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Abstract—Enabling and controlling elasticity of cloud comput-
ing applications is a challenging issue. Elasticity programming
directives have been introduced to delegate elasticity control
to infrastructures and to separate elasticity control from ap-
plication logic. Since coordination models provide a general
approach to manage interaction and elasticity control entails
interactions among cloud infrastructure components, we present
a coordination-based approach to elasticity control, supporting
delegation and separation of concerns at design and run-time,
paving the way towards coordination-aware elasticity.

I. INTRODUCTION

Elasticity is a fundamental concept in cloud computing,
enabling different kinds of run-time changes w.r.t. cost, quality
and resource dimensions associated with cloud applications
while managing their dependencies [1]. To support elasticity,
existing cloud infrastructures provide developers with low-
level APIs to monitor and control system’s properties/compo-
nents/services (e.g., JClouds1, SlipStream2, Google Cloud De-
ployment Manager3). Implementing complex elasticity trade-
offs requires great effort in dealing with such APIs. To simplify
the task, rules have been introduced, mostly to deal with
innovations of elasticity APIs [2], [3]. Still, such rules are
difficult to program and change at run-time. Thus, elasticity
programming directives are introduced in [1] as a means to (i)
delegate elasticity control to infrastructures and (ii) separate
elasticity control from application logic.

Coordination is a fundamental concept in agent-oriented
computing, enabling management of dependencies among
agents’ activities so as to ensure they all behave according to
the goals of the system as a whole [4]. Coordination models
and languages are provided to multi-agent systems engineers
so as to enable and constraint interactions of agents [5]–[7].
Any coordination model is built out of three ingredients: a co-
ordination medium, a set of coordination primitives and a set of
coordination laws [8]. Coordination laws are meant to enable
both delegation of interaction management to middleware and
separation of interactive behaviour from computational one.

Although elasticity and coordination theories were born in
different contexts and evolved independently, a fundamental
similarity motivates our contribution. Both are concerned with
managing run-time dependencies: the former, between elas-
ticity dimensions of cloud applications, the latter, between
activities of agents in a multi-agents system. In order to do
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so, the former relies on elasticity enforcement mechanisms to
influence the way in which cloud application and infrastruc-
ture’s components/services/resources behave and interact as
well as their properties, while the latter exploits coordination
primitives to influence the way in which agents interact as
well as the outcome of such interactions. Furthermore, for
composing, respectively, mechanisms and primitives into com-
plex elasticity and coordination “procedures”, elasticity and
coordination exploit similar concepts: elasticity programming
directives and coordination laws. In this paper, we take a first
step toward the notion of coordination-aware elasticity, by
integrating elasticity control with coordination support.

A. Motivation

Elasticity controllers, in charge of executing elasticity
programming directives, are directly responsible for supporting
and enforcing elasticity in the cloud, by carefully monitoring
and controlling changes in cost, quality and resource dimen-
sions of cloud applications, as well as their dependencies—
through enforcement of elasticity mechanisms. Elasticity con-
trollers usually rely on a plugin mechanism to support multi-
cloud deployments and/or application/cloud-specific controls
[9], [10], allowing stakeholders to develop their own cus-
tomizations: thus, they have to efficiently and correctly manage
interactions among such plugins.

In other words, elasticity controllers need to deal with
coordination-related aspects to successfully support elasticity.
Such coordination, if implemented by elasticity controllers, is
a cumbersome process prone to errors–both for the developer
and for the software component:

• enforcement mechanisms need parameters (waiting times,
number of tries, targets of operations, etc.) often hard-
coded—at most, configurable at design-time

• synchronization between enforcement mechanisms is
poor (hard-coded or undefined waiting times, missing
knowledge about operations success/failure, etc.)

• control flow “escapes” elasticity controller down to low-
level cloud APIs, exposing to failures/bugs and hindering
portability as well as code reuse

This way, not only flexibility, safety and encapsulation, but also
separation and delegation of concerns are hindered, because
elasticity controllers must deal with coordination issues. Thus
integration of elasticity and coordination is needed, to be done
at three levels of abstraction:

• the meta-model (conceptual) level: defining the abstrac-
tions to be used while thinking about the solution of the
problem at hand—enforcing coordination-aware elasticity
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• the model (language) level, defining how languages can
be designed to express the solution, given meta-model
abstractions—through elastic directives and coordination
laws

• the technology (infrastructure) level: defining how both
the abstractions and the language can be supported by
a suitable architecture and runtime—by the elasticity
runtime integrated with the coordination infrastructure

B. Contribution and paper structure
To address the challenges discussed above, in this paper, we

(i) study relationships between elasticity and coordination, (ii)
present patterns in elasticity control and coordination support-
ing coordination-aware elasticity, and (iii) provide a prototype
based on rSYBL4 elasticity controller and ReSpecT5 coor-
dination framework, showing how different stakeholders can
use the coordination-driven control mechanisms for elasticity
control. Accordingly, in Section III we incrementally narrow
the context in which integration is performed, starting from
the more abstract concepts behind elasticity and coordina-
tion, down to the concrete languages and runtimes used,
respectively, for coding elasticity programming directive and
coordination laws. Besides solving the aforementioned issues,
benefits of integrating elasticity with coordination are:

• support run-time delegation and separation of concerns,
by letting independent infrastructural components handle
one aspect of computation (elasticity or coordination),
while delegating the other to whom is responsible for it

• guarantee safety of interactions between elasticity con-
trollers and cloud components/services/plugins, by relying
on well-defined coordination primitives and laws

• improve availability of elasticity controllers, by distribut-
ing coordination-related computations to dedicated com-
ponents, thus reducing computational load on the formers

• ease development process, by enabling and supporting
separation of duties and responsibilities between “elas-
ticity developers” and “coordination developers”

While Section II overviews background for our work, Sec-
tion III presents the core concepts for integrating coordination
aware elasticity. Section IV shows a case study depicting
coordination-aware elasticity control for cloud services, Sec-
tion V describes related work, and finally Section VI concludes
the paper.

II. BACKGROUND

A. Elasticity & Coordination: Concepts
Elasticity Control: Elasticity programming directives [1]

are special statements (e.g., Java annotations in the case of
SYBL [3]) enriching cloud applications’ code to define how
application’s and infrastructure’s elastic components should
behave in response to elasticity-related events. Elasticity di-
rectives must enable different stakeholders to specify elasticity
requirements at different levels of abstraction (e.g., for com-
ponents, or for groups of components), describing their goals
in terms of desirable application state, or strategies/rules to be
triggered under specific conditions.

Coordination: Coordination laws describe how agents
(or, coordinables) coordinate through a given coordination

4Available at https://github.com/tuwiendsg/rSYBL
5Available within TuCSoN: http://tucson.unibo.it

medium using given coordination primitives [8]: a coordination
medium is the component enacting coordination laws ruling
interaction among coordinables—which are, e.g., processes,
application services, agents, human users. Examples of co-
ordination media are concurrency-related abstractions such
as semaphores and monitors, distributed systems abstractions
such as channels and pipelines, and more advanced abstrac-
tions such as tuple spaces [11]. Examples of coordination
primitives are thus acquiring/releasing a lock, sending/receiv-
ing messages, and LINDA primitives such as out, rd, in [11].

B. Elasticity & Coordination: Languages

Elasticity Control: Following the directive programming
model, the SYBL language is introduced in [3] as the concrete
language to program elastic directives with. SYBL directives
begin with keyword #SYBL, followed by specification of the
category they belong to – either MONITORING, CONSTRAINT
or STRATEGY – and by clauses, composing runtime functions,
user-defined functions and variables to express the specific
directive. Elasticity programming directives are composed of
elasticity primitives, whose main types are:

• Monitoring primitives — enable gathering of information
regarding the three main dimensions of elasticity – QoS,
resources and costs – both from application services and
from the underlying infrastructure.

• Constraint primitives — enable definition of conditions
over system state, which are continuously tested using
monitoring primitives and whose violation/compliance
triggers execution of strategies.

• Strategy primitives — enable definition of actions to
be taken to modify system state in response to moni-
tored constraints violation/compliance or elasticity-related
events happening.

Coordination: Once a coordination model has been de-
fined in terms of coordinables, coordination media and laws,
it has to be reified as a language, an architecture, or both
[8]. The ReSpecT coordination language was originally in-
troduced in [12] and later extended to support a growing
number of application scenarios [13]. ReSpecT supports:
(i) implementation of new primitives, (ii) modification of
existing primitive semantics and (iii) change of coordina-
tion laws—everything at run-time. A ReSpecT program is
a collection of reaction specification tuples of the form
reaction(Event,Guards,Body):

• Event: the representation of anything could happen
within the coordinated system, e.g., coordinable interac-
tions, flow of time, motion in space, environment change.

• Guards: the conditions about the Event that should hold
when the reaction is triggered to actually schedule it for
execution, e.g., the event is due to an agent, it has been
raised after time T, it refers to a coordination operation
failure, etc.

• Body: the computations to undertake in response to
Event if and only if Guards hold, e.g., remove that tuple,
replace this coordination law, spawn that process, perform
this computation, etc.

https://github.com/tuwiendsg/rSYBL
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C. Elasticity & Coordination: Runtimes

Elasticity Control: Most of runtime features are mapped
to functions provided by the underlying cloud systems. They
are used within clauses to observe and control properties
belonging to quality, resources and costs dimensions of elastic
systems, e.g.: balance([time]) may be used to check a ser-
vice’s cost balance at a given time; set/get_env([prop])
may be used to (respectively) control/observe service-
specific and infrastructure-specific properties—e.g., to get
the bid price for a resource we could write r_bid =
get_env(‘‘R_BID’’); runscript([script_file]) exe-
cutes user-defined functions and procedures.

Coordination: The execution model of coordination laws
varies depending on the coordination model adopted, and
according to its specific implementation too. Anyway, to give
the reader a flavour of it, we briefly examine the case of
ReSpecT—refer to [12]. ReSpecT reactions are “triggered”
by events happening within the coordinated system (matching
their Event description) and executed atomically, in a non-
deterministic order, according to a transactional semantics.
Thus: (i) nothing can interfere with a reaction execution,
(ii) no assumptions can be made upon execution order if
multiple reactions are triggered, (iii) if any computation within
a reaction body fails, the whole reaction is aborted and any
change made reverted. This ensures fundamental safety and
liveness properties for a coordination model [12].

III. INTEGRATING ELASTICITY AND COORDINATION

A. Concepts: System View

In order to enforce elasticity, cloud systems are likely to
be: (i) composed by services subjects of elasticity control, (ii)
supported by an infrastructure having monitoring and control
capabilities over both the hosted services and the computa-
tional resources, (iii) equipped with a suitable language to
program the elasticity directives to be enforced at run-time. A
coordinated system, in turn, to enforce coordination is likely to
be: (i) composed by agents subject of coordination policies, (ii)
supported by an infrastructure hosting the chosen coordination
media, (iii) equipped with a language able to specify the
coordination laws to be enforced at runtime.

Therefore, the following conceptual mapping between elas-
ticity and coordination abstractions can be established:

Elasticity Coordination
Elastic Service/Resource ⇐⇒ Agent (Coordinable)

Elastic Infrastructure ⇐⇒ Coordination Media
Programming Directives ⇐⇒ Coordination Laws

In particular, an elastic system may be interpreted as a coor-
dinated system within which:

• elastic services and computational resources are the enti-
ties subject of the coordination process (the coordinables)

• such a process is supported by a suitable elastic coordina-
tion infrastructure composed by a network of distributed
coordination media and elastic components

• such components are responsible for the run-time en-
forcement and programmability of the desired elastic
coordination directives

Notice this does not mean we should always consider elastic
systems in terms of coordination abstractions: it means elastic
systems have the necessary traits to include coordination-
related techniques to better support elasticity control.

B. Languages: Interoperability
Once our conceptual mapping is accepted, a linguistic

mapping between elastic programming directives and coordi-
nation laws becomes feasible and natural. In fact, elasticity
programming directives are composed of monitoring primi-
tives, constraints and strategies, describing how services and
resources should behave within the system according to its
observable state and dynamics (events happening), through the
usage of well-defined elastic primitives [1]. Coordination laws,
in turn, describe how coordinables should behave according
to the state of the interaction space and their observable
interactions (generating events), through the usage of well-
defined coordination primitives [8]. It is thus necessary for
coordination laws to be capable of observing the interaction
space and computing over it—to change its state and dynamics.

Accordingly, the following mapping can be established:

Elasticity Directives Coordination Laws
(1) Directive ⇐⇒ Law
(2) Runtime Functions ⇐⇒ Primitives
(3) Monitoring ⇐⇒ Events
(4) Constraint ⇐⇒ Observation
(5) Strategy ⇐⇒ Computation

Whereas mapping 1 and 2 are quite straightforward, the others
need further discussion.

Monitoring: Monitoring primitives are meant to perceive
the state and dynamics of an elastic system, based on properties
made observable by the supporting infrastructure, the hosted
services, and the computational resources available. Thus,
they are likely to assume a continuous monitoring process
undertook by a dedicated monitoring component, either be-
longing to the infrastructure or to the application level [3].
On the contrary, coordination events are singular, point-wise
occurrences in system dynamics and/or changes in system
state, which are captured by the coordination medium and
therein stored to be matched against laws [12]—thus, the
monitor is the coordination medium itself. However, goal
of both monitoring primitives and coordination events is the
same: enabling the system to react to changes in its state.

Constraint: Constraint primitives are meant to check
whether some given conditions about state of the elastic system
hold. Such conditions are based on properties observed by the
monitoring primitives and exploited by strategy primitives to
control their own execution [3]. Their semantics is thus quite
similar to that of coordination observation capabilities, which
are meant to control whether triggered laws can be scheduled,
mostly based on properties belonging to the triggering event or
to system state [12]. Therefore, even if their execution model
can be different – e.g., as in the case of SYBL and ReSpecT,
where elasticity constraints are used within strategies and
continuously monitored, whereas guards are checked upon
triggering of the reaction and outside its body – their purpose
is exactly the same: controlling execution of (elastic/coordina-
tion) computations in response to (elastic/coordination) events.



Fig. 1: Translational approaches to coordination-aware elasticity.

Strategy: Strategy primitives are meant to undertake com-
putational actions modifying state and dynamics of the elas-
tic system at hand, influencing service execution, resource
properties and infrastructure behaviour/configuration [3]. Such
actions are triggered in response to events regarding violation/-
compliance of monitored conditions. Once again, a semantics
similarity with computations inside coordination laws can be
identified: within a law in fact, are put coordination and
observation primitives, enabling the coordination medium to
perform computations over the interaction space [12].

For the sake of clarity, in the case of SYBL and ReSpecT,
the linguistic mapping can be specialized as follows:

SYBL ReSpecT
(1) Directive ⇐⇒ Specification tuple
(2) runtime functions ⇐⇒ Primitives/Predicates
(3) MONITORING ⇐⇒ Event
(4) CONSTRAINT ⇐⇒ Guards
(5) STRATEGY ⇐⇒ Body

Summing up, thanks to the conceptual mapping between
elasticity and coordination abstractions, it is always possi-
ble to find a meaningful match between elasticity program-
ming directives and coordination laws language constructs—
despite differences in their execution semantics. While vir-
tually enabling either coordination or elasticity languages to
be exploited in dealing with both issues, thus promoting
interoperability, Subsection III-D highlights the importance of
keeping each language focussed on its most natural duties—
that is, although in synergy, coordination laws should deal with
coordination-related issues whereas elasticity programming
directives should take care of elasticity enforcement.

C. Runtimes: Separation of Concerns
Integrating languages is not enough to achieve full support

to coordination-aware elasticity. It might be so by choosing
to follow a translational approach to integration, that is, one
of the following alternatives—depicted in Fig. 1: encoding
any elasticity programming directive into coordination laws
(Fig. 1, 1); encoding any coordination law into elastic direc-
tives (Fig. 1, 2); encoding programming directives and coordi-
nation laws independently, then translating them in a common
executable language integrating their API and interfacing with
cloud API (Fig. 1, 3).

Nevertheless, the above solutions share issues that make
their adoption problematic: first of all, regardless of the

Fig. 2: Typical development and execution “flow” of an elastic
application exploiting elasticity programming directives

translation chosen, the separation of concerns principle is
disregarded, ending up with either a language taking charge of
issues conceptually belonging to the other (translations 1 and
2) or a language mixing different responsibilities (as in the
case of translation 3); furthermore, enabling dynamic change
of elasticity and coordination policies at run-time requires
encoders to be capable of performing on-the-fly translations,
which is likely to become cumbersome. Thus, a different
approach should be chosen, supporting both design and run-
time separation of concerns by delegation of responsibilities
among distributed components.

Fig. 2 summarizes the main lifecycle stages of an applica-
tion exploiting elasticity programming directives (e.g., encoded
in SYBL)—based on [1]: application developers can write
their code while elasticity developers code (e.g., in SYBL)
directives independently; then, an “elasticity compiler” takes
application code and elasticity directives integrating them in
an executable elastic program, also considering API provided
by the underlying cloud infrastructure as they are exploited
within directives; finally, the program is executed on the cloud
infrastructure by the cloud runtime and the elastic runtime
(e.g., rSYBL) working in synergy.

Our goal is extending such a lifecycle to integrate coor-
dination services, in particular a coordination language along
with its runtime, in the development process as well as in
the execution process. To this end, a suitable integration at
the infrastructural level is required. Since the aim is not
translating languages one into the other, there is no need to
worry about how any possible elasticity directives statement
can be translated into coordination laws statements, or vice
versa: just an integration API is required, enabling elasticity
directives to interact with coordination laws (and vice versa),
therefore enabling distribution of computations between elas-
ticity runtime (e.g., rSYBL) and coordination runtime (e.g.,
ReSpecT)—as depicted in Fig. 3. By design, this ensures that
our integration solution will be able to both (i) make elasticity
and coordination controllers work in tight synergy – thanks to
the interoperability enabled by our linguistic mapping – and
(ii) make the whole coordination-aware elasticity enforcement
process capable of dynamically delegate responsibilities to the
right component—supporting separation of concerns.

D. Runtimes Integration Guidelines
Monitoring API: Monitoring tasks can be carried out either

with usual elasticity monitoring primitives, likely to directly



Fig. 3: Integration API and architecture supporting coordination-
aware elasticity.

exploit underlying cloud platform API, or by using coordina-
tion laws. In principle, monitoring should always be done using
monitoring primitives, being them explicitly conceived to do
so. Nevertheless, whenever it is necessary to monitor measures
or events not strictly related to elasticity (e.g., to manage
out-cloud sensors or in-cloud synchronization of resources),
coordination laws are preferred. Monitoring responsibilities
are then split between elasticity and coordination runtimes,
according to the principle of separation of concerns. If and
when they need to exchange information or delegate computa-
tions, mapping (2) does the job: to communicate from elasticity
to coordination, e.g., is sufficient to reify delegation requests
into well-defined tuples, e.g., for ReSpecT to communicate
with SYBL it is sufficient to call SYBL primitives within
ReSpecT reactions using the spawn primitive, which runs
a parallel process6. Definition of tuples and activities to be
spawned shapes our monitoring integration API.

Constraint API: Constraints are constructs triggering
events when some conditions over monitoring tasks are met
[1]. Thus, the only issue to deal with is: if some constraints
trigger events that have to be managed by coordination laws,
such events should be suitably translated into well-defined
tuples triggering execution of coordination laws. If monitoring
is done with coordination laws, this is naturally achieved; if
monitoring is carried out by elasticity directives, the transla-
tion has to be done within such directives. Accordingly, the
only constraints integration API needed is the capability of
elasticity controllers to request coordination services.

Strategy API: Execution of strategies is the process where
coordination-aware elasticity mostly manifests. Thus, it is
where most of the run-time delegation between elasticity
(SYBL) and coordination (ReSpecT) mechanisms and com-
ponents actually takes place. In fact, even the most basic and
common elasticity-related task may imply non-trivial coordi-
nation issues, which are likely to become cumbersome to deal
without the proper abstractions. Strategies are executed within
elasticity directives, in response to elasticity constraints being
violated/met, according to elasticity monitoring tasks, thus, on
a “per-need” basis, they may delegate coordination tasks to
suitably engineered coordination laws, which in turn, may rely
on elasticity control API to query elasticity-related properties,
or to ask for execution of elastic computations. Likewise
monitoring, thus, strategies application responsibility is split
between elasticity runtime and coordination runtime, according

6http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

Fig. 4: Development and execution “flow” of a coordination-aware
elastic application.

to the principle of separation of concerns. When elasticity
programming directives (e.g., SYBL) and coordination laws
(e.g., ReSpecT) need to exchange information, mapping (2)
comes in hand again:

• whenever needed, elasticity controllers reify coordina-
tion requests as tuples putting them in the coordination
medium working as the coordination manager; there,
coordination laws are triggered to enact the desired co-
ordination process, returning a completion result – in the
form of a another tuple – indicating success or failure.

• whenever needed, the coordination medium interacts with
elasticity controllers (e.g., rSYBL components) by calling
elasticity primitives within spawn-ed processes; then,
elasticity controllers serve such elasticity-related tasks
returning a completion result—again, as a tuple.

Defining structure and content of tuples triggering coordination
laws (ReSpecT reactions), the spawned processes calling
runtime functions (SYBL primitives) and the components en-
abling elasticity control (rSYBL) to interact with coordination
media (ReSpecT tuple centres), actually defines our strategy
integration API.

Summing up, monitoring, constraint and strategy API alto-
gether shape the integration API enabling the novel lifecycle
stages for coordination-aware, elastic application development
depicted in Fig. 4.

IV. CASE STUDY: INTEGRATING SYBL & ReSpecT
Following discussion in Section III, especially suggestions

given in Subsection III-D, we present our integration proposal,
focussing on the SYBL language and runtime (rSYBL) for
elasticity control and the ReSpecT language and runtime
(TuCSoN) for coordination support. To test feasibility of such
approach to coordination-aware elasticity, then its effective-
ness in terms of developers’ efforts required as well as benefits
provided (see Section I), we developed a prototype integration,
which is available on GitHub7.

A. Integration API
1) Monitoring API: Our proposed integration between

SYBL and ReSpecT features:

• a spawned activity waiting to receive monitoring requests
as ReSpecT tuples to enact the monitoring process
calling rSYBL API—not reported due to the lack of
space, but available on rSYBL repository. In particular:

7https://github.com/tuwiendsg/rSYBL/tree/coordination

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
https://github.com/tuwiendsg/rSYBL/tree/coordination


◦ sampleMetrics(·) starts monitoring on the given
SYBL node

◦ metricToCheck(·, ·) filters metrics to monitor
◦ monitoringTime(·) configures monitoring timing

• a ReSpecT specification enabling run-time configuration
of monitoring through such tuples

1 reaction(
2 out(sampleMetrics(NodeId)),
3 (operation, invocation),
4 ( out(metricToCheck(NodeId, ’cpuUsage’)),
5 out(metricToCheck(NodeId, ’latency’)),
6 out(monitoringTime(10000)) ) ).

In this way, run-time adaptation of monitoring configuration is
possible by changing the above ReSpecT specification, using
ReSpecT specification primitives such as out_s and in_s.
Also, if monitoring logic has to be changed, this can be done
both at design-time, by replacing, modifying or extending the
spawned activity Java class, and at run-time, by adding a new
spawned activity then telling TuCSoN where to find it.

2) Constraint API: The dedicated “bridge” component
sketched in Fig. 5 has been developed—not all methods
are shown. It enables rSYBL elasticity controllers to call
ReSpecT primitives – e.g. coordination primitives out, in
and specification primitives out_s, in_s – and TuCSoN
services—e.g. to start and stop a coordination service medium.
In this way, regardless whether a constraint regards elasticity
properties or coordination state, it is always possible to check
it from SYBL code. Such a bridge is also used to support
integration with monitoring API as well as strategy API.

3) Strategy API: Tuples used in this API are:

• doScaleOut(·) starting scaling out
• scaleOutTries(·) setting attempts to make, in case of

errors, before quitting
• scaleOutTime(·) configuring maximum waiting time,

at each attempt, for the new node to become “active”

ReSpecT specification enabling for run-time adaptation is:

1reaction(
2out(doScaleOut(NodeId)),
3(operation, invocation),
4( out(scaleOutTries(10)),
5out(scaleOutTime(10000)) ) ).

The spawned process is not reported due to the lack of
space. As for monitoring, design and run-time adaptation is
possible by working on the spawned process or on ReSpecT
reaction.

B. Developers’ Overhead
To measure the “overhead” required to developers for

adopting our coordination-aware approach to elasticity, it
should be clear what “know-how” is necessary for them to

Fig. 5: Enabling SYBL to call ReSpecT primitives.

acquire. This depends on whether they are satisfied with “built-
in”, already provided scaling and monitoring “logics” – that
is, how scaling is performed, using which cloud API and how,
e.g., doing synchronous or asynchronous calls –, or if they
want more customization opportunities.

In the former case, developers should—e.g., in case of a
“scale-out” primitive:

• either inform the runtime about where the file storing
ReSpecT specification is in the filesystem – can be
done in a configuration stage or even on the fly, as an
argument of the coordination-aware primitive invoked,
e.g., scaleout(’path/to/spec.rsp’) – or add such
specification to ReSpecT runtime on the fly, using TuC-
SoN operations—e.g. out_s(reaction).

• write such specification, using the ReSpecT language—
either on a file or on the fly, within the body of an out_s
operation (doOutS in Fig. 5)

• within SYBL directives, comply with the “actions
syntax” specifically conceived for rSYBL-ReSpecT
integration, e.g. scaleout(args), scalein(args),
monitor(args)

• within ReSpecT specifications, comply with tuples’ syn-
tax as defined by the built-in “agents” (or spawned
activities) provided by the integrated runtime—as shown
in ReSpecT listings in Subsection IV-A

Summing up, only overhead is adding a bit of very basic
declarative programming (similar to what reported in Subsec-
tion IV-A) to developers workflow, being careful to comply
with given syntax. This is enough to gain all the benefits of
coordination-aware elasticity, as described in Section I.

In the latter case, developers should also be aware of the
following Java classes, to be customized as needed:

• SyblScaleOutAgent is the class responsible to inter-
face ReSpecT with rSYBL in the specific case of
a scaleout request—SyblScaleOutSpawnActivity
and SyblScaleInAgent are similar. It exploits Re-
SpecT coordination services to retrieve scaling out con-
figurations – as given by ReSpecT specifications similar
to those in Subsection IV-A –, then delegates rSYBL
runtime elasticity-related operations, and finally informs
elasticity controllers whether scaling out was successful
or not. E.g., Fig. 6 sketches how configurations are
retrieved through ReSpecT (lines 3-13) and how to
synchronize with elasticity controllers (lines 17-25).

• EnforcementAPI is the class responsible for interfacing
rSYBL with ReSpecT. As sketched in Fig. 7, it “parses”
coordination-aware elastic operations in SYBL directives,
then delegates them to ReSpecT runtime, and finally
coordinates with it to collect operations outcome.

• RespectEnforcementAPI is the class defining the basic
mechanisms provided to rSYBL to interact with Re-
SpecT coordination services. As depicted in Fig. 5 on
page 6, method delegate is the only public method,
responsible to parse the coordination operation requested
and to act accordingly.

In summary, developers are required to know basics about
TuCSoN and ReSpecT APIs as well as about APIs provided
by our prototype integration. Nevertheless, they gain complete
control over the coordination-aware elasticity enforcement



1 // how many scaling out tries?
2 ITucsonOperation op = this.acc.in(
3 this.tid,
4 new LogicTuple("scaleOutTries", new Var("Tries")),
5 Long.MAX_VALUE);
6 tries = op.getLogicTupleResult().getArg(0).intValue();
7 // what time step between re-tries?
8 op = this.acc.in(
9 this.tid,

10 new LogicTuple("scaleOutTime", new Var("Time")),
11 Long.MAX_VALUE);
12 step = op.getLogicTupleResult().getArg(0).intValue();
13 ... // delegate rSYBL scaling then check success/failure
14 // put outcome in shared ReSpecT tuple centre
15 this.acc.out(
16 this.tid,
17 new LogicTuple("scaleOut",
18 new Value(
19 this.node.getId(),
20 new Value("done", new Value(res))
21 )
22 ),
23 Long.MAX_VALUE);

Fig. 6: Run-time adaptation of elasticity control through coordination.

1 if (actionName.contains("scaleout")) {
2 // coordinated scale out requested
3 ... // parse arguments
4 this.doCoordinatedScaleOut(args, e);
5 } else if (actionName.startsWith("scalein")) {
6 // coordinated scale in requested
7 ... // parse arguments
8 this.doCoordinatedScaleIn(args, e);
9 } else if (actionName.startsWith("monitorMetrics")) {

10 // coordinated monitoring requested
11 ... // parse arguments
12 this.doCoordinatedMonitorMetrics(args, e);
13 } else {
14 this.respect.delegate( // basic ReSpecT operation
15 actionName,
16 RespectEnforcementAPI.OP_TIMEOUT,
17 e);
18 }
19 // [scaleout case]
20 // read outcome from shared ReSpecT tuple centre
21 op = this.respect.delegate(
22 "in(scaleOut(" + node.getId() + "),
23 done(B))",
24 RespectEnforcementAPI.OP_TIMEOUT,
25 node);
26 this.executingControlAction = false;
27 if (op.isResultSuccess()) {
28 // scale out successful
29 } else {
30 // scale out failed
31 }

Fig. 7: Coordination-aware elasticity primitives. The bridge compo-
nent is responsible for decoupling elasticity controllers from con-
trolled resources. Notice the synchronization point with listing Fig. 6:
in lines 24-28 we consume the tuple put in lines 17-25 of Fig. 6.

process, being able to adjust the way in which elasticity
mechanisms interact with coordination services.

C. Runtime Benefits
We now compare a coordination-aware elasticity controller

(Pseudocode 2) to a coordination-unaware one (Pseudocode 1)
in the case of a scale out process. Pseudocode 1 exhibits issues
mentioned in Subsection I-A:

• line 3: elasticity controllers invoke the underlying cloud
API through a number of chained calls (abstracted away
to ease understanding). Thus, they are “locked-in” to such
API: in case their syntax changes, it is sufficient to update

Pseudocode 1 Coordination-unaware Elasticity Control

1: procedure SCALEOUT(node1) . elasticity control
2: node2← cloudAPI.doScaleOut(node1) . API lock-in
3: if [was synch call] then . loss of control flow
4: else if [was asynch call] then . undefined/busy wait
5: end if
6: if checkHealth(node2) then . scale out successful?
7: startMonitoring(node2)
8: else
9: SCALEOUT(node1) . retry

10: end if
11: end procedure

calls accordingly, but in case of a semantics change, the
whole elasticity enforcement process may require a fix.

• lines 4-8: if cloud API call is synchronous, elasticity
controllers lose their control flow, being obliged to wait
until the call returns. Thus: what if cloud API waits
indefinitely for scale out to succeed? What if multiple
tries are done in case of failure, preventing elasticity
controllers to reply to new requests in the meanwhile?
If cloud API call is asynchronous: how do elasticity
controllers know if scale out was successful? Are they
obliged to perform busy-waits, continuously monitoring
the process? Safety, availability and efficiency are anyway
compromised.

• line 12: in case something bad happens, elasticity con-
trollers are responsible for recovery, fail-over, retry, etc.,
whichever is the failure-handling mechanism chosen. E.g.,
in case it retries, time in which control flow remains
blocked, keeping elasticity controllers insensitive to new
requests, keeps increasing.

In Pseudocode 2, above issues are solved:

• lines 3-4: scaling out is delegated to coordination services.
Control flow is retained by elasticity controllers, now free
from cloud API issues (e.g. invocation semantics) and no
longer tied to the specific cloud provider. Coordination
services are now locked-in, but this is fine, since in case
of semantics change to cloud API the elasticity con-
trol process should not be affected, whereas lower-level
mechanisms (e.g. coordination services) may be—e.g.,
synchronous vs. asynchronous calls should not influence
elasticity control but coordination only.

• lines 6-14: scaling out call is now asynchronous by
default. Furthermore, coordination guarantees replies in
finite time (which can be set even at run-time). Avail-
ability as well as efficiency are increased, since elasticity
control is free to process other incoming requests while
waiting previous ones results, and safety is improved
thanks to failures being confined to coordination services.

• lines 16-18: run-time configuration of parameters (e.g.
waiting time, number of re-tries, etc.), some cloud API
calls, coordination with monitoring services, synchro-
nization issues and handling of operations outcome are
all delegate to coordination services—because they are
coordination issues.

As stated in Section I, delegation of duties between elasticity
and coordination supports separation of concerns while en-
abling better design and management of elasticity control.



Pseudocode 2 Coordination-aware Elasticity Control

1: procedure SCALEOUT(n1) . elasticity control
2: coordServ ← getCoordinationService()
3: coordServ.doScaleout(n1, tOut) . asynch
4: end procedure
5: procedure ONSCALEOUTSUCCESS(n2)
6: startMonitoring(n2)
7: end procedure
8: procedure ONSCALEOUTFAILURE(n1)
9: SCALEOUT(n1)

10: end procedure
11: procedure ONSCALEOUTTIMEOUT(n1)
12: SCALEOUT(n1)
13: end procedure
14: procedure DOSCALEOUT(n1, tOut) . coordination
15: ... . Read params, call cloud API, coordinate

monitoring, wait completion, share result
16: end procedure

V. RELATED WORK

Rajana et al. [14] coordinate message packets to prevent
network congestion in cloud environments. Wang et al. [15]
coordinate cloud providers and cloud consumers through a
policy-based enforcement system. Wei et al. [16] coordinate
resources provisioning and exploitation across multiple work-
flows, proposing an agent-based, message-based decentralized
algorithm matching resource supply and demand. Besides
goals of the works, differently from our approach no well-
defined coordination model in the sense of [8] is adopted,
thus solutions are ad-hoc tailored to the specific domain.
Distler et al. [17] propose extendable coordination services,
which enable users to dynamically register composite op-
erations exploiting low-level coordination services API, as
the means to achieve run-time adaptation of cloud-related
coordination issues—e.g., storage quota management. Based
on CometCloud tuple space -based coordination mechanism,
Beach et al. [18] propose a broker-based matchmaking engine
for integrating heterogeneous devices within a single (cloud)
computing environment. Besides goals being different again,
our focus is more on supporting service-level, general purpose,
coordination-aware elasticity, providing service stakeholders
(e.g., application and cloud-based infrastructures developers)
with better experience in controlling their cloud services.

VI. CONCLUSIONS & ONGOING WORK

While elasticity primitives simplify developers task in deal-
ing with elasticity tradeoffs, elasticity languages and runtime
systems should leverage coordination capabilities of cloud
infrastructures to deal with complex scenarios by means of del-
egation and separation of concerns. In this paper, we analyzed
elasticity and coordination models to propose a novel approach
we called coordination-aware elasticity. We have shown how
elasticity and coordination could be integrated w.r.t. concepts,
languages and runtime systems. We also provided a prototype
to demonstrate feasibility and benefits of our approach, based
on SYBL and ReSpecT. Currently, we are working on the
prototype to both expand its features set and carry out novel
experiments across multiple cloud environments.
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