Effective Reuse via Modeling, Managing, and Searching of iBass Process
Assets

Nanjangud C. Narendra, Karthikeyan Ponnalagu, G.R. GargadhHong-Linh Truong, Schahram Dustdar,
and Aditya K. Ghose

Abstract— Cost and competitive pressures are forcing busi- constituent services by extending our prior work on vaoiai
ness organizations to reuse assets from repositories, ratherah  griented engineering principles of SOA [3] and by presentin

Com Rouee o v, boon adirosced oo o v ere i Vel mechanis fo searching assetsfo reuse. The salien
' ' contributions of our paper are as follows.

a lack of a mechanism for the representation of business process |
assets as variants and versions in repositories. Second, there is o An asset tree representation model that represents ver-
no formal means to compare between different variants and sions and variants of business process assets together in
versions of an asset and determine which is the best to select a repository

for reuse. Third, there is a lack of a technique to determine the . .
extent to which a business process asset could be customized ° A formal mechanism to compare and analyze variants

for reuse. In this paper, we address the above research issueg b and versions of an asset reusability - _
presenting an integrated approach for modeling, analyzing, and « A matching algorithm that matches a specified require-

searching business process assets in a repository for enhancing ment against an asset and determines the extent to which
reuse. We demonstrate our approach on a large repository of the asset meets the requirement.

business process assets in the insurance domain. To the best of our knowledae. our approach is the first
Keywords. Business Process, Service, Reuse, Repositories rodu wiedge, our-app ! '
integrated technique for asset variant and version represe
Assets A . . X
tation in a repository, along with an enhanced matching of
existing assets against a specified business processeequir

ment. In contrast to the extensive works on business process

Given increasing cost and competitive pressures, busineggnilarity matching [4], [5], [6], [7], [1] that primarily cus
organizations are reusing existing business processsass@ft structural aspects of business processes, the presented
from repositories [1]. The emergence of service-orientefhethodology in this work investigates tisemanticaspects
architecture (SOA) [2], with its emphasis on loose couplinghrough a unique asset tree representation of businessssroc
and dynamic binding, is seen as a promising way to enabfBodels in terms of their constituent services.
more effective reuse by packaging assets as reusableeervic The remainder of this paper is organized as follows. In the
accessible only via their interfaces. (By business proce§§Xt section, we present a running example that will be used
asset we mean any software component in the repositoijroughout the paper for illustration. Section Il preseatr
represented as a business process, sub-process, or e’&3ft tree representation model for storing business ggoce
a single service.) However, to realize this vision, severafariants and versions. Section IV describes our matching
research challenges need to be addressed. First, theredlgorithm for assets vis-a-vis requirements. Implemeoniat
a lack of a model for facilitating the representation ofof our approach over a large repository of real-life busines
business process assets as variants and versions in usifégcesses is described in Section V. We present related
process repositories, with a view towards maximizing theiwork in Section VI, followed by concluding remarks in
reusability. Second, there is no formal way to compar&ection VIl
between different candidate asset variants and versions in Il. RUNNING EXAMPLE
order to determine which can be a better reuse candidate

Finally, no matching technique exists that can determire th Our running example starts with the scenario of a business

extent to which a potential business process asset can $EXST OERG 100 A% HERERce B 2o ot e
customized for reuse. : p p

ustomer requesting the claim, and the details of the claim.

reIrr]e:tsr:alﬁtiEapsr,bl]/.ys(ianerE:OI\:gcfahsessgsrseeS{e:srcg g&?;g?fneif i}4e outputs of this process should be acceptance/rejection
P 9 P otthe claim, along with the claim amount to be paid to the

) . customer (the claim amount will be zero in case of rejec-
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inputs. tion). The analyst searches the business process regositor
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I. INTRODUCTION



o—{ g | ! S, controls the execution of;, i.e., iff S; precedesS; in

: ‘peterminetienin] & {Anatyzeiniures| the control flow.l
i = —,— ~ Iftwo services in a process, share the same set of required
e {Estmatetoss] input data, but the execution of the preceding service in the
process flow does not affect the execution of the succeed-
{RecordDetaiis | —{Sengateciaim| & ing service, then the services have just a data dependency
. relationship between them. Otherwise, they have the cbntro
~ProcsssPaymen]—— flow dependency between them.

Definition 2: A service S; is defined via its input and
output sets respectively, i.6S5; = {D;,, Dout}, WhereD;,
is a set of input data required for invokirg}, and D,,,; is
a set of output data expected after invokisig I

Fig. 1. Insurance Claims ProceBs1 For example, the inputs for the servibetermineLiability
in Pr 1 (see Fig. 3) areCustomerinfoand Claiminfa while

o [ Regerdclaim | _[Poerialasd]. —{oeteminetiapit, its output isLiabilityInfo.
B. Metamodel-based Representation of Asset Variants

FinalReview| {Anaiyzeinjuries| —{EstimateLoss| Leveraging the metamodel introduced in [3], we can
separately model the static and variable parts of any soétwa
component. This metamodel consists of two parts (details
are available from [3])variation pointsare the points in
{Recorapetais | ———{Se"grateCiam | processpayment—O the component where variations can be introdugedation
features refine variation points, by specifying the action
semantics of the variation and its specific applicabilitheT
same variation point can admit more than one variation
feature, and one variation feature can be applied to many
Fig. 2. Modified Insurance Claims Proce3s2 variation points.
This metamodel is further extended to instantiate concep-
tual models for modeling service-level and business pces
first executed in parallel, and then their results are sent {gVel variations. These conceptual models can then beetieat

Claiminvestigationservice. A final review of the verified a5 design templates from which actual variation-oriented
claim is then implemented bijinalReviewservice. design can be accomplished. In our running example, an ex-
Pr2 implements the same functionality, but differently.2mple of a variation point is a method retermineLiability
DetermineLiability and PotentialFraudCheckservices are Service, for calculating insurance liability. A variatiéeature
serialized. ThenPotentialFraudCheckservice is modified, 1S an action to replace that method by a different method.
considering the extent of liability. Finally, a neliability- The actual service variant is the modifiBétermineLiability
PlusFraudCheclservice is added. The inputs and outputs fopervice containing the replacement method.
the services irPr 1 andPr 2 are dep|ctgd in Fig. 3._ C. Asset Variants vis-a-vis Versions
The analyst can also specify specfic non-functional con-
straints such as performance and reliability, along with
the process inputs and outputs. This could give rise to
situation where no single business process asset can ma

her requirement fully, thereby giving a potential trad&-of p . .

requiring user intervention to select the “best’ candidate SUch thatA’ can be derived from4 by applying a set of
If the analyst wants to narrow down the search furtheP{a”at'on features, each of them applied on a variationtpoin

she would specify additional criteria, such as the service(g A

k
that the business process asset should contain. These wopldh <4 T 2o 5;/(A)iSUCh thatdV (A);
be specified in terms of their respective inputs and output VI, VF 2700 vVFn}C} _ _
In Definition 3, >, , 6V (A) comprises a varying asset

The ways in which a pair of related assets can differ from
ch other arevariants and versions We define them as
OWS.

Definition 3: A variant A’ of an assetd is another asset

VP,
%

I11. ASSETREPRESENTATION INBUSINESSPROCESS of A, VP, is a variation point, andV Fy,VFy,--- \VF,}
REPOSITORIES are the set of variation features applied on that variation
A. Basic Definitions point. Referring to Fig. 3, we see that tBetermineLiability

Definition 1: A business process (or sub-proces)is serv!ce of procesBr 2 is a variant of tth.e_termineLiak.Ji.Iity
defined as? :.{S D, CY, wheres — {5, S.} is the set service of procesBr 1; the former containing the additional

) AR e s input dataLiabilitylnfo.
of services that participate i?; D = {Dy;}, iff S; = 5; Definition 4: A versionA” of an assetA is another asset
= true, is the set of all data dependencies of seniGe such that the following holdsA” can be derived fromA
on S;, wherei # j; andC = {C;}, iff \S; X S; = true, through a combination of changes; each is either a change
wherei # j, is the set of control flow dependencies betweenf a static part ofA (as defined in Section 111-B) or a change
S; andS;, whereC;; is either true or false, based on whethetto the composition of variation model of itself:
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Fig. 3. Services irPr1 & Pr 2, and their inputs and outputs
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. Version 1.0 .~ "
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Fig. 4. Asset Tree Representation
VP, \ Z1 Z2 .. Zm
and
VEni1r VEniz oo Vi we introduce the novel concept afsset treeto represent
VP al a2 e oam business process assets with their variants and versions.
(AT = VPt bl b2 bm Definition 5: An asset tree is a tréE = (N, E), whereN
VM(A") = is the set of nodesk is the set of edges, with the following
roperties:
VP,yy z1 22 zm prop
I o _ _ « The root node of the tree is called iase asset
In Def|n|t|(_)n 4,0 V(A) represents the difference " over « Every node in the tree is labeled as either a version node
A, A;(A) is a change in the static part df, and V' M (A”) or a variant node, and satisfies the following conditions:

is the change in the variation model of itself. That

is, VM (A) represents the variation model df, whereas,
VM(A”) represents the difference in the variation model of
A" over that ofA.

The matricesV M (A) and VM (A”) depict the variation
points in the rows and variation features in the columns. An
entry in either matrix represents the existence of a vanati The asset tree also has two types of edgesersion edge
created by applying a variation feature on a variation poirlinks a version node to the version node which is its child on
- otherwise it will be a null entry. the asset tree, whereasvariant edgelinks a version node

In our running example, versions are illustrated via the twto one of its variantsl
business process&s 1 and Pr 2 themselves. The variation |5 our design, a node in an asset tree can represent differ-

models of these two processes being identical, the varying scopes, individually or collectively: the whole proges

— The parent of a version node can only be a version
node.

— The parent of a variant node can only be a ver-
sion node. Furthermore, variant nodes cannot have
children. They are leaf nodes of the asset tree.

component ofr 1 that appears ifPr 2, is the newLiabili- 3 sub-process, or a service. This asset tree representation
tyPlusFraudCheclservice added irPr 2. illustrated in Figure 4, is an enhancement over traditional

) version tree representations in repositories which onpy re
D. Asset Tree Representation resent versions.

Since most repositories are based on version control sys-As per Definitions 3 and 4, every variant or version of
tems (e.g., CVS), we can represent the repository’s assats i A is already represented as the asdeaugmented by an
version tree. Each version therefore has a unique parent, fr enhancement of its functionality. Mapping these defingion
which it has been derived. Differences between the versi@nto our asset tree representation, we see that every asset o
and its parent are typically represented manually in thenforthe asset tree (except the root) is a variant or version of its
of user-editable comments. As this is an undesired practigearent.



E. Asset Tree Creation and Evolution Please note that our ARCM model can be extended to
ﬁgcommodate the actual semantics of matching the types of

Existing and newly-created business processes can ) "
Input and output data, via preconditions and effects, ag.,

stored under the asset tree representation in differens.wa 91 We h ted th . v f
An existing process can be transformed automatically usi r[9]. We ave 9m|tte them in our paper, not only for
asons of simplicity, but also because they are orthogonal

parsing techniques [8] or manually by the process develop h in id !
to produce an asset tree. A newly-created process will fia the main iaeas in our paper. o
Our constraint representation model is inspired by

modeled using our asset tree representation. h deling | h
Initially, an asset tree will have a base business procesg.ML [10], the QoS modeling language. We chose QML

Over time, the asset tree will be enhanced or utilized fo?u® to iFs simplicity and ease of.ad_o.ption. Some well-known
the development of new business processes. The evolutif hstraints are performance,_rellablllty, a_nd cost. A bast

of asset trees in the repository makes the number of as tincreasing (re_sp. decreasing) order implies that antasse
trees as a static or a steadily growing structure. Thus, tH'0S€ non-functional property corresponds to that coms{ra

asset tree representation helps reduce the space and tim& HU|d _ha\{e a value greater (resp. lower) th_an that of the
the management and search of business processes, comp§ traint, in order for that particular non-functionabperty
to the exponential growth for the actual number of processé% e considered a m_atch._
that causes a serious performance issue and space concer, he_ AQAM model is de_fmed as follows. .
with respect to the search and management of assets. Definition 7: An ACAM is M¢a = {C)p, A}, wh.ere'm
In the beginning, the asset tree will have an initial featurgp is a set of capabilities, comprising the following:
log, representing all the features available with the reaten ~ « Input data to the ass€tl;,, }
But on the addition of every other node, the meta data of the « Output data from the ass¢tl,.., }
asset tree is enhanced with the new set of features getting> The set of servicesS; (including its versions and
added for each new node (either version or variant). This variants) in the asset tree; each servige € S, is

also helps reduce the search time. defined via its input sefd;,, } and output se{d,., }
A is a set of analyses (non-functional properties), with each
IV. SEARCHING ASSETS property specified as per the following:

The asset tree helps optimize the search and matchinge 1D, which represents the property’s name
of assets against user requirements. We represent asset re- TypeT', which defines the unit in which the property is
quirements and constraints via the Asset Requirements and measured
Constraints Model (ARCM) and asset capabilities via the « Value Val, which is the value of the property
Asset Capabilities and Analysis Model (ACAM). Following]|
this, we present the algorithm for matching the appropriate |t is to be noted, however, that our ACAM model is
asset variants/versions against the specified requirement generic enough to be independent of the actual process model
formalism used, e.g., whether BPMN, BPEL, etc., but is only
A. ARCM & ACAM Models stated in generic terms in terms of input/output data and the
The ARCM represents the requirements of a user lookingervices that comprise the business process.
for a business process solution or asset, along with some . .
constraints thatpthe user would specify. It is gdefined a8 Matching ARCM against ACAM

follows. Matching an ARCM against an ACAM involves functional
Definition 6: An ARCM is Mgc = {R,C}, whereinR  matching followed by non-functional matching.
is a set of requirements, comprising the following: 1) Functipnal Matching: Fynctional matchin_g of an
« Input data to the required business process solutighRCM against the ACAMs is done as explained below
{din,} (see Algorithm 1 for a formal description). Our match-
. Output data from the required business process solutidd algorithm combines both version feature matching and
{dous, } variant matching. The former is implemented via checking

. The set of servicesS, that need to be part of the inputs, outputs and existence of a service that can meet
business process so?ution' each servike c S, is the requirementS;. The latter is implemented via variant
defined via its input sefd,,, } and output se{dmzv} matching. Hence it is possible for a version on the asset

C'is a set of constraints. with each constraint specified tree to achieve a partial match with the ARCM, but a
pe: the following: Ints, wi Int specit ﬁariant) child to achieve a perfect match. There existisdve

) ) service matching algorithms in the literature; however, fo
« 1D, which represents the constraint’s name ~ partial matching, to the best of our knowledge, the existing
« Type T, which defines the unit in which the constrainta|gorithms fail to consider the input and output differesice
is measured o in the variation model, thereby making our algorithm novel.
« OrderOrd, which could one of the following: increas- step 1:Given an ARCM, we traverse trees in the repository
ing or decreasing to determine relevant assets by matching the inputs and
o Value Val, which is the minimum (resp. maximum) outputs.
value of the constraint, depending on whetligrd is  Step 2:1n order to determine the degree of match, there are
increasing (resp. decreasing) three basic matching criteria: inputs, outputs, and theoket
| services in the ARCM against which the ACAM should be



Algorithm 1 ComputeFunctionalMatchScord(z )

and{d;,,, }. This also considers the case wheigs input-

1: for all Mg, do output set doesot match that ofS;, but whether a variant of
22 if ( I(Mge) N I(Mca) = 0 ) or (O(Mca) NS, can be generated whose input-output set can match that
O(Mpgc) =0) then of S;. This involves several sub-cases depending on whether
3 exit(-1) S,'s input (resp. output) set is a subset or superset of the
4. end if input (resp. output) set o;, and is detailed in Algorithm 1.
5. forall S; € Mre & S, € Mg do If this check is successful for a suitable combination of
6: SC; = MatchServiceVariants(S;, S,) variants, then a variant match exists, at least for the isptt
7 WeightedSC; = w; * SC; The difference in the output sets is also checked similarly.
8: end for A variant match with a variant of,, for a collection of
9: end for variants applied orb,, then exists.
procedure MatchServiceVariants(S;, L€t the user-assigned relative weight of each senfice
S.) in the ARCM bew;, such thatd_w; = 1. Let the match
1- score = 0 score for each service bgr;. The total match score for the
2. if MatchService((S;, S) ) then [s(p))tzgled] services i5_ w;Sc;, and would be in the range
— - Wi |.
i: elss:ore =2 _ 2) Non-functional Matching:N_on-functionaI matching @s
5: it ({ds,} > {d® V) then implemented against the resulting matches from functional
: diffe N matching. The constraints in the ARCM are matched against
6. {din; "} = {din, } = {df3,,} the advertised non-functional properties in the ACAM. For
& score =1 any constraintC's;, if its order is increasing, then the
8: gnd if " advertised non-functional propertys; should be such that
9o if ( {jouti} D {dg,, } ) then value(Ns;) > value(C's;). For a constraint with a decreas-
10: {doh?y = {dout, } — {d%. } ing order, the condition to be met would belue(Ns;) <
11 score = 1 value(C's;) (see Algorithm 2).
12:  end if
130 if ({din, } C {df,,} ) then Algorithm 2 ComputeNonFunctionalConstraintScore
14: {7y = {d2, } = {din, } (Mca)
15: score = 1 1: for all Mg, do
16:  end if 2. totalscore=0
170 if ({dour, } C {dgy, } ) then 3. for all C; do
18: {d27Y = {d2,. } — {dout,} 4 score = 0
19: score = 1 5: if (ord(C;) =increasing) then
20:  endif 6: if (NS; >CS;) then
21: end if 7 score =1
22: return(score) 8: end if
9: end if
10: if (ord(C;) = decreasing ) then
11: if (NS; <CS;) then
matched. 12: score =1
Matching a service requirement against the services in thg:. end if
ACAM produces one of three resultexact, partial, or 1a: end if

disjoint functional match, designated by scores of 2, 1, ands.
0, respectively. In an exact functional match, the requéem .

WeightedSC; = w; * score
totalscore = totalscore + WeightedSC;

matches perfectly. For exact match, we can use any existing: end for

service matching algorithm (e.g., [11]) to detect exactiser 13: end for

matching and returns true for exact match. If we do not

get an exact match, then we deduce the input and outputin an exact non-functional match, each constraint from the

data differences and invok#atchServiceVariants(from  ARCM is satisfied by a non-functional property advertised in

Algorithm 1 that uses the service variation model to deteghe asset's ACAM. In a partial non-functional match, at teas

the possibility and the score of creating a requested variane constraint is not satisfied. Given a set of constraiatsh e

In a partial functional matCh, the asset Capabilities are ;atch (resp. non_match) against each constraint is tagged

subset of the inputs and/or outputs of the requirement. fith a score of 1 (resp. 0).

disjoint functional match is one that is neither exact nor Since different users rate non-functional properties dif-

partial. ferently, we assume similar user-assigned weights as for
The core step in functional matching involves the matchingunctional matching, i.e., a weight of; for each non-

of a service requirement; against a single servic8, in  functional property, such that x;, = 1. Then the aggregate

an ACAM. SinceS; is specified via its input and output match score for the ARCM-ACAM pair in question would

sets{d;,,} and {d,..,}, this matching checks whether thebe " x;C/, where C/ € [0,1] is the match score of the

serviceS, possesses the same input and output §&ts }  individual non-functional property.




3) Search Optimization via Asset Tree&:naive way to parent base asset is excluded from this search. This ensures
implement matching would be to compute the match scordat cyclic relationships between two variants is prevénte
for S; repeatedly for the same features (whether in the statlor our experimentation, we followed a simple convention
or dynamic part) for every ACAM. We perform a depth-firstof declaring a base asset as parent, if it is created before
traversal of the asset tree. When a patrticular version nodeiis identified variant which becomes the child. Finally the
the asset tree has already been matched against the ARGldset trees are constructed for each of the base assets as the
we annotate that node as “visited” and move to its child:oot node, i.e., neither a version nor a variant to other base
If the child in question is a variant node, then Definition 3assets. This involves simpler integration of all the brasch
would detail the variations over the parent node, and thecursively for each child node (variant or version) of the
matching for that node would require only the checking ofoot base asset node. Therefore an asset tree thus coedtruct
those particular variations. Alternatively, if the child & contains a family of assets all originated from a common
version node, then Definition 4 would be used to determiniease root asset node either as versions or as variants. Our
matches only against those additional features that tHd chiexperimentation resulted in 126 asset trees for the to@00f
possesses over and above those of the parent. assets. Each asset tree on an average contained 7 processes

The above optimization may still result in some variationgither as versions or variants to the base process asset node
being considered multiple times for matching, especidlly i Fig. 5 displays two charts. The top chart depicts the growth
version node has many variant nodes as children, with maity the repository size over a period of 3 years; it can be seen
variations common among them. In order to eliminate thithat while the number of stored processes grows rapidly, the
wastefulness, we maintain a hash table of variations and thgrowth in the asset trees is close to linear. This is because i
respective match scores against the service requiresient most cases, newly submitted assets were identified as either
being used. If that particular entry is encountered in ahgiot versions or as variants based on the search initiated wéth th
variant node, then that match score can be reused. submitted asset’s metadata on all identified base assetg. On

This optimized match, along with depth-first traversal, catthe relationship is identified with an existing base asbein t
be implemented irD(n+ F') time, wheren is the number of accordingly the new asset is positioned as a variant in the
nodes in the asset tree, afdis the total number of version corresponding asset tree based on the position of the delate
features plus variations among the assets in the asset trebase asset (root node or not) in that asset tree. The asset
trees thus help in consolidating additions to the repogitgr

V. IMPLEMENTATION AND EXPERIMENTS grouping together variants and versions of existing bissine

The purpose of our implementation is to demonstrate oyrocesses, thereby slowing down the growth in the search
asset tree representation model and matching algorithm. Wme as the repository size grows, to close to linear growth.
used a large collection of 900 insurance provisioning anthis is because as the repository grows, the number of
claims business processes stored in an internal process-refprocesses per asset tree grows (as shown in the top chart of
itory following OMG’s RAS (ttp://ww. ong. org/  Fig. 5), resulting in larger groupings of business procgsse
spec/ RAS/ ) specification. We created an ARCM with 7 per asset tree. Hence this grouping eliminates larger numbe
functional requirements and 8 non-functional constraint®f non-matched candidate assets as the repository grows in
and used our matching algorithm to search against the 98&e. The bottom chart of Fig. 5 depicts the growth in the
assets. The details of the requirements and constraiotgg al search times (in minutes) over the 3-year period. As Fig. 5
with their user-defined weights, are accessible fifoint p:  clearly illustrates, the search times for the repositoryhwi
/1bit.ly/fbKCF9. asset tress is less than those for the repository without.the

For conducting our experiments, we have constructed asSéiis is because our approach now helps in searching against
trees identifying processes that are functionally simildnis 126 assets (each representing the process tree) compared to
includes first identifying versions belonging to all asset900 assets previously. Subsequently the ACAM descriptions
and establishing the corresponding branches connecting tfor each of the associated nodes in the asset tree are matched
version nodes to their common base asset node with tf@ final selection.
help of version history. This basically exhibits parenitdh ~ The output of our matching algorithm is an ordered
relationships across the different levels for a given ades sequence of all such matches, with each match describing
process is repeated for all candidate assets in the repositan ACAM that (fully or partially) meets the requirements in
in a way, that an asset already identified as a version of sorttee ARCM, along with the non-functional match score. For
base asset is removed from the candidate assets. each match, and for each matching feature, the details of the

Then the functional similarity is evaluated only againg th match are also pre-sent to the user. Such a display method
identified common base assets to evaluate the variant rekdso provides the user with sufficient flexibility to change
tionship between the base assets. This involves idengifyirtheir weights for either functional or non-functional mhatc
the variant base assets based on conducting the search fiater on, after viewing the results..
common filters associated with each of the base assets. InWe illustrate an implementation of our plugin on a set of
this step, a base asset identified and marked as a variantdofissets from the repository, using the asset tree depicted
another base asset is subsequently excluded from the searckig. 6. Let us assume an ARCM comprising requirements
on other base assets. This ensures that a base asset (oRitshroughR7, and constraint§'1 throughC8. The relative
versions) can have a variant relationship to only one baseeights as defined by the user are depicted in Table [; in this
asset. Similarly when a search is conducted for a base assase, the user has decided not to considelandC8, hence
marked as variant (child) to another base asset (pareet), tthey are assigned zero weights.
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Fig. 6. Evolved Asset tree representation for running exampl

TABLE |
WEIGHTS OFFUNCTIONAL REQUIREMENTS ANDNON-FUNCTIONAL
CONSTRAINTS

Requirements / Constraints Weights
R1,R2,R3,R6,R7,C3,C4,C5 0.1

R4,C1 0.3
R5,C2,C6 0.2
C7,C8 0.0

for this illustration. Table Ill therefore displays Asse0@6
as having the best match. Further details of these foursasset
are also accessible fromt t p: // bit.|y/fbKCF9.

VI. RELATED WORK

Workflow Reuse & Repositorie®©ne of the earliest sys-
tematic attempts at formal workflow reuse was workflow
patterns in order to facilitate reuse [12]. Recent work has
also focused on requirements for process modeling tools
to support pattern-based reuse [13]. However, issues with
workflow reuse still persist as in [14]; the most relevant

Let us assume that the Asset A001 of Fig. 6 possessissues among them are lack of a comprehensive discovery
features BF01, BF02 and BFO03, with Asset A0O02 possessimgodel, lack of workflow fragment rankings, and difficulties
an additional feature BF06. Let us also assume that Variaimt acquiring and storing process knowledge. The citatid&j [1
A003 of Asset AO01 comprises variations VFO1 and VFO6presents the concept of BPEL process fragments in order to
whereas Variant A004 of Asset A002 contains only VFOEnhance BPEL process reuse. We view [15] as being com-
as its variation. Table Il represents the respective weijht plementary to ours, since process fragments can be used to
scores for the features that all the assets in the asset tesghance the reusability of business process implemengatio
possess - this table is used to calculate the final score ébr eavhose specifications are expressed using our model.
asset as depicted in Table 1ll. We consider the values fbr ful The citation [16] discusses how process model repositories
Match score and Partial Match score as 2 and 1 respectivaelgn be “refactored”, i.e., simplified, as they grow in size.



TABLE Il

TOTAL WEIGHTED SCORES OFASSETS

Asset

Total Weighted Score

Contained Base and Variation Features

Asset A001

(05+09+06)=20

[BFO1,BF02,BF03]

Asset A002

(09+03) =12

[BFO1, BFO6]

Asset A003

(05+03+02) =10

[BFO1,BF02,BF03,VF01,VF06]

Assest A004

(3+03) =06

[BFOZ,BF06,VFO1]

Asset A0O05

(05+09+06+03)=23

[BFO1,BF02,BF03, BF0]

Asset A0O06

(05+090+06+03+4+.3+.2)=31

[BFO1,BF02,BF03, BF06,VFO1,VF04,VF06

This would enable process designers to effectively deaj?]
with model complexity by making process models better
understandable and easier to maintaBusiness Process (3
Similarity SearchThe citations [1], [17] discuss the storage,
representation and searching of business process variar}&?
in a repository. However, they not distinguish between
versions and variants, and mainly focus on structural dspec
of business process models. As we have already argudél
in our paper, such a representation is not sufficient for
the research problem that we are investigating. Similaritye]
search algorithms have been proposed in [4], [5], [18], [6].
However, they primarily focus on the structural aspects of[7]
business process models represented as graphs.

Case-based Reasoning in Workflowdsing case-based
reasoning (CBR) as a means of improving workflow

(8]

management has been discussed in [19], [20]. In particularg]
the citation [20] provides a mechanism for storing process
deviations as cases, which can be retrieved by providiqgo]
appropriate contextual information. We view these works as

complementary to ours.

[11]

Modeling Variability in Workflows Works such as [21],
[22], [23] have discussed how variability in workflows can[12]
be represented along with the workflow models themselves
(in particular, via feature modeling such as in [21]), so@s t13)
help the business analyst choose a collection of variaats th

do not conflict with each other. However, those approaches
are primarily targeted at modeling variants in a business

Ta]

process towards ease of representation and manipulation of

users, and are complementary to our approach.

[15]
[16]

VIl. CONCLUDING REMARKS

[17]

Modeling business process solutions as reusable assets

facilitates reuse. We show that our contributions, workin 8

together, considerably improve the efficacy of service tasse
reuse; and we have implemented and demonstrated this
on a large real-life collection of business processes in tHe?!
insurance claims domain. Future work would investigate
the following: extending the implementation of the assef0l
tree to cover much coarser business architecture elements,
incorporating case-based reasoning techniques, repirggen [21]
variants on the asset tree as derivable from other variants,
enhancing our scoring technique to incorporate fractionzfgz]
scoring (by representing different scores for differentavats

in Algorithm 1) and incorporating past performance and usd?3]
feed back of reusable assets into our matching algorithm.
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