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Abstract. Developing IoT cloud platforms is very challenging, as IoT
cloud platforms consist of a mix of cloud services and IoT elements, e.g.,
for sensor management, near-realtime events handling, and data analyt-
ics. Developers need several tools for deployment, control, governance
and analytics actions to test and evaluate designs of software compo-
nents and optimize the operation of different design configurations. In
this paper, we describe requirements and our techniques on support-
ing the development and testing of IoT cloud platforms. We present our
choices of tools and engineering actions that help the developer to design,
test and evaluate IoT cloud platforms in multi-cloud environments.

1 Introduction

Recent complex business and societal requirements, e.g., in smart cities, cyber-
physical systems, building information management, and logistics [16,7], have
fostered the integration between the Internet of Things (IoT) and cloud services.
Generally speaking, an IoT cloud platform includes several “Things” connected
to cloud services in data centers using various software and layered protocols,
as intensively discussed in [15,6,7,5]. Technically, such platforms are realized
by having sensors and actuators interfacing ‘Things”; these sensors and actua-
tors are used to monitor and control “Things” (sensors/actuators can also be
“Things”). These sensors and actuators are connected to and/or accessible from
cloud services via gateways or intermediate nodes. Inside IoT gateways, dif-
ferent software components are used to relay sensoring data to data centers,
to (pre)process sensoring data, or to execute commands from data centers to
Things. There are various forms of integration of the IoT part (sensors and
gateways at the edge and the cloud part (cloud services in data centers), such as
shown in [16,7,5], creating so-called IoT cloud platforms. Such IoT cloud plat-
forms include mixed functionalities from typical cloud services and IoT elements
that require novel engineering techniques [20]. Clearly, development and testing
of such IoT cloud platforms are very challenging due to several reasons. First, it
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is not easy to specify and control complex topologies of sensors and gateways in
the IoT side that emulate a real-world deployment for equipment management
in a city. Second, when storing and/or processing IoT data in the cloud, cloud
services have to be designed in such a way that they support elasticity/change in
the IoT side, enabling efficient operation of the whole IoT cloud platform in an
end-to-end manner. However, it is challenging to monitor and control software
components and services spanning across multiple clouds, including those at the
edge of the clouds, in order to adapt the varying load, cost and performance.
Therefore, it would take a long time to design IoT cloud platforms, as it is still
hard to test configurations and features as early as possible, especially when we
need to combine all running pay-per-use services in the cloud with IoT elements.

As integrating cloud software services and IoT in complex, large-scale sce-
narios is very challenging, various works have been focused on cloud engineering
techniques for IoT cloud platforms [7,2,9]. Nevertheless, we still face great engi-
neering difficulties due to the lack of suitable tools to test and evaluate complex
designs of IoT cloud platforms. In our previous work, we have presented a demo
of the iCOMOT framework [19] as a toolset for simplifying the management of
IoT cloud systems. In this paper, we detail requirement analysis, designs, and
engineering actions for iCOMOT which can help accelerating the development
of IoT cloud platforms. Relying on fundamental concepts of virtualization and
elasticity for both IoT and cloud resources, we utilize different tools to speed up
the development of IoT cloud platforms. With our solutions we help reduce com-
plexity and effort of IoT cloud platforms development by leveraging (i) suitable
elasticity engineering techniques for cloud services, which already offer several
common features for executions, data, computation and networks, (ii) open data
sets, which can be used to emulate sensor behaviors, and (iii) appropriate inte-
grated engineering tools for performing deployment, control and analytics tasks
for IoT cloud platforms. In this paper, we also illustrate the usefulness of our
techniques through a case study for predictive maintenance.

The rest of this paper is organized as follows. Section 2 presents our motiva-
tion. Section 3 describes our iCOMOT toolset. We present requirements and our
design and engineering actions in Section 4. We present a case study in Section
5. Related work is discussed in Section 6. We conclude the paper and outline our
future work in Section 7.

2 Motivation – IoT and Cloud Integration Support

2.1 IoT and Cloud integration models

Developers of IoT cloud platforms can have varying goals:

– Goal 1: developers might need only to develop IoT elements (e.g., sensors,
actuators and gateways) for a specific customer and to connect these IoT
elements to existing cloud services. In this case, they might just want to
develop and test a set of sensors that can be deployed into certain gateways
sending the data to public cloud services.



– Goal 2: developers focus on only cloud services at data centers that serve
IoT elements. Typically they focus on a set of complex cloud services, e.g.,
for data storage, complex event processing, and data analytics.

– Goal 3: developers want to design and test a complete IoT cloud platform for
a specific customer. They, therefore, focus on both IoT elements and cloud
services and on how to coordinate them in a unified view for the customer.

Numerous works support the development of either the IoT part or the cloud
services for IoT [12,21,2]. However, there is a lack of tools and discussions for the
development and operations of the last goal– Goal 3. We focus on supporting
developers to concentrate on Goal 3, which is complex but of paramount impor-
tance for several customers, e.g., predictive maintenance of equiment, on-demand
crowd sensing for safe cities [1], and sports events [3]. For such platforms, we
must deal with different engineering principles outlined in [20].

2.2 Development in distributed IoT and cloud systems

As the IoT cloud platform is complex, it is expected that during the develop-
ment, components of the platform must be able to deployed in multiple IoT and
cloud systems. For this, we must have a set of connectors allowing the devel-
oper access to clouds and IoT specific systems so that the developer can deploy
testing infrastructures and run tests across clouds and IoT specific systems. We
also need to deal with different mechanisms of controlling virtual resources and
different performance settings (e.g., expected time for allocating a resource, ex-
pected performance for each resource). As discussed in the related work (Section
6), most tools either enable IoT deployment or cloud deployment; even many
industrial cloud systems support IoT and cloud and enable their integration,
these systems support Goal 1 and Goal 2.

Moreover, at runtime, both IoT elements and cloud services need to be con-
trolled, monitored, and analyzed in a coordinated manner. While throughout the
development lifecycle the developer would need mechanisms to emulate sensors
and gateways in the heterogeneity of different clouds, in a production environ-
ment we have to do an end-to-end control of cloud services and gateways deployed
across IoT networks and clouds. This has to be done in a uniform manner, and
most of the times control on one end of the IoT cloud platform would affect
the control on the other end (e.g., deploying new data processing services on the
gateway would change the characteristics of the load on cloud software services).
As discussed in the related work, this feature is missing in most toolsets.

3 Overview of iCOMOT

To support Goal 3 in multi-IoT and -cloud environments, we design, develop
and experience different tools and engineering actions to address two different
main issues: (i) to provide main software components which are software-defined
services, deployable and configurable, and (ii) to support easy configuration,



deployment, control, and monitoring in a unified manner. To achieve the first
point, we base on two main emerging research directions:

– software-defined IoT units: sensor and gateway components are considered
as units that can be composed and controlled via software-defined APIs.

– cloud-based elastic services: they are common cloud services offered by dif-
ferent providers. To enable the elasticity, some services will be associated
with elasticity capabilities.

To achieve the second point, we build a toolset to enable elasticity control de-
velopments. Figure 1 describes how we leverage our existing tools and our engi-
neering actions to develop IoT cloud platforms. Cloud providers and third-party
developers can design and provide several components and services that will
available through PaaS/IaaS and public repositories/marketplaces. A developer
will utilize these services and components and to develop her/his own services
and components. Then s/he can utilize various tools to support service deploy-
ment, configuration, analytics and control to test and evaluate her/his designs.

To this end, we have demonstrated the iCOMOT framework to support the
developer to develop and test different configurations and runtime behaviors
of IoT cloud systems. iCOMOT (http://tuwiendsg.github.io/iCOMOT/) in-
cludes several individual research tools for configuring, deploying, monitoring
and controlling IoT cloud platforms, such as SYBL, SALSA, MELA and Gov-
Ops [19]. We connect several common repositories and together with these tools
to support automation of IoT cloud platform configurations deployment. Fur-
thermore, several sensors with data sets are also provided. The following sections,
we will explain main insightful engineering actions, designs and experiences.

Fig. 1. Engineering tools and actions

4 Design and Engineering Actions

4.1 Software components for IoT cloud platforms

IoT Units and Cloud Services Repository Requirements: Existing cloud
APIs already allow us to invoke suitable cloud services at data centers and
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to emulate execution environments (e.g., lightweight virtual machines for emu-
lated IoT gateways). However, they do not support the IoT side well, such as,
modeling, configuring, deploying and testing different types of sensors, gateway
software components, and libraries for cloud connectivity.
Solutions: To model and capture IoT unit capabilities and configuration with
software artifact, we leverage the concept of IoT cloud units [14] to successfully
model suitable IoT resources and enable some useful behaviors, such as dy-
namically changing communication protocols between IoT gateways and cloud
services at runtime. As IoT units can be provided by different developers and
providers, we support access to different component repositories for existing IoT
units, such as gateways execution environment, virtual network routers and com-
munication protocols for cloud connectivity. These repositories can be leveraged
by well-developed technologies, such as Docker Hub, Git-based repositories and
Maven, and IoT marketplaces, such as [4,21,2].

Software Sensors Requirements: One important type of IoT software units
are sensors. For development and testing, it is crucial to have emulated sensors
whose behavior is similar to real sensors but with advanced features to allow us
to easily control the sensors. An emulated sensor just takes time series datasets,
e.g., obtained from industrial real systems, and simulates events by sending them
to gateways. By leveraging different real datasets, we can instantiate different
sensors by configuring these instances with different sample data and behavior
models. With this way, we can emulate GPS, energy consumption, tempera-
ture sensors, chiller’s operational status, etc., for different types of IoT cloud
platforms.
Solutions: In our framework, the developer can develop her/his real sensors or
emulated sensors then deposit them into the repository from which they can be
deployed into IoT cloud platforms. To support rapid development of the IoT
side, one important issue is to have simulated sensors as executable that can be
deployed at a very large-scale in multi-cloud environments to simulate real situ-
ations, e.g., monitoring chillers in a city, in IoT cloud platforms. We also enable
the users to modify configurations while the sensors are running, for simulat-
ing different workloads or for testing their application under various out-of-the
ordinary circumstances (e.g., fire at a location). The developer can also design
topologies of different sensors for better management and reuse. In production
scenarios of an IoT cloud platform, sensors will be physically distributed at dif-
ferent places, while, in simulations and tests, sensors are deployed in different
VMs, OS containters, lightweight machines like Raspberry Pi, or cloud data
centers. To enhance interoperability and reusability of possible sensor architec-
tures, we present the topologies of sensors by well-known description languages,
such as TOSCA (https://www.oasis-open.org/committees/tosca/), for the
deployment and control process.

Software-defined Gateways Requirements: In certain IoT cloud platforms,
sensors can directly connect to cloud services. However, in our experience, very
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often gateways are needed as intermediate nodes for handling different types
of sensoring data and connectivities. We consider and support gateways as an-
other type of IoT software/hardware units. Gateways are much more complex
than sensors. For example, gateways can store information and execute some
lightweight components to process sensoring data in the cloudlets model [18].

Solutions: From the architecture design perspective, we develop and provision
gateways functionality by using our concept of software-defined IoT units [14].
Generally, a software-defined gateway consists of a set of dependent IoT units de-
ployed in a virtualized environment, e.g. CentOS or Docker. These IoT units are
responsible for managing data streams, controls of actuators, cloud connectivity
and lightweight data storage and processing. The key point of a software-defined
gateway is that it enables dynamic deployment and configuration of IoT units to
handle data, control and connectivity in the IoT systems. This enables the devel-
oper to implement IoT-side distributed data processing, such as pre-processing
data in gateways and splitting streams, i.e., sending events to multiple cloud
services.

Cloud Services for IoT Requirements: At data centers, both cloud-offered
services and custom-built software components can be used for building the
IoT cloud platform. Main cloud providers, such as Amazon EC2 (http://aws.
amazon.com), Rackspace (http://www.rackspace.com), Windows Azure (http:
//azure.microsoft.com/en-us/) or Flexiant (http://www.flexiant.com/),
offer diverse types of cloud services, from infrastructure (e.g., VMs, networking,
virtual storage), to platform (e.g., load balancer, message queue), to manage-
ment (e.g., monitoring, backup, auto scaling), and data analysis applications
(e.g., stream data processing services). However, it is challenging to combine
and use such services in a coordinated mode with IoT elements, for example,
to enable the elasticity coordination between IoT sensors and cloud services for
data processing [20].

Solutions: Focusing on elastic software components, we enable developers to
employ a series of off-the-shelf software components in building their elastic
platforms. The most commonly used software components are load balancers
(e.g., HTTP load balancer – HAProxy http://www.haproxy.org/), which en-
able elasticity of web servers serving platform clients. Next, distributed data
storage frameworks (e.g., Cassandra – http://cassandra.apache.org/ – and
MongoDB – http://www.mongodb.org/) are crucial in building elastic data
ends, but must be configured and managed accordingly, as scaling a data end is
usually a complex operation, implying data moving and copying. Another class
of software components used for enabling elasticity is message oriented mid-
dleware, (e.g., Apache ActiveMQ – http://activemq.apache.org/), which, by
decoupling the communication between components, enable seamless addition
and removal of component’s instances. In general, while we are not developing
such common software, we focus on how to glue them using elasticity techniques
for elastic IoT cloud platforms.

http://aws.amazon.com
http://aws.amazon.com
http://www.rackspace.com
http://azure.microsoft.com/en-us/
http://azure.microsoft.com/en-us/
http://www.flexiant.com/
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http://cassandra.apache.org/
http://www.mongodb.org/
http://activemq.apache.org/


4.2 Deployment, Control, and Monitoring Actions

Deployment Requirements: The developer has to deploy components of IoT
cloud platforms very often in order to study and test them. Generally, a deploy-
ment service will have to deal with both IoT and cloud service sides. We need
the deployment of different types of services and manage from single compo-
nents to the entire platform configuration at runtime. Therefore, the developer
has to prepare at set of deployment artifacts in the repository including the
dataset, configuration script, software artifacts. The APIs and information for
accessing cloud infrastructures must also be prepared. We witnessed that these
complex tasks cannot be done by a single tool, but multiple tools and connectors
to different clouds, orchestrated by a centralized service.

Solutions: Currently we can describe deployment descriptions using various for-
mat such as TOSCA, HEAT (https://wiki.openstack.org/wiki/Heat) or
AWS CloudFormation (http://aws.amazon.com/cloudformation/), Juju (https:
//juju.ubuntu.com), Cloud Foundry build packs (http://docs.cloudfoundry.
org/buildpacks/custom.html). We use TOSCA intensively as it provides a
generic model to define cloud services and support loose-coupling relationships
between multiple component types, which makes the description independent
from cloud providers and deployment tools. However, we experienced that TOSCA
description is complex to create, maintain and process, so it requires compre-
hensive and easy-to-use tools for users and developers, especially for deploying
IoT units into gateways. For the application provider who just want to deploy
the services or sensors, a description tool with GUI that hides the low-level in-
formation is more convenient. With an end-to-end aspect, the deployment needs
to cope with different levels of deployment, including requesting cloud provider
resources, configuring virtual machines, middleware and dependencies, and de-
ploying artifacts.

Elasticity Analytics Requirements: For analyzing the elasticity change of the
IoT cloud platform (e.g., scaling in/out cloud services and sensor instances),
elasticity analytics will be deployed at different parts of the platform to provide
different performance and elasticity metrics. An elastic IoT cloud platform would
have elasticity requirements defined over its components, based on which intel-
ligent controllers can analyze its behavior and take appropriate actions. Due to
the potential complexity of IoT cloud platforms, the developer might not know
such requirements for all platform components, especially reflecting the depen-
dencies between the IoT part and the cloud part. For example, a developer might
not understand the cloud storage performance required to fulfill the requirement
of activating more sensors.

Solutions: To custom IoT cloud platform-specific analytics, we follow two differ-
ent approaches: (i) bottom-up: common built-in metrics are structured and ana-
lyzed automatically, providing an overview over the platform’s elasticity, and (ii)
top-down: the platform developer can define custom, potentially domain-specific,
metrics and analytics functions. Thus, we provide a complete end-to-end view
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over behavioral limits of the platform to enable the developer to refine the plat-
form, and improve its control strategies. Especially, it is crucial to define an
analytics function, which, based on supplied requirements, records encountered
bounds on the monitored metrics not targeted by user requirements, in which
the developer requirements were respected.

Elasticity Control Requirements: We need to enable elasticity for various parts
of the IoT cloud platforms, such as sensors, gateways and cloud services, during
the development and operation. This means that elasticity control mechanisms
and tools must work across sub-platforms for design, test and operation pur-
poses and must interface various protocols (e.g., REST, RMI, ssh + bash exe-
cution) used to change software components. Moreover, most developers would
be interested in specifying abstract, high-level requirements (e.g., not focused on
system-level metrics, controlling the software service as a whole).
Solutions: For sensors, developers could control the behavior of sensors (e.g.,
data reading frequency), to which gateway a sensor connects as well as the pro-
tocols between by gateways and sensors. At gateways, developers could control
the number of sensor connections, the amount of data which is stored locally con-
sidering various constraints (e.g., the gateway has very limited computational
power, memory and space). Moreover, we can add/remove various components
for locally processing information, or change their sensitivity. For cloud services
in an IoT cloud platform, we can support various known control mechanisms: (i)
virtual infrastructure capabilities (e.g., add/remove virtual machines, network
interfaces, disks), (ii) platform specific capabilities (e.g., start/stop web server,
deploy/undeploy service in existing web server), or (iii) application-specific (e.g.,
using API offered by cloud services developers). capabilities. Each of these can
be enforced separately or grouped into complex control processes. However,
elasticity setup cannot be completely automated, and completely application-
independent. In case developers need more advanced elasticity control, they can
encapsulate them into their application-specific control mechanisms (e.g., use a
web server deploy together with a new configuration, to result into other per-
formance/cost characteristics). For controlling elasticity, we enable interaction-
based control to empower the developers with refining their control strategies,
considering the evolution of the service at runtime.

5 Experiments

5.1 Case Studies

Let us consider a scenario in which a predictive maintenance company would
like to focus on predictive analytics for chillers in a city. The company wants to
reuse/rent as much as possible IoT cloud infrastructures so that the company
will focus on deploying its sensors, gateways, and cloud services. Both sensors,
gateways and cloud services establish the company’s IoT cloud platform. The
IoT cloud platform includes gateways at the IoT part and cloud services at



the data center. All of them are virtualized services, meaning that they can be
deployed, configured and used on-the-fly. The predictive maintenance company
will need features from the IoT cloud platform provider, which provides the
right configuration of the IoT cloud platform for the predictive maintenance
company.The IoT cloud platform can offer features for a predictive maintenance
company which monitors chillers and perform data analytics and maintenance
tasks. In this case study, we will focus on the case the predictive maintenance
company wants to buy services from an IoT cloud platform provider to create a
configuration of its own elastic IoT cloud platform. Then the company develops
and tests different sensors which connect to its elastic IoT cloud platform to
have a complete system for gathering data to support data analytics1.

5.2 Development and Deployment

First all of all, to make the (re)configuration of the IoT cloud platform flexi-
ble, using our toolset (Fig. 2), the predictive maintenance company can deploy
two separate configurations: a configuration of the IoT sensors and gateways
(A©), and another of the cloud data center ( B©). This enables them to play with
different sensors easily regarding data and topology, communication protocols,
bursting workload, while the cloud services might be stable. For both configu-
rations, IoT units and cloud services are provided from different providers from
various repositories. The configurations will be specified in TOSCA and we Pro-
vision ( 1©) them. Figure 2 shows the TOSCA-based sensor topology and an
example of two topologies of sensors on two VMs, which allows the developer to
manage single sensors and sensor topologies2 (and VM which hosts sensors in
simulation scenarios). Figure 2 shows the deployment of an elastic IoT config-
uration platform – named ElasticIoTPlatform – at the data center to reflect
real cloud services and simulated gateways. With our techniques, such config-
urations (for sensors and for gateways/services) can be also programmed using
Java code, enabling different ways to program and test IoT cloud platforms.

Having the entire IoT platform is provisioned, the company focuses on Mon-
itoring( 1©)). Before provisioning, platform developers must have in mind what
monitoring data is relevant for the elasticity of the platform, and implement
the necessary monitoring capabilities. A crucial factor in elastic platforms is
that instances of units tend to appear/disappear dynamically at run-time as a
result of scaling actions being enforced due to various elasticity requirements
(e.g., platform performance, quality, cost). Thus, the company wants to avoid
monitoring information being lost due to scaling in/out of individual units, and
also to have and overview over the overall behavior of the platform units and
not only individual unit instances. Thus, the platform developer must use our
tool for deciding the contribution of a unit instance to the overall behavior of

1 see https://github.com/tuwiendsg/DaaSM2M and https://github.com/

tuwiendsg/SDM
2 see https://github.com/tuwiendsg/DaaSM2M/tree/master/Configurations/

sensors for samples of TOSCA
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Fig. 2. Toolset for Developing and Testing Elastic IoT Cloud Platforms

the entire platform, or individual units, and structure monitoring information
according to the architecture of the platform. For example, the developer could
decide that CPU usage of all unit instances must be averaged, and that the
network data transfer must be summed.

After having the platform deployed and monitored, the company focuses
on the various Governance( 3©)) processes which must be enforced over the IoT
sensors and gateways, arising from the company’s different security, geo-political,
or performance objectives. For example, an abnormal event might be detected
by the IoT platform, such as dangerous gas detected in a smart building. In
such a case, for better analyzing the cause of the event, the frequency and data
collected might need to be changed. For enabling such dynamic changes, we
can invoke sensor and gateway capabilities through their APIs for changing data
collection frequency, or execute a complex process for changing the security levels



and protocols used to send data. Leveraging these capabilities, we can enable
processes for governing the gateways and sensors in different situations.

Governance processes might change the frequency, size, and mechanisms in
which sensor data is collected, processed and sent to the cloud data center. Thus,
an Elasticity control( 4©)) mechanism is crucial for ensuring the performance and
quality of the overall IoT platform, especially during and after the execution of
governance processes, through elasticity. To enable elasticity control, the plat-
form developers must design and develop elasticity capabilities for the individual
platform units, w.r.t, their type and purpose. Any capability that enables dy-
namic reconfiguration of any aspect or property of the platform units qualifies as
an elasticity capability, and must be designed and implemented in the platform
units, and enforced at run-time. For example, if a governance process increases
the data collection frequency, the elasticity control mechanism should scale the
platform to handle the load increase.

One lesson learned is that from architectural design, development and oper-
ation, we need to decide if all of these complex services, gateways and sensors
should be specified and deployed in a single software configuration or not. It
is possible but it is not flexible and it is hard to manage. On the other hand,
from an IoT cloud platform provider perspective, it is typical to provide a plat-
form that includes gateways (at the edge) connecting to cloud services (in the
data center) and let the customer to deploy possible sensors and configure these
gateways and services to fit into the customer need.

5.3 Elasticity Analytics and Control

After developing the ElasticIoTPlatform configuration, the developer can use
our toolset for deploying and running it. At runtime, the developer is able to
follow the behavior of the application using our monitoring features, in order to
refine the elasticity and governance requirements and respectively policies. For
such a complex use-case, which encompasses both IoT and cloud environments,
there are two main control perspectives: (i) controlling the services deployed in
the cloud which manage data processing and storing, (ii) controlling the IoT
parts for addressing the governance policies.

In an emergency scenario, the entire ElasticIoTPlatform needs to react in
order to localize or to better analyze the cause of the emergency. For this, further
data needs to be collected, for avoiding errors and miss-predictions. Figure 3
shows a process described by the developer for addressing such case, in which the
sensor push rate is increased (i.e., due to governance policy), and the cloud
services are allowed to scale to higher cost levels. The latter is intended to address
the issue of cost limit in the elasticity requirements, as normally the developer
specifies a cloud service cost limit, for safety reasons. In a day-to-day case, with
an increasing workload the cloud service would employ more and more virtual
resources up to the cost limit, while in the emergency scenario, the cloud service
can exceed the respective limit. From our experiences, we learned that, in our
architectural designs, controlling elasticity of cloud software services should give
sufficient powers to developers (e.g., controlling multiple software services at a



Fig. 3. Elasticity and governance process for the ElasticIoTPlatform configuration

time, different software stacks, both system and application level metrics), while
maintaining a simple mechanism of elasticity control specification. Moreover, this
control of gateways or of sensors, should interface with a variety of tools (e.g.,
different cloud providers, using different protocols, different gateway vendor-
specific tools), for providing an end-to-end control of IoT cloud platforms.

5.4 Deployment and Failures

Let us consider some aspects related to the use of tools to evaluate IoT cloud
platform deployment. We use our private DSG OpenStack, Stratuslab LAL pub-
lic cloud (http://www.stratuslab.eu) and Flexiant public cloud. We run our
deployment engine in our private OpenStack with m1.medium VM (2 CPU and
3,750 MB RAM) in the DSG cloud in order to test deployment issues for sensors
and a configuration of an elastic IoT cloud platform – ElasticIotPlatform.
While we deploy ElasticIoTPlatform in our DSG cloud, we want to emulate
several sensors by deploying them in both clouds where on each m1.small VM (1
CPU, 2GB RAM)3, we deploy 30 sensors. We tested our studied configuration
of an IoT cloud platform by deploying and activating from 100 to 350 sensors
(when we use both clouds we deploy sensors equally in each cloud). Figure 4
show an increasing and varying trend of deployment failure rates. We can see
that Flexiant has higher software failure rate by looking the deviation of failure
percent of sensors and VMs, and VM failures are caused by the high number
of concurrent requests on clouds. Our examples here are not about the perfor-
mance issue of underlying clouds or deployment tools but show that by using
a rich toolset, one can understand uncertain performance of clouds to utilize

3 A CPU on DSG is T7700 @2.40 GHz, on Stratus is a QEMU CPU @2.20 GHz, and
on Flexiant is QEMU CPU @3.10GHz

http://www.stratuslab.eu


elasticity control and analytics features not only to deal with these performance
and failure issues but to coordinate actions carried out at the IoT side.
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6 Related Work

Several challenges of IoT and cloud integration are discussed intensively [7,5].
Many IoT platforms have been developed [21,2] based on which different added
services can be added. Our work is not about developing a particular IoT cloud
platform, but focusing on techniques accelerating the development of such plat-
forms. Although experiences have been shared, we have not seen similar experi-
ences discussing rapid end-to-end development of elastic IoT cloud platforms.

Several frameworks support the development of IoT, such as [8,17,10]. Indus-
trial tools, such as Predix (http://www.predix.io) and Microsoft Azure IoT
(https://azure.microsoft.com/en-us/documentation/suites/iot-suite),
also allow us to write IoT sensors and connect the sensors to cloud services. But
they do not support elasicity controls. In our work, we do not focus on program-
ming IoT sensors but recombine existing units and deploy them cross-issue span-
ning both IoT and clouds. The IBM experimental Internet of Thing Workbench
(console.ng.bluemix.net/catalog/services/internet-of-things-workbench)
offers capabilities to design and simulate end-to-end IoT cloud systems, but it
does not support end-to-end monitoring and elasticity control.

In [11] experiences and evaluations of cloud application portability have been
provided. Such evaluations are useful for us to decide the infrastructure used for
the cloud service part of the IoT PaaS. However, they have not focused on
IoT clouds in general. Zarko et al. [22] describe the CUPUS (CloUd-based PUb-
lish/Subscribe for the Internet of Things) middleware, part of the OpenIoT plat-
form [23], which provides functionality for dynamically adding/removing sensors
to/from an IoT Platform spanning mobile networks and cloud infrastructures.
We do not focus on particular platforms but we enable such functionality. Mazhe-
lis et al. [13] conduct a comparative study on existing IoT platforms. The authors

http://www.predix.io
https://azure.microsoft.com/en-us/documentation/suites/iot-suite
console.ng.bluemix.net/catalog/services/internet-of-things-workbench


emphasize the need of having complex IoT platforms and supporting design and
implementation phase and operation phase, although none of the compared ones
(e.g., Xively, Axeda, Etherios) fully supports the end-to-end requirements of de-
velopers of such platforms. Our work aims at providing tools for such need.

There are some approaches on supporting simulation of IoT and IoT cloud
systems, such as [24]. However, they are purely simulation systems, while we
support configuration and testing of emulated sensors and gateways running in
the cloud that interact with real-world cloud systems.

7 Conclusions and Future Work

In this paper, we described requirements, toolsets and engineering analytics for
elastic IoT cloud platforms that simplify and accelerate the development of IoT
cloud platforms, based on our development of the iCOMOT. Given the complex-
ity of IoT cloud platform development requirements, it is hard to find any single,
even powerful, toolset that will meet all the requirements. Therefore, we have
to carry out appropriate engineering actions and also integrating different tools
into our iCOMOT toolset. We show how utilzing such an integrated toolset we
can simplify the development and and testing of IoT cloud platforms.

Currently, we focus on building a common knowledge of components, topolo-
gies and artifacts for supporting testing and evaluation of uncertainties in elastic
IoT cloud platforms, in particular, and cyber-physical systems, in general.
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