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Abstract—The ongoing convergence of cloud computing and
the IoT gives rise to the proliferation of diverse, large-scale IoT
and mobile cloud systems. Such novel IoT cloud systems offer
numerous advantages for all involved stakeholders. However,
due to scale, complexity, and inherent geographical distribution
of such systems, governing new IoT cloud resources poses
numerous challenges. In this paper we introduce rtGovOps, a
novel framework for on-demand runtime operational governance
of software-defined IoT cloud systems. To illustrate the feasibility
of our framework and its practical applicability to implement and
execute operational governance processes in large-scale software-
defined IoT cloud system, we evaluate our approach using a real-
world case study on managing fleets of electric vehicles.

I. INTRODUCTION

Current advances in the Internet of Things (IoT) and
mobile cloud computing research have enabled the creation
of unified IoT and mobile cloud infrastructures [1]–[5] that
offer large pools of IoT cloud resources. Recently, software-
defined IoT cloud systems have been introduced [6] to abstract
from low-level resources (i.e., hardware) and enable their
programmatic management through well-defined APIs. This
enables refactoring the underlying IoT cloud infrastructure
into finer-grained resource components whose functionality
can be (re)defined after they have been deployed. While such
systems create numerous opportunities by exploiting novel IoT
and mobile cloud resources, they also introduce a number of
challenges not previously encountered in traditional systems,
to operate and govern such resources at runtime. Unfortunately,
traditional governance approaches are hardly applicable for IoT
cloud systems, mainly due to their dynamicity, heterogeneity,
geographical distribution, and large scale. Supporting tools
and mechanisms for runtime operational governance of IoT
cloud systems remain largely undeveloped, thus placing much
of the burden on operations managers to perform operational
governance processes.

This calls for a systematic approach to govern IoT cloud
resources throughout their entire lifecycle. In our previous
work [7], we introduced the GovOps methodology to effec-
tively manage runtime governance in software-defined IoT
cloud systems. The main purpose of GovOps is to close the
gap between high-level governance objectives (e.g., costs, legal
issues or compliance) and underlying operations processes that
support such objectives. Therefore, GovOps mostly focuses
on designing and realizing operational governance processes
(e.g., similar to [8], [9]), which represent a subset of the overall
IoT cloud governance and incorporate relevant aspects of both
high-level governance strategies and underlying operations
management. Continuing along this line of research, in this
paper, we introduce the rtGovOps framework for dynamic, on-
demand operational governance of software-defined IoT cloud

systems at runtime. The rtGovOps framework provides runtime
mechanisms and enabling techniques to reduce the complexity
of IoT cloud operational governance, thus enabling operations
managers to perform custom operational governance processes
more efficiently in large-scale IoT cloud systems.

The remainder of the paper is structured as follows:
Section II presents a motivating case study and summarizes
our background work; Section III outlines main concepts and
the design of the rtGovOps framework; In Section IV, we
explain major runtime mechanisms of rtGovOps; Section V
describes preliminary experimental results and outlines the
current prototype implementation; Section VI discusses related
work; Finally, Section VII concludes the paper and gives an
outlook of our future research.

II. MOTIVATION AND BACKGROUND

A. Scenario
Let us consider a realistic application scenario in the

domain of vehicle management that we will refer to throughout
the paper. This scenario is based on an ongoing collaboration
with industry partners1 and our current effort in software-
defined IoT cloud systems.

The Fleet Management System (FMS) is a real-world
software-defined IoT cloud system responsible for managing
fleets of zero-emission, electric vehicles deployed worldwide,
e.g., on different golf courses. Vehicles communicate with the
cloud via 3G or Wi-Fi networks to exchange telematic and
diagnostic data. On the cloud, FMS provides different appli-
cations and services to manage this data. Relevant services
include realtime vehicle status, remote diagnostics, and remote
control. The FMS is currently used by the following three types
of stakeholders: vehicle manufacturers, distributors, and golf
course managers. These stakeholders have different business
models. For example, when a manufacturer only leases vehi-
cles to customers, they are interested in the status and upkeep
of the complete fleet, will perform regular maintenance, as well
as monitor crashes and battery health. Golf course managers
are mostly interested in vehicle security to prevent misuse
and ensure safety on the golf course (e.g., using geofencing
features). In general, the stakeholders rely on the FMS and its
services to optimize their respective business tasks.

1) FMS IoT cloud infrastructure: The FMS runs atop a
nontrivial IoT cloud infrastructure that includes a variety of
IoT cloud resources. Figure 1 gives a high-level overview
of the FMS infrastructure. For our discussion, the two most
relevant types of IoT cloud resources are on-board physical
gateways (G) and cloud virtual gateways (VG). Most of

1http://pcccl.infosys.tuwien.ac.at/



the vehicles are equipped with on-board gateways that are
capable to host lightweight services such as geofencing or local
diagnostics services. For legacy cars that are not equipped with
such gateways, a device acting as a CAN-IP bridge is used (e.g,
Teltonika FM53002). In this case FMS hosts virtual gateways
on the cloud that execute the aforementioned services on behalf
of the vehicles.

We notice that the FMS is a large-scale system that
manages thousands of vehicles and relies on diverse cloud
communication protocols. Further, the FMS depends on IoT
cloud resources that are geographically distributed on different
golf courses around the globe. Jurisdiction over these resources
can change over time, e.g., when a vehicle is handed over
from the distributor to a golf course manager. In addition, these
resources are usually constrained. This is why the FMS heavily
relies on cloud services, e.g., for computationally intensive
data processing, fault-tolerance or to reliably store historical
readings of vehicle data. While the cloud offers the illusion
of unlimited resources, systems of such scale as FMS can
incur very high costs in practice (e.g., of computation or
networking). Finally, due to the large number of involved
stakeholders, the FMS needs to enable runtime customizations
of infrastructure resources in order to exactly meet stakeholder
requirements and allow for operation within specified compli-
ance and legal boundaries.

Therefore, the IoT cloud resources need to be managed and
governed throughout their entire lifecycle. In our approach, this
is captured and modeled as operational governance processes.

2) Example operational governance processes: Subse-
quently, we highlight some basic operational governance pro-
cesses in FMS that are facilitated through our framework:
• Typically, the FMS polls diagnostic data from vehicles

(e.g., with CoAP). However, a golf course manager could
design an operational governance process that is triggered
in specific situations such as in case of emergency. Such
process could, for example, increase the update rate of the
vehicle sensors and change the communication protocol
to MQTT in order to satisfy a high-level governance
objective, e.g., company’s compliance policy to handle
emergency updates in (near) real-time.

• To increase fault-tolerance and guarantee history preser-
vation of vehicle data (e.g., due to governance objectives
related to legal requirements), a distributor could decide
to spin up additional virtual gateways in a different
availability zone.

• After multiple complaints about problems with vehicles
of type X, a manufacturer would need to add additional
monitoring features to all vehicles of type X to perform
more detailed inspections.

This is by no means a comprehensive list of operational
governance processes in software-defined IoT cloud systems.
However, due to dynamicity, heterogeneity, geographical dis-
tribution, and the large scale of IoT cloud systems, traditional
approaches to realize even basic operational governance pro-
cesses are hardly feasible in practice. This is mostly because
such approaches implicitly make assumptions such as physical
on-site presence, manually logging into gateways, understand-
ing device specifics, etc., which are difficult, if not impossible,
to meet in IoT cloud systems. Therefore, due to a lack of
systematic approaches for operational governance in IoT cloud

2http://www.teltonika.lt/en/pages/view/?id=1024

C
lo
u
d
  

Se
n
so
rs
 &

ac
tu
at
o
rs

Vehicle

VG3

Gateway (G1)

VG... VGn

VG2

G4 G...

GnP
h
ys
ic
al

ga
te
w
ay
s

G6
G5CAN‐IP 

bridge

Service
G2

This sends a wrong message, since people will think that we wirtualize gaeways

Legacy car

(VG1)
Virtual gateway

Service
ServiceServiceServices

ServiceServiceServices

G3

FMS 

Fig. 1. Overview of FMS infrastructure.

systems, operations managers currently have to rely on ad-hoc
solutions to deal with the characteristics and complexity of
IoT cloud systems when performing operational governance
processes.

B. Background
As we have shown earlier in [6], in software-defined

IoT cloud systems, IoT cloud resources (e.g., gateways) are
described as software-defined IoT units. The software-defined
IoT units enable abstracting the underlying IoT cloud resources
and allow for their management through well-defined APIs, ex-
posed by these units. One of the main advantages of software-
defined IoT cloud systems is opening up the traditional infras-
tructure silos and moving one step higher in the abstraction,
i.e., effectively making applications independent of the under-
lying rigid infrastructure. The most important consequence is
that the functionality and states of the underlying IoT cloud
resources can be redefined in software during runtime. For
example, new features such as additional cloud communication
protocols can be added to the units at runtime.

In our previous work [7] we introduced the general Gov-
Ops approach for runtime governance in software-defined
IoT cloud systems, as well as the concepts of operational
governance processes that manipulate the states of IoT units
(IoT cloud resources) at runtime. Such processes can be
seen as a sequence of operations, which perform runtime
state transitions from a current state to some desired target
state (e.g., that satisfies some non-functional properties, en-
forces compliance, or exactly meets custom requirements). We
presented a GovOps reference model that provides suitable
abstractions to specify such operational governance processes.
We also outlined the GovOps methodology on how to design
the operational governance processes and realize governance
strategies. At this point it is worth reminding that, from a
technical perspective, GovOps does not make any assumptions
about the implementation of operational governance processes,
in the sense that such processes can be realized as business
processes (e.g., using BPMN), with governance policies, via
Domain Specific Languages (DSLs), or even as dedicated
governance applications or services.

III. OVERVIEW OF THE RTGOVOPS FRAMEWORK

The main aim of our rtGovOps (runtime GovOps) frame-
work is to facilitate operational governance processes for
software-defined IoT cloud systems. To this end, rtGovOps
provides a set of runtime mechanisms and does most of the



“heavy lifting” to support operations managers in implement-
ing and executing operational governance processes in large-
scale software-defined IoT cloud systems, without worrying
about scale, geographical distribution, dynamicity, and other
characteristics inherent to such systems that currently hinder
operational governance in practice.

To facilitate performing the operational governance pro-
cesses, while considering the characteristics of the software-
defined IoT cloud systems, the rtGovOps framework follows
a set of design principles, which include:

Central point of operation (R1) – Enable conceptually cen-
tralized interaction with the software-defined IoT cloud
system to enable a unified view on the system’s opera-
tions and governance capabilities (available at runtime),
without worrying about low-level infrastructure details.

Automation (R2) – Allow for dynamic, on-demand gover-
nance of software-defined IoT cloud systems on a large
scale and enable governance processes to be easily repeat-
able, i.e., enforced across the IoT cloud, without manually
logging into individual gateways.

Fine-grained control (R3) – Expose the control functionality
of IoT cloud resources at fine granularity to allow for
precise definition of governance processes (to exactly
meet requirements) and flexible customization of IoT
cloud system governance capabilities.

Late-bound directives (R4) – Support declarative directives
that are bound later during runtime in order to allow
for designing generic and flexible operational governance
processes.

IoT cloud resources autonomy (R5) – Provide a higher de-
gree of autonomy to IoT cloud resources to reduce
communication overhead, increase availability (e.g., in
case of network partitions), enable local exception and
fault handling, support protocol independent interaction,
and increase system scalability.

Figure 2 gives a high-level architecture and deployment
overview of the rtGovOps framework. Generally, the rtGovOps
framework is distributed across the cloud and IoT devices. It
is designed based on the microservices architecture3, which
among other things enables flexible, evolvable, and fault-
tolerant system design, while allowing for flexible management
and scaling of individual components. The main components
of rtGovOps include: i) the governance capabilities, ii) the
governance controller that runs on the cloud, and iii) the
rtGovOps agents that run in IoT devices. In the remainder of
this section, we will discuss these components in more detail.

A. Operational governance capabilities
As we described in Section II, operational governance

processes govern software-defined IoT units throughout their
entire lifecycle. Generally, Governance capabilities represent
the main building blocks of operational governance processes
and they are usually executed in IoT devices. The governance
capabilities encapsulate governance operations which can be
applied on deployed IoT units, e.g., to query the current version
of a service, change a communication protocol, or spin up
a virtual gateway. Such capabilities are described via well-
defined APIs and are usually provided by domain experts who
develop the IoT units. The rtGovOps framework enables such

3http://martinfowler.com/articles/microservices.html
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Fig. 2. Overview of rtGovOps architecture and deployment.

capabilities to be dynamically added to the system (e.g, to
gateways), and supports managing their APIs. From a technical
perspective, they behave like add-ons, in the sense that they
extend the resources with additional operational functionality.
Internally, IoT devices host rtGovOps agents that behave like
an add-on manager, responsible for installing/enabling, start-
ing/stopping a capability, and managing the APIs they expose.
Generally, rtGovOps does not make any assumptions about
concrete capability implementations. However, it requires them
to be packaged as shown in Figure 3. Subsequently, we
highlight relevant examples of governance capabilities related
to our FMS application.

• Configuration-specific capabilities include changes to the
configuration models of software-defined IoT cloud sys-
tems at runtime. For example: setting sensor poll rate,
changing communication protocol for cloud connectivity,
configuring data point unit and type (e.g., temperature in
Kelvin as unsigned 10-bit integer), mapping a sensor or
CAN bus unit to a device’s virtual pin, or activating a
low-pass filter for an analog sensory input.

• Topology-specific capabilities address structural changes
that can be performed on the deployment topologies of
software-defined IoT systems. Examples include repli-
cating a virtual gateway to increase fault-tolerance or
data source history preservation and push data processing
logic from the application space towards the edge of the
infrastructure.

• Stream-specific capabilities deal with managing the run-
time operation of sensory data streams and continuous
Complex Event Processing (CEP) queries. Therefore, to
enable features like scaling out or stream replaying, oper-
ations managers need capabilities such as: filter placement
near the data source to reduce network traffic, allocation
of queries to gateways, and stream splitting, i.e., sending
events to multiple virtual gateways.

• Monitoring-specific capabilities deal with adding a gen-
eral monitoring metric, e.g., CPU load, or providing
an implementation of a custom metric to IoT cloud
resources.

For the sake of simplicity, in this paper, we assume that
the capabilities are readily available4. In reality, they can be
obtained from a central repository, provided by a third-party
in a market-like fashion, or custom developed in-house.

4We provide example governance capabilities under
https://github.com/tuwiendsg/GovOps/
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As mentioned above, governance capabilities are dynam-
ically added to the IoT cloud resources. There are several
reasons why such behavior is advantageous for operations
managers and software-defined IoT cloud systems. For ex-
ample, as we usually deal with constrained resources, static
provisioning of such resources with all available functionality
is rarely possible (e.g., factory defaults rarely contain the
desired configuration for FMS vehicle gateways). Further, as
we have seen in Section II, jurisdiction over resources (in this
case FMS vehicles) can change during runtime, e.g., when a
vehicle is handed over to a golf course manager. In such cases,
because the governing stakeholder changes, it is natural to
assume that the requirements regarding operational governance
will also change, thus requiring additional or different gover-
nance capabilities. As opposed to updating the whole device
image at once, we reduce the communication overhead, but
also enable changing device functionality without interrupting
the system, e.g., to reboot. This provides greater flexibility
and enables on-demand governance tasks (e.g, by temporally
adding a capability), which are often useful in systems with a
high degree of dynamicity. Finally, executing capabilities in the
IoT devices improves scalability of the operational governance
processes and enables better resource utilization.

B. Operational governance processes and governance scopes
Operational governance processes represent a subset of the

general IoT cloud governance and deal with operating and
governing IoT cloud resources at runtime. Such processes are
usually designed by operations managers in coordination with
business stakeholders [7]. The main purpose of such processes
is to enable supporting high-level governance objectives such
as compliance and legal concerns, which influence system’s
runtime behavior. To be able to dynamically govern IoT cloud
resources, the operational governance processes rely on the
governance capabilities. This means that individual steps of
such process usually invoke governance capabilities in order
to enforce the behavior of IoT cloud resources in such manner
that it complies with the governance objectives. In this context,
our rtGovOps framework provides runtime mechanisms to
enable execution of these operational governance processes.

As we have mentioned earlier (Section II-B), we use
software-defined IoT units to describe IoT cloud resources.
However, these units are not specifically tailored for describing
non-functional properties and available meta information about
IoT cloud resources, e.g., location of a vehicle (gateway) or
its specific type and model. For this purpose, rtGovOps pro-
vides governance scopes. The governance scope is an abstract
resource which represents a group of IoT cloud resources that
share some common properties. For example, an operations
manager can specify a governance scope to include all the
vehicles of type X. The ScopeCoordinator (Figure 2) provides
mechanisms to define and manage the governance scopes.

The rtGovOps framework relies on the ScopeCoordinator to
determine which IoT cloud resources need to be affected by
an operational governance process. Generally, the governance
scopes enable implementing the operational governance pro-
cesses in a scalable and generic manner, since the IoT cloud
resources do not have to be individually referenced within such
process.

C. Governance controller and rtGovOps agents
The Governance controller (Figure 2) represents a central

point of interaction with all available governance capabilities.
It provides a mediation layer that enables operations managers
to interact with IoT cloud systems in a conceptually centralized
fashion, without worrying about geographical distribution of
the underlying system. Internally, the governance controller
comprises several microservices, among which the most im-
portant include: DeploymentManager and ProfileManager that
are used to support dynamical provisioning of the governance
capabilities, as well as APIManager and previously men-
tioned ScopeCoordinator that support operational governance
processes to communicate with the underlying capabilities.
The APIManger exposes governance capabilities to operational
governance processes via well-defined APIs and handles all
API calls from such processes. It is responsible to resolve
incoming requests, map them to respective governance capa-
bilities in the IoT devices and deliver results to the calling
process. Among other things, this involves discovering capabil-
ities by querying the capabilities repository, and parameterizing
capabilities via input arguments or configuration directives.

Since governance capabilities are usually not “pre-
installed” in IoT devices, the DeploymentManager is respon-
sible to inject capabilities into such devices (e.g., gateways)
at runtime. To this end it exposes REST APIs, which are
used by the devices to periodically check for updates, as
well as by the operational governance processes to push
capabilities into the devices. Finally, the ProfileManager is
responsible to dynamically build and manage device profiles.
This involves managing static device meta-information and
periodically performing profiling actions in order to obtain
runtime snapshots of current device states.

Another essential part of the rtGovOps framework are the
rtGovOps agents. They include: ProvisioningAgent, Gover-
nanceAgent and DeviceProfiler. These agents are very light-
weight components that run in all IoT cloud resources that
are managed by rtGovOps such as the FMS vehicles. Figure 4
shows a high-level overview of the GovernanceAgent architec-
ture. It is responsible to manage local governance capabilities,
to wrap them in well-defined APIs and to expose them to the
Governance controller. The rtGovOps agents offer advantages
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in terms of general scalability of the system and provide a
degree of autonomy to the IoT cloud resources.

IV. THE RTGOVOPS FRAMEWORK MAIN CONCEPTS AND
ENABLING TECHNIQUES

Generally, the rtGovOps framework supports operations
managers to handle two main tasks. First, the rtGovOps frame-
work enables dynamic, on-demand provisioning of governance
capabilities. For example, it allows for dynamically injecting
capabilities into IoT cloud resources, and coordinating the
dynamic profiles of these resources at runtime. Second, our
framework allows for runtime management of governance
capabilities throughout their entire lifecycle that, among other
things, includes remote capability invocation and managing
dynamic APIs exposed to users.

As we have mentioned earlier, in order to achieve a
high-level governance objective such as enforce (part of)
compliance policies for handling emergency situations an
operations manager could design an operational governance
process similar to the one shown in Figure 5 (top). Individual
actions of such processes usually reference specific governance
capabilities and rely on rtGovOps to support their execution.
Figure 5 depicts a simplified sequence of steps executed by
the rtGovOps framework when a governance capability gets
invoked by an operational governance process. For the sake of
clarity, we omit several steps performed by the framework and
mainly focus on showing the most common interaction, i.e., we
assume no errors or exceptions occur. We will discuss the most
important steps performed by rtGovOps below. Note that all of
these steps are performed transparently to operations managers
and operational governance processes. The only thing that such
processes observe is a simple API call (similar to REST service
invocation) and a response (e.g., a JSON array in this case).
Naturally, the process is responsible to provide arguments
and/or configuration directives that are used by rtGovOps to
parametrize the underlying capabilities.

A. Automated provisioning of governance capabilities
In order to enable dynamic, on-demand provisioning of

governance capabilities whenever a new capability is requested
(i.e., referenced in an operational governance process), the
rtGovOps framework needs to perform the following steps:
i) the ScopeCoordinator resolves the governance scope to get
a set of devices to which the capability will be added; ii) the
ProfileManager checks whether the governance capability is
available and compatible with the device; iii) the Dependency
Manager resolves runtime dependencies of the capability;
iv) the ImageBuilder creates a capability image; v) Finally,
the DeploymentManager injects the capability into devices; An
overview of this process is also shown in steps 1−5 in Figure 5.

Algorithm 1 shows the capability provisioning process in
more detail. An operational governance process requests a
capability by supplying a capability ID (currently consisting
of capability name and version) and an operational governance
scope (more detail in Section IV-B). After that rtGovOps tries
to add the capability (together with its runtime dependencies)
to a device. If successful, it continues along the steps shown
in Figure 5. The algorithm performs in a similar fashion to
a fail-safe iterator, in the sense that it works with snapshots
of devices states. For example, if something changes on the
device side inside checkComponent (Algorithm 1, lines 2−5)
it cannot be detected by rtGovOps and in this case the behavior
of rtGovOps is not defined. Since we assume that all the
changes to the underlying devices are performed exclusively
by our framework, this is a reasonable design decision. Other
errors, such as failure to install a capability on a specific
device, are caught by rtGovOps and delivered as notifications
to the operational governance process, so that they do not
interrupt its execution.

Algorithm 1: Governance capability provisioning.
input : capaID : A capability ID.

gscope : Operational governance scope.
result: Capability added to device or error occurred.

1 func checkComponent(component, device)
2 capaMeta← queryCapaRepo(component)
3 devProfile← getDeviceProfile(device)
4 status← isCompatible(capaMeta, devProfile)
5 return status
6 end
/* Begin main loop. */

7 components← resolveDependencies(capaID)
8 components← add(capaID)
9 for device in resolveGovScope(gscope) do

10 for component in components do
11 if not checkComponent(component, device) then
12 error
13 end
14 end

/* Inject capability. */
15 capaImg ← createImg(components)
16 deployCapa(capaImg, device)
17 installCapa(capaImg) // On device-side
18 end

1) Capability checking: From the steps presented in Algo-
rithm 1 checkComponent (lines 1−6) and injectCapability
(lines 15−17) are the most interesting. The framework invokes
checkComponent for each governance capability and all of its
dependencies for the currently considered device. At this point
rtGovOps verifies that the component can be installed on this
specific device. To this end, the ProfileManager first queries
the central capabilities repository. Besides the capability bi-



naries, the repository stores capability meta-information, such
as required CPU instruction set (e.g., ARMv5 or x86), disk
space and memory requirements, as well as installation and de-
commissioning directives. After obtaining the capability meta-
information the framework starts building the current device
profile. This is done in two stages. First, the gateway features
catalog is queried to obtain relevant static information, such as
CPU architecture, kernel version and installed userland (e.g.,
BusyBox5) or OS. Second, the ProfileManager in coordination
with DeviceProfiler executes a sequence of runtime profiling
actions to complete the dynamic device profile. For example,
the profiling actions include: currently available disk space,
available RAM, firewall settings, environment information, list
of processes and daemons, and list of currently installed capa-
bilities. Finally, when the dynamic device profile is completed,
it is compared with the capability’s meta information in order
to determine if the capability is compatible with the device.

2) Capability injection: The rtGovOps capability injection
mechanism, deals with uploading and installing capabilities on
devices, as well as managing custom configuration models.
This process is structured along three main phases: Creating a
capability image, deploying the capability image on a device
and installing the capability locally on the device.

i) After the ProfileManager determines a capability is com-
patible with the gateway, the ImageBuilder creates a ca-
pability image. The capability image is rtGovOps internal
representation of the capability package (see Figure 3). In
essence it is a compressed capability package containing
component binaries and a dynamically created runlist. The
runlist is an ordered list of components that need to be
installed. It is created by the DependencyManager and
its individual steps reference component installation or
decommissioning directives that are obtained from the
capabilities repository.

ii) In the second phase, DeploymentManager deploys the
image to the device. We support two different deploy-
ment strategies. The first strategy is poll-based, in the
sense that the image is placed in the update queue and
remains there for a specified period of time (TTL). The
ProvisioningAgent periodically inspects the queue for new
updates. When an update is available, the device can poll
the new image when it is ready, e.g., when the load on
it is not too high. A governance process can have more
control over the poll-based deployment by specifying
a capability’s priority in the update queue. Finally, on
successful update the DeploymentManager removes the
update from the queue. The second deployment strat-
egy allows governance capabilities to be asynchronously
pushed to gateways. Since the capability is forced onto
the gateway, it should be used cautiously and for urgent
updates only, such as increasing a sensor poll-rate in emer-
gency situations. Finally, independent of the deployment
strategy, the framework performs a sequence of checks
to ensure that an update was performed correctly (e.g.,
compares checksums) and moves to the next phase.

iii) In the final phase, the ProvisioningAgent performs a local
installation of the capability binaries and its runtime
dependencies, and performs any custom configurations.
Initially, ProvisioningAgent unpacks the previously ob-
tained capability image and verifies that the capability can
be installed based on the current device profile. In case

5http://busybox.net

the conditions are not satisfied, e.g., due to disk space
limitation, the process is aborted and an error is sent to the
DeploymentManager. Otherwise, the ProvisioningAgent
reads the runlist and performs all required installation or
decommissioning steps.

A limitation of the current rtGovOps prototype is that it
only provides rudimentary support to specify installation and
decommissioning directives. Therefore, capability providers
need to specify checks, e.g., if a configuration file already
exists, as part of the installation directives. In the future
we plan to provide a dedicated provisioning DSL to support
common directives and interactions.

B. rtGovOps APIs and invocation of governance capabilities
When a new governance capability is injected into a

gateway, the rtGovOps framework performs the following
steps: i) register capability with APIManager; ii) ScopeCo-
ordinator resolves the governance scope; iii) APIMediator
provides a mapping model to the GovernanceAgent; iv) the
GovernanceAgent wraps the capability into a well-defined API,
dynamically exposing it to the outside world; v) Capability-
Invoker invokes the capability and deliver the result to the
invoking operational governance process when the capability
execution completes. A simplified version of this process is
also shown in steps 6− 10 in Figure 5.

Before we dive into technical details of this process, it is
worth mentioning that currently in the capabilities repository,
besides aforementioned capability meta-information and bina-
ries, we also maintain well-defined capability API descriptions,
e.g., functional, meta and lifecycle APIs. These APIs are avail-
able to operations managers as soon as a capability is added
to the repository and independent of whether the capability
is installed on any device. Additionally, we provide a general
rtGovOps API that is used to allow for more control over
the system and its capabilities. It includes CapabilityManager
API (e.g., list capabilities, check if capability installed/active),
capability lifecycle API (e.g., start, stop or remove capabil-
ity), and ProvisioningAgent API (e.g., install new capability).
Listing 1 shows some examples of such APIs as REST-like
services (version numbers are omitted for clarity).

1 /* General case of capability invocation. */
2 /govScope/{capabilityId}/{methodName}/{arguments}?
3 arg1={first-argument}&arg2={second-argument}&...

4 /* Data points capability invocation example. */
5 /deviceId/DPcapa/setPollRate/arguments?rate=5s
6 /deviceId/DPcapa/list

7 /* Capabilities manager examples. */
8 /deviceId/cManager/capabilities/list
9 /deviceId/cManager/{capabilityId}/stop

Listing 1. Examples of capabilities and rtGovOps APIs.

1) Single invocation of governance capabilities: In the
following we mainly focus on explaining the steps that are
performed by the rtGovOps framework when a capability is
invoked on a single device. The more general case involving
multiple devices and using operational governance scopes is
discussed in the next section.

When a capability gets invoked by an operational gover-
nance process for the first time, APIManager does not know
anything about it. Therefore, it first needs to check, based on



the API call (e.g., see Listing 1), if the capability exists in
the central capabilities repository. After the capability is found
and provisioned (Section IV-A), the rtGovOps framework tries
to invoke the capability. This involves the following steps:
registering the capability, mapping the API call, executing the
capability, and returning the result.

i) First, the APIManager registers the API call with the
corresponding capability. This involves querying the ca-
pability repository to obtain its meta-information (such
as expected arguments), as well as building a dynamic
mapping model. Among other things, the mapping model
contains the capability ID, a reference to a runtime
environment (e.g., Linux shell), a sequence of input
parameters, the result type, and further configuration
directives. The APIMediator forwards the model to the
device (i.e. GovernanceAgent) and caches this information
for subsequent invocations. During future interactions,
the rtGovOps framework acts as transparent proxy, since
subsequent steps are handled by the underlying devices.

ii) In the next step, rtGovOps needs to perform a map-
ping between the API call and the underlying capability.
Currently, there are two different ways to do this. By
default, rtGovOps assumes that capabilities follow the
traditional Unix interaction model, i.e., that all argu-
ments and configurations (e.g., flags) are provided via the
standard input stream (stdin) and output is produced to
standard output (stdout) or standard error (stderr) streams.
This means, if not specified otherwise in the mapping
model, the framework will try to invoke the capability
by its ID and will forward the provided arguments to its
stdin. For capabilities that require custom invocation, e.g.,
property files, policies, or specific environment settings,
the framework requires a custom mapping model. This
model is used in the subsequent steps to correctly perform
the API call.

iii) Finally, the CapabilityInvoker in coordination with the
GovernanceAgent invokes the governance capability. As
soon as the capability completes, the GovernanceAgent
collects and wraps the result. Currently, the framework
provides means to wrap results as JSON objects for
standard data types and it relies on the mapping model
to determine the appropriate return type. However, this
can be easily extended to support more generic behavior,
e.g., by using Google Protocol Buffers6.

2) Operational governance scopes: When an operational
governance process gets invoked on a governance scope, the
aforementioned invocation process remains the same, with the
only difference that rtGovOps performs all steps on a complete
governance scope in parallel instead on an individual device.
To this end, the ScopeCoordinator enables dynamic resolution
of the governance scopes.

There are several ways how a governance scope can be
defined. For example, an operations manager can manually
assign a set of resources to a scope, such as all vehicles
belonging to a golf course, or they can be dynamically de-
termined depending on runtime features by querying gover-
nance capabilities to obtain dynamic properties such as current
configuration model. To bootstrap defining the governance
scopes, the ScopeCoordinator, defines a global governance
scope that is usually associated with all the IoT cloud resources

6http://code.google.com/p/protobuf/

administered by a stakeholder at the given time. Governance
scope specifications are implemented as composite predicates
referencing device meta information and profile attributes, The
predicates are applied to the global scope, filtering out all
resources that do not match the provided attribute conditions.
The ScopeCoordinator uses the resulting set of resources to
initiate capability invocation with the CapabilityInvoker. The
ScopeCoordinator is also responsible to provide support for
gathering results delivered by the invoked capabilities. This is
needed since the scopes are resolved in parallel and the results
are asynchronously delivered by the IoT devices.

V. EVALUATION & PROTOTYPE IMPLEMENTATION

A. Prototype implementation
In the current prototype, the rtGovOps Governance con-

troller microservices are implemented in Java and Scala
programming languages. The rtGovOps agents are based on
lightweight httpd server and are implemented as Linux shell
scripts. The complete source code and supplement materials
providing more details about current rtGovOps implementation
are publicly available in Git Hub7.

B. Experiments setup
In order to evaluate how our rtGovOps framework behaves

in a large-scale setup (hundreds of gateways), we created
a virtualized IoT cloud testbed based on CoreOS8. In our
testbed we use Docker containers to virtualize and mimic
physical gateways in the cloud. These containers are based
on a snapshot of a real-world gateway, developed by our
industry partners. The Docker base image is publicly available
in Docker Hub under dsgtuwien/govops-box9.

For the subsequent experiments we deployed a CoreOS
cluster on our local OpenStack cloud. The cluster consists
of 4 CoreOS 444.4.0 VMs (with 4 VCPUs and 7GB of
RAM), each running approximately 200 Docker containers.
Our rtGovOps agents are preinstalled in the containers. The
rtGovOps Governance controller and capabilities repository are
deployed on 3 Ubuntu 14.04 VMs (with 2VCPUs and 3GB of
RAM). The operational governance processes are executing on
a local machine (with Intel Core i7 and 8GB of RAM).

C. Governing FMS at runtime
We first show how our rtGovOps framework is used to

support performing operational governance processes on a real-
world FMS application for monitoring vehicles (e.g., location
and engine status) on a golf course (Section II). The application
consists of several services. On the one side, there is a light-
weight service running in the vehicle gateways that interfaces
with vehicle sensors via the CAN protocol, and feeds sensory
data to the cloud. On the cloud-side of the FMS application,
there are several services that, among other things, perform an-
alytics on the sensory data and offer data visualization support.
In our example implementation of this FMS application, the
gateway service is implemented as a software-defined IoT unit
that among other things provides an API and mechanisms to
dynamically change the cloud communication protocol without
stopping the service.

The FMS application polls diagnostic data from vehicles
with CoAP. However, in case of an emergency, a golf course

7http://github.com/tuwiendsg/GovOps
8http://coreos.com/
9https://registry.hub.docker.com/u/dsgtuwien/govops-box/
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Fig. 6. Example execution of operational governance process in the FMS.

manager needs to increase the update rate and switch to MQTT
in order to handle emergency updates in (near) real-time.
This can be easily specified with an operational governance
process that contains the following steps: change communi-
cation protocol to MQTT, list vehicle engine and location
data points and set data points update rate, e.g, to 5 seconds.
These steps are also depicted in Figure 5 (top). The golf
course manager relies on rtGovOps governance capabilities
to realize individual process steps and rtGovOps mechanisms
(Section IV) to execute the operational governance process.

Figure 6 shows the bandwidth consumption of the FMS
application that monitors 50 vehicles over a period of time.
We notice two distinct operation modes: normal operation and
operation in case of an emergency (emergency operation).
Most notable are the two transitions: first, from normal to
emergency operation and second, returning from emergency
to normal operation. These transitions are described with
the aforementioned operational governance process that is
executed by the rtGovOps framework. The significant increase
in bandwidth consumption happens during the execution of
the operational governance process, because it changes the
communication protocol from polling the vehicles approxi-
mately every minute with CoAP, to pushing the updates every
5 seconds with MQTT.

Typically, when performing processes such as the transition
from normal to emergency operation without the rtGovOps
framework, golf course managers (or generally operations
managers) need to directly interact with vehicle gateways. This
usually involves long and tedious tasks such as manually log-
ging into gateways, dealing with device specific configurations
or even an on-site presence. Therefore, realizing even basic
governance processes, such as the one we presented above,
involves performing many manual and error prone tasks,
usually resulting in a significant increases in operations costs.
Additionally, in order to be able to have a timely realization
of governance processes and consistent implementation of
governance strategies across the system, very large operations
and support teams are required. This is mainly due to the
large scale of the FMS system, but also due to geographical
distribution of the governed IoT resources, i.e., vehicles.

Besides the increased efficiency, the main advantage that
rtGovOps offers to operations managers is reflected in the
flexibility of performing operational governance processes
at runtime. For example, in Figure 6 the execution of the
operational governance process took around 2 minutes. In our
framework this is, however, purely a matter of operational
governance process configuration (naturally with upper limits
as we show in the next section). This means, the operational

governance process can be easily customized to execute the
protocol transition “eagerly”, in the sense to force the change
as soon as possible, even within seconds, or “lazy”, to roll-out
the change step-wise, e.g., 10 vehicles at the time. The most
important consequence is the opportunity to effectively manage
tradeoffs. For example, executing the process eagerly incurs
higher costs, due to additional networking and computation
consumption, but it is needed in most emergency situations.
Conversely, executing the process in a lazy manner can be
desirable for non-emergency situations, since operations man-
agers can prevent possible errors to affect the whole system.

Figure 6 also shows that rtGovOps introduces a slight
communication overhead. This is observed in the two peaks
at the end of the first process execution, when the framework
performs the final checks that the process completed success-
fully and also when the second process gets triggered, i.e.,
when the capabilities get invoked on the vehicles. However,
in our experiments this overhead was small enough not to
be statistically significant. An additional performance-related
concern of using rtGovOps is that network latency can slow
down the execution of the operational governance process.
However, since rtGovOps follows the microservices architec-
ture style, it is possible to deploy relevant services (API- and
DeploymentManager) on Cloudlets [3] near the vehicles, e.g.,
on golf courses, where they can utilize local wireless networks.

D. Experiments results
To demonstrate the feasibility of using rtGovOps to facili-

tate operational governance processes in large-scale software-
defined IoT cloud systems, we evaluate its performance to
govern approximately 800 vehicle gateways that are simulated
in the previously described test-bed. In our experiments, we
mainly focus on showing the scalability of the two main mech-
anisms of the rtGovOps framework: (i) capability invocation
and (ii) automated capability provisioning. We also consider
the performance of capability checking and governance scope
resolution. The reason why we put an emphasis on the scal-
ability of our framework is that it is one of the key factors
to enable consistent implementation of governance objectives
across a large-scale systems. For example, if the execution of
an operational governance process were to scale exponentially
with the size of the resources pool, theoretically it would take
infinitely long to have a consistent enforcement of the gover-
nance objectives in the whole system, with sufficiently large
resource pool. The results of the experiments are averaged
results of 30 repetitions and we have experimented with 5
different capabilities that have different properties related to
their size and computational overhead.

Figure 7 shows the execution time of the first invocation
of a capability (stacked bar) and an average invocation time
of capability execution (plain bar). We notice that the first
invocation took approximately between 10 and 15 seconds and
average invocation varied between 4 and 6 seconds depending
on the scope size (measured in the number of gateways). The
main reason for such a noticeable difference is the invocation
caching performed by rtGovOps. This means that most of the
steps, e.g., building capability image and building the mapping
model are only performed when a capability is invoked for the
first time, since in the subsequent invocations the capability
is already in the gateways and the mapping can be done in
cache. In Figure 8, we present the average execution time
of a capability (as it is observed by an invoking operational
governance process on the locale machine), average execution
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Fig. 7. Capabilities first invocation.

of capability checking mechanism and governance scope res-
olution. As a reference, the diagram also shows a plot of a
nlog(n) + c function. We can see that the mechanisms scale
within O(nlog(n)) for relatively large governance scopes (up
to 800 gateways), which can be considered a satisfactory result.
We also notice that computational overheads of the capabilities
have no statistically significant impact on the results, since
they are distributed among the underlying gateways. Finally, it
is interesting to notice that the scope resolution time actually
decreases with increasing scope size. The reason for this is that
in the current implementation of rtGovOps, scope resolution
always starts with the global governance scope and applies
filters (lambda expressions) on it. After some time Java JIT
“kicks-in” and optimizes filters execution, thus reducing the
overall scope resolution time.

In Figure 9, we show the general execution times of the
rtGovOps capability provisioning mechanism (push-based de-
ployment strategy) for two different capabilities. The first one
has a size order of magnitude in MB and second capability size
is measured in KB. There are several important things to notice
here. First, the capability provisioning also scales similarly to
O(nlog(n)). Second, after the governance scope size reaches
400 gateways there is a drop in the capability provisioning
time. The reason for this is that the rtGovOps load balancer
spins-up additional instances of the DeploymentManger and
ImageBuilder, naturally reducing provisioning time for subse-
quent requests. Finally, the provisioning mechanism behaves
in a similar fashion for both capabilities. The reason for this
is that all gateways are in the same network, what can be seen
as an equivalent to vehicles deployed on one golf course.

E. Discussion and lessons learned
The observations and results of our experiments show that

rtGovOps offers advantages in terms of realizing operational
governance processes with greater flexibility, and also makes
such processes easily repeatable, traceable and auditable,
which is crucial for successful implementation of governance
strategies. Generally, by adopting the notion of governance
capabilities and by utilizing resource agents, rtGovOps allows
for operational governance processes to be specified with
finer granularity (R3), but also give a degree of autonomy
(R5) to the managed IoT cloud resources. Therefore, by
selecting suitable governance capabilities, operations managers
can precisely define desired states and runtime behavior of
software-defined IoT cloud systems. Further, since the capa-
bilities are executed locally in IoT cloud resources (e.g., in
the gateways), our framework enables better utilization of the
“edge of infrastructure” and allows for local error handling,
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Fig. 8. Average invocation time of capabilities on a governance scope.

thus increasing system availability and scalability. Further, the
main advantage of approaching provisioning and management
of governance capabilities in the described manner is that
operation managers do not have to worry about geographically-
distributed IoT cloud infrastructure nor deal with individual
devices, e.g., key management or logging in. They only need
to declare (R4) which capabilities are required in the oper-
ational governance process and specify a governance scope.
The rtGovOps framework takes care of the rest, effectively
giving a logically centralized view (R1) on the management
of all governance capabilities. Further, by automating (R2)
the capability provisioning, rtGovOps enables installing, con-
figuring, deploying, and invoking the governance capabilities
in a scalable and easily repeatable manner, thus reducing
errors, time, and eventually costs of operational governance.
It should be also noted that there is a number of technical

limitations of and possible optimizations that can be introduced
in the current prototype of the rtGovOps framework. As we
have already mentioned, rtGovOps currently offers limited
support for specifying provisioning directives. Additionally,
while experimenting with different types of capabilities, we
noticed that in many cases a better support to deal with
streaming capabilities would be useful. Regarding possible
optimizations, in the future we plan to introduce support for
automatic composition of capabilities on the device level, e.g.,
similar to Unix piping. This should reduce the communication
overhead of rtGovOps and improve resource utilization in
general. In spite of the current limitations, the initial results
are promising, in the sense that rtGovOps increases flexibility
and enables scalable execution of operational governance
processes in software-defined IoT cloud systems.
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VI. RELATED WORK

Recently, IoT governance has been receiving a lot of
attention. For example, in [10] the author evaluates various
governance aspects, such as privacy, security, ethics, etc., and
defines main principles of IoT governance, e.g., legitimacy,
transparency, openness, and accountability. Governance ap-
proaches such as CMMI [11] or COBIT [12] also provide
models and methodologies to manage governance objectives.
Such approaches are complementary to our own and can be
used along with rtGovOps to specify, manage and trace such
high-level governance objectives.

Also approaches dealing with IoT mobile cloud opera-
tions and resources management have recently emerged. For
example, in [1], [13]–[16] the authors mostly deal with IoT
infrastructure virtualization and its management on the clouds.
Approaches presented in [3]–[5], [17]–[19] address the issues
to aggregate and manage the computational resources provided
by various IoT devices, mobile devices and the clouds. In
[2], [20] the authors focus on utilizing clouds for additional
storage resources. In [16] the authors develop an infrastruc-
ture virtualization framework, based on asynchronous event
exchange. They provide an event matching algorithm to enable
coordination and management of sensory event streams. In
[1] the authors propose virtualizing physical sensors on the
cloud and provide template-based management and monitor-
ing mechanisms for the virtual sensors. SenaaS [13] mostly
focuses on providing a cloud semantic overlay atop physical
IoT infrastructure. It defines an ontology to manage interaction
with heterogeneous devices and mediate different data formats.
OpenIoT framework [14] utilizes semantic web technologies
and CoAP, to enable discovering, linking and orchestrating In-
ternet connected objects. In [15] the authors focus on enabling
sensing and actuating as a service, providing support for device
management and identification, as well as their selection and
aggregation. Edge Cloud Composits [5] provide support to
enable mobile devices to enhance their resources, by utilizing
additional near-by devices or remote clouds. Such approaches
provide various governance capabilities such as template-based
controlling of sensor groups, registering and decommissioning
sensors, orchestrating IoT devices, as well as monitoring the
IoT cloud systems QoS. Aforementioned approaches provide
techniques for optimizing IoT cloud resources utilization, such
as computation offloading, service migration or context-aware
resource aggregation. Our rtGovOps conceptually builds on
such approaches, and goes one step further by providing sup-
port for dynamic, on-demand provisioning of the governance
capabilities and enabling their management throughout the
entire lifecycle. By doing so rtGovOps increases flexibility
and facilitates execution of operational governance processes
in large-scale IoT cloud systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the rtGovOps framework for
runtime operational governance in software-defined IoT cloud
systems. We presented rtGovOps runtime mechanisms and
enabling techniques that support operations managers to handle
two main tasks: (i) perform dynamic, on-demand provisioning
of governance capabilities and (ii) remotely invoke such capa-
bilities in IoT cloud resources remotely, via dynamic APIs. We
demonstrated, on a real-world case study, how our framework
can be used to facilitate execution of operational governance
processes in large-scale software-defined IoT cloud systems.
The initial results are promising in several aspects. We showed

that the rtGovOps framework enables operational governance
processes to be executed in a scalable manner across relatively
large IoT cloud resource pools. Additionally, we discussed how
rtGovOps enables flexible execution of operational governance
processes by automating the execution of such processes to
a large extent, offering finer-grained control over IoT cloud
resources and providing a logically centralized interaction with
IoT cloud resource pools.

In the future we plan to address the current limitations
of rtGovOps, described in Section V. We also plan to extend
the rtGovOps framework to support specifying and managing
high-level governance objectives.
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