
SINC – An Information-Centric Approach for
End-to-End IoT Cloud Resource Provisioning

Hong-Linh Truong
Distributed Systems Group, TU Wien, Austria

truong@dsg.tuwien.ac.at

Nanjangud Narendra
Ericsson Research, Bangalore, India
nanjangud.narendra@ericsson.com

Abstract

The explosive growth of Internet of Things (IoT) has raised the need for
effective provisioning and management of resources in an IoT-based system.
By resource we mean any entity (physical or virtual) that makes up the IoT
system, such as sensors, gateways, network elements, and cloud data stores.
Typical user requests for resource provisioning demand end-to-end slices of
an IoT system, and these requests are also dynamic and constantly changing.
Meeting such requests using today’s approaches is a time-consuming process
since such end-to-end slices need to be hardwired together due to the lack
of information-centric frameworks to aggregate and control diverse types of
resources from IoT, network functions and cloud infrastructures.

To that end, in this conceptual paper, we propose an information-centric
approach towards IoT resources provisioning and management. By virtualiz-
ing access to underlying IoT resources and leveraging APIs to manipulate
those resources, our approach proposes techniques to enable IoT system
designers to automate resource provisioning and management for users across
IoT, network functions and clouds. In doing so, our approach focuses on novel
concepts to create and manage end-to-end slices of diverse types of resources
from different, distributed infrastructures. In this paper we present SINC –
Slicing IoT, Network Functions, and Clouds – which enables designers to
dynamically create/update end-to-end slices of the overall IoT network in
order to simultaneously meet multiple user needs. We describe SINC layers
and components and also outline our approach to an implementation of SINC.

1. Introduction

Driven by advances in sensor networking and mobile com-
puting technologies, Internet of Things (IoT) systems are now
becoming prevalent in practically every real-world application
domain. Some estimates put the number of IoT devices in
the world to about 25 billion by the year 2020 [1]. Typically,
state-of-the-art IoT systems [2] comprise three major building
blocks: IoT including sensors, actuators, and gateways at
the edge, networking equipment and services in the middle,
and backend cloud data centers. Such building blocks are
also fundamental in mobile-edge-computing, fog computing
and cloudlets computing models [3], [4], [5]. These need
to be integrated in order to provide usable functionality to
users, and are typically provisioned and configured within
networks that possess high speed communication capabilities.
Moreover, such networks would be large in size, comprising
thousands of IoT devices (along with other IoT resources
such as gateways, routers, or switches), which, through the
networks, communicate with cloud services in data centers.

1.1. Motivation

Consider, for example, an emergency response scenario,
such as a fire in a crowded theater resulting in several

casualties. Such a scenario would require the following:

• Emergency response services would need to be composed
on the fly, involving a combination of the following (but
not limited to): provisioning ambulances, provisioning
fire engines, alerting doctors, alerting hospitals, and iden-
tifying optimal roads/routes to be assigned for emergency
vehicles.

• Victims would be identified and their conditions mon-
itored either by wearable sensors that they are wearing,
or wearable sensors that the emergency responders would
attach to their bodies.

• The information from the victims, along with informa-
tion sent by emergency responders, would inform the
appropriate treatment protocols to be administered to the
victims on the fly during their transit to the hospital.

• Additionally, traffic sensors could point to the most op-
timal route that emergency vehicles can take, depending
on extent of traffic – although emergency vehicles always
have right of way, heavy traffic on certain roads would
become difficult to clear quickly enough, especially if
there are traffic jams.

In such a scenario, we see the need to establish an on-demand
IoT cloud system consisting of several IoT elements at the
edge, network function capabilities in the middle, and cloud
services at the backend. The user of such an IoT cloud system
– the stakeholder who needs to perform responses to the
scenario – actually wants to have an end-to-end provisioning
of resources spanning from the edge, the middle, to the back-
end, with guaranteed quality of services, due to the short but
crucial and heavy workload. With current technologies, such
an implementation would require the user to provision each
resource – IoT, network functions, cloud – separately, and then
manually stitch them together, which is a time consuming and
error-prone activity.

Similar requirements are also seen in different applications
in cloudlets and mobile-edge-computing models [6], [5], such
as on-demand crowd sensing in smart cities [7] and perfor-
mance monitoring in sports events [8], when short, high-
demand networks and computing resources are needed. Such
a dynamic (and rapid) provisioning of resources for the IoT
cloud system is currently not possible in current systems, since
users would need to rent the various components such as
sensors, network equipment and cloud storage separately, and



get them integrated via third parties. This is because (i) most
IoT system modeling nowadays is host-centric [9], i.e., tied
to the actual host (i.e, source) where particular functionality
is available, and (ii) virtualization and dynamic provisioning
techniques are investigated for IoT, network functions and
cloud infrastructures individually, but not collectively. Thus,
creating and managing end-to-end slices of resources spanning
different types of systems is difficult, if not impossible, with
current technologies.

1.2. Contributions

To address the above-mentioned issues, in this paper, we
present an information-centric approach [10], [11], [12] to-
wards IoT (sensors and actuators), network functions and
cloud resource provisioning, which we call information-centric
slicing and provisioning. Such an approach would enable users
to, for example, provision a combination of the following
for emergency response crews: dedicated access to data from
specified sensors/wearables, dedicated network bandwidth, and
reserved compute and storage space in cloud data centers, for
as long as they need to complete providing emergency medical
assistance to the fire victims. End-to-end resource slicing will
need to utilize different techniques for different infrastructures.
Thus, for network functions connecting IoT and clouds, our
approach will use 5G network slicing [13], [14] to ensure
that an end-to-end dedicated “slice” of the overall IoT system
(encompassing sensors & actuators, network infrastructure, as
well as cloud resources such as compute & storage) is avail-
able for specific requirements (e.g., the emergency response
crews), and which will not face interference from other other
existing networking services offered to the users. Indeed, the
approach in [14] shows how network slices can be created by
enabling the declarative specification of customer’s network
requirements, which are then translated into actual physical
resource allocation at level of networking equipment.

For IoT and cloud resources, our approach will use
virtualization and on-demand resources provisioning tech-
niques. Ultimately, we do approach end-to-end resource slicing
by information-centric resource naming, slicing and routing
through the overlay network abstracting and integrating host-
centric resource infrastructures.

In this paper, we elaborate our approach by contributing the
SINC framework (Slicing IoT, Network functions, and Clouds)
and discuss main building blocks for SINC to support the users
to create and manage their end-to-end slices of resources.

1.3. Paper Structure

The rest of our paper is organized as follows. In Section 2,
we discuss some of the research challenges for provisioning
end-to-end slices of resources in IoT systems. In Section 3
we discuss our information-centric approach for IoT system
provisioning and also present our proposed SINC framework
for the same. Section 4 positions our approach against related

work in this area, and the paper concludes in Section 5 with
suggestions for future work.

2. Research Challenges

Many application scenarios require techniques to provi-
sion resources spanning IoT sites, networks and clouds. In
these scenarios, users want to have an end-to-end view of
resources so that they can configure and control resources
to make sure that resources fulfill the requirements given
specific contexts, such as, high performance, high availability,
and high throughput. However, considering the diversity and
complexity of resources, users do not want to deal with
host-centric information (e.g., low-level sensor identifier and
network routers).

Dynamic provisioning of IoT devices (sensors and actua-
tors), edge-to-cloud network resources, and cloud data center
resources as envisioned in our paper needs to address the
following research challenges before it becomes a reality:

• Modeling Distributed IoT, Network Functions and Cloud
Resource Capabilities: resources are of varied types, such
as sensors, actuators, network elements (routers, gate-
ways, and switches), backend cloud resources (compute
and storage). In the traditional host-centric networking
paradigm, each of these resources is identified individ-
ually and modeled in an information model. However,
information-centric provisioning requires capability mod-
eling at higher abstraction levels. Referring to our running
example, emergency crews may want to determine the
vehicular traffic flow through a particular highway, for
the purpose of determining if there are any blockages.
This would require integrated information from multiple
traffic sensors (road sensors, camera sensors, etc.) along
the highway, which needs to be presented to the user in
summarized form.

• End-to-End Networks Slicing: Network slicing is already
present in implementations such as OpenFlow [15]. How-
ever, the end-to-end slicing of all resources across the
edge, the middle and the back-end required by implemen-
tations such as our running example is still an open prob-
lem. This would require special techniques for: modeling
the slice, representing it in memory, reserving resources
at various levels from different infrastructure-as-a-service
in order to provision the slice (e.g., sensors, network
bandwidth, virtual machines, storage), and automatically
updating/releasing them in response to users’ (constantly
changing) needs.

• Resource Composition in Network Slices: After end-
to-end network slicing is implemented, IoT resources
have to be “composed”, i.e., provisioned together in a
particular sequence as per the user’s needs. For example,
accessing data from a set of sensors would require the fol-
lowing resources to be provisioned, perhaps in order: net-
work access to intermediate gateway, gateway access to
“virtual” sensor (that collates data from multiple sensors),
“virtual” sensor access to appropriate set of sensors. All



the while, this will have to be executed over virtualized
network infrastructure such as OpenFlow, which would
require implementing multiple path forwarding actions
across the network slice.

• Re-configuring Composed Resources: After the above re-
source composition is completed, issues could still arise.
Referring to our running example, a network outage could
occur in the network slice, perhaps due to a hardware
fault in some network equipment. This would require
dynamically reconfiguring and recomposing the network
slice by appropriately rerouting network flows away from
the faulty equipment.

Addressing these issues will create basic building blocks for
us to provision an end-to-end slice of IoT, network functions
and cloud resources.

3. SINC Framework

We approach the above-mentioned issues by designing a
framework named Slicing IoT, Network Functions and Clouds
(SINC). The goal of the framework is to provide fundamental
building blocks to enable the creation, management and adap-
tion end-to-end slices of diverse types of resources from IoT,
network functions and clouds for particular customers based
on their functional and non-functional requirements.

3.1. Conceptual Architecture

The overall conceptual architecture of our framework is as
depicted in Fig. 1. We envisage the existence of a user request
provisioning component at the Application layer (the top layer
in Fig. 1), which is essentially a placeholder for a compo-
nent that processes user requests and invokes the appropriate
components in our SINC framework. Typical applications for
our framework would be emergency application, on-demand
sensing, sport event management, to name just a few. We also
envisage the availability of different types of IoT Networks,
Network Function Services and Clouds infrastructures, shown
at the bottom of Fig. 1. These types of infrastructures can be
simple or complex, e.g., an IoT network might just consist
of a set of public sensors that can access directly or a
set of pay-per-use sensors, actuators and gateways offered
under the service model [16]. Similarly, Network Function
Services might be provided by an on-demand micro data center
[17], [18] connected to telco networks or complex network
function virtualization services offered by telcos in the fog
computing model [19]. These infrastructures provide different
types of resources and these resources will be accessible and
controllable through well-defined APIs.

The SINC framework will include three layers: (i) API
Integration and Communication, (ii) Naming, Slicing and
Routing, and (iii) Resource Management, Configuration, and
Adaptation. We devise API Integration and Communication for
integrating and communicating existing infrastructures of sen-
sors, edge-to-cloud and cloud resources, each from different
vendors, whereas Resource Management, Configuration and

Adaptation is meant for specific operations on provisioning
end-to-end slices for the applications. The Naming, Slicing and
Routing layer comprises components for information-centric
provisioning partially derived from [20]. The Naming compo-
nent is responsible for assigning identities to virtual resources,
such as virtual sensors or virtual networks. It also maintains
mappings to the actual underlying physical resources. The
Slicing component performs the actual task of virtualizing
the network resources as well as defining and provisioning
the network slice to meet the user needs. During actual
operation, it invokes the Routing component to route data
through the network slice components. The actual routing and
transport is performed by API Integration and Communication
components, which interface with network layer components
such as gateways, routers and virtual sensors. In the next
subsections, we will elaborate these layers and components
and outline our effort towards an implementation of SINC.

3.2. API Integration and Resource Management

3.2.1. API Integration. The first step in our framework is the
capability to integrate different APIs from existing infrastruc-
tures so that we can access diverse resource capabilities and
manage these capabilities. In this sense, in the API Integration
and Communication layer, API Integration will include a
collection of APIs for accessing and managing resources so
that we can negotiate and procure resource capabilities and
invoke and monitor them. It is important to note that there are
many APIs from different infrastructures (and their providers),
however, we do not need to consider all of them. In the SINC
framework, only needed APIs will be included. In this view,
we could leverage API management services [21], [22], [23]
within a SINC implementation to support the integration with
existing infrastructures.

3.2.2. Communication Middleware. Since we will have re-
quests and commands from high-level components to concrete
resources in different, distributed infrastructures, Communi-
cation Middleware is needed to support different types of
communication. This middleware works together with API
integration to invoke suitable APIs to transfer (meta)data
about resources and commands. However, it has to deal with
different types of interactions. Therefore, this requires us to de-
velop a loosely coupled communication middleware based on
matured technologies for inter-cloud and IoT communication,
such as AMQP [24], CoAP [25], and MQTT [26]. In SINC,
the Communication Middleware is for managing resources.
Therefore, we envisage different middleware for transferring
actual data produced by sensors to cloud services.

3.2.3. Resource Grid. Through API Integration and Com-
munication Middleware we could have an instant view on
available resources from existing infrastructures. Such avail-
able resources might be just a subset of existing resources in
these infrastructures (since the providers might not make all re-
sources available for the application). We need Resource Grid



Network functions

IoT

Slice Partition Information

Clouds

IoT Networks

API

Laptop

Gateway
Virtual 
Sensor

Deployment

Actuator Sensor

SINC – Resource Management, Configuration, and Adaptation

Resource Monitoring and 
Management

Creation and 
Configuration

 Adaptation

Network Functions Services

API

Routing Naming

NFV 
Orchestration

SINC – API Integration and Communication

API Integration Resource Grid 
Communication 

Middleware

Applications

Emergency Application On-demand Sensing Geo Sports Monitoring
Functional and Quality

Requirement

Clouds 

Servers

API

Loadbalancer

Data 
Analytics

User 
Management 

Cloud 
storage

SINC – Naming, Slicing and Routing

Naming Slicing Routing

End-to-end slices

Diverse types of available resources

CT CO

Fig. 1. Slicing IoT, Network Functions, and Clouds (SINC) – Conceptual Architecture

to provide a map to underlying resources that are available
to applications using the end-to-end slice approach. Resource
Grid presents resources to components in the Naming, Slicing
and Routing layer by harmonizing diverse types of information
representations. Depending on the implementation, Resource
Grid may just mirror all available resources through APIs – so
it may just perform the transformation and harmonization of
information through API calls – or it may replicate information
about resources in SINC by querying, pulling and caching
information from existing infrastructures. Overall, Resource
Grid just keeps a portion of resources that individual providers
make available for end-to-end slicing.

3.3. Naming, Slicing and Routing

3.3.1. Naming. As enunciated in [20], the information-centric
approach enables the use of application-specific names.
However, this naming scheme should be broad enough so that
it can be understood by users spanning various application
domains. The naming hierarchy should also be explicitly
specified, e.g., /city name/bangalore/street name
/cunningham road/location/20/corner/east

/sensor type/video/sensorID/1, may refer to video
camera sensor #1 stationed 20 feet from the beginning
of Cunningham Road in the city of Bangalore. Multiple
such video camera sensors could be positioned along
Cunningham Road, and would form part of a virtual
sensor with name /city name/bangalore/street name/
/cunningham road/sensor type/virtual/sensorID/A.

In our approach, we will utilize this naming strategy for all
resources in the IoT system, including IoT devices (sensors &
actuators), network services & equipment, and cloud services.
Indeed, if many (cloud) computing and/or storage functions are
moved to the edge as described in [27], this naming strategy
would be needed. Using this naming, we can easily describe
and identify the data, computing and network capabilities of
diverse types of resources. However, a challenge is that the
composition of these resources for an end-to-end provisioning
would also rely on many other types of information, such as
geographical distribution, connection performance, availabil-
ity, and security and privacy attributes. In this case, naming
for resources gathered from underlying systems will also link
to such (meta and monitoring information) for determining
optimal compositions.



3.3.2. End to End Slicing. : As stated earlier, and as depicted
in Fig. 1, network slicing in our case encompasses the entire
IoT system. Typical proposed network slicing approaches as
in [14] limit themselves to only the core network equipment
infrastructure, with some integration to backend cloud infras-
tructure. Indeed, [14] does present a prototype implementation
on Openstack [28]. However, our approach would need to pro-
vide a higher-level service orchestration mechanism through
the utilization of specific mechanisms for partitions of IoT,
network functions, and clouds as well as through the new
development of such combined mechanism. In our approach,
slicing techniques for IoT and cloud partitions would focus
on mechanisms to provision guaranteeing data and computing
capabilities (e.g., dedicated sensors, gateways, and virtual
machines). Slicing techniques for network function partitions
will focus on network capabilities between (i) existing nodes
of IoT subnetworks connecting to access nodes of the network
functions in the middle and (ii)existing nodes of the network
functions in the middle and the access node of the cloud data
centers. As a result of slicing techniques, resources in end-
to-end slices can be described, deployed and configured by
techniques such as TOSCA [29], and service chaining [30],
the latter for instantiating and interconnecting virtual network
functions to form a service.

3.3.3. Routing. Typical routing infrastructure in ICN com-
prises the following components [20], [10]: (i) a Content Store
(CS) for temporary caching of incoming Data packets; (ii) a
routing table called Forwarding Information Base (FIB) used
to guide the Interests towards Data; and (iii) a Pending Interest
Table (PIT), which keeps track of the forwarded Interest(s) that
are not yet satisfied with a returned data packet. Our goal is
to utilize these concepts for routing data and requests among
resources provisioned for slices. This means that we need to
carefully investigate how to implement these concepts at the
level of (virtualized) resources in slices. Essentially, as we
have different partitions of resources identified by the Naming
component that can be accessed and controlled through the
Communication Middleware, all of these concepts will be
implemented atop an overlay network of resources. Hence,
routing can be two-way, i.e., the FIB can also be used to
route commands to sensors and actuators, for implementing
actuation commands, e.g., changing the data rate of a sensor,
or changing the unit of a body temperature sensor from
Centrigrade to Fahrenheit. The key issue in the design here is
that the routing has to be accomplished within certain limits
(based on QoS considerations), and has to be accomplished
reliably. At the higher-level, this, however, depends on the
capabilities of the Communication Middleware which carry
requests and data. At the lower level, this depends on the
properties of the selected end-to-end network slice, in partic-
ular, its bandwidth capacity, its topology, and the latency of
data transmission within the slice. Since multiple slices may
have to be implemented simultaneously based on user needs,
this becomes a dynamic optimization problem that needs to
be solved within the constraints of the selected network slice.

3.4. Managing End to End Slices

As we have seen above, the end to end network slice,
encompassing sensors, network functions and cloud resources,
would become the most crucial entity of our IoT network.
Hence it needs to be managed effectively. This involves the
following: creation and deployment of the slice, distributed
monitoring and management of the resources that make up
the slice, and adaptation of the slice in response to changing
user requests and/or changing network environment.

3.4.1. Creation and Deployment. The process of creation of
a slice would start with the user specifying their requirements
for the following: data needed from sensors, minimum network
bandwidth needed, backend compute and storage needed. For
example, the user may ask for data from a set of traffic
sensors every 5 minutes, at least network bandwidth of 16 MB
per second, backend compute capacity of at least 16 GB of
memory, and backed storage of at least 1 TB. The user may
also request this functionality for 4 hours, for e.g., for the
time it would take to complete evacuating the victims in our
running example, providing them first aid en route to hospitals,
and monitoring their condition in the hospitals until they are
declared stable and out of danger.

There are also scenarios where such user requests may be
placed well in advance [14], e.g., a rock concert or football
match, whose organizers may request dedicated network band-
width so that attendees can obtain live information feeds on
their smartphones. Hence in a situation such as our emergency
response scenario, if network bandwidth or compute capability
happens to be insufficient, then lower priority user requests
(rock concert) may have to be de-provisioned in favor of a
higher priority request (emergency response).

Fulfilling such a request would require the development of
a dedicated service that can integrate with NFV orchestrators,
virtual sensors, gateways, cloud APIs and SDN controllers.
Such a service also has to deal with different resource pro-
visioning models imposed by underlying infrastructures. For
example, it is possible that underlying infrastructures offer
pay-per-use resources with or without negotiation as well as
opportunistic resources through spot sensors and machine in-
stances. Similarly, deployment for slices would need to address
different deployment models for IoT and clouds, which are
quite different.

3.4.2. Distributed Resource Monitoring and Management.
Once the slices have been created, the next step is to monitor
the resources that make up the slice and ensuring that they
are performing as intended. There are two ways in which
this monitoring can be implemented - pull and push. In the
former approach, the monitoring application at the resource
management layer of Fig. 1 directly polls the resources –
sensors, network elements, cloud resources – via the API
integration layer. The polling frequencies, as well as extent
of status data to be sent by the IoT resources, are detailed



design choices that need to be made depending on the slice
in question.

Naturally, we foresee the need to integrate different mon-
itoring systems for IoT, network functions and clouds [31],
[32], [33]. From the monitoring data, using information from
naming, we will correlate monitoring information from differ-
ent sources to provide an end-to-end view on performance of
slices. In addition to solving the complexity of monitoring
metric spaces (IoT, network, cloud metrics), we also have
to deal with the complexity of measurement granularity of
metrics.

3.4.3. Runtime Slice Adaptation. As is the case with any
complex software-defined system, issues will constantly arise
during execution, that demand runtime adaptation. In our case,
we can identify two key issues: changes in user requirements,
and changes in the underlying infrastructures. These can be
handled in either of two ways: either the change can be
regarded as a new requirement, for which a fresh slice is provi-
sioned (as described above); or the slice can be reconfigured at
runtime. In particular, changes in the underlying infrastructures
– such as unavailability of network equipment, breakdown in
underlying network or sensor hardware, etc. – would require
runtime slice reconfiguration to ensure continuity.

A running slice has many points, existing in different slice
partitions, at which reconfiguration can be implemented, such
as: provisioning additional compute and/or storage at the cloud
backend; provisioning additional network bandwidth; rerout-
ing network traffic using SDN controllers to ensure adherence
to customer needs in the presence of network equipment fail-
ure, redefining virtual sensor data in the presence of failure of
sensors. The last example is particularly interesting; consider,
for example, a set of load sensors on a bridge providing load
data. If a subset of them fail, the virtual sensor that collates
this data needs to perform suitable data interpolation in order
to compensate for the lost sensor data.

Besides performance, reliability and availability adaptation
for slices, an important aspect of monitoring and management
of slices is to deal with uncertainties [34] which are not well
studied in an integrated virtualized IoT, network functions
and cloud-based environment. On the one hand, adaptation
techniques have to deal with monitoring data and actuation
uncertainties [35]. On the other hand, they must deal with the
uncertainties in resource behavior. To deal with this problem,
further uncertainties inherent in slices must be studied.

3.5. Towards an Implementation

We envisage different approaches to the implementation of
the SINC conceptual framework due to the complexity and
diversity of the underlying IoT, network function services and
clouds1. We are currently looking into three key aspects for
our concrete implementation. The first aspect is to integrate

1. Up-to-date information about SINC implementation is available at http:
//sincconcept.github.io.

the diverse IoT infrastructures and providers at sensor, network
function and cloud levels. We currently make the assumption
that all providers would expose common interfaces and proto-
cols via well-understood technologies, such as REST API for
service interfaces, MQTT and AMQP for communication, and
dockers and OpenStack for virtualization, and TOSCA/HOT
for deployment and configuration. To that end, we are currently
working on a high-level distributed IoT resource information
model and communication middleware, with initial emphasis
on IoT resource monitoring and management [36].

For naming and routing we are, at an early stage, investi-
gating integration of techniques from [20]; in particular, we
will be leveraging the concept of application-specific naming
schemes in the Naming component, and name-based routing
in the Routing component.

For creation and management, we are investigating TOSCA
[29] for describing resources in a slice and existing deploy-
ment and configuration tools slice deployment[37], [38]. We
will also be leveraging our ongoing work [36] and extending
our monitoring work [33] for slice monitoring, and we will
be enhancing it for slice adaptation. We are also investigating
Calvin [39] as a modeling language for representing slices as
compositions of atomic services.

4. Related Work

Information-Centric Networking for IoT: The concept of vir-
tualizing network topologies in order to enhance efficiency
of network utilization has been researched extensively via
initiatives such as OpenFlow and OpenDayLight. In particular,
in [15], the authors presented an innovative system called
“ADVisor”. This system, which extends an earlier network
virtualization approach, provides the following features: (i)
the virtual topologies created are not restricted to specific
subsets of the physical topology, and (ii) enables any two
slices to share the same flowspace while preserving isolation
between them. Works such as [15] have paved the way for
taking a relook at the overall network from an information-
centric viewpoint, as presnted earlier in our paper. These are
collectively known as Information-Centric Networking or ICN.

Many ICN applications to IoT have been presented. For
example, the citation [11] presents a vision for a global, all-
encompassing IoT realized through an integrating architec-
ture relying on information and its identifiers/names. They
also argue that ICN is the ideal candidate architecture for
realizing IoT. They also present several research challenges
that need to be overcome before this vision can be realized,
viz., naming, efficient and contextual information retrieval,
trust modeling, privacy and access control, and information
forwarding. A more detailed elaboration of ICN architectures
for IoT is presented in [20], which presents a 3-tier architecture
comprising application, management+data and thing layers.
We have leveraged a few ideas from [20] in our paper.

A case study implementation of ICN for IoT in a smart
home scenario has been presented in [10]. In that paper, the au-
thors present a realization of their architecture from [20], with

http://sincconcept.github.io
http://sincconcept.github.io


emphasis on naming scheme, service model, and strategies for
multi-party communications. They also present a preliminary
evaluation to provide a rough estimate of ICN based packet
communications.

An excellent exposition of ICN and its applicability to
IoT is presented in [9]. Apart from discussing the well-
known research challenges of ICN, viz., naming, distributed
caching and decoupling senders and receivers of data, that
paper also discussing specific design choices to be made when
ICN is to be used to build IoT systems. A few key choices
are: coexistence with existing Internet protocols, using ICN
network only for directly addressable data, mandating that IoT
uses only immutable data objects, naming data streams so that
they can be traced and integrated (e.g., video streams), and
representing time-related data streams. We will be considering
the design recommendations from [9] for our future papers in
this area.
Network Slicing and Network-Aware Service Composition:
The other side of the coin in managing IoT systems is
network slicing. In our earlier work, we had proposed several
principles for engineering cloud-based IoT systems, prominent
among them being recommendations for virtualization and
composition of IoT components as self-contained units. In
this paper, we have incorporated these principles into our
proposed conceptual architecture in Fig. 1. These ideas have
been leveraged from existing work in network slicing; one
such example is described in [14], which shows how network
slices can be created and used. Other works have described in
more detail how slices can be created and provisioned [40],
[41]. A more recent exposition of how network slicing can be
implemented in 5G networks is detailed in [42].

Recent work has also focused on network-aware service
composition [43], which presents an integrated QoS-aware
composition method that integrates application services and
network services together. A similar algorithm was also pre-
sented earlier in [44]. Extending to the IoT area, recent work
has focused on applying network service composition to IoT
services. In particular, the citation [45] presents algorithms
for IoT service composition that consider not only quality of
service (QoS) but also network latency at the IoT application
layer. We will be considering these algorithms for implement-
ing our conceptual architecture presented in Fig. 1.

End-to-end Resource Provisioning: In [46], an end-to-end
view on controlling, management and provisioning of IoT
and cloud resources is discussed. However, it does not cover
network functions, although it does outline concepts and
techniques for creating end-to-end slices of resources. The
work in [47] discusses the need to have end-to-end network
service provisioning across different metro and core network
domains. However, it does not focus on end-to-end IoT,
network functions and clouds.

5. Conclusions and Future Work

In this paper, we have considered the crucial research
issue of end-to-end resource provisioning and management

in IoT cloud systems that is of paramount importance for
several applications, such as emergency responses and on-
demand sensing. Considering the dynamism and heterogeneity
inherent in such systems and leveraging virtualization, API
management and service models, we have proposed SINC, an
information-centric approach and conceptual architecture that
abstracts from lower-level details to provide techniques for
slicing IoT, network function services and clouds. Such an
approach would not only enable users to declaratively specify
their needs from the system, it would also enable designers to
compose resources at various levels of the system in order to
provide the integrated functionality that users would require.
We also discussed the research challenges that would arise
when trying to make SINC a reality.

Future work would involve detailing out the components of
SINC conceptual architecture, developing a proof of concept
prototype, and evaluating the prototype on various realistic
usage scenarios.

Acknowledgments

Nanjangud Narendra wishes to thank his colleagues at
Ericsson Research Bangalore for their feedback. This work is
partially supported by the EU H2020 U-Test project, under
grant No. 645463, w.r.t. modeling and provisioning cyber-
physical systems for uncertainties testing.

References

[1] http://www.gartner.com/newsroom/id/2905717, last access: 28 Mar
2016.

[2] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration
of cloud computing and internet of things,” Future Gener. Comput.
Syst., vol. 56, no. C, pp. 684–700, Mar. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2015.09.021

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MPRV.2009.82

[4] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos,
and N. Venkatasubramanian, “Mobile cloud computing: A
survey, state of art and future directions,” Mob. Netw. Appl.,
vol. 19, no. 2, pp. 133–143, Apr. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11036-013-0477-4

[5] “Mobile-Edge Computing – Introductory Technical White Paper,”
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge
computing - introductory technical white paper v1%2018-09-14.pdf,
September 2014.

[6] M. Satyanarayanan, G. A. Lewis, E. J. Morris, S. Simanta, J. Boleng,
and K. Ha, “The role of cloudlets in hostile environments,” IEEE
Pervasive Computing, vol. 12, no. 4, pp. 40–49, 2013. [Online].
Available: http://dx.doi.org/10.1109/MPRV.2013.77

[7] D. AG, “Crowd analytics archives,” http://www.dfrc.ch/tag/
crowd-analytics/, last access: 30 Mar 2016.

[8] “U-test geo sports case study.”
[9] A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelen, and A. Ma-

lik, “Applicability and tradeoffs of information-centric networking for
efficient iot,” Internet-Draft, Tech. Rep., 2015.

[10] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Information
centric networking in iot scenarios: The case of a smart home,” in
Communications (ICC), 2015 IEEE International Conference on. IEEE,
2015, pp. 648–653.

http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1007/s11036-013-0477-4
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
http://dx.doi.org/10.1109/MPRV.2013.77
http://www.dfrc.ch/tag/crowd-analytics/
http://www.dfrc.ch/tag/crowd-analytics/


[11] N. Fotiou and G. C. Polyzos, “Realizing the internet of things us-
ing information-centric networking,” in Heterogeneous Networking for
Quality, Reliability, Security and Robustness (QShine), 2014 10th Inter-
national Conference on. IEEE, 2014, pp. 193–194.

[12] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information centric networking in the iot: experiments with NDN
in the wild,” in 1st International Conference on Information-
Centric Networking, ICN’14, Paris, France, September 24-26,
2014, G. Carofiglio, L. Muscariello, L. Zhang, D. Kutscher, and
L. Muscariello, Eds. ACM, 2014, pp. 77–86. [Online]. Available:
http://doi.acm.org/10.1145/2660129.2660144

[13] A. Hellemans, “Why IoT Needs 5G,” http://spectrum.ieee.org/tech-talk/
computing/networks/5g-taking-stock, May 2015, last access: 28 Mar
2016.

[14] R. Inam, A. Karapantelakis, K. Vandikas, L. Mokrushin, A. V. Feljan,
and E. Fersman, “Towards automated service-oriented lifecycle manage-
ment for 5g networks,” in Emerging Technologies & Factory Automation
(ETFA), 2015 IEEE 20th Conference on. IEEE, 2015, pp. 1–8.

[15] E. Salvadori, R. Doriguzzi Corin, A. Broglio, and M. Gerola, “Gen-
eralizing virtual network topologies in openflow-based networks,” in
Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE. IEEE, 2011, pp. 1–6.

[16] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Trans. Emerg. Telecommun. Technol., vol. 25, no. 1, pp. 81–93, Jan.
2014. [Online]. Available: http://dx.doi.org/10.1002/ett.2704

[17] N. Laoutaris, P. Rodriguez, and L. Massoulie, “Echos: Edge capacity
hosting overlays of nano data centers,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 1, pp. 51–54, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1341431.1341442

[18] S. Echeverrı́a, J. Root, B. Bradshaw, and G. A. Lewis, “On-demand
VM provisioning for cloudlet-based cyber-foraging in resource-
constrained environments,” in 6th International Conference on Mobile
Computing, Applications and Services, MobiCASE 2014, Austin,
TX, USA, November 6-7, 2014, C. Julien, N. D. Lane, and
S. Mishra, Eds. IEEE, 2014, pp. 116–124. [Online]. Available:
http://dx.doi.org/10.4108/icst.mobicase.2014.257768

[19] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[20] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data
networking for iot: an architectural perspective,” in Networks and
Communications (EuCNC), 2014 European Conference on. IEEE, 2014,
pp. 1–5.

[21] M. Vukovic, “Internet programmable iot: On the role of apis in
iot: The internet of things (ubiquity symposium),” Ubiquity, vol.
2015, no. November, pp. 3:1–3:10, Nov. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2822873

[22] Y. Cho, J. Choi, and J. Choi, “An integrated management system
of virtual resources based on virtualization api and data distribution
service,” in Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference, ser. CAC ’13. New York, NY, USA: ACM,
2013, pp. 26:1–26:7. [Online]. Available: http://doi.acm.org/10.1145/
2494621.2494648

[23] M. Vukovic, J. Laredo, V. Muthusamy, A. Slominski, R. Vaculin,
W. Tan, V. Naik, I. Silva-Lepe, A. Kumar, B. Srivastava, and J. W.
Branch, “Riding and thriving on the api hype cycle,” Commun.
ACM, vol. 59, no. 3, pp. 35–37, Feb. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2816812

[24] “Advanced message queuing protocol,” https://www.amqp.org/, last ac-
cess: 30 Mar 2016.

[25] “CoAP: RFC 7252 Constrained Application Protocol,” http://coap.
technology/, last access: 30 Mar 2016.

[26] “Message queue telemetry transport,” http://mqtt.org/, last access: 30
Mar 2016.

[27] A. M. Haubenwaller and K. Vandikas, “Computations on the edge in
the internet of things,” Procedia Computer Science, vol. 52, pp. 29–34,
2015.

[28] “Openstack,” www.openstack.org, last access: 30 Mar 2016.
[29] “Topology and orchestration specification for cloud applications (tosca),”

https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca,
last access: 30 Mar 2016.

[30] “Network functions virtualisation update white pap er,” https://portal.
etsi.org/NFV/NFV White Paper2.pdf, October 2013.

[31] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Adam: An adaptive
monitoring framework for sampling and filtering on iot devices,” in
2015 IEEE International Conference on Big Data, Big Data 2015,
Santa Clara, CA, USA, October 29 - November 1, 2015. IEEE, 2015,
pp. 717–726. [Online]. Available: http://dx.doi.org/10.1109/BigData.
2015.7363816

[32] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Survey cloud
monitoring: A survey,” Comput. Netw., vol. 57, no. 9, pp. 2093–2115,
Jun. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.2013.
04.001

[33] D. Moldovan, G. Copil, H. L. Truong, and S. Dustdar, “MELA:
elasticity analytics for cloud services,” IJBDI, vol. 2, no. 1, pp. 45–62,
2015. [Online]. Available: http://dx.doi.org/10.1504/IJBDI.2015.067569

[34] S. Ali and T. Yue, “U-test: Evolving, modelling and testing
realistic uncertain behaviours of cyber-physical systems,” in 8th
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2015, Graz, Austria, April 13-17, 2015. IEEE,
2015, pp. 1–2. [Online]. Available: http://dx.doi.org/10.1109/ICST.
2015.7102637

[35] S. Nastic, G. Copil, H. L. Truong, and S. Dustdar, “Governing
elastic iot cloud systems under uncertainty,” in 7th IEEE International
Conference on Cloud Computing Technology and Science, CloudCom
2015, Vancouver, BC, Canada, November 30 - Dec. 3, 2015. IEEE,
2015, pp. 131–138. [Online]. Available: http://dx.doi.org/10.1109/
CloudCom.2015.77

[36] D.-H. Le, N. Narendra, and H.-L. Truong, “Hinc harmonizing diverse
resource information across iot, network functions and clouds,” in
Proceedings of the 2014 International Conference on Future Internet
of Things and Cloud, ser. FICLOUD ’16, 2016, submitted.

[37] D.-H. Le, H.-L. Truong, G. Copil, S. Nastic, and S. Dustdar, “SALSA:
A Framework for Dynamic Configuration of Cloud Services,” in 6th
International Conference on Cloud Computing Technology and Science,
Dec 2014.

[38] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “A scalable
framework for provisioning large-scale iot deployments,” ACM Trans.
Internet Technol., vol. 16, no. 2, pp. 11:1–11:20, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2850416

[39] P. Persson and O. Angelsmark, “Calvin merging cloud and iot,”
Procedia Computer Science, vol. 52, pp. 210 – 217, 2015, the
6th International Conference on Ambient Systems, Networks and
Technologies (ANT-2015), the 5th International Conference on Sustain-
able Energy Information Technology (SEIT-2015). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915008595

[40] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 79–84.

[41] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” in Proceedings of the 2nd ACM SIGCOMM
workshop on Home networks. ACM, 2011, pp. 1–6.

[42] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis, D. Stavropoulos,
I. Alyafawi, Z. Zhao, T. Braun, and T. Korakis, “Network store:
Exploring slicing in future 5g networks,” in Proceedings of the 10th
International Workshop on Mobility in the Evolving Internet Architec-
ture. ACM, 2015, pp. 8–13.

[43] J. Huang, G. Liu, Q. Duan, and Y. Yan, “Qos-aware service composition
for converged network-cloud service provisioning,” in Services Comput-
ing (SCC), 2014 IEEE International Conference on. IEEE, 2014, pp.
67–74.

[44] A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware
service composition in the cloud,” in Proceedings of the 21st
International Conference on World Wide Web, ser. WWW ’12. New
York, NY, USA: ACM, 2012, pp. 959–968. [Online]. Available:
http://doi.acm.org/10.1145/2187836.2187965

[45] U. G. Shehu, G. A. Safdar, and G. Epiphaniou, “Network aware
composition for internet of thing services,” Transactions on Networks
and Communications, vol. 3, no. 1, p. 45, 2015.

[46] H.-L. Truong and S. Dustdar, “Principles for engineering iot cloud
systems,” Cloud Computing, IEEE, vol. 2, no. 2, pp. 68–76, Mar 2015.

[47] F. Muoz, R. Muoz, J. Rodrguez, V. Lopez, O. G. de Dios, and J. P.
Fernndez-Palacios, “End-to-end service provisioning across mpls and
ip/wdm domains,” in Smart Communications in Network Technologies
(SaCoNeT), 2013 International Conference on, vol. 02, June 2013, pp.
1–5.

http://doi.acm.org/10.1145/2660129.2660144
http://spectrum.ieee.org/tech-talk/computing/networks/5g-taking-stock
http://spectrum.ieee.org/tech-talk/computing/networks/5g-taking-stock
http://dx.doi.org/10.1002/ett.2704
http://doi.acm.org/10.1145/1341431.1341442
http://dx.doi.org/10.4108/icst.mobicase.2014.257768
http://doi.acm.org/10.1145/2822873
http://doi.acm.org/10.1145/2494621.2494648
http://doi.acm.org/10.1145/2494621.2494648
http://doi.acm.org/10.1145/2816812
https://www.amqp.org/
http://coap.technology/
http://coap.technology/
http://mqtt.org/
www.openstack.org
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://portal.etsi.org/NFV/NFV_White_Paper2.pdf
https://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://dx.doi.org/10.1109/BigData.2015.7363816
http://dx.doi.org/10.1109/BigData.2015.7363816
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1504/IJBDI.2015.067569
http://dx.doi.org/10.1109/ICST.2015.7102637
http://dx.doi.org/10.1109/ICST.2015.7102637
http://dx.doi.org/10.1109/CloudCom.2015.77
http://dx.doi.org/10.1109/CloudCom.2015.77
http://doi.acm.org/10.1145/2850416
http://www.sciencedirect.com/science/article/pii/S1877050915008595
http://doi.acm.org/10.1145/2187836.2187965

	Introduction
	Motivation
	Contributions
	Paper Structure

	Research Challenges
	SINC Framework
	Conceptual Architecture
	API Integration and Resource Management
	API Integration
	Communication Middleware
	Resource Grid

	Naming, Slicing and Routing
	Naming
	End to End Slicing
	Routing

	Managing End to End Slices
	Creation and Deployment
	Distributed Resource Monitoring and Management
	Runtime Slice Adaptation

	Towards an Implementation

	Related Work
	Conclusions and Future Work
	References

