
An Elasticity-aware Governance Platform for Cloud
Service Delivery

Carlos Müller?, Hong-Linh Truong�, Pablo Fernandez?, Georgiana Copil�, Antonio Ruiz–Cortés?, Schahram Dustdar�
?ISA research group, University of Seville, {cmuller, pablofm, aruiz}@us.es.

�Distributed Systems Group, TU Wien, {truong, e.copil, dustdar}@dsg.tuwien.ac.at.

Abstract—In cloud service provisioning scenarios with a
changing demand from consumers, it is appealing for cloud
providers to leverage only a limited amount of the virtualized
resources required to provide the service. However, it is not
easy to determine how much resources are required to satisfy
consumers expectations in terms of Quality of Service (QoS).
Some existing frameworks provide mechanisms to adapt the
required cloud resources in the service delivery, also called
an elastic service, but only for consumers with the same QoS
expectations. The problem arises when the service provider must
deal with several consumers, each demanding a different QoS
for the service. In such an scenario, cloud resources provisioning
must deal with trade-offs between different QoS, while fulfilling
these QoS, within the same service deployment. In this paper we
propose an elasticity-aware governance platform for cloud service
delivery that reacts to the dynamic service load introduced by
consumers demand. Such a reaction consists of provisioning the
required amount of cloud resources to satisfy the different QoS
that is offered to the consumers by means of several service
level agreements. The proposed platform aims to keep under
control the QoS experienced by multiple service consumers while
maintaining a controlled cost.

I. INTRODUCTION

The delivery of cloud services is a nontrivial task for
service providers that usually requires to provision an esti-
mated amount of the required cloud resources (both infras-
tructural and software resources) to satisfy consumers demand.
A precise estimation of such resources would benefit cloud
providers with a lower resources provisioning cost. However,
such an estimation is a challenging task that depends on: (i)
the number of consumers, (ii) their variable demand, and (iii)
their expectations in terms of Quality of Service (QoS).

In such a context, service providers can benefit from on-
demand capabilities of cloud environments, using their elastic-
ity capabilities (e.g., add/remove storage, or change the load
distribution mechanism) to scale the resources and to configure
the software as needed by their services. In this sense, we
can find some approaches [1], [2], [3] providing mechanisms
to adapt the provisioned resources depending on the system
behaviour and specified QoS requirements. Specifically, in
[2] authors propose to consider such QoS within elasticity
strategies in scalable cloud service topologies.

However, the aforementioned proposals provide elastic
services considering the service behaviour for one or more

This work was partially supported by the Spanish and the Andalusian
R&D&I programmes and networks (grants P12-TIC-1867, TIN2012-32273,
TIN2014-53986-REDT).

consumers with the same QoS expectation. They do not
address the difficulties of dealing with multiple consumers,
each with a different QoS expectation. In this paper, first
we analyze challenges that need to be addressed. Second, we
develop a cloud governance platform to tackle the challenges.
Finally, we evaluate the benefits of our work through several
test cases using our prototype.

The challenges we face in the paper are aligned with those
exposed in [4], [5], [6], where the authors claim that a dynamic
and self-managed service provisioning would require service-
oriented features such as: service-level monitoring capabilities
to control how service constraints, Service Level Agreements
(SLAs), and elasticity strategies are fulfilled; SLA manage-
ment functionality to guarantee a service’s performance and
reliability; and service elasticity management capabilities to
guarantee that the service can scale automatically. Addressing
them will enable capabilities to automate, optimize, govern
operational business decisions, as pointed out by DiMarzio, in
real-world operational systems1.

The governance platform we develop in the paper tackles
the exposed challenges, coordinates the cloud service delivery
while limiting the cloud resource provisioning cost. Our devel-
oped platform supports two of the QoS properties that are most
commonly used within commercial SLAs: the service avail-
ability and throughput (i.e., supported operations per seconds)
(c.f. SLAs and pricing description of services provided by
companies such as Amazon2, Google3, or Microsoft4). Finally,
in the paper we show that by using our developed governance
platform a cloud provider achieves the following benefits
altogether: (i) the service to a number of consumers with
different QoS expectations; and (ii) the resources provisioning
to the consumers demand, which means to avoid under and
over provisioning situations that take place when not enough or
too much resources are leveraged to satisfy consumers demand,
respectively.

This paper is structured as follows: Section II introduces
the motivating scenario and challenges. Section III exposes the
conceptual architecture of our platform. Section IV presents
our elasticity-aware governance tecnniques. Section V vali-
dates our platform through various experiments. In Section VI
we present related work. Finally, in Section VII we conclude
the paper and outline future work.

1https://goo.gl/Rxb8Wt
2SLA: http://goo.gl/v6AWzG; Pricing: http://goo.gl/ZT7Z5a
3SLA: http://goo.gl/DS5N4J; Pricing: http://goo.gl/fJQHpo
4SLA: http://goo.gl/e9aza4; Pricing: http://goo.gl/9l4yrp



Subtopology 0 

Subtopology 1 

API 
Consumer 

Analytic Platform 

Governance Manager 

Load 
Balancer 

 Basic 
5 ops/sec 
Avail >= 90 % 
Price = 5 $ 

   Pro 
8 ops/sec 
Avail >= 95 % 
Price = 20 $ 

“Organisation 1” 

Router 
App 

“Organisation 2” 

API Management 
Service 

Subtopology N 

Load 
Balancer 

API Management 
Service 

… 

Elasticity 
Strategies 

Elasticity 
Strategies 

Elasticity 
Strategies 

Routing  
Strategies 

ch1 

ch2 

Elasticity Manager 

Service topology 

ch4 

DataStore 

Subtopology N+1 

SLA Manager 

ch3 

API 
Consumer 

Analytic Platform 

Fig. 1. Scenario with multiple consumer and research challenges.

II. MOTIVATING SCENARIO

As motivating scenario we consider the provisioning of a
cloud service for gathering sensitive data from a data store,
through an API management service (c.f. Figure 1). In order
to provide an SLA to the consumer in which several QoS
properties such as a minimum availability and throughput
are guaranteed, the cloud service provider must provision
appropriate cloud software resources structured in a service
topology [2]. Specifically, cloud objects such as virtual ma-
chines accessible through the API management service, or
nodes in the data store are leveraged in the service topology
of Figure 1, if needed.

Aiming to control resources provisioning, we can benefit
from the work in [2]: (i) to monitor the service behaviour
and (ii) to specify some elasticity strategies to scale in or out
the service topology under certain conditions (e.g. scale out if
the monitored throughput < 200 operations per seconds). In
our motivating scenario we have several service subtopologies
with load balancers that makes the decision on scaling in or
out the instances of API management service to fulfill the
consumer SLA. Moreover, in the scenario we consider a new
way to enable elasticity by routing the consumer requests to
a corresponding subtopology 1 to N, when more resources
are needed. Although, elasticity is a powerful mechanism in
scenarios fulfilling just an SLA, these elasticity techniques are
not focused on satisfying multiple consumers when using a
single service with a different SLA each. For instance, as
depicted in Figure 1, several organisations can be interested
in gathering the information with a different SLA (c.f. basic
and pro SLAs in Figure 1).

The following challenges arise when multiple consumers
are considered in the previous scenario. Firstly, the service
provider must consider in the cloud service offering that each
consumer may have a different SLA (ch1 in Figure 1). Sec-
ondly, the service provider must configure the subtopologies
with appropriate elasticity strategies considering the different
SLAs guaranteed to consumers (ch2 in Figure 1). Thirdly, the
service behaviour must be monitored to control if the service
level provided to each and every consumer is as they agreed
(ch3 in Figure 1). Finally, the cloud resources provisioning
should be optimized according to the previously mentioned
monitoring information and the consumers demand. In this

Elastic  Se
rvice

 
Elasticity 
M

an
age

r 

Actuation 

G
o

ve
rn

an
ce

 
M

an
age

r 

Elasticity  
Monitor 

Elasticity 
Controller 

Elasticity  
Strategies 

Governance 
Controller SLAs repository 

Service Provider Consumers 

re
gu

la
te

s 

Analytic Platform 
Analytic Platform 

Analytic Platform 

API 
Consumer 

Analytic Platform 

Service  
execution 

Resources Prov. Level 1 

… 
Resources Prov. Level N 

SLA 

SLA 

Elasticity  
Strategies 
Template 

Governance 
Parameters 

SLA 
Manager 

SLA 
Monitor 

SLA 
Controller 

Routing 
Strategies 

Actuation 

Router 

Fig. 2. Design of the Elasticity-aware SLA Governance platform.

sense, several subtopologies with an appropriate cloud service
provisioning should be created. In addition, some routing
strategies must be established to redirect consumers requests
to one of such subtopologies (ch4 in Figure 1).

III. DESIGN OF ELASTICITY-AWARE SLA GOVERNANCE

Our proposal to tackle the exposed challenges is a novel
elasticity-aware governance architecture depicted in Figure 2.
The underlying idea is an orchestration between a Governance
Manager (GM), an Elasticity Manager (EM), and an SLA
Manager (SM) to analyse the actual service behaviour and to
react against a potential under or over provisioning situation
without violating the consumers SLAs. Such a reaction con-
sists in applying some routing and elasticity strategies when
the monitored values goes through specific thresholds. As
consequence, it is leveraged an optimised amount of resources,
while the actual offered QoS of the service is under control.

The GM relies on a governance configuration informa-
tion comprising: (i) the SLAs with the QoS offerings to
the consumers; (ii) an elasticity strategies template including
required cloud objects (e.g. load balancers or data store in the
motivating scenario), and (iii) the governance parameters that
set up some important aspects to govern the service delivery
and monitoring. Section IV details how we deal with such
configuration information.

Two main components of the GM are an SLA repository
and a governance controller. The SLA repository is respon-
sible for storing and retrieving the SLAs that the service
must fulfill for each consumer. The governance controller is
responsible for setting up both: the cloud service elasticity;
and the routing of consumers requests between the resources
provisioning levels. In order to set up the elasticity, the
governance controller, as described in Section IV-A, firstly
considers information from the SLAs to create the elasticity
strategies that specify when to scale in or out (i.e. ch2 is
tackled); and secondly, it establishes some routing strategies
to redirect consumers requests to the appropriate resources
provisioning level. Note that each provisioning level represents
a service subtopology (c.f. Figure 1) which leverages a specific
amount of resources.

The main components of the SM are an SLA controller and



Agreement ProSLA v e r s i o n 1 . 0
Provider C l o u d S e r v i c e P r o v i d e r as Responder ;
Consumer ” O r g a n i s a t i o n 2 ” ;
Metr ics [ i Ag re e . g e n e r a l M e t r i c s ]

AgreementTerms
S e r v i c e C l o u d S e r v i c e D e s c r i p t i o n

Global d e s c r i p t i o n :
P r i c e = 20 usd /m;
Throughput <= 8 ops / s e c

Monitorable P r o p e r t i e s
g l o b a l :

A v a i l a b i l i t y ;
Throughput ;

Guarantee Terms
G1 : Provider guarantees A v a i l a b i l i t y >= 9 5 ;

Fig. 3. Pro SLA specified with iAgree.

an SLA monitor. The SLA controller is responsible for: man-
aging the SLAs with the QoS offerings to the consumers (i.e.
ch1 is tackled); routing consumers requests to the appropriate
resources provisioning level established in routing strategies
(c.f. actuation message from SLA controller to the router in
Figure 2); but it also receives from the SLA monitor the current
behaviour provided to consumers in order to detect a potential
under or over provision situation. Moreover, aiming to solve an
under-provision, the SLA controller must check if there exist
risk of violating the SLA terms of an specific consumer (i.e.
ch3 is tackled). If this is the case, the SLA controller must
increase the resource provisioning to restore an appropriate
service behaviour (i.e. ch4 is tackled).

In turn, the main components of the EM are an elastic-
ity controller, and an elasticity monitor. Elasticity controller
responsibilities are: (i) to adapt the deployed provisioning
levels with the elasticity strategies provided by GM; and
(ii) to analyse if the elasticity strategies are being fulfilling
or not at service consumption time in order to scale in or
out the resources within the provisioning levels. In turn, the
elasticity monitor is responsible for gathering the actual service
behaviour in each provisioning level. Note that the elasticity
controller component is based on the previous work [2] and it
does not constitute one of the main contributions of this paper.

IV. GOVERNANCE BY LEVERAGING ELASTICITY

In this section we explain our proposal to govern both:
the elasticity within each provisioning level; and the routing
of consumers requests to the appropriate provisioning level.
Specifically, in Section IV-A we explain how to manage the
elasticity within each provisioning level; and in Section IV-B
we propose an SLA management to satisfy the consumers
demand and SLAs by routing their requests to the suitable
provisioning levels. It is worth to highlight that we consider
in our approach SLAs defining a guarantee on the service
availability and a maximum throughput. For instance, Figure
3 includes the pro SLA in the motivating scenario, written in
iAgree, a WS–Agreement-based language [7], [8]. In further
research we will analyse how to generalise our proposal to
consider more kinds of SLAs.

The governance controller must be provided of some gover-
nance parameters that set up the aforementioned elasticity and
SLA management. These governance parameters comprise: (i)
the time intervals in which the service behaviour is monitored

(e.g. 1 hour to compute current availability; and 30 seconds
to compute current throughput) and the routing actuation is
updated (e.g. 2 seconds to route consumers requests to the cor-
responding provisioning level); (ii) two or more provisioning
levels with an elasticity strategy each, are needed to optimise
the resource provisioning according to the consumers demand;
and (iii) the routing strategies that guide when a consumer
request must be routed to a specific provisioning level in order
to avoid violating its SLA, or wasting resources.

A. Elasticity Management

Aiming to govern how to scale in or out the resources
within each resources provisioning level, the elasticity con-
troller must establish specific elasticity strategies that considers
the SLA terms. In our approach, we use the models depicted
in Figure 4, i.e. a simplified version of WS–Agreement [9]
for SLAs, and SYBL [2] for the elastic service topology, that
includes the elasticity strategies.

As Figure 4 denotes, the elasticity strategies of the SYBL
service topology must be defined on monitorable properties of
the SLA. The reason is the value of a monitorable property
(e.g. the throughput) changes meanwhile the service is being
consumed and therefore, it can be monitored if in an specific
instant its value is acceptable for an specific resources provi-
sioning level or it must be scaled out or in.

In this sense, for the kind of SLAs we use in our approach,
we propose to define the elasticity strategies as follows depend-
ing on the throughput provided by the platform.

Definition 1 (Elasticity Strategies). An elasticity strategy E
can be denoted as a pair of values for the service throughput
minTh and maxTh under and over which a provisioning
level must be scaled in and out, respectively. Thus, it must be
denoted as E = (minTh,maxTh).

The formula we use for the minTh and maxTh depends
on: (i) the variable number of virtual machines (VMs) used
in the provisioning level; (ii) the maximum throughput sup-
ported by each VM (Th VM), which does not vary over the
time; and (iii) a pre-established elasticity speed (elastSpeed)
parameter that ranges between 0 and 1 and denotes the speed
of performing an scaling action (i.e. values near to 1 implies
a slower scaling). The elasticity speed influences the agility
of the service to adapt to drastic workload changes. Thus,
the lower elasticity speed, the lower agility of the service
to adapt to drastic workload changes is, and viceversa. In
addition, when such drastic workload changes take place, lower
elasticity speeds represent to increase the risk of violating an
SLA term. Choosing an optimal elasticity speed depending on
certain circumstances (e.g. the workload and scaling action to
perform) requires a thorough study that is out of the scope of
current paper. In current work we have empirically gathered
an elasticity speed value of 20% that optimse the cost of
developed infrastructure (c.f. Section V-B).

maxTh = Th VM ∗ (1 + elastSpeed) ∗ VMs
minTh = Th VM ∗ (1 + elastSpeed) ∗ (VMs− 1)

Figure 5 depicts an excerpt of the SYBL document used
to specify the topology in the motivating scenario. Note that
the excerpt includes the elasticity strategies for a resources



Agreement

Term

Se rv ice Desc riptionTe rm MonitorablePrope rties

Se rvice Term GuaranteeTe rm Se rv ice Lev e lObj ectiv e

CloudServ ic e Se rv ice Topology Se rv ice Unit SYBLDirectiv e

SL A Mo delSL A Mo del Ela stic Service To polo gy M odelEla stic Service To polo gy M odel

Pa rty

Consumer Prov ide r

Strategy

Sc aleIn Sc aleOut

Constraint Notification Property

1

ob ligate d

terms
1..*

ini tiator/respo nde r

2

1

0..* 0..*

1..* 0..*

0..* 0..*

«d epen ds»

Fig. 4. SLA model and Elastic Service Topology model.

<CloudService id="APIManagementService">
<ServiceTopology id="scenarioTopology">
<ServiceUnit id="DataStoreUnit"/>
<ServiceUnit id="ProvLevel1APIUnit"> <!-- Strategies -->
<SYBLDirective Strategies="
DN_ST2:STRATEGY CASE Th_in > Th_VM * (1 + elastSpeed)

* VMs #:scaleOut;
DN_ST2:STRATEGY CASE Th_in <= Th_VM * (1 + elastSpeed)

* (VMs - 1) #:scaleIn"
Constraints="".../>

</...>
<ServiceUnit id="ProvLevel1LoadBalancerUnit"/>
</...>
</...>

Fig. 5. Excerpt of SYBL topology with elasticity strategy for a prov. level.

provisioning level depending on the incoming throughput that
the platform receives (Th in). As the SYBL notation, as the
SYBL tooling support have been extended to support the
formula specification included in the elasticity strategies. The
other service units of the SYBL document such as the data
store and the load balancer must be previously established by
a topology expert (c.f. the initial setup message in Figure 6).

Once the elasticity strategies are established, the elasticity
controller must actuate on each provisioning level accordingly.
Thus, as depicted in sequence diagram of Figure 6, the
elasticity monitor must detect if an under or over provision
situation takes place while the service is being consumed. In
other words, it must be controlled if the maxTh or minTh
have been exceeded by the incoming throughput Th in (c.f.
conditions of ScalingIn and ScalingOut alt blocks of Figure 6).
In case of under-provisioning situations the elasticity controller
must perform an scale out to leverage more resources. To the
contrary, in case of over-provisioning situations the elasticity
controller must perform an scale in action to free resources.

B. SLA Management

Aiming to fulfill the SLA of consumers in the service
delivery while optimising the resources provisioning, the gov-
ernance platform performs an SLA management in parallel
with the aforementioned elasticity management. The main
goal of such an SLA management is to route each consumer
request to an appropriate resources provisioning level. Such an
appropriate routing is performed through the routing strategies

Elasticity  ManagerElasticity  ManagerGovernance ManagerGovernance Manager

Elasticity  Controller Elasticity  MonitorGovernance
Controller

ProvisioningLevelN

loop Monitoring

[Se rvice  is Ru nnin g & cycle is not  passed]

alt Scal ingOut

[Th _in >  maxTh]

alt Scal ingIn

[Th _in <  min Th]

serviceT opol ogySetup(SYBL )
ap plyEl astici tyStra tegy(SYBL)

sta rtMon itorin g(Co llecti on<consum er>) :ela sticity-Status

no tifyUn derProvisi oning (con sume rId, T h_in )

an alyse Elasti cityS trateg y(co nsum erId, elast icityS trateg y)

sca leOu t(con sume rId)

no tifyOverPro visio ning(consu merId, Th _in)

an alyse Elasti cityS trateg y(co nsum erId, elast icityS trateg y)

sca leIn(consu merId)

Fig. 6. Elasticity management within resources provisioning levels.

that help the SLA controller to evaluate if the QoS experienced
by each consumer satisfy or not its SLA. For the kind of SLAs
we support in the current work, the routing strategies can be
defined as follows.

Definition 2 (Routing Strategies). A routing strategy R can be
denoted as a pair of values for the service availability minAv
and maxAv under and over which a given consumer Ci must
be routed to a lower or a higher provisioning level, respec-
tively. Thus, it must be denoted as R = (minAv,maxAv).

The formula we use for the minAv and maxAv depends
on: (i) the SLO specified in the SLA for the availability
property; (ii) the maximum value for the availability property
(e.g. 100% in general); and (iii) two pre-established routing
speed parameters that ranges between 0 and 1 and denote the
speed of performing a routing action for a consumer. That is,
either increasing (incRoutSpeed) or decreasing (decRoutSpeed)
a provisioning level for a consumer (i.e. values near to 1
implies a faster routing action).

maxAv = (decRoutSpeed ∗ (MaxAv − SLOAv)) + SLOAv

minAv = (incRoutSpeed ∗ (MaxAv − SLOAv)) + SLOAv



For instance, the routing strategy for the Pro SLA of
motivating scenario that is included in Figure 3, would be
Rpro = (97, 97.5) if the increasing and decreasing routing
speed parameters are 0.4 and 0.5, respectively.

As denoted in Figure 7, the SLA monitor is responsible
for detecting and notifying if the thresholds of the routing
strategies (i.e. minAv or maxAv) have been exceeded or not.
Thus, when current availability experienced by a consumer
(c.f. current Av in Figure 7) is less than the minAv threshold,
the SLA controller increases the provisioning level for such
a consumer (c.f. alt block called IncreasingProvisioningLevel
in Figure 7). For instance, if the service must fulfill an
availability of 95% to a consumer, and the routing strategy
is R1 = (97%, 99%), when the SLA monitor detects that
such a consumer has experienced an availability of 96.9%
then, further service request from such a consumer must be
routed to a higher provisoning level with more resources in
order to maintain its experienced availability under control.
To the contrary, when current availability experienced by the
consumer is more than the maxAv threshold, the SLA controller
decreases the provisioning level for the consumer in order to
avoid wasting more resurces than required (c.f. alt block called
DecreasingProvisioningLevel in Figure 7).

Note that establishing appropriate routing strategies is
crucial because the less difference between its threshold values
and the guarantees specified in the SLA, the more SLA viola-
tion risk for the consumers. For instance, in previous example
a routing strategy R2 = (96%, 99%) would be more risky than
R1 because a high number of requests may violate the SLA
before routing the requests to a higher provisioning level. An
appropriate routing strategy requires to choose suitable routing
speed parameters and this is a challenging task because of the
following situations:

• While increasing a provisioning level:
◦ faster routing strategies imply less SLA viola-

tion risk, but a higher cost for the provider.
◦ slower routing strategies imply more SLA vi-

olation risk, but a lower cost for the provider.

• To the contrary, while decreasing a provisioning level:
◦ faster routing strategies imply more SLA vio-

lation risk, but a lower cost for the provider.
◦ slower routing strategies imply less SLA vio-

lation risk, but a higher cost for the provider.

In further research, we will study a general and for-
mal methodology of choosing an appropriate routing strategy
considering previous situations. In current work we have
empirically gathered that aforementioned routing strategy of
Rpro = (97, 97.5) provides a good balance in terms of cost
and violation risk (c.f. Section V-B).

V. EVALUATION

A. Scenario

In this section we present the experiments developed to
evaluate our proposal5. The evaluation is contextualized in a

5The evaluation prototype is available at https://github.com/isa-group/
governify-research-elasticpapamoscas

Governance ManagerGovernance Manager SLA ManagerSLA Manager

SLA Controller

Service

Governance
Controller

RouterSLA Monitor

loop Monitoring

[Se rvice  is Ru nnin g & cycle is not  passed]

alt Incre asingProv isioningLev e l

[cu rrent_ Av < routi ngSt rateg y.min Av]

alt DecreasingProv isioningLev e l

[cu rrent_ Av > routi ngSt rateg y.ma xAv]

rou tingSetup (time Intervals, Colle ction <ProvLeve l>, ro uting Strategies)

rou teCo nsum ers(Collection<Map<Con sume r, Pro vLevel1>>)

sta rtServiceDelive ry()
sta rtMon itorin g(Co llecti on<consum er>) :SLA-Sta tus

no tifyIncreasi ngCo nflic t(consume rId, curren t_Av)

an alyse Routi ngStrateg y(con sume rId, routin gStra tegy)

increase Provisioni ngLe vel(consum erId )

no tifyDe creasingConflic t(con sume rId, curren t_Av)

an alyse Routi ngStrateg y(con sume rId, routin gStra tegy)

de creaseProvision ingLe vel(consu merId )

Fig. 7. SLA management between resources provisioning levels.

scenario of an API for data analytics of biodiversity infor-
mation about birds where different consuming organizations
perform requests. This scenario corresponds with a typical
API service that should address a variable workload from
their consumers by allocating the appropriate resources (i.e.
a number of virtual API service instances); by doing this
allocation, the infrastructure incurs in costs derived from the
uptime of each instance.

Specifically, in our experiments we assume two consuming
organization with different SLAs: A basic plan for Orga-
nization 1 with a service level objective of 90 % average
availability and a pro plan for Organization 2 with a service
level objective of 95 % average availability. In this context,
availability is measured as the rate of successful request
compared with the total number requests. Both SLAs limit
the throughput to 8 operations per seconds. We also refer
throughput as workload in current section. In this experimental
work we have chosen not to incorporate more concurrent
organizations in order to better characterize the benefits of
our approach; further works can lead to exploratory studies
in more complex concurrent multi-tenant scenario.

In order to evaluate the benefits of our approach, we have
designed a set of experiments to analyze the difference between
our approach and two other alternatives:

• A pre-provisioned infrastructure with a number of
resources already deployed (i.e. the required number
of API service instances to fulfill the theoretical maxi-
mum number of concurrent requests). This alternative
does not have any elasticity behavior and it is expected
to be the most expensive option since a maximum
number of instances is running during all the ex-
perimental run; as for the availability perspective,
this alternative is expected to provide a 100% of
availability since all required resources would be ready
to respond at all the time.

• An ungoverned infrastructure with a pure elastic
management of resources where instances are turned
on and off depending on the number of concurrent
requests in each point in time (a.k.a. horizontal elas-
ticity). This alternative does not take into account the



different SLAs and it is expected to be the cheapest
option since the instance number will be reduced to a
minimum depending on the specific workload. From
the availability perspective, this alternative should
be highly sensitive to drastic workload changes and
several response error can be generated from the
elasticity adaptation (i.e. time elapsed between the
elasticity controller triggers the need of a new instance
and the actual instance is fully operational to accept
new requests); as a consequence, this weakness could
potentially cause SLA violations.

• A governed infrastructure (our approach) which pro-
vides a hybrid combination of the others where two
provisioning levels are defined: one with a fully
elasticity management of instances (such as the un-
governed approach) and other with a minimum num-
ber of instances allocated (such as the pre-provisioned
approach). Specifically, in this alternative the con-
suming organizations are routed to the different lev-
els depending on the service level provided in each
moment so there is a fail-safe mechanism to address
potential SLA violations (i.e. a kind of what is known
as vertical elasticity as discussed in Section VII). Our
approach is expected to have an appropriate trade-off
in terms of costs and SLA violations.

B. Testbed

The experimental testbed consists of an 8-core i7-4770,
3.40GHz with 12GB RAM6 running Ubuntu 14.04. The testbed
is setup with an extended iCOMOT platform7 featuring a
docker-based VM elasticity for API service instances; each
alternative compared correspond with a different topology
described in TOSCA8. During the different experiment runs,
each topology alternatively instantiates a different number
of docker containers: (i) in the pre-provisioned topology, 8
docker containers (5 of them corresponding with API service
instances) are instantiated during all the run; (ii) in the un-
governed topology, up to 7 docker containers are instantiated
(4 of them corresponding with API service instances); (iii)
in the topology of our governed approach, up to 9 docker
containers are instantiated (6 of them corresponding with API
service instances). Concerning the parametrization, elasticity
speed for the ungoverned alternative is 0, but for the governed
alternative is 0.2, resulting in the elasticity strategy E=(1.4,
5.6), and Th VM = 7. Th VM was empirically calculated
by stressing a single docker container (with API service
instances) with different throughputs (operations per second)
and assessing the maximum sustainable trouhgput that do not
generates any error. In our governed infrastructure, the routing
speed is established in 0.4, and 0.5 to increase and decrease
the provisioning levels, respectively, resulting in the routing
strategy R=(97, 97.5).

C. Experimental process

Our evaluation process is structured in a list of experiments
with different workload patterns (i.e. a particular distribution

6A detailed specification can be found in the evaluation folder of the github
repository

7http://tuwiendsg.github.io/iCOMOT/
8https://www.oasis-open.org/committees/tosca/

of requests from the consuming organizations). Each run is
repeated a number of times (typically 3) in order to calculate
the average and standard deviation and assure a statistical
significance of the results. Each workload pattern is defined
as a sequence of N intervals of 90 or 120 seconds, during
each interval each consumer organization develops a certain
workload ranging form 1 to 8 (maximum allowed by SLA)
operations per second. Specifically, we have developed three
evolutive experiments (with a total duration of over 135 hours)
to identify the benefits and applicability of our approach:

1) The first experiment consists of 11 different work-
load instances randomly generated from a workload
pattern with N=3 (short patterns) and N=6 (long
patterns).

2) The second experiment consists of 3 different work-
load instances manually designed to have extreme
changes in the workload with N=6.

3) The third experiment consists of 6 different workload
instances randomly designed with N=6 and a standard
deviation of 30% to assure extreme changes in the
workload.

D. Experimental results

Figures 8 and 9 show that evaluation results for the first ex-
periment9 validating our hypothesis: our governed alternative
does not violate the SLA while the cost, that is provided by the
extended iCOMOT platform, remains lower than with the pre-
provisioned alternative10. In contrast, although the ungoverned
alternative is cheaper than the governed one, it violates the
SLA in two workload instances (c.f. T08 and T09). In addition,
it should be highlighted that in most workload instances (8 of
10), the availability provided by using our proposal is best
than using the ungoverned alternative (in the other cases the
difference is less than 1 % of availability as can be seen in T06
and T10). As expected in our governed infrastructure, when
the risk of SLA violation is detected (with the governance
thresholds), the organization request is directly routed to the
pre-provisioned level in order to keep the availability on
desired values. Once the risk is dissipated, the organization
requests would be re-routed to the elastic level again in order
to decrease the cost. Thus, the governed alternative assures the
SLA fulfillment. Moreover, although the cost of the governed
alternative is higher than such provided by the ungoverned
one (c.f. Figure 9), the SLA violations that take place with the
ungoverned alternative (c.f. T08 and T09) may have associated
a penalty cost that is not considered in Figure 9. Note that we
do not include the graph of the availability for test cases of the
organization 1 because although our proposal always assured a
better availability, the SLA were fulfilled by both, the governed
and the ungoverned topology for all test cases.

The results of the second and third experiment analyze
the situations where elasticity is stressed as much as possible
(i.e. requesting in several iterations a minimum amount of
throughput in a cycle and the maximum in the next cycle).
The results of the workload instances of second experiment,

9Due to the space limitations, the full list of experiment results is available
in the evaluation/results folder of the github repository

10The pre-provisioned alternative in all experiments incurs in a fixed total
cost of 0.0162$ per minute and we normalize it to 100% in order to develop
a comparison with the costs of the governed and ungoverned alternatives



80

82

84

86

88

90

92

94

96

98

100

T01 T02 T03 T04 T05 T06 T07 T08 T09 T10

Governed

Ungoverned

SLA_Availability >= 95%

Fig. 8. Availability (in %) of Organisation 2 in the first experiment.

0

10

20

30

40

50

60

70

80

90

Governed

Ungoverned

Fig. 9. Cost (in %) of both Organisations in the first experiment

80

82

84

86

88

90

92

94

96

98

100

T11 T12 T13

Governed

Ungoverned

0

10

20

30

40

50

60

70

80

90

T11 T12 T13

SLA_Availability >= 95%

Fig. 10. Availability and Cost (in %) of Organisation 2 in the second
experiment.

included in Figure 10, show that the ungoverned alternative
violates the SLA of organization 2 for all test cases.

VI. RELATED WORK

As depicted in Table I, several proposals that consider
elasticity and SLAs in their works can be found in the state of
the art. Most of studied proposals [10], [11], [12], [13], [14],
[15] lack only horizontal elasticity. Specifically, Mansouri et
al in [10] and Bonvin et al in [11] propose to use vertical
elasticity by means of algorithms that improve user cost and
selection of required storage services, respectively, while ful-
filling the availability expected by users. Gohad et al propose
in [12] an algorithm to form dynamic cloud collaborations

Elasticity SLAs

Vert. Horiz. Multit. Provider Users

Current Paper X X X X X
Mansouri et al [10] X X X X
Bonvin et al [11] X X X X
Gohad et al [12] X X X X
Simao et al [13] X X X X
Anastasi et al [14] X X X
Cogo et al [15] X X ∼
Ali-Eldin et al [16] X X X
Copil et al [2] X X X
Fitó et al [17] ∼ X X
Andrikopoulos et al [18] X X

Legend: Xsupported feature, ∼partially supported feature.

TABLE I. SUPPORT PROVIDED BY THE EXISTING ELASTICITY
PROPOSALS

and thereby determine the most appropriate linkages within
several providers. They take into account factors such as the
changing consumers demand within the algorithm; and the
resource health and provider capacities in SLAs. Simao et
al in [13] propose to schedule execution units, i.e. virtual
machines (VMs), driven by the partial utility of applying a
certain amount of resources (CPU, memory or bandwidth)
to a given VM. This partial utility metric, specified by the
consumer, allows the provider to transfer resources between
VMs. It is similar to the governance of topology elasticity we
propose in Section IV-B, but we avoid users the responsibility
of establishing such a partial utility. Anastasi et al provide in
[14] a prototype of Cloud Federation that leverages the concept
of usage control, by continuously monitoring and reassessing
the users right on resources. They propose a usage control
that permits to define policies containing conditions that must
be satisfied all the time during the access (a.k.a. continuous
control). Finally, Cogo et al analyse in [15] both, the benefits
a replicated service may obtain from dynamic adaptations in
the cloud and the requirements on the replication system.
Some adaptations they analyse are: to increase/decrease the
capacity of a service (as the subtopology elasticity proposed in
Section IV-A), to recover compromised replicas, or rejuvenate
ageing replicas (as we propose by moving from one resources
provisioning level to another in Section IV-B).

From a vertical scalability perspective, our work does not
present a classical approach but it provides a re-routing mech-
anism that represent an equivalent performance. Alternatively,
two relevant works address this problem in a explicit way: on
the one hand, Andrikopoulos et al propose in [18] a formal
framework which allows exploring the possibility space of
optimally distributing application components across cloud
offerings in an efficient and flexible manner. On the other
hand, Fitó et al [17] propose a comprehensive risk manage-
ment approach to maximize profits and consumer satisfaction
but in contrast with our approach, this work does not take
into consideration elasticity strategies into the service level
management.

Finally, we highlight the approach in [19] where authors
provide a method to detect workload patterns that can be used
to analyse and predict QoS outcomes in a given infrastructure;
this model could be a valuable foundation to complement our
work and develop a systematic characterization of a topology
in order to design the most appropriate scalability thresholds.



VII. CONCLUSIONS AND FUTURE WORK

Although existing elasticity approaches provide mechanism
to leverage a limited amount of the virtualized resources
required to provide the service, they are focused to consumers
with the same QoS expectations. The elasticity benefit has not
been properly analysed when dealing with several consumers
each demanding a different QoS for the service. Thus, in
this paper we develop an elasticity-aware governance platform
combining elasticity management with SLA management to
support multiple QoS expectations from multiple consumers.

The main contributions of the paper tackle the challenges
exposed in the motivation scenario:

• An SLA management that support to provide the same
service to consumers with different QoS expectations.

• An elasticity management that support elastic pro-
visioning levels that scales in or out when needed,
depending on the workload.

• An SLA monitoring that control if the service level
provided to the consumers is as they agreed.

• An proper routing of consumer requests to leverage an
adjusted amount of virtualized resources depending on
the workload and the agreed SLAs.

In addition, a prototype has been developed and putting
available online to evaluate our approach. Specifically, our
proposals proof to provide a right balance between the cost of
deploying the architecture and the risk of violating the SLA
terms. In contrast, a compared pure elastic alternative provides
a cheaper solution but with more SLA violation risk; and a
compared pre-provisioned alternative results in higher cost for
the provider. Specifically, our proposals proof to be better than
both: (i) a cheaper elasticity approach that violates the SLAs,
and (ii) a more expensive approach that leverages the 100%
of resources.

Several issues that are out of the scope of current paper
will be analysed in further research, such as optimising: (i)
the number of resources provisioning levels, (ii) the elasticity
speed, and (iii) the routing speed. In addition, a study of the
most appropriate strategies as for the elasticity as for routing
must be performed considering the provisioning cost for the
provider. Moreover, since we just consider in our approach two
of the most commonly used QoS properties (i.e. availability
and throughput), we have to analyse in future how elasticity
strategies may affect to the values of other QoS properties (e.g.
response time, mean time between failures, etc.). Furthermore,
although we have detected a promising scenario that validates
our approach (i.e. with extreme changes in the workload),
we will develop in further research a benchmark to a better
characterisation of the different scenarios.

Acknowledgment: The authors would like to thank for his
helpful comments and technical support: Duc-Hung Le, Daniel
Moldovan (Distributed Systems Group, TU Wien); and Daniel
Arteaga (ISA research group, University of Seville).

REFERENCES

[1] A. Almeida et al., “A branch-and-bound algorithm for autonomic
adaptation of multi-cloud applications,” in Proceedings of the 2014
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, 2014.

[2] Georgiana Copil et al., “Multi-level elasticity control of cloud services,”
in Service-Oriented Computing, ser. Lecture Notes in Computer Sci-
ence, S. Basu, C. Pautasso, L. Zhang, and X. Fu, Eds., 2013, vol. 8274.

[3] T. Kirkham et al., “Richer requirements for better clouds,” in 2013
IEEE 5th International Conference on Cloud Computing Technology
and Science (CloudCom), vol. 2, Dec 2013, pp. 7–12.

[4] Rajkumar Buyya et al., “Sla-oriented resource provisioning for cloud
computing: Challenges, architecture, and solutions,” in Proc. of Inter-
national Conference on Cloud and Service Computing, 2011.

[5] Ana Juan Ferrer et al., “Optimis: A holistic approach to cloud service
provisioning,” Future Generation Computer Systems, vol. 28, no. 1, pp.
66 – 77, 2012.

[6] R. Moreno-Vozmediano, R. Montero, and I. Llorente, “Key challenges
in cloud computing: Enabling the future internet of services,” Internet
Computing, IEEE, vol. 17, no. 4, pp. 18–25, July 2013.

[7] C. Müller, M. Resinas, and A. Ruiz-Cortés, “Automated analysis of
conflicts in ws–agreement,” IEEE Transactions on Services Computing,
2014.

[8] C. Müller, “On the Automated Analysis of WS-Agreement Documents.
Applications to the Processes of Creating and Monitoring Agreements,”
International dissertation, Universidad de Sevilla, 2013. [Online].
Available: http://www.isa.us.es/sites/default/files/muller-Phd-PTB.pdf

[9] Andrieux et al., “Web Services Agreement Specification (WS-
Agreement) (v. gfd-r.192),” 2011, OGF - Grid Resource Allocation
Agreement Protocol WG.

[10] Y. Mansouri, A. Toosi, and R. Buyya, “Brokering algorithms for
optimizing the availability and cost of cloud storage services,” in
Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, vol. 1, 2013, pp. 581–589.

[11] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,” in
Proceedings of the 1st ACM Symposium on Cloud Computing, ser. SoCC
’10. New York, NY, USA: ACM, 2010, pp. 205–216.

[12] A. Gohad et al., “Towards self-adaptive cloud collaborations,” in
Proceedings of the 2013 IEEE International Conference on Cloud
Engineering, 2013, pp. 54–61.

[13] J. Simão and L. Veiga, “Flexible slas in the cloud with a partial
utility-driven scheduling architecture,” in Proc. of IEEE International
Conference on Cloud Computing Technology and Science - Volume
01, ser. CLOUDCOM ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 274–281.

[14] Gaetano F Anastasi et al., “Usage control in cloud federations,” in
Proc. of 2014 IEEE International Conference on Cloud Engineering.
Washington, DC, USA: IEEE Computer Society, 2014.

[15] Vinicius Cogo et al., “Fitch: Supporting adaptive replicated services in
the cloud,” in Distributed Applications and Interoperable Systems, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
vol. 7891, pp. 15–28.

[16] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elas-
ticity controller for cloud infrastructures,” in Network Operations and
Management Symposium (NOMS), 2012 IEEE, April 2012, pp. 204–
212.

[17] J. O. Fitó and J. Guitart, “Business-driven management of
infrastructure-level risks in cloud providers,” Future Generation Com-
puter Systems, vol. 32, no. 0, pp. 41 – 53, 2014.

[18] Vasilios Andrikopoulos et al., “Optimal distribution of applications
in the cloud,” in Advanced Information Systems Engineering, ser.
Lecture Notes in Computer Science, vol. 8484. Springer International
Publishing, 2014, pp. 75–90.

[19] L. Zhang, Y. Zhang, P. Jamshidi, L. Xu, and C. Pahl, “Service workload
patterns for qos-driven cloud resource management,” Journal of Cloud
Computing, vol. 4, no. 1, pp. 1–21, 2015.


