be instantiated and deployed to an Edge device. This is
particularly important, since most of the current virtualization
management solutions only provide a rudimentary support in
this regard.

C. Cloud-based Provisioning Controller

The Provisioning Controller (cf. Figure 2 left-hand side)
is the cloud counterpart part of our middleware. It provides
a mediation layer that enables the users to interact with IoT
Cloud in a conceptually centralized fashion, without worrying
about geographical distribution and heterogeneity of the un-
derlying Edge devices. Internally, the Provisioning Controller
comprises several microservices: APIManager, MonitoringCo-
ordinator, SDG- and ArtifactsManager, DeploymentHandler
and DependencyManagement service. These microservices are
self-contained units, which communicate over REST APIs
and can be individually deployed on different cloud VMs.
This enables our Provisioning Controller to support elastically
scalable execution of provisioning workflows (cf. Section V),
since we can dynamically spin up additional instances of
microservices under heavy load and scale out the Provisioning
Controller to support large number of connected Edge devices.
Due to space limitations, in continuation we only describe the
most important microservices of the Provisioning Controller.

The main responsibility of the APIManger is to manage the

Multi-level Provisioning API, i.e., it encapsulates the middle-
ware provisioning capabilities in well-defined APIs and han-
dles all API calls from user-defined provisioning workflows.
Although our middleware provides multi-level provisioning
support, this distinction is only relevant to the middleware
internal components, since the APIManager hides all such de-
tails from the users, who effectively observe only simple API
calls and corresponding responses. Therefore, the APIManager
is responsible to resolve incoming requests, map them to the
respective handlers, i.e., SDGManager or ArtifactsManager
(depending on the request type), and deliver results to the call-
ing workflow. Among other things, the actions performed by
these managers involve selecting requested SDGs or artifacts
by querying the corresponding SDG- and Artifacts-Repository,
building the package images and deliver them to the Edge
devices. In Section IV, we describe this process in more detail.

All device state-snapshots are maintained by the Monitor-
ingCoordinator, which manages static device meta-information
and periodically sends monitoring request to the MonitoringA-
gent in order to obtain runtime snapshots of current device
state. Finally, since the majority of application artifacts and
SDG images are not readily available in Edge devices, the
DeploymentHandler is responsible to deliver them to the Edge
devices (i.e., Provisioning Daemons) or SDGs (i.e, Provi-
sioning Agents) at runtime. The DeploymentHandler relies
on the DependencyManagemet service to resolve the required
artifact dependencies and ImageBuilder to prepare (package
and compress) them into deployable images. Resolving the
dependencies on the cloud is particularly useful, because it
saves a lot of processing and networking, from the perspective
of whole IoT Cloud infrastructure, since otherwise each Edge
device would have to perform the same set of actions, e.g.,
downloads.

IV. RUNTIME MECHANISMS FOR MULTI-LEVEL
PROVISIONING IN IOT CLOUD

A. Runtime execution of provisioning workflows

In order to provision (a part of) the SAPP application
(cf. Section II) a user might design a provisioning workflow
shown in Figure 6 (top). Individual actions of such workflow
usually reference specific provisioning capabilities, exposed
via the middleware APIs, and rely on the middleware to
support their execution. Usually, the main execution thread
of the provisioning workflows (denoted by the solid lines
in our SAPP provisioning workflow) represents provisioning
directives for the infrastructure-level, such as to deploy a
SDG of a specific type on an IoT gateway or spin-up a
cloud-based Message Queue Broker, e.g., MQTT Broker. The
sub-workflows (denoted by dashed lines in the same exam-
ple) are mainly used to specify application-level provisioning
directives. Generally, application-level provisioning involves
deploying, configuring and starting application artifacts at
the Edge. In the case of our SAPP application this involves
customizing the SDGs with the application-specific artifacts,
i.e., the SAPP’s local monitoring service and its configuration
models. Further, since the SAPP application is written in



Example Provisioning Workflow

P
ro
visio

n
in
g C

o
n
tro

ller 
Ed

ge d
evice

P
ro
visio

n
in
g M

id
d
lew

are

Response

1: Evaluate 
composite 
predicate 

1': Map ID to 
IP addres

2: Check artifact
(capa. meta‐info vs. 

device profile)

3: Resolve 
dependencies

4: Create 
Package

5: Deploy
package

2': Get device‘s 
dynamic profile

6: Register 
capability‘s API

10: Wrap 
result

8: Invoke
capability

Software‐Defined 
Gateway

onCompletion

7: Resolve gov.
scope

install

9: Map API call
to capability 

execute

Register 
capability API 

(query the repo)

Provide mapping 
to the device

6'': send 
mapping model 

API call

SDG 
BusyBox 

Application‐level provisioning

Sedona 
VM

Monitor
service

MQTT
Brocker

1: Evaluate 
composite 
predicates 

1': Map to IP 
addresses

3: Check SDG
requirements

5: Deploy 
SDG prototype

3': Get 
device‘s 
dynamic 
profile

2: Select 
SDG prototype

6: Configure local
network interface

Software‐Defined 
Gateway

8: Check artifact 
requirements

9: Resolve 
dependencies

10: Create 
Package

11: Deploy
package

12: Map request 
to SDG instance 

13: Wrap 
result

7: Create 
Virtual Buffers

onFinish
Provisioning

install

run

API call
e.g., installSDG

Fig. 6. Runtime execution of a provisioning workflow.

Sedona [20], the provisioning workflow also needs to deploy
Sedona VM, which is a light-weight runtime, typically used
in building management systems.

Figure 6 also depicts a simplified sequence of steps per-
formed by the middleware when executing a provisioning
workflow. For the sake of clarity, we omit several steps and
mainly focus on showing the most common interaction, e.g.,
we assume no errors or exceptions occur and we do not show
interaction with the Repositories. A provisioning workflow
requests an application artifact or a SDG by specifying their
respective IDs (currently consisting of a name and a version
number) and a specific Edge device ID. Next, the workflow
invokes a specific API, e.g., to install or uninstall the artifact.
At this point the middleware attempts to execute the specified
provisioning directive. The steps 1 to 7 in Figure 6 depict
the most important actions performed by our middleware in
order to support an infrastructure-level provisioning request,
e.g., to deploy, instantiate and start a SDG in an Edge device.
Therefore, the middleware performs the following actions:
i) The APIManager initially evaluates the composite predicates
(described later in this section) in order to determine a set of
devices on witch the SGD will be deployed; ii) The SDGMan-
ager selects device compatible SDG prototype and registers it
with the DeploymentHandler; iii) The MonitoringCoordinator
together with MonitoringAgent checks the SDG against current
device-state snapshot; iv) The DeploymentHandler transfers
the SDG prototype image to the Provisioning Deamon; v) The
ProvisioningDeamon configures the SDG’s local network in-

terface (based on the supplied mapping model), starts the SGD
and registers the new SDG instance with the Virtual Buffers
Deamon; vi) Finally, the Virtual Buffers Deamon allocates
a set of dedicated virtual buffers and creates a dedicated
SDGConnection handler. At this point the SDG instance is
running in the Edge device and it is performing internal ini-
tialization actions such as starting the Configuration Container,
the Provisioning Agent and its local SDG Monitor. After the
final initializations the SDG transmits its initial device state
to the controller and it is ready to handle application-level
provisioning requests.

To support an application-level provisioning request the
provisioning middleware performs the following actions (steps
8 to 13 in Figure 6): i) Similarly to the step 3 each application
artifact is checked against current SDG-state snapshot, deliv-
ered by the SDG Monitor; ii) The Dependency Management
Service resolves runtime dependencies of the artifact; iii) The
PackageManager builds a deployable image and registers it
with the DeploymentHandler; iv) Similarly to the step 5 the
DeploymentHandler deliveres the image to the Provisioning
Deamon; v) Finally, the Provisioning Deamon transparently
forwards the image to the SDG’s Provisioning Agent, which
installs the package locally in the SDG. In the remainder of the
section we describe the most important runtime mechanisms
in more detail.

B. Evaluating composite predicates

While describing the main steps of the provisioning process,
we have mostly focused on the steps performed for a single
device and a single SDG. However, usually the provisioning
workflows are meant to provision multiple devices, e.g., that
share some common properties or belong to the same orga-
nization. Therefore, the same provisioning logic should be
applicable regardless of specific devices. In this context, it
is particularly important to support designing generic provi-
sioning workflows, in the sense that such workflows should
be defined independently of the Edge devices, e.g., without
referencing device IDs. One of the main preconditions for
this is to support the users to dynamically delimit the range
of provisioning actions. In our middleware this is achieved by
allowing the users to specify the required device properties,
as a set of composite predicates. Such predicates reference
device or SDG meta information and are used to filter out
only the matching devices, which meet the specified criteria.
These predicates are specified by the users and delivered to
the middleware in a provisioning request as POST parameters.

To bootstrap delimiting the range of a provisioning action,
our middleware maintains a set of available devices for a
particular user. The current prototype always considers all the
connected devices, since at the moment there is only a limited
support for managing the device identities and the access
control. However, this is not a conceptual drawback and there
are many available solutions, which can be used to provide
this functionality (as discussed in Section II). The predicates
are applied on this set, filtering out all resources that do not
match the provided attribute conditions. The middleware uses



the resulting set of resources to initiate the provisioning actions
with SDG- and AtrifactsManager. These managers are also
responsible to provide support for gathering results delivered
by the ProvisioningDeamons and the ProvisioningAgents, once
the provisioning action is completed (cf. Figure 6 step 13).
This is needed since after the resources are selected, provi-
sioning actions are performed in parallel and the results are
asynchronously delivered to provisioning workflows.

C. Artifacts and SDGs prototypes runtime validation

Since we are dealing with resource-constrained devices,
before deploying a SDG or application artifact the middleware
needs to verify that the component can be installed on a
specific device, e.g, that there is enough disk space avail-
able. This happens during step 3 (Check SDG requirements)
and step 8 (Check artifact requirements). To this end, the
MonitoringCoordinator first queries the Repositories. Besides
the artifact binaries and SDG prototypes, the repositories
store corresponding meta-information, such as required CPU
instruction set (e.g., ARMv5 or x86), disk space and mem-
ory requirements. After obtaining the meta-information our
middleware starts building the current device state-snaphshot.
This is done in two stages. First, the device features cata-
log is queried to obtain relevant static information, such as
CPU architecture, kernel version and installed userland (e.g.,
BusyBox [27]) or OS. Second, the MonitoringCoordinator
in coordination with the MonitoringAgent and SDGMonitor
executes a sequence of runtime profiling actions to complete
the dynamic device state-snapshot. For example, the profiling
actions include: currently available disk space, available RAM,
firewall settings, environment information, list of processes
and daemons, and list of currently installed capabilities. Fi-
nally, when the dynamic device snapshot is completed, it is
compared with the SDG’s/artifact’s meta information in order
to determine if they are compatible with the device. In this
context, the middleware performs in a similar fashion to a fail-
safe iterator, in the sense that it works with snapshots of device
states. For example, if something changes on the device side,
during step 3 or step 8, it cannot be detected by the middleware
and in this case its behavior is not defined. Since we assume
that all the changes to the underlying devices are performed
exclusively by our middleware, this is a reasonable design
decision. Other errors, such as failure to install an artifact, in
a specific SDG, are caught by the middleware and delivered as
notifications to the provisioning workflow, so that they do not
interrupt its execution. With this approach the middleware is
capable to make autonomous decisions about the provisioned
resource. This is one of the main preconditions for supporting
automated execution of provisioning workflows, but also for
enabling on-demand, self-service provisioning model, since
our middleware does not make any implicit assumptions such
as user awareness of device properties nor it requires them to
manually interact with the underlying devices.

D. Provisioning models

In the following we discuss the provisioning models cur-
rently supported by the middleware prototype and discus

some possible optimizations. After the MonitoringCoordinator
determines an SDG/package is compatible with Edge devices,
the middleware needs to create a SDG or Artifact image
and deliver it to these devices (steps 5 and 11 in Figure 6).
This process requires the middleware to make the following
decisions: what to deliver to the devices, how to deliver it and
where to host the image. Therefore, the image delivery process
is structured along these three main phases.

1) Delivery models: In the first phase, the middleware
needs to chose whether to deliver a complete image or only
a download script. In the first case the ImageBuilder creates
a SDG or an Artifact image, which is essentially a com-
pressed Artifact Package or SDG prototype. This image is then
registered with the DeploymentHandler by a corresponding
manager, which transfers the whole image to the Provision-
ingDeamon. In the second case the process is performed in a
similar fashion, but in addition to the image the ImageBuilder
also generates a download script. The main part of this script
is an URL of the location where the actual image resides.
Instead of the whole image, only this script is sent to the
ProvisioningDeamon, so it can download and install the image.
Since both of these approaches have their advantages [28], the
middleware leaves it to the users to make a decision, i.e., to
select the most suitable approach and pass it as a configuration
parameter in the provisioning request.

2) Deployment models: In the second phase the Deploy-
mentHandler deploys the image (or the download script) to the
device. We support two different deployment strategies. The
first strategy is poll-based, in the sense that the image is placed
in a queue and remains there for a specified period of time
(TTL). Both ProvisioningDeamons and ProvisioningAgents
periodically inspect the queue for new provisioning requests.
When a request is available, the device can poll the new
image when it is ready, e.g., when the load on it is not
too high. Although a provisioning workflow can specify the
image priority in the queue, if a device is busy over longer
period of time, e.g., there is not enough disk space to install
a SDG, this can lead to a request starvation, blocking the
execution of the provisioning workflow. For this reason our
middleware also supports a push-based deployment. In this
case, instead of waiting in the queue, an image is immediately
pushed on a device. This gives a greater control to the
provisioning framework, but since the previously described
image runtime validation performs in a fail-safe manner, the
push-based deployment can lead to an undesired behavior.
Therefore, when using this strategy a provisioning workflow
should also provide compensation actions, to return the device
in the previous state. Naturally, these two strategies can be
used to create hybrid deployment strategies, such as using the
pool-based approach for SDG prototypes and the push-based
approach for application artifacts, because pushing artifacts is
particularly useful for security updates of hot fixes in SDGs.

3) Placement models: Finally, the middleware decides
where to host the image. This largely depends on a specific
deployment strategy, but also on the delivery model. For exam-
ple, for push-based deployment the DeploymentHandler stores



the images in-memory, also the download scripts are always
kept in-memory, but in case of pool-based strategy, images are
usually hosted in middleware local Repositories. However, it
is not difficult to imagine more complex provisioning models,
which can be put in place in order to optimize the provisioning
process, e.g., to save bandwidth. For example, to achieve this,
our middleware could easily utilize proven technologies such
as Content Delivery Networks (CND), Cloudlets or micro
data centers. One way of accomplishing this is to deliver a
download script to a set of Edge devices and push an image
to a Cloudlet, residing in the proximity (single-hop) of these
device. The ProvisioningDeamon could then use the poll-based
approach to obtain the image.

V. IMPLEMENTATION & EVALUATION

A. Prototype implementation

In the current prototype, the middleware Provisioning Con-
troller cloud-based microservices are implemented in Java
(based on Java SE) and Scala programming languages. The
middleware agents and the ProvisioningDeamon are imple-
mented as Shell and Python scripts (based on light-wight
httpd server). The VirtualBuffersDeamon is also implemented
in Java (based on Java SE Embedded), but in this case we
have created a lightweight compact profile JVM runtime [29]
specifically tailored for constrained devices. The total disk size
of the JVM, VirtualBuffersDeamon and all its dependencies is
little over 15Mb. The complete source code and supplement
materials providing more details about current middleware
implementation are publicly available in Git Hub2.

B. Middleware performance

In the following experiments we show two main perfor-
mance aspect of our provisioning middleware: support for: i)
scalable execution of the provisioning workflows (hundreds of
Edge devices) and at the same time ii) middleware suitability
for constrained devices in terms of resource consumption, i.e.,
its memory and CPU usage.

1) Applications: In the experiments we used two real-life
applications from a Building Management System, developed
in collaboration with our industry partners3. For our experi-
ments, it is important to note that the first application (SAPP)
is written in Sedona [20] and it size is approximately 120Kb,
including the SVM and the application (.sab, .sax, .scode
and Kits files). The second application (JAPP) is JVM-based
(compact profile2) and its size including all binaries, libraries
and the JVM is around 14Mb.

Additionally, for the experiments we have developed a
SDG prototype, based on BusyBox, which is a very light-
weight Linux user land. The SDG prototype is specifically
built for Docker’s libcontainer virtualization environment and
is approximately 1.4Mb in disk size (without applications).

2) Experiment setup: In order to evaluate middleware
performance regarding resource usage, we built 15 physical

2https://github.com/tuwiendsg/SDI
3http://pcccl.infosys.tuwien.ac.at/

Fig. 7. An example of our gateways for Building Management Systems.

gateways (cf. Figure 7) and installed them throughout our
department. The getaways are based on Raspberry Pi 2, with
ARMv7 CUP and 1Gb of RAM. They run Raspbian Linux 8
(based on Debian “Jessi”) on Linux Kernel 4.1.

In order to evaluate how our middleware behaves in a large-
scale setup, we created a virtualized IoT cloud testbed based
on CoreOS [30]. In our testbed we use Docker containers
to mimic physical gateways in the cloud. These containers
are based on a snapshot of a real-world gateway, developed
by our industry partners. For the experiments, we deployed
a CoreOS cluster on our local OpenStack cloud. The cluster
consists of 4 CoreOS 444.4.0 VMs (with 4 VCPUs and 7GB
of RAM), each running approximately 200 Docker containers.
The Provisioning Controller and the Repositories are also
deployed in our Cloud on 3 Ubuntu 14.04 VMs (with 2VCPUs
and 3GB of RAM).

Finally, since the physical gateways are attached to our
department network, in order to connect them to the cloud
network (but avoid potential security risks), we have created
a network overlay based on Wave routers [31].

3) Experiments: Middleware resource consumption at
the Edge. Initially, we show the performance of middleware
most important components that continuously run in edge
devices, namely the ProvisioningDeamon and the Virtual-
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Fig. 9. Memory consumption of the VirtualBuffersDeamon.

BuffersDeamon. The MonitoringAgent is not considered in
our experiments, since it only periodically executes to create
device-state snapshots, thus it does not have statistically sig-
nificant impact on the performance. Further, it is important to
mention that the runtime overhead of middleware components
running in the SDGs is almost negligible, since it is less
than 1Mb. The main goal of the following experiments is
to demonstrate the validity of our approach w.r.t. resource-
constrained devices, since we do not claim that it outperforms
related approaches, which provide functionality that partially
overlaps with our middleware.

Figure 8 and Figure 9 respectively show the CPU and
memory usage of the VirtualBuffersDeamon, over a period
of time. There are several important things to notice here.
When there are no SDGs (applications) running in the gateway
the deamon is mainly idle, i.e., it only periodically polls
the underlying drivers for device status and on average its
CPU consumption is less than 2%. This can be observed in
Figure 8, before the first peak. The two peaks represent SDG
deployments for the two applications. The first peak happens
when the Sedona-based application is deployed and the second
peak signals the deployment of Java-based application. Since
SAPP requires smaller number of sensors than JAPP, the
deamon needs to allocate and configure less virtual buffers,
thus the difference in the two peaks. However, in both cases
the maximum CPU usage of the deamon is below 14% and
it lasts only a few seconds. For the same scenario we have
measured the deamon’s memory usage. Figure 9, shows the
total memory of deamon’s JVM process (with heap memory,
Perm Size and stack). Initially, we notice that in the idle state
the deamon consumes little bit under 15Mb of RAM (the
initial heap size is configured to a minimum of 1Mb), what
can be considered a low memory footprint. We also observe
that memory consumption behaves in a similar manner to CPU
consumption. This is represented by the two distinct jumps in
memory usage (cf. Figure 9). The increase in memory usage
is due to newly allocated virtual buffers, adapters (heap) and
SDGConnections (stack). The reason for the difference being
the same as above. Finally, we notice a monotonic growth of
memory usage, the reason for this is that the Deamon does
not trigger garbage collection, since both SDGs are ruining

and using the buffers, however after an application is stopped
the deamon releases its buffers. Therefore, the performance of
the VirtualBuffersDeamon can be seen as suitable for resource-
constrained devices.

Figure 10 and Figure 11 show the CPU and memory
usage of the ProvisioningDeamon (and the used Connector
for the underlying virtualization solution). In this case we
only consider infrastructure-level provisioning requests, i.e.,
configuring and starting SDGs, since only this type of re-
quests are explicitly handled by the ProvisioningDeamon. In
Figure 10, we notice that in general our provisioning deamon
utilizes the CPU resources scarcely, namely its CPU usage
is mostly around 1%. This is due to the fact that most of
the time the deamon idle, it only periodically checks for
new requests from the Provisioning Controller and sends a
hart bit. The dramatic spikes in CPU usage happen only
during the SDG deployment (we launched 4 SDGs on the
gateway during the experiment), since this includes expensive
network and computation operations, i.e., downloading SDG
prototype, configuring it and starting it. However, the later two
operations are performed by the Connectors which execute
the commands and quickly terminate. Figure 11 shows the
memory usage of the provisioning deamon for the same
experiment. One can notice that during the experiment the
memory usage of the provisioning deamon was always below
30Mb and more importantly shortly after an SDG is started the
deamon releases the unused (Connector’s) memory. Therefore,
middleware Edge components in total require under 45Mb of
memory and consume around 2% of CPU on average. We
believe that this is reasonable resource utilization suitable for
resource-constrained devices.

Scalable execution of provisioning workflows. The reason
why we put an emphasis on the scalability of our middle-
ware is that it is one of the key precondition for consistent
realization of provisioning workflows across a large resource
pool. For example, if the execution of provisioning workflows
were to scale exponentially with the size of the resource
pool, theoretically it would take infinitely long to have a
consistent infrastructure baseline for the the whole system,
given a sufficiently large resource pool.
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The experiment presented in Figure 12 shows execution
times (averaged results of 30 repetitions) of the JAPP and
SAPP provisioning workflows. We can see that the middleware
mechanisms for workflow execution (Section IV-A) scale
within O(nlog(n)) for relatively large number of Edge devices
(up to 800 gateways), which can be considered a satisfac-
tory result. We also notice that computational overheads of
the provisioning agents and deamons have no statistically
significant impact on the results, since they are distributed
among the underlying devices. Additionally, after the device
number reaches 400 gateways there is a drop in the capability
provisioning time. The reason for this is that the middleware
load balancer spins-up additional instances of the Deploy-
mentHandler, SDGManager and ArtifactsManager, naturally
reducing provisioning time for subsequent requests. Finally,
the provisioning mechanism behaves in a similar fashion for
both application. The reason for this is that all gateways are
in the same network, what can be seen as an equivalent to
provisioning a complex of collocated buildings.

VI. RELATED WORK

Over the last years, advancing the convergence of Edge
(IoT) and Cloud computing has been receiving a lot of atten-
tion. This has resulted in a number of approaches which lay a
cornerstone for realizing the utility-based provisioning in IoT

Cloud. For example, different approaches deal with leveraging
more powerful resources such as remote, fully-fledged Clouds
or smaller Cloudlets and micro data centers, which are located
in the proximity (single hop away) of the Edge, to enhance
resource-constrained (mobile) devices. Such approaches, also
referred to as cyber-foraging systems [32], mainly focus on
specific tasks such as computation offloading [6], [7], [33]
or data offloading (data staging) [9], [34]–[36]. Although,
they offer valuable insights about moving cloud computing
closer to the Edge, as well as about smart resource utiliza-
tion, management and allocation, contrary to our approach
they mainly emphasize on algorithms (e.g., solvers), energy
efficiency, performance (e.g., of processing or networking) and
supporting architectures for the aforementioned tasks.

Other approaches which mainly adopt a cloud-centric view,
mostly aim at virtualizing Edge devices, predominantly sen-
sors and actuators, on cloud platforms. In [10] the authors
focus on developing a virtualized infrastructure to enable
sensing and actuating as a service on the cloud. They propose
a software stack that includes support for management of
device identification and device services aggregation. In [15],
the same authors discus a utility-oriented paradigm for IoT,
explicit claiming the resource virtualization and abstraction as
their main goal. In [16] the authors introduce sensor-cloud
infrastructure that virtualizes physical sensors on the cloud
and provides management and monitoring mechanisms for the
virtual sensors. In [37] the authors develop an infrastructure
virtualization framework for wireless sensor networks. It is
based on a content-based pub/sub model for asynchronous
event exchange and utilizes a custom event matching algorithm
to enable delivery of sensory events to subscribed cloud users.
SenaaS [38] mostly focuses on providing a cloud semantic
overlay atop physical infrastructure. It defines an IoT ontol-
ogy to mediate interaction with heterogeneous devices and
data formats, exposing them as event streams to the upper
layer cloud services. Similarly, the OpenIoT framework [17]
focuses on supporting IoT service composition by following
service-oriented paradigm. It mainly relies on semantic web
technologies and CoAP [39] to enable web of things and
linked sensory data. Such approaches address issues such
as discovering, linking and orchestrating internet connected
objects and IoT services. Also there are various commercial
solutions such as Xively [40], Carriots [41] and ThingWorx
[42], which allow users to connect their sensors to the Cloud
and enable remote access to and management of such sensors.
The aforementioned approaches mainly focus on providing
different virtualization, device interoperability and semantic-
based data integration techniques for IoT Cloud. Therefore,
such approaches conceptually underpin our middleware, since
virtualizing Edge devices is a main precondition towards
realizing utility-based provisioning paradigm in IoT Cloud
systems. Although, some of the above-described solutions
(e.g., [10], [16], [17]) provide support for provisioning and
management of virtual sensors and actuators, their support is
often based on tightly-coupled provisioning models, e.g., static
templates. Moreover, such approaches are usually meant to



support specific data-centric tasks, mostly focusing on inte-
grating various data formats, providing data-linking solutions
and supporting communication protocols. Contrary, to these
approaches our middleware provides support for multi-level
provisioning and consuming both IoT and Cloud resources as
general-purpose utilities.

Putting more focus on the network virtualization, pro-
gramming and management, two prominent approaches have
recently appeared, namely fog computing and software-
defined networking. Advances in software-defined network-
ing (SDN) [43]–[45] have enabled easier management and
programming of the intermediate network resources, e.g.,
routers, mostly focusing on defining the networking logic,
e.g., injecting routing rules into network elements. In [46] the
authors present a concept of fog computing and define its main
characteristics, such as location awareness, reduced latency
and general QoS improvements. They focus on defining a
virtualized platform that includes the Edge devices and enables
running custom application logic atop different resources
throughout the network. Although the general idea of fog
computing shares similarities with our approach, there is still
a number of challenges to realize its full vision [47]. Further,
current advances in fog computing mainly revolve around
virtualization, management and programmatic control of the
network elements. Although provisioning of network resources
is not the focus of our middleware, these approaches can be
seen as complementary to our own approach, since the network
resources are an integral part of IoT Cloud infrastructures.

Finally, since the utility-based provisioning paradigm origi-
nated from cloud computing, it is natural that cloud computing
has provided numerous tools and frameworks to support
the utility-based provisioning. The relevant approaches are
centered around infrastructure automation and configuration
management solutions such as OpsCode Chef [48], BOSH [49]
and Puppet [50] as well as deployment topology orchestration
approaches such as OpenStack Heat [51], AWS CloudFor-
mation [52] and OpenTOSCA [53]. The main reasons why
these solutions cannot be simply reused in the context of IoT
Cloud systems are that they mostly assume unlimited amount
of available resources; they do not account for intrinsic de-
pendance of application business logic on underlying devices;
they are usually not suited for constrained environments and
they often rely on features provided only by fully-fledged
OS, e.g., configuration management approaches often hand off
dependency resolution to OS package managers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a provisioning middleware that
enables developing generic, multi-level provisioning work-
flows and supports automated and scalable execution of such
workflows in IoT Cloud systems. We showed how our middle-
ware supports on-demand, self-service resource consumption
by providing flexible provisioning models and support for
uniform, logically centralized provisioning of Edge devices,
application artifacts and their configuration models. We in-
troduced provisioning support for software-defined gateways

to enable application-specific customization of Edge devices
through well-defined APIs, while preserving the benefits of
proven virtualization mechanism. The initial results of our
experiments are promising, since they showed that our mid-
dleware enables scalable execution of provisioning workflows
across relatively large IoT cloud resource pool and at the same
time its overhead in terms of resource consumption is suitable
for resource-constrained devices.

In the future, we plan to improve middleware resource
allocation mechanism that currently only considers static de-
vice properties. This will be accomplished by extending our
middleware in several directions to: Support smarter resource
allocation, e.g., optimized placement of applications on Edge
devices; Provide more dynamic and finer-grained resource
monitoring in order to support pay-as-you-go model, possibly
in market-like fashion [54]; Enable elasticity aspects for IoT
Cloud systems; And integrate the middleware with governance
framework for IoT Cloud [55]. Finally, we plan to extend our
middleware to address security issues such as access control
and to introduce monetary compensation model for used IoT
resources, based on Blockchain technology.
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