
Governing Elastic IoT Cloud Systems
under Uncertainty

Stefan Nastic, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar
Distributed Systems Group, TU Wien, Austria

Email: {nastic,copil,truong,dustdar}@dsg.tuwien.ac.at

Abstract—Emerging IoT cloud systems create unified IoT cloud
infrastructures that offer large pools of elastic resources, which
need to be governed through their entire lifecycle. However, nu-
merous uncertainties are inherently present in such infrastructures,
mainly due to the novel interactions of IoT elements, network
elements, cloud resources and humans. They pose a plethora
of challenges for the governance of such IoT cloud systems. In
this paper we introduce U-GovOps – a novel framework for
dynamic, on-demand governance of elastic IoT cloud systems under
uncertainty. We introduce a declarative policy language to simplify
the development of uncertainty- and elasticity-aware governance
strategies. Based on that we develop runtime mechanisms, which
enable mitigating the uncertainties by monitoring and governing
the IoT cloud systems through specified strategies. We evaluate our
approach using a real-life case study in the domain of predictive
maintenance.

I. INTRODUCTION

Emerging IoT systems extend contemporary cloud systems
beyond the data centers to include a variety of edge IoT
devices, such as sensors and sensory gateways. These systems
are referred to as elastic IoT cloud systems [1]. On the one hand,
such systems utilize the IoT infrastructure resources to deliver
novel value-added services by leveraging data from different
sensor devices and enabling timely propagation of the essential
business decisions to the edge of the infrastructure. On the other
hand, these systems utilize cloud resources, e.g., compute and
storage services, to support functions of resource constrained IoT
devices as well as to enable elastic delivery and consumption
of the vast IoT resources through the cloud computing on-
demand pay-per-use model. This has proliferated unified IoT
cloud infrastructures [2]–[7], which comprise large pools of IoT
and cloud resources resources from data centers and the edge
of the network.

For the above-mentioned elastic IoT cloud systems, gover-
nance strategies are a useful mechanism to address issues related
to risk mitigation, compliance and legal requirements [8]. How-
ever, supporting these strategies poses a plethora of challenges
mostly due to numerous uncertainties inherently present in the
systems infrastructure. For example, uncertainties related to state
monitoring, data delivery and performance variability (e.g., due
to probe failures, network issues or human error) often lead to
imperfect data about the infrastructure. As a result, infrastruc-
tural information needed for governance operations might be
incomplete or inaccurate, thus hindering the operational tasks of
both automated management systems and the end users. Such
uncertainties are mainly caused by the novel interactions of IoT
elements, network elements, cloud resources and humans. This
calls for rethinking the traditional infrastructure management
approaches to include uncertainty considerations in operations
and governance strategies.

In this paper we introduce the U-GovOps framework for
dynamic, on-demand governance of elastic IoT cloud systems
under uncertainty. In our previous work, we introduced GovOps
methodology [8] and a supporting framework [9] to effectively
manage runtime governance in IoT cloud systems. However,
our previous work, as well as many other approaches (e.g., [2],
[5]), implicitly assume perfect information (e.g., about IoT cloud
resource states), and reliable and deterministic behavior of the
IoT cloud infrastructure. Unfortunately, due to the infrastructure
uncertainties, such assumptions are unrealistic and impossible to
meet in practice, thus putting a lot of burden on the developers
and operations managers (users) to deal with such uncertainties,
in ad hoc fashion. The U-GovOps framework conceptually
extends and technically refines our initial approach by intro-
ducing novel techniques to facilitate developing and executing
the governance strategies under presence of the uncertainty. The
main contributions of our framework include: i) A declarative
policy language for developing uncertainty- and elasticity-aware
governance strategies for IoT cloud systems. ii) Runtime mech-
anisms and uncertainty mitigation techniques, which support
execution of such strategies under uncertainty.

The remainder of the paper is structured as follows: Sec-
tion II presents a motivating scenario and research challenges;
Section III outlines the design of the U-GovOps framework; In
Section IV, we present U-GovOps declarative policy language
and its most important runtime mechanisms; Section V describes
the current prototype implementation and presents experiments;
Section VI discusses related work; Finally, Section VII con-
cludes the paper and gives an outlook of our future research.

II. MOTIVATION

A. Scenario
Let us consider a scenario of Predictive Maintenance Ap-

plication (PMA) in building management. Figure 1 shows the
high-level architecture of the PMA in which data collected
by sensors monitoring equipment in buildings is pre-processed
locally and relayed via software-defined gateways [1], [7] to
the cloud, where various services store and analyze the data to
monitor and predict the status of equipment. The arrows show
the typical propagation of the sensory data and the analytic
sequences within PMA. The actuation sequences are omitted
for readability. The PMA relies on a system blending IoT
elements and cloud services that is implemented with different
technologies1.

In our scenario, PMA runs atop a complex IoT cloud
infrastructure that includes (i) various edge devices, such as,

1We provided one implementation of such a high-level architecture at https:
//github.com/tuwiendsg/DaaSM2M/wiki/

1

IP-bridge
devices

Sensors and actuators

Software-defined
gateways

The Edge

Software-defined
gateways

Batch analytics
(e.g., HDFS+Pangool)

NoSQL Database
(e.g., Cassandra)

Realtime
analytics

Predictive
maintenance

services

The Cloud

MQ broker
(e.g., Kafka)

CEP
(e.g., Storm+Trident)

Fig. 1. Architectural overview of Predictive Maintenance Application (PMA).

(software and hardware) sensors, actuators and gateways, (ii)
network elements, and (iii) cloud services, e.g., for complex
event processing, NoSQL data storage, and streaming data
analysis. All of these infrastructural elements need to be gov-
erned throughout their entire lifecycle. As shown in [8], [9],
this can be done by designing suitable governance strategies.
However, numerous uncertainties interfere with the execution of
such strategies, making the implementation of even rudimentary
governance strategies a challenging task.

Typically, the PMA polls diagnostic data from equipment,
such as chiller plants (e.g., with CoAP), but for optimization
purposes (mainly network consumption) not all available sensory
data are polled from the cloud. However, in situations such as
an emergency or multiple devices failure, the PMA needs to
change its operation to be in accordance with company’s legal
regulatory compliance, e.g., to handle status updates in (near)
real time. To satisfy such governance objective a maintenance
manager could create a governance strategy which “activates” all
available sensors, changes the communication protocol to push-
based, e.g., MQTT, and sets the sensors update rate to maximum.
Finally, after such situations have been dealt with, the PMA
should return to its normal operation mode. In such situations,
we need to rely on up-to-date and highly accurate infrastructural
state information and stable performance of control actions of
various resources to adjust the IoT cloud systems. However,
in real world it is hard, if not impossible to achieve them.
Therefore, to deal with such situations, on the one hand, we
need to capture different types of uncertainties related to state
information and performance variability of underlying resources
to allow for strategies specified for different uncertainties. On the
other hand, we need to develop runtime mechanisms to support
these governance strategies under such uncertainties.

B. Research Challenges
1) Uncertainties in the infrastructure of IoT cloud systems:

Inspired by the traditional fault, error, failure classification [10]
and the general belief model [11], in our work we have identified
different uncertainties for IoT cloud infrastructure. To system-
atically document uncertainties, we have developed a taxonomy
and use this taxonomy to classify the uncertainties and analyze
their effects on the typical governance strategies2.

Our taxonomy mainly focuses on infrastructure uncertainties
that originate at runtime. Other uncertainties such as design- or
requirements-level uncertainties [12] are currently not consid-
ered. Figure 2 gives a high-level overview of the taxonomy
and its main concepts (uncertainty classes) which are used

2The description of the taxonomy is out of the scope of this paper. A detailed
description of the uncertainty taxonomy is provided as supplement material at:
http://dsg.tuwien.ac.at/staff/snastic/public/u-taxonomy.pdf.

to classify the infrastructure-level uncertainties: i) Temporal
manifestation reflects the duration of the uncertain (or failure)
state caused by an uncertainty. ii) Nonfunctional dimensionality
captures affected nonfunctional properties of the infrastructure.
For example, the uncertainties can affect well-known infrastruc-
ture’s dependability [10] , quality of sensory data, or regulatory
compliance [8]. iii) Cause of uncertainty can be a natural
phenomenon, a human action or a technological phenomenon
(anything caused by an infrastructure phenomenon, which is
beyond user’s control). iv) Effect propagation denotes whether
an uncertainty affects the application or the physical environ-
ment. v) Locality describes where an uncertainty occurs. We
differentiate between uncertainties present in hardware, platform
(virtual infrastructure) or external to infrastructure.vi) Func-
tional dimensionality denotes the category of infrastructure’s
functionality that is affected by an uncertainty, e.g., execution
environment, actuation, data delivery and storage facilities.

Our taxonomy enables the users (e.g., maintenance manager)
to capture their knowledge about potential uncertainties, in a
systematic and structured way, based on the set of general,
well-defined concepts. Besides the common elements used in
the governance strategies, e.g., runtime monitoring information,
enabling the users to embed such knowledge in the governance
strategies is crucial for development of the strategies that can
“cope with” the runtime uncertainties. For our following dis-
cussion, we focus on two most relevant uncertainty families2,
which affect the tasks performed in typical governance strategies
namely DataQualityUncertainties and ActuationDependabili-
tyUncertainties. We elaborate the main governance challenges
caused by these uncertainties.

2) Main challenges of IoT cloud governance under uncer-
tainty: One of the main tasks of governance strategies is to
identify a governance scope [9]. Governance scopes represent
a set of IoT cloud resources that should be governed by
such strategies. The resources are selected and assigned to the
governance scopes based on their properties, i.e, the governance
scopes are specified as composite predicates referencing the
resource attributes. Such attributes mainly reference resource’s
meta data (mainly specified by humans) and resource’s profile
data (mainly based on sensory readings) that are used to compute
the governance scopes, as we have thoroughly discussed in [9].
However, in practice, the DataQualityUncertainties often lead
to incomplete or missing data about resources and their states
in IoT cloud systems, such as null attribute values (e.g., due
to monitoring failures or human error). These quality of data
problems make it very challenging to determine the governance
scopes. Currently, the users deal with such imperfect information
in ad hoc fashion, e.g., by writing complex queries or developing
sophisticated probabilistic models. This pollutes the governance
logic with uncertainty management, making the governance

Infrastructure
uncertainties

Nonfunc.
dimensionality

Functional
dimension.

Execution env.

Storage
Data delivery

Actuation

Locality Virtual infrastr.
Hardware

Temporal
manifestation

Persistent
Recurring
Sporadic Effect

propagation

Application

Physical env.

External

Observation
time Deployment

time

Runtime

Cause
Human action

Natural
phenomenon

Quality
Compliance

Dependability

Technological

Fig. 2. Taxonomy for IoT cloud infrastructure uncertainties.

2

strategies difficult to maintain, less traceable and significantly
increasing the development effort.

Another key task performed by governance strategies is
(remote) invocation of the governance actuations [9], e.g., to
increase sensors update rate, as well as the elasticity actua-
tions [13], e.g., to keep the cloud services’ response time within
the specified limits, when the sensors update rate is increased.
Such actuations are often subject to the ActuationDependabil-
ityUncertainties, which degrade dependability of the actuation
facilities (e.g., due to network latency, device failure or race
conditions), manifesting itself often transparently to the users, as
lost actuations, cascading failures or resource over-consumption.
This usually causes an inconsistent realization of governance
strategies or even renders them completely useless, thus causing
breaches of regulations or compliance.

III. THE U-GOVOPS FRAMEWORK

A. Managing uncertainties in governance strategies
It is known that uncertainty is tightly related to the lack

of knowledge [14]. Further, it strongly depends on the task-at-
hand and on the system setup and environment [15]. Therefore,
by categorizing the uncertainties, analyzing their Effects and
measuring the degree of sensitivity to such uncertainties (in our
taxonomy captured with Nonfunctional dimensionality), we can
formulate more precise statements such as: “An uncertainty X
affects the application dependability by causing resource over-
consumption and potentially leads to a complete functionality
failure of actuation facilities”. This allows for streamlining
the uncertainty management by enabling us to derive require-
ments, actions and configuration models needed for dealing
with uncertainties. The main aim of our U-GovOps framework
is to facilitate the runtime governance of elastic IoT cloud
systems under presence of uncertainty by incorporating such
requirements and configurations from the early stages of strategy
design. To this end, U-GovOps supports the users to design
elasticity- and uncertainty-aware governance strategies.

While governance strategies are mainly used to address
issues related to risk mitigation, compliance and legal require-
ments [8], it is often useful to incorporate elasticity actuations
in the governance strategies to enable the users to also anticipate
changes in resource demand, costs and quality of the governed
systems (encompassing both IoT and cloud infrastructures).
For example, by considering elasticity relationships [1], while
designing the elasticity-aware governance strategies, users can
anticipate increases in resource demand, e.g., since they know
that some other governance actions increase the sensors’ update
rate. They can utilize this knowledge, for instance to “warm up”
VMs in order to mitigate the uncertainties related to the actuation
delays (of spinning up the VMs) when scaling out related cloud
services. However, due to an intrinsic “bootstrapping problem”
this only facilitates uncertainty management to a certain ex-
tent, since the mechanisms underpinning the governance and
elasticity actuations are also subject to uncertainty (Section II).
For this reason the U-GovOps framework allows the users to
incorporate uncertainty considerations in governance strategies,
effectively raising the awareness level of such strategies. To
this end, U-GovOps defines a governance policy language for
developing uncertainty- and elasticity-aware governance policies
(Section IV) and provides a language runtime (Governance and
Elasticity Controllers) that does most of the “heavy lifting”
to support executing governance policies, without explicitly
worrying about the infrastructure uncertainties.

Governance
sstrategy

Operations
manager

What is on the
cloud

Sequence of actions
and conditions

Actuators
Sensors

Runtime
Container

Agents and
profilers

G
ov
er
na
nc
eP

ol
ic
y
Pr
oc
es
so
r

Ca
pa
bi
lit
yI
nv
ok
er

G
ov
.S
co
pe

Co
or
di
na
to
rG
ov
.S
tr
at
eg
yP
ro
ce
ss
or

In
te
rn
a

G
ov
.M

od
el

SD gateway

SD gateway

Governance capabilities
repository

Governance
capabilities

IoT cloud resource
(e.g., Gateway or VM)

Co
m
. I
nf
ra
st
ru
ct
ur
e

Device
Profiler

Elasticity
Agent

Governance
Agent

Ca
pa
bi
lit
y

...

Provisioning
Manager

Image
Builder

Dependency
Manager

Repository Connector

Profile
Manager Ca

pa
bi
lit
y

Ca
pa
bi
lit
y

Governance controller

Elasticity controller

Co
nt
ro
l

En
gi
ne

Monitoring
Coordinator

Interaction
Service

Capability
Manager

ConstraintsEnforcer

AP
I M

an
ag
er

Fig. 3. Overview of U-GovOps architecture.

B. U-GovOps architecture
The U-GovOps framework is distributed across the clouds

and IoT devices. It is designed based on the microservices
architecture that enables evolvable and fault-tolerant system
design, while allowing for flexible management and scaling
of individual components. In U-GovOps, the GovernancePoli-
cyProcessor (Figure 3) represents a central point of interaction
with the Governance Controller and the Elasticity Controller,
i.e., it is responsible to interpret the user-provided governance
policies (strategies), described latter in Section IV and map them
to the controllers API, exposed by the API Manager.

The Governance Controller comprises several microservices,
the most important being the GovernanceScopeCoordinator. It
provides mechanisms to define and manage the governance
scopes, in order to determine which IoT cloud resources will
be affected by a governance strategy. It relies on the ProfileM-
anager to dynamically build and manage resource (e.g., device)
profiles. This involves managing static device meta-information
and performing profiling actions in order to obtain runtime
snapshots of current device states. The Elasticity Controller
[13] provides general mechanisms to handle elasticity actuations
specified in governance policies. Its main microservices include:
The ControlEngine, which implements the elasticity control
algorithms, e.g., greedy planning; The MonitoringCoordinator
that is used to integrate infrastructure monitoring frameworks
such as Nagios or Ganglia and; The InteractionService, which
encapsulates higher-level control mechanism, e.g., exposed by
an IaaS provider.

These controllers rely on the CapabilityInvoker to perform
the actual invocations of the underlying capabilities. i.e., perform
actuations on the IoT cloud resources over the network (denoted
as two-way arrows in Figure 3). For this purpose the framework
uses the ElasticityAgent, the GovernanceAgent and the Devi-
ceProfiler, which are responsible to manage local governance
and elasticity capabilities and to expose them to the controllers.
They are very light-weight components that run in all IoT cloud
resources that are managed by U-GovOps.

IV. DEVELOPING UNCERTAINTY- AND ELASTICITY-AWARE
GOVERNANCE STRATEGIES

A. U-GovOps declarative policy language
In order to facilitate governing IoT cloud systems under

uncertainty, the U-GovOps framework provides a declarative
policy language for developing uncertainty- and elasticity-aware

3

governance policies. It is based on our previously developed
SYBL [13] and its main aim is to support developers and
operations managers (users) to design such policies on a higher-
level of abstraction, without explicitly dealing with IoT cloud
infrastructure uncertainties. Two main tasks that users perform
are identifying the governance scopes and defining the gover-
nance and elasticity actuations, to be applied on such scopes
(Section II). In our language, STRATEGY directive allows the
specification of the governance or elasticity actuations to be
undertaken (e.g., set sensor update rate) or desired behav-
ior to be enforced (e.g., maximize throughput) when specific
conditions are met. Further, to declare the governance scopes
– determining which resources should be affected by such
actuations – our language offers GOVERNANCE_SCOPE direc-
tive. Finally, to support the users to articulate their knowledge
about the uncertainties, i.e., to raise the level of awareness
in governance policies, the U-GovOps language provides the
CONSIDERING_UNCERTAINTY construct. It is mainly used to
specify configuration directives for determining the behavior of
the governance scopes and governance or elasticity actuations.

Subsequently, we describe the most important language
concepts and supporting runtime mechanisms in more detail3,
mainly focusing on: 1) Rough governance scopes and 2) Iso-
lated (governance and elasticity) actuations. In the rest of the pa-
per we mostly focus on describing our framework’s support for
managing the uncertainties related to the actuation dependability
and incomplete and missing data about IoT cloud systems,
which were identified as most relevant for our work.

1) Rough governance scopes: In order to support gover-
nance policy developers to deal with the uncertainties related
to missing and incomplete data (Section II), the U-GovOps
framework introduces a new concept called rough governance
scope. Generally, a rough governance scope represents a formal
approximation of a resource set, taking into account resources,
which due to uncertainty, cannot be positively (i.e. with absolute
certainty) characterized as members of the targeted governance
scope. Rough governance scopes are modeled based on the
rough set theory, which unlike fuzzy sets or probabilistic models,
has an advantage of providing an objective formal approximation
of membership relation [16]. Practically, this means that even
with no user involvement, U-GovOps can make an objective
approximation of resource assignments to governance scopes
under data uncertainty.

Formally, a rough governance scope is defined as a tuple
〈GX,GX〉, where GX and GX are traditional (crisp) sets
that represent lower and upper approximation in the rough
governance scope, given the set of attributes G. The G-lower
approximation is the union of all equivalence classes in [x]G that
are a subset of the targeted governance scope X: GX =

⋃
{x |

[x]G ⊆ X}. The G-upper approximation is the union of all
equivalence classes in [x]G which have non-empty intersection
with the targeted governance scope X: GX =

⋃
{x | [x]P∩X 6=

∅} [16]. Therefore, GX represents a positive (or pessimistic)
approximation and GX represents an optimistic approximation
of the targeted governance scope.

Listing 1 shows an example governance scope defined
with U-GovOps policy language. In our language, a gov-
ernance scope is specified as composite predicates referenc-
ing device meta information and profile attributes within the

3The full syntax of the U-GovOps language is described in https://github.com/
tuwiendsg/rSYBL/blob/uGovernance/UGovOpsSYBLLanguage.pdf

1 G:GOVERNANCE_SCOPE
2 query:= location=buildingX & type=JACE-545
3 CONSIDERING_UNCERTAINTY:
4 m i s s i n g d a t a = "location<=’?’,type<=’*’" AND
5 s e l e c t i o n s t r a t e g y = optimistic AND
6 use cache = false

Listing 1. Example governance scope.

query parameter. To specify the behavior of governance
scopes under data uncertainty users provide additional direc-
tives within the CONSIDERING_UNCERTAINTY construct.
The selection_strategy parameter can take values: op-
timistic, pessimistic or reduct. It instructs the framework on
how to treat the resources belonging to the boundary region
(GX − GX), which due to uncertainty (e.g., incomplete at-
tribute set) cannot be positively characterized as members of
the governance scope. For example, selecting the optimistic
strategy means that U-GovOps will compute the governance
scope based on the upper (GX) approximation. This behavior
might be desirable when a governance policy can tolerate false
positives, but it must not have any false negatives included
in the governance scope. With this knowledge the framework
can compute an objective approximation of the governance
scope, even if the governed resources are indiscernible with
the available attributes in G. More details about the underlying
mechanisms are provided in Section IV-B1.

However, to be able to handle the missing data, the gover-
nance scope membership relation must be refined with a subjec-
tive extension. To this end U-GovOps utilizes the concepts of
characteristic relations and characteristic sets [17]. Essentially,
this enables the users to specify how the missing data should
be interpreted. The missing_data directive enables the users
to generally define interpretation of the missing attribute values
as “do not know” [18] or “do not care” [19], depending on the
task-at-hand, since there is no universally best interpretation of
the missing attribute values [17]. The former concept (denoted
with ‘?’) is used to indicate the lost data, e.g., missing sensory
readings for an attribute. The latter (denoted with ‘∗’ or ‘−’)
indicates the unavailable data, e.g., attributes initially deemed
irrelevant by a human, thus potentially not included in all
resource descriptions.

2) Isolated actuations: As mentioned earlier, governance and
elasticity actuations are declared via the STRATEGY construct.
It encapsulates actuations such as “change communication pro-
tocol” or ”spin up a VM”. However, the underlying capabilities
(which implement the actuation logic) are mainly running at the
edge of the infrastructure, e.g., inside IoT gateways, and are
invoked remotely over the network. Therefore, this often leads
to failures and functionality degradations (transparent to users)
as we discussed in Section II.

In order to support the users in managing such uncertain-
ties, U-GovOps offers two levels of actuation isolation – per

1 S:STRATEGY CASE F u l f i l l e d (CND1):
2 setUpdateRate(5s) FOR G //see Listing 1
3 CONSIDERING_UNCERTAINTY:
4 r u n i n i s o l a t i o n = true AND
5 k e e p a l i v e = 5min AND
6 d e g r e e p a r a l l e l i s m = 200 AND
7 t o l e r a t e f a u l t p e r c e n t a g e = 20% AND
8 f a l l b a c k c o u n t = 2 AND
9 t i m e t o n e x t f a l l b a c k = 500ms

Listing 2. Example of an isolated actuation with uncertainty considerations.

4

1 C:CONSTRAINT responseTime<150ms WHEN nrOfUsers<900
2 CONSIDERING_UNCERTAINTY: d e c i s i o n c o n f i d e n c e >=20%
3 S1:STRATEGY CASE V i o l a t e d(C):scaleOut()
4 S2:STRATEGY CASE F u l f i l l e d (C):maximize(throughput)
5 CONSIDERING_UNCERTAINTY:
6 c o n s i d e r i n g s t r a t e g i e s = StrategyX

Listing 3. Example elasticity actuations with uncertainty considerations.

governance policy and per capability invocation. To instruct
U-GovOps to isolate a governance policy users can specify
run_in_isolation = true (Listing 2). This effectively
tells the framework to create a separate resource pool (e.g., a
thread pool) for the policy and perform all actuations within that
resource pool. More details about the design of this mechanism
are given in Section IV-B.

To provide finer-grained control for the isolated policies
and actuations, the U-GovOps framework exposes additional
configuration parameters. For example, the keep_alive pa-
rameter enables users to specify the maximal time slot that
should be allocated to a governance policy to complete. The
tolerate_fault_percentage is a similar concept, de-
signed to temporarily stop the policy execution in case the
percentage of failed actuations exceeds a pre-defined thresh-
old. These two concepts are based on the circuit breaker
pattern4, which are especially useful for handling blocked or
zombie policies and reducing the resources tied up in opera-
tions which are likely to fail due to uncertainties. Further, the
degree_parallelism tells U-GovOps how many actuations
should be performed in parallel. This is useful in capturing the
user’s knowledge about the infrastructure’s scale and dynamicity
in order to optimize resource consumption. For example, if a
governance policy is meant to govern all active gateways in a
building (e.g., ≈ 300 at the time) it makes little sense to set the
degree of parallelism to 1000. Finally, the fallback_count
and time_to_next_fallback parameters are used to han-
dle uncertainty at the level of a single actuation. Its main purpose
is to support graceful handling of network latencies and timeouts
and to guaranty fail-fast behavior (with quick recoveries) and
graceful functionality degradation (with fallback logic).

Listing 3 gives an example of using elasticity actuations in
governance policies. It first defines a CONSTRAINT directive,
which describes desired conditions of keeping the response time
below 150 ms if the number of current users is below 900. Lines
3 and 4 in Listing 3 tell U-GovOps to fire appropriate elasticity
actuations based on the status of the constraint. However, the
elasticity actuations are also subject to uncertainty, for example,
due to platform glitches (e.g., unsuccessful network interface
attachment) or infrastructure overload (e.g., collocation issues on
physical servers) leading to unexpected behavior such as actua-
tion delays. To account for such issues, U-GovOps allows users
to specify their knowledge about the elasticity relationships, such
as that increasing sensors update rate will most probably require
scaling out the cloud services. The elasticity relationships can be
specified via considering_strategies parameter, effec-
tively enabling the framework to anticipate the aforementioned
situations and for instance preemptively spin up required VMs.
Naturally, all the uncertainty directives shown in Listing 2 are
also valid in this context.

B. U-GovOps runtime mechanisms
1) Resolving rough governance scopes at runtime: When a

request to compute a rough governance scope (Listing 1) arrives

4 http://martinfowler.com/bliki/CircuitBreaker.html

in U-GovOps runtime, the framework performs the following
general steps: i) It first evaluates the user-provided query and
performs the resource selection with the currently available data.
If no uncertainty parameter is specified or use_cache=true
and there is a precomputed governance scope for the query, the
U-GovOps framework immediately returns the obtained resource
set. Otherwise, it proceeds with the next steps. ii) Parametrize the
missing data. iii) Calculate Similarity Classes [18]. iv) Calculate
characteristic sets. v) Return a governance scope approximation.

In order to parametrize the missing data the U-GovOps
framework first tries the assignments from missing data direc-
tive. The permissible values to assign to the missing attributes
include ‘?’, ‘∗’ and ‘−’. The ‘?’ is used to denote that the
attribute value might be lost and ‘∗’ or ‘−’ mean that the
user suspects that the attribute values were unavailable in the
first place. If no user-provided parameter exists for an attribute,
U-GovOps will associate it with the ‘?’ by default. Although
straightforward, this process has a significant impact on the
framework’s decisions how to compute the the governance
scope. For example, assigning the ‘?’ to a device’s attribute
instructs U-GovOps not to include that device in any Similarity
Classes for such attribute. Further, the ‘∗’ tells U-GovOps that
the original values were irrelevant, thus can be considered as
any value consistent with that attribute. Finally, the ‘−’ tells the
framework that these missing values can be considered as any
value consistent with that concept, as discussed in [17]–[19].

Algorithm 1: Computing characteristic sets.
input : res : Governed resource, GS : Global scope, G : Attribute list
result: CS : Characteristic set for the res.

1 CS ← GS
2 forall the attr in G do
3 switch attr do
4 case ′?′ = res.attr
5 CS ← GS
6 case ′∗′ = res.attr
7 foreach val ∈ AttrDomain(attr) do

CS ← CS ∪ SimilarityClass(attr, val)
8 case ′−′ = res.attr
9 V ← {r|r ∈ GS, isDefined(r, attr), r.d = res.d}

10 if V 6= ∅ then
11 foreach r ∈ V do
12 CS ← CS ∪ SimilarityClass(attr, r.attr)
13 end
14 else CS ← GS
15 otherwise /*attr is defined (not missing)*/
16 CS ← CS ∩ SimilarityClass(attr, res.attr)
17 end
18 endsw
19 end

To calculate the characteristic set for a resource, e.g., a
device, the U-GovOps framework performs the calculation as
shown in Algorithm 1. The intuition behind the algorithm is
to enable determining similar resources, under attributes G
with missing information, by considering problem-dependent
uncertainty parametrization. Finally, based on the specified
selection_strategy the U-GovOps returns a governance
scope. For example, for optimistic selection strategy the gover-
nance scope, to be returned, is calculated as upper approximation
of the targeted scope X with: GX =

⋃
{CSG(r) | r ∈ X},

where CS is a characteristic set for a resource r and G is the
specified attribute set.

2) Actuating under uncertainty: Figure 4 outlines the most
important steps performed by U-GovOps to support the isolated
actuations (we omit loops, caching, error handling, etc., for

5

Actuation
invocation request

Resolve rough
governance scope

Circuit open?
Policy
context
exists?

Create policy
contextHolds uncertainty

parameters and cache

Perform actuationCreate dedicated
policy thread pool

Run in
isolation?

no

yes

 Policy monitor
(e.g., keep alive and faults %)

trip circuit

no

Fallback
count > 0

Execute fallback logic
Collect and return

results

Degree
parallel.
reached?

time before callback expired;
terminate actuation;

no

yes
yes

Is failure?yes

no

 Legend:
 exec. flow
 interrupt

no

Fig. 4. Execution flow for isolated actuations.

readability purposes.). This mechanism is triggered when a user
submits a policy (e.g., as shown in Listing 2) to U-GovOps for
execution. A user only observes the invocation calls and the
returned results (shown hatched in Figure 4). The other steps
are performed by the framework, transparent to the users.

Initially, the U-GovOps framework resolves the rough gov-
ernance scope and creates a policy context, which stores
the uncertainty parameters (supplied by the user), the com-
puted governance scope and the policy invocations cache.
The subsequent steps are mainly determined, by the user-
provided uncertainty configuration directives (Listing 2). If the
run_in_isolation is set to true, U-GovOps isolates the
policy by allocating a dedicated resource pool for it. In the
current prototype this is realized by instantiating a dedicated
thread pool (per policy) and performing all policy actuations
(on separate threads) within that thread pool. In case a policy
should not be executed in isolation, individual actuations will
still remain isolated, but they will share the same global resource
pool.

The Policy Monitor (Figure 4) implements the circuit
breaker4 and continuously monitors the threads and the thread
pools (policies) for the aforementioned conditions such as the
permissible fault percentage and keep alive timeouts. Currently
this is implemented based on the Netflix OSS Hystrix, since
U-GovOps uses HTTP as the underlying protocol for Remote
Procedure Calls. If the constraints are violated, the Policy Mon-
itor trips the circuit, denying the further resources to that policy
and temporally putting its execution on hold or interrupting its
execution if keep alive expired. Generally, this or an actua-
tion failure will trigger the execution of the fallback logic (if
fallback_count>0). Currently, the U-GovOps framework
only provides a rudimentary support for specifying the fallback
logic, by retrying the normal flow or returning a generic error if
everything else fails. In the future we plan to address this and
allow injecting custom fallbacks. Finally, U-GovOps collects the
actuation results (if any) and returns them to the calling policy.
through the utilization of Futures and Promise pipelining, which
enable asynchronous result processing with minimal latency.

V. EVALUATION

In this section, we present the preliminary results of our
experiments. Our experiments comprise two general parts. First,
we perform a functional evaluation of U-GovOps’s language
support for implementing uncertainty- and elasticity-aware gov-
ernance policies, based on our real-life use case (Section II).

Second, we evaluate U-GovOps’s main runtime mechanisms for
mitigating runtime infrastructure uncertainties.

A. Experiments setup
In order to evaluate how our framework behaves under

uncertainty, we created a testbed for virtualized IoT cloud
systems using CoreOS. We used Docker containers to virtualize
and mimic physical gateways in the cloud. These containers are
based on a snapshot of a real-world, proprietary IoT gateway.
The Docker base image is publicly available in Docker Hub
under dsgtuwien/govops-box.

For the subsequent experiments we deployed the testbed
on our local OpenStack cloud, running approximately 1000
Docker containers (simulating the gateways/nodes). Each of the
containers “hosts” different virtual sensors (e.g., location) and
are associated with different meta data (e.g., owner). These
sensors replay the prerecorded real-life data, obtained in our
case study. Since the main aim is to govern the infrastructure
services and resources, we only consider the infrastructure state
data relevant for the governance policies and not the data used
by the business logic cloud services (although these might
overlap). The U-GovOps controllers and the demo application
(Section II) are deployed separately, in the same cloud on 4
Ubuntu 14.04 VMs (with 2VCPUs and 3GB of RAM) and
used to execute our governance policies. Finally, to simulate
the uncertainties, i.e., the missing or incomplete data (about the
infrastructure states) and actuation uncertainties, we developed
three mechanisms (based on Dell Blockade5), which perform
random fault injections: (i) killing of the containers, (ii) dropping
of data packets and, (iii) slowing down the network.

B. Example governance policy implementation
We first show how U-GovOps language is used to develop

the real-life governance policy for the PMA application, pre-
sented in our case study (Section II). Listing V shows the
complete source code of the governance policy. Since it mostly
uses the familiar language concepts, presented earlier in the
paper, we focus on the most important features of our language.

We notice that a user utilizes intuitive, high-level abstractions
and configuration directives to declare what needs to be done
instead of specifying how to do it (e.g., Listing V, lines 4-7). For
example, a user does not directly invoke the individual actuations
nor has to explicitly handle actuation failures or recovery logic,
since the actual invocations are pushed down to U-GovOps, who
transparently handles lost actuations and prevents cascading fail-
ures, based on the user-provided configurations. Further although
our framework limits the expressiveness to a certain extent, the
users can still express many common behaviors of governance
strategies. For example, the user can easily specify the desired
elasticity behavior, taking into account possible uncertainties
caused by related actions (lines 8-9). Finally, our framework
simplifies the user effort in dealing with the data uncertainties
(lines 1-2), since the users do not have to write complex queries
or explicitly deal with False Positive (FP) and False Negative
(FN) results.

C. Experiments results
Next, we evaluate main U-GovOps runtime mechanisms: re-

solving rough governance scopes and for isolating the actuations
under presence of two main uncertainties: missing or incomplete
data and actuation uncertainties (simulated as described above).

5https://github.com/dcm-oss/blockade

6

1 G1: GOVERNANCE_SCOPE query: location=building3&type=JACE-545||owner=TUW
2 CONSIDERING_UNCERTAINTY: m i s s i n g d a t a=location<=’?’, owner<=’*’ AND s e l e c t i o n s t r a t e g y =optimistic;
3 M1: MONITORING abnormal_behavior := sensorAlert(G1)==true OR heartBeatAVG(G1)>5min;
4 S1: STRATEGY CASE abnormal_behavior: setProtocol(’mqtt’), changeUpdateRate(’5s’) FOR G1
5 CONSIDERING_UNCERTAINTY: r u n i n i s o l a t i o n=true AND k e e p a l i v e=1min AND f a l l b a c k c o u n t=2 AND
6 t o l e r a t e f a u l t p e r c e n t a g e = 20% AND i n v o c a t i o n c a c h i n g=true;
7 C1: CONSTRAINT cost<200 CONSIDERING_UNCERTAINTY: d e c i s i o n c o n f i d e n c e >=20%;
8 S2: STRATEGY CASE responseTime>250ms: scaleOut() CONSIDERING_UNCERTAINTY: c o n s i d e r i n g s t r a t e g i e s = S1;

Listing 4. Example PMA governance policy.

The experiment results are averaged on 50 repetitions and we
have experimented with 7 different governance policies, which
have different properties regarding query complexity and actua-
tion types (e.g., execution time and computational complexity).

TABLE I. AVERAGED F1 SCORES FOR THE GOVERNANCE SCOPES.

Percentage of the missing data 10% 20% 30% 40% 50%
F1 scores - optimistic strategy 0.95 0.86 0.86 0.80 0.74
F1 scores - pessimistic strategy 0.90 0.90 0.80 0.79 0.72
F1 scores - no uncertainty consideration 0.91 0.80 0.66 0.50 0.29

To evaluate the coverage of our governance policies, i.e., the
“goodness” of approximation of our governance scopes under
uncertainty (missing data) we show two relevant metrics: the F1
scores and the error rates, as cumulative metric for the FPs and
FNs. The baseline is calculated with “perfect information” (no
missing data) and then we repeated the policies execution, while
simulating the data losses. Table I, shows the resulting averaged
F1 scores. The missing data represents the percentage of missing
data instances randomly distributed across the resources and the
resource attributes. We run 3 different setups: not considering the
data uncertainty (i.e., ignoring the missing data), using optimistic
selection strategy and using the pessimistic selection strategy.
The corresponding error rates are shown in Figure 5.

It is important to notice (Figure 5) that not considering uncer-
tainties and pessimistic strategy only contain FNs (i.e., resources
that should be included in the governance scope, but were not
due to the lack of information), while optimistic strategy only
returns FPs (i.e., includes the desired resources with certainty).
This shows an important property of our approach, i.e., it
enables users to make trade-offs depending on the task-at-hand.
For example, governance policies that do not care about FPs
(formulated as: “ALL resources with specific properties MUST
be included”) can be easily specified with optimistic selection
strategy. Additionally, compared to traditional approaches (no
uncertainty consideration) our pessimistic selection strategy gen-
erally behaves better, i.e., displays on average about 20% less
errors. Finally, it is worth noting that parametrization of missing
data (different combinations of ‘?’, ‘∗’ and ‘−’) had a significant

Missing data (%) No uncertainty Rough scop Rough scope - pessimistic
10 0.16 0.07 0.1 0.06
20 0.33 0.34 0.16 0.17
30 0.5 0.33 0.25 0.25
40 0.66 0.5 0.38 0.28
50 0.83 0.66 0.51 0.32

0.216
all FN all FP all FN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50

Er
ro

r r
at

e

Missing data [%]

No uncertainty consideration
Rough scope - pessimistic
Rough scope - optimistic

Fig. 5. Error rates for governance scopes due to missing data.

impact on the quality of the results. This can be considered a
drawback, since it steepens the learning curve of U-GovOps
language. In the future we plan to explore this phenomenon in
order to derive suitable heuristics for parameterizing the missing
data in governance scopes.

Figure 6 shows the percentages of lost actuations, with
and without U-GovOps mechanism for isolated actuations, for
different fault rates. For example, for fault rate of 10% we know
that 10% of all actuations will be affected by at least one of the
3 fault injection actions. For all the evaluated policies we use
the same base-line, e.g., number of containers (≈ 1000), config-
urations, etc. The isolated actuations are configured in a greedy
fashion, with main objective to mitigate as many uncertainties as
possible. Generally, by isolating the actuations we managed to
reduce the rate of lost actuation by more then 50% on average,
compared with the traditional approaches, which do not consider
uncertainties. The majority of unaccounted uncertainties were
due to the killed containers, since it is currently not possible to
compensate this with U-GovOps.

On the secondary axes (Figure 6), we show the average ex-
ecution time of the governance policies. We notice that average
execution time of the policies without uncertainty consideration
was only slightly affected by the faults, mainly due to network
slowdowns. On the other hand, our approach had an exponential
increase in execution time with high fault rates. This is mainly
due to the exponential back-off policy implemented by the
framework in order to be “fair” to the underlying actuators, i.e.,
not overload them with requests, e.g., in case of major network
problems. This shows an important property of the uncertainty
management that it does not come “for free”, in the sense
that users need to accept some overhead, e.g., of performance
or additional costs, in order to account for the uncertainties.
Naturally, the users can control these aspects by relaxing the
uncertainty constraints.

We are also aware of certain limitations of our framework.
For example, maintaining the threads and the thread pools per
actuation/policies causes an additional computational overhead,
due to thread queueing, scheduling, and context switching.

Faults (%)
No uncertainty
consideration

Isolated
actuations

10 0.08 0.032
20 0.17 0.068
30 0.25 0.1
40 0.34 0.136
50 0.45 0.18

0

12

24

36

48

60

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

Ti
m

e
[s

]

Lo
st

 a
ct

ua
tio

ns
 ra

te

Faults [%]

No uncertainty consideration
Isolated actuations
Avg. proc. duration (no uncertainty consideration)
Avg. proc. duration (isolated actuations)

Fig. 6. Lost actuations rates for isolated actuations.

7

We deliberately decided to make a tradeoff here, since we
believe that the overall advantages of having more resilient
and fault tolerant governance overweight the additional costs
in the long run. Finally, currently U-GovOps mainly focuses
on runtime infrastructure uncertainties and does not explicitly
consider cumulative effects and uncertainty propagation. This
is, however, subject of our future work.

VI. RELATED WORK

Many approaches dealing with IoT cloud operations, re-
sources management and governance have recently emerged.
For example, in [2] and [4] the authors mostly deal with
IoT infrastructure virtualization and its management on cloud
platforms. A number of different approaches (e.g., [5]) employ
semantics aspects to enable discovering, linking and orchestrat-
ing heterogeneous IoT devices. In [6] the authors propose utiliz-
ing cloud for additional computation resources and approaches
presented in [3] focus on utilizing cloud’s storage resources
for sensory data. Also in [20] the author evaluates various
governance aspects, such as privacy, security, ethics, etc., and
defines main principles of IoT governance. However, contrary
to the U-GovOps framework, most of these approaches provide
little or no support for considering IoT cloud infrastructure
uncertainties in governance strategies.

In the field of self-adaptive systems (SAS) there are many
approaches dealing with uncertainties and faults. For example,
in [12], the authors present a taxonomy of uncertainty for
dynamically SAS. Whittle et al. [21] developed RELAX, a
textual requirements language that provides fuzzy logic-based
operators to facilitate the specification of uncertainties in SAS
at requirements level. Weyns et al. [31] introduced FORMS,
a formal reference model for self-adaptation that builds upon
feedback loops to enable addressing uncertainties at design level.
The runtime uncertainties are addressed in [22], mainly using
the concept of reactive feedback loops. Such approaches concep-
tually complement our own, by providing valuable insights and
techniques to understand and analyze uncertainties. However, the
distinct feature of U-GovOps is that it considers both elasticity
and uncertainty at the level of governance policies.

Approaches form Wireless Sensor Networks (WSN) also
deal with uncertainties, e.g., [23], [24]. However, they mostly
deal with sensor network deployments and detecting redundant
sensors in the WSN. Contrary to such approaches, to our best
knowledge, our U-GovOps is the first attempt to enable de-
veloping uncertainty- and elasticity-aware governance strategies
encompassing both IoT and cloud infrastructures.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the U-GovOps framework for
governing elastic IoT cloud systems under uncertainty. We pre-
sented the U-GovOps declarative policy language for developing
uncertainty- and elasticity-aware governance policies. The main
U-GovOps runtime mechanisms for managing rough governance
scopes and enabling isolated actuations were introduced to
facilitate enforcing such polices, by effectively mitigating the
infrastructure uncertainties, as demonstrated on a real-life case
study. The initial results are promising in the sense that with
the U-GovOps framework users can develop custom governance
strategies efficiently, by using intuitive, high-level abstractions
and configuration parameters without explicitly dealing with the
uncertainties of complex interactions in IoT cloud infrastructure.

In the future we plan to improve the U-GovOps runtime
mechanisms, especially to include heuristics for parameterizing

the missing data and support for custom fallback logic. We also
plan to extend U-GovOps to include support for managing the
remaining uncertainty families identified in our taxonomy, as
well as cumulative uncertainty effects.

ACKNOWLEDGMENT

Supported by the EU H2020 U-Test project, grant No. 645463.

REFERENCES
[1] H.-L. Truong and S. Dustdar, “Principles for engineering IoT Cloud

systems,” Cloud Computing, IEEE, vol. 2, pp. 68–76, 2015.
[2] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure-physical sensor

management with virtualized sensors on cloud computing,” in NBiS, 2010.
[3] P. Stuedi, I. Mohomed, and D. Terry, “Wherestore: Location-based data

storage for mobile devices interacting with the cloud,” in MCS, 2010.
[4] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-cloud

integration opportunities and challenges,” in ICUIMC, 2009.
[5] J. Soldatos, M. Serrano, and M. Hauswirth, “Convergence of utility

computing with the internet-of-things,” in IMIS, pp. 874–879, 2012.
[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

elastic execution between mobile device and cloud,” in Conference on
Computer systems, ACM, 2011.

[7] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provisioning
Software-defined IoT Cloud Systems,” in FiCloud’14, 2014.

[8] S. Nastic, C. Inzinger, H.-L. Truong, and S. Dustdar, “GovOps: The
Missing Link for Governance in Software-defined IoT Cloud Systems,”
in WESOA14, 2014.

[9] S. Nastic, M. Voegler, C. Inziger, H.-L. Truong, and S. Dustdar, “rtGov-
Ops: A Runtime Framework for Governance in Large-scale Software-
defined IoT Cloud Systems,” in Mobile Cloud 2015, 2015.

[10] A. Avizienis, J.-C. Laprie, B. Randell, et al., Fundamental concepts of
dependability. University of Newcastle, Computing Science, 2001.

[11] K. Potter, P. Rosen, and C. R. Johnson, “From quantification to visualiza-
tion: A taxonomy of uncertainty visualization approaches,” in Uncertainty
Quantification in Scientific Computing, pp. 226–249, Springer, 2012.

[12] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, “A taxonomy of uncertainty
for dynamically adaptive systems,” in SEAMS’12, 2012.

[13] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Sybl: an extensible
language for controlling elasticity in cloud applications,” in CCGRID’13.

[14] W. E. Walker, P. Harremoës, J. Rotmans, J. P. van der Sluijs, M. B. van
Asselt, P. Janssen, and M. P. Krayer von Krauss, “Defining uncertainty:
a conceptual basis for uncertainty management in model-based decision
support,” Integrated assessment, vol. 4, no. 1, pp. 5–17, 2003.

[15] M. Zhang, S. Ali, T. Yue, D. Pradhan, B. Selic, O. Okariz, and R. Norgren,
“An Uncertainty Taxonomy to Support Model-Based Uncertainty Testing
of Cyber-Physical Systems,” tech. rep., Simula, 2015.

[16] Z. Pawlak, “Rough sets,” International Journal of Computer & Informa-
tion Sciences, vol. 11, no. 5, pp. 341–356, 1982.

[17] J. W. Grzymala-Busse, “Three approaches to missing attribute values:
A rough set perspective,” in Data Mining: Foundations and Practice,
pp. 139–152, Springer, 2008.

[18] J. Stefanowski and A. Tsoukias, “Incomplete information tables and rough
classification,” Computational Intelligence, vol. 17, no. 3, 2001.

[19] M. Kryszkiewicz, “Rules in incomplete information systems,” Information
sciences, vol. 113, no. 3, pp. 271–292, 1999.

[20] R. H. Weber, “Internet of things–governance quo vadis?,” Computer Law
& Security Review, vol. 29, no. 4, pp. 341–347, 2013.

[21] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel, “Relax:
Incorporating uncertainty into the specification of self-adaptive systems,”
in RE’09, 2009.

[22] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[23] M. R. Senouci, A. Mellouk, L. Oukhellou, and A. Aissani, “Uncertainty-
aware sensor network deployment,” in GLOBECOM’11, IEEE, 2011.

[24] S. Mal-Sarkar, I. U. Sikder, C. Yu, and V. K. Konangi, “Uncertainty-aware
wireless sensor networks,” International Journal of Mobile Communica-
tions, vol. 7, no. 3, pp. 330–345, 2009.

8

