
Programming Hybrid Services in the Cloud

Hong-Linh Truong1, Schahram Dustdar1, Kamal Bhattacharya2

1 Distributed Systems Group, Vienna University of Technology

{truong,dustdar}@infosys.tuwien.ac.at
2 IBM Research - India

kambhatt@in.ibm.com

Abstract. For solving complex problems, we advocate for constructing “social

computers” which combine software and human services. However, to date, hu-

man capabilities cannot be easily programmed into applications in a similar way

like software capabilities. Existing approaches exploiting human capabilities via

crowds do not support well on-demand, proactive, team-based human computa-

tion. In this paper, we explore a new way to virtualize, provision and to program

human capabilities using cloud computing concepts and service delivery mod-

els. We propose novel methods for modeling clouds of human-based services and

combine human-based services with software-based services to establish clouds

of hybrid services. In our model, we present common APIs, similar to APIs for

software services, to access individual and team-based compute units in clouds of

human-based services. Based on that, we propose frameworks and programming

primitives for hybrid services. We illustrate our concepts via some examples of

using our cloud APIs and existing cloud APIs for software.

1 Introduction

Recently the concept of building social computers has emerged, in which the main

principle is to combine human capabilities and software capabilities into composite ap-

plications solving complex problems [1, 2]. Furthermore, concrete technologies have

been employed to provide human capabilities via standard, easy-to-use interface, such

as Web services and Web platforms [3–5] and some efforts have been devoted for mod-

eling and coordinating flows of human works in the process level [6, 7]. In all these

works, a fundamental issue is how to program human capabilities. We observed the

two main approaches in utilizing human capabilities: (i) passively proposing tasks and

waiting for human input, such as in crowd platforms [5], and (ii) actively finding and

binding human capabilities into applications. While the first one is quite popular and has

many successful applications [8–10, 5, 11], they mainly exploit individual capabilities

and are platform-specific. In the second approach, it is difficult to proactively invoke hu-

man capabilities in Internet-scale due to the lack of techniques and systems supporting

proactive utilization of human capabilities [2].

In this paper, we conceptualize human capabilities under the service model and

combine them with software to establish clouds of hybrid services. In our approach, we

explore novel ways to actively program and utilize human capabilities in a similar way

to software services. Our research question is how to provision and program human

capabilities using cloud service and deployment models for high level frameworks and

programming languages to build “social computers”.

1.1 Motivation

Hybrid services, in our notion, include software-based services (SBS) and human-based

services (HBS). We argue that we could provide a cloud of HBS working in a similar

manner to contemporary clouds of SBS (such as Amazon services and Microsoft Azure

services) so that HBS can be invoked and utilized in a proactive manner, rather than in

a passive way like in crowdsourcing platforms. Furthermore, HBS can be programmed

together with SBS in a composite application, instead of being used separately from

SBS as in contemporary crowdsourcing platforms.

Our goal is to program HBS and SBS together in an easier way because several

complex applications need to utilize SBS and HBS in a similar way. For example, sev-

eral Information Technology (IT) problems, such as in incident management for IT

systems, software component development, and collaborative data analytics, can be de-

scribed as a dependency graph of tasks in which a task represents a unit of work that

should be solved by a human or a software. Solving a task may need to concurrently

consider other relevant tasks in the same graph as well as introduce new tasks (this

in turns expands the task graph). Utilizing team and hybrid services is important here

as tasks are interdependent, but but unlike crowdsourcing scenarios in which different

humans solving different tasks without the context of teamwork and without the con-

nectedness to SBS. Teamwork is crucial as it allows team members to delegate tasks

when they cannot deal with the task as well as newly tasks can be identified and cre-

ated that need to be solved. SBS for teamwork is crucial for team working platforms

in terms of communication, coordination, and analytics. Therefore, it is crucial to have

solutions to provision individual- and team-based human capabilities under clouds of

human capabilities.

These clouds require novel service models and infrastructures to provide and sup-

port on-demand and elastic HBS provisioning. We need solutions allowing us to buy

and provision human capabilities via simple interfaces in a similar way to buying and

provisioning virtual machines in contemporary clouds of IaaS and SaaS. However, so

far, to our best knowledge, there is no proposed solution towards a cloud model for hu-

man capabilities that enables to acquire, program, and utilize HBS in a similar way to

that of Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS).

1.2 Contributions and Paper Structure

We concentrate on conceptualizing the cloud of HBS and how clouds of HBS and SBS

can be programmed for solving complex problems. Our main contributions are:

– a novel model for clouds of HBS and hybrid services provisioning

– a framework for solving complex problems using clouds of hybrid services

– programming primitives for hybrid services

The rest of this paper is organized as follows. Section 2 discusses our model of

clouds of hybrid services. Section 3 describes a generic framework for using hybrid

services. Section 4 describes programming primitives and examples utilizing clouds of

hybrid services. We discuss related work in Section 5. Section 6 concludes the paper

and outlines our future work.

2 Models for Clouds of Hybrid Services

In our work, we consider two types of computing elements: software-based comput-

ing elements and human-based computing elements. In software-based computing ele-

ments, different types of services can be provided to exploit machine capabilities and

we consider these types of services under Software-based Service (SBS) category. Sim-

ilarly, human-based computing elements can also offer different types of services under

the HBS category. We consider a cloud of hybrid services as follows:

Definition 1 (Cloud of hybrid services). A cloud of hybrid services includes SBS and

HBS that can be provisioned, deployed and utilized on-demand based on different pric-

ing models.

In principle, a cloud of hybrid services can also be built atop clouds of SBS and clouds

of HBS. As SBS and clouds of SBS are well-researched, in the following we will discuss

models for clouds of HBS and of hybrid services.

2.1 Models for HBS

In principle, human capabilities can be provisioned under the service model, e.g., our

previous work introduced a technology to offer individual human capabilities under

Web services [3]. However, at the moment, there exists no cloud system that the con-

sumer can program HBS in a similar way like IaaS (e.g., Amazon EC) or data (e.g.,

Microsoft Azure Data Marketplace). Before discussing how clouds of hybrid services

can be used, we propose a conceptual model for clouds of HBS.

HBS Communication Interface Real humans have different ways to interact with

other humans and ICT systems. Conceptually, we can assume that HBS (and corre-

sponding HBS clouds) abstracting human capabilities can provide different communi-

cation interfaces to handle tasks based on a request and response model. Requests can

be used to describe tasks/messages that an HBS should perform or receive. In SBS,

specific request representations (e.g., based on XML) are designed for specific software

layers (e.g., application layer, middleware layer, or hardware layer). In HBS we can

assume that a single representation can be used, as HBS does not have similar layer

structures seen in SBS. Requests in HBS can, therefore, be composed and decomposed

into different (sub)requests. The use of the request/response model will facilitate the

integration between SBS and HBS as via similar service APIs.

Unlike SBS in which communication can be synchronous or asynchronous, in HBS

all communication is asynchronous. In general, the upper bound of the communication

delay in HBS and how an HBS processing a request internally are unknown. However,

HBS intercommunication can be modeled using:

– message-passing in which two HBS can directly exchange requests: hbsi →
request

hbsj . One example is that hbsi sends a request via SMS to hbsj . Similarly, an SBS

can also send a request directly to an HBS.
– shared-memory in which two HBS can exchange requests via a SBS. For example,

hbsi stores a request into a Dropbox3 directory and hbsj obtains the request from

3 www.dropbox.com

the Dropbox directory. Similarly, an SBS and HBS can also exchange requests/re-

sponses via an SBS or an HBS (e.g., a software can be built atop Dropbox to trigger

actions when a file is stored into a Dropbox directory4).

Similarly to machine instances which offer facilities for remote job deployment and

execution, HBS communication interface can be used to run requests/jobs on HBS.

Human Power Unit (HPU) The first issue is to define a basic model for describing the

notion of “computing power” of HBS. Usually, the computing capability of a human-

based computing element is described via human skills and skill levels. Although there

is no standard way to compare skills and skill levels described and/or verified by differ-

ent people and organizations, we think that it is doable to establish a common, compar-

ative skills for a particular cloud of HBS.

– the cloud can enforce different evaluation techniques to ensure that any HBS in its

system will declare skills and skill levels in a cloud-wide consistency. This is, for

example, similar some crowdsourcing systems which have rigorous tests to verify

claimed skills.

– the cloud can use different benchmarks to test humans to validate skills and skill

levels. Each benchmark can be used to test a skill and skill level. This is, for exam-

ple, similar to Amazon which used benchmark to define its elastic compute unit.

– the cloud can map different skills from different sources into a common view which

is consistent in the whole cloud.

We define HPU for an HBS as follows:

Definition 2 (Human Power Unit). HPU is a value describing the computing power

of an HBS measured in an abstract unit. A cloud of HBS has a pre-defined basic power

unit, hpuθ, corresponding to the baseline skill bsθ of the cloud.

Without the loss of generality, we assume hpuθ = f(bsθ). A cloud C provisioning HBS

can support a set of n skills SK = {sk1, · · · , skn} and a set of m cloud skill levels

SL = {1, · · · ,m}. C can define the human power unit wrt ski for slj as follows:

hpu(ski, slj) = hpuθ × f(
ski

bsθ
)× slj (1)

For the cloud C, f(ski

bsθ
) is known (based on the definition of SK). Given the capability

of an hbs – CS(hbs) = {(sk1, sl1), · · · , (sku, slu)} – the corresponding hpu can be

calculated as follows:

hpu(CS(hbs)) =
u∑

i=1

hpu(ski, sli) (2)

Given a human offering her capabilities to C, she can be used exclusively or shared

among different consumers. In case an hbs is provisioned exclusively for a particular

4 http://www.wappwolf.com

consumer, the hbs can be associated with a theoretical utilization u – describing the

utilization of a human – and CS(hbs); its theoretical HPU would be u×hpu(CS(hbs)).
In case a hbs is provisioned for multiple consumers, the hbs can be described as a

set of multiple instances, each has a theoretical power as ui × hpu(CSi(hbs)) where

u =
∑

(ui) ≤ 1 and CS(hbs) = CS1(hbs) ∪ CS2(hbs) ∪ · · · ∪ CSq(hbs) .

Using this model, we can determine theoretical power for individual HBS as well as

for a set of individual HBS. Note that the power of a set of HBS may be more than the

sum of power units of its individual HBS, due to teamwork. However, we can assume

that, similar to individual and cluster of machines, theoretical power units are different

from the real one and are mainly useful for selecting HBS and defining prices.

2.2 HBS Instances Provisioning

Types of HBS Instances For HBS we will consider two types of instances:

Definition 3 (Individual Compute Unit instances (iICU)). iICU describe instances

of HBS built atop capabilities of individuals. One individual can provide different iICU.

Analogy to SBS, an iICU is similar to an instance of a virtual machine or of a software.

Definition 4 (Social Compute Unit instances (iSCU)). iSCU describe instances of

HBS built atop capabilities of multiple individuals and SBS. Analogy to SBS, an iSCU

is similar to a virtual cluster of machines or a complex set of software services.

In our approach, iICU is built based on the concept that an individual can offer her

capabilities via services [3] and iSCU is built based on the concept of Social Compute

Units [12]) which represents a team of individuals.

HBS Instance Description Let C be a cloud of hybrid services. All services in C can

be described as follows: C = HBS ∪ SBS where HBS is the set of HBS instances

and SBS is the set of SBS instances. The model for SBS is well-known in contem-

porary clouds and can be characterized as SBS(capability, price). The provisioning

description models for HBS instances are proposed as follows:

– For an iICU its provisioning description includes (CS, HPU , price, utilization,

location, APIs).

– For an iSCU its provisioning description includes (CS, HPU , price, utilization,

connectedness, location, APIs).

From the consumer perspective, iSCU can be offered by the cloud provider or the con-

sumer can build its own iSCU . In principle, for both provider and consumer, in order

to build an SCU, they can follow the following steps: first, selecting suitable iICU

for an iSCU and, second, combining and configuring SBS to have a complete work-

ing platform for iSCU . The connectedness reflects the intercommunication topology

connecting members of iSCU , such as ring, star, and master-slave, typically configured

via SBS. APIs describe how to communicate to and execute requests on HBS. More-

over, similar to SBS, HBS can also be linked to user rating information, often managed

by third-parties.

Pricing Factors Similar to existing SBS clouds, we propose clouds of HBS to define

different pricing models for different types of HBS instances. The baseline for the prices

can be based on hpuθ. We propose to consider the following specific pricing factors:

– utilization: unlike individual machines whose theoretical utilization when selling

is 100%, ICU has much lower theoretical utilization, e.g., normal full time people

has utilization of 33.33% (8 hours per day). However, SCU can theoretically have

100% utilization. The real utilization of HBS is controlled by the HBS rather than

by the consumer as in machine/software instances.

– offering communication APIs: it is important that different communication capa-

bilities will foster the utilization of HBS. Therefore, the provider can also bill con-

sumers based on communication APIs (e.g., charge more when SMS is enabled).

– connectedness: similar to capabilities of (virtual) networks between machines in

a (virtual) cluster, the connectedness of an iSCU will have a strong impact on

the performance of iSCU . Similar to pricing models in existing collaboration ser-

vices5, the pricing factor for connectedness can be built based on which SBS and

collaboration features are used for iSCU.

Furthermore, other conventional factors used in SBS such as usage duration and loca-

tion are considered.

2.3 Cloud APIs for Provisioning Hybrid Services

Services in a cloud of hybrid services can be requested and provisioned on-demand. As

APIs for provisioning SBS are well developed, we will focus on APIs for provisioning

HBS. Table 1 describes some APIs that we develop for hybrid services in our VieCOM

(Vienna Elastic Computing Model). These APIs are designed in a similar manner to

common APIs for SBS.

Figure 1 shows main Java-based classes representing HPU, HBS and its subclasses

(ICU and SCU), requests and messages for HBS (HBSRequest and HBSMessage),

and skills (CloudSkill, Skill, and SkillLevel). Currently, we simulate our

cloud of HBS. For SBS, we use existing APIs provided by cloud providers and common

client APIs libraries, such as JClouds6 and boto7.

3 Framework for Utilizing Hybrid Services

By utilizing hybrid services in clouds, we could potentially solve several complex prob-

lems that need both SBS and HBS. In our work, we consider complex problems that

can be described under dependency graphs. Let DG be dependency graph of tasks to be

solved; DG can be provided or extracted automatically. In order to solve a task t ∈ DG,

we need to determine whether t will be solved by SBS, HBS or their combination. For

5 Such as in Google Apps for Business (http://www.google.com/enterprise/

apps/business/pricing.html)
6 www.jclouds.org
7 http://docs.pythonboto.org/en/latest/index.html

APIs Description

APIs for service information and management

listSkills ();listSkillLevels() list all pre-defined skills and skill levels of clouds

listICU();listSCU() list all iICU and iSCU instances that can be used. Different filters

can be applied to the listing

negotiateHBS() negotiate service contract with an iICU or an iSCU . In many

cases, the cloud can just give the service contract and the consumer

has to accept it (e.g., similar to SBS clouds)

startHBS() start an iICU or an iSCU . By starting, the HBS is being used. De-

pending on the provisioning contract, the usage can be time-based

(subscription model) or task-based (pay-per-use model)

suspendHBS () suspend the operation of an iICU or iSCU . Note that in suspend-

ing mode, the HBS is not released yet for other consumers yet.

resumeHBS () resume the work of an iICU or iSCU

stopHBS() stop the operation of an iICU or iSCU . By stopping the HBS is no

longer available for the consumer

reduceHBS() reduce the capabilities of iICU or iSCU

expandHBS() expand the capabilities of iICU or iSCU

APIs for service execution and communication

runRequestOnHBS() execute a request on an iICU or iSCU . By execution, the HBS will

receive the request and perform it.

receiveResultFromHBS() receive the result from an iICU or iSCU

sendMessageToHBS() send (support) messages to HBS

receiveMessageFromHBS() receive messages from HBS

Table 1. Main APIs for provisioning HBS

Fig. 1. Example of some Java-based APIs for clouds of HBS

example, let t be a virtual machine failure and the virtual machine is provisioned by

Amazon EC2. Two possibilities can be performed: (i) request a new virtual machine

from Amazon EC and configure the new virtual machine suitable for the work or (ii)

request an HBS to fix the virtual machine. In case (i) SBS can be invoked, while for

case (ii) we need to invoke an HBS which might need to be provisioned with extra SBS

for supporting the failure analysis.

Our approach for utilizing hybrid services includes the following points:

– link tasks with their required human power units via skills and skill levels, before

programming how to utilize HBS and SBS.

– form or select suitable iSCU or iICU for solving tasks. Different strategies will

be developed for forming or selecting suitable iSCU or iICU , such as utilizing

different ways to traverse the dependency graph and to optimize the formation ob-

jective.

– program different strategies of utilizing iSCU and iICU , such as considering the

elasticity of HBS due to changes of tasks and HBS. This is achieved by using

programming primitives and constructs atop APIs for hybrid services.

HBS
Formation

description

HBS Change
 Management

Task Change
Management

solve tasks

Change
Adaptation

change detection

changerequest HBS

create/modify

iICU|iSCU
change detection

change

algo

algo

algo

human power
unithuman power

unit

SBS
Adaptation

cloud of hybrid services

description

task dependency

Fig. 2. Conceptual architecture

Figure 2 describes the conceptual architecture of our framework for solving com-

plex problems. Given a task dependency graph, we can detect changes in required so-

cial computing power by using Task Change Management. Detected required power

changes will be sent to Change Adaptation, which in turns triggers different operations

on HBS usage, such as creating new HBS or adapting an existing HBS. The opera-

tions on HBS are provided via different algorithms, each suitable for specific situations.

When an HBS deals with a task graph, the HBS can change the task graph and its

required social computing model (this will trigger HBS operations again). During the

solving process, HBS can change and this can be detected by HBS Change Manage-

ment. The HBS change will be sent to Change Adaptation.

4 Programming Hybrid Services

In this section, we discuss some programming primitives for hybrid services that can be

applied to complex application framework that we mentioned before. Such a primitives

can be used in different components, such as HBSFormation and ChangeAdaptation, in

our framework described in Figure 2. In illustrating programming examples, we con-

sider a virtualized cloud of hybrid services that are built atop our cloud of HBS and

real-world clouds of SBS. Consequently, we will combine our APIs, described in Sec-

tion 2.3, with existing client cloud API libraries.

4.1 Modeling HPU-aware Task Dependency Graphs

Our main idea in modeling HPU-aware task dependencies is to link tasks to required

management skills and compliance constraints:

– human resource skills: represent skill sets that are required for dealing with prob-

lems/management activities.

– constraints: represent constraints, such as resource locations, governance compli-

ance, time, cost, etc., that are associated with management activities and humans

dealing with these activities.

Given a dependency graph of tasks, these types of information can be provided man-

ually or automatically (e.g., using knowledge extraction). Generally, we model depen-

dencies among tasks and required skills and compliance constraints as a directed graph

G(N,E) where N is a set of nodes and E is a set of edges. A node n ∈ N represents

a task or required skills/compliance constraints, whereas an edge e(ni, nj) ∈ E means

that nj is dependent on ni (ni can cause some effect on nj or ni can manage nj). Edges

may be associated with weighted factors to indicate the importance of edges. The re-

quired skills, compliance constraints and weighted factors will be used to determine the

required human power unit (HPU) for a task, to select iICU and members for iSCU ,

and to build the connectedness for SCUs.

Examples and Implementation Figure 3 presents an example of a dependency

graph of an IT system linked to management skills. In our implementation of depen-

dency graph, we use JGraphT (http://jgrapht.org/). We define two main types

of Node – ITProblem and Management. All relationships are dependency. It is also pos-

sible to use TOSCA [13] to link people skills and map TOSCA-based description to

JGraphT.

4.2 Combining HBS and SBS

Combining HBS and SBS is a common need in solving complex problems (e.g., in

evaluating quality of data in simulation workflows). In our framework, this feature can

lotusdomino

w a s

isDeployedOn

BusinessApplicationsServices

supportedBy EmailandCollaborationServices

supportedBy

aix

isDeployedOn

db2

dependsOn supportedBy

WebMiddleware

supportedBy

emcbackup

dependsOn

PlatformSupportUnix

supportedBy

nasbox

dependsOn

n e t w o r k

dependsOn

DatabaseManagemen t

supportedBy

StorageDASDBackupRestore

supportedBydependsOn supportedBysupportedBy

NetworkService

supportedBy

Fig. 3. An example of HPU-aware dependency graph. A component box describes a software and

its problems (ITProblem node). An eclipse describes management skills (Management node).

be used for preparing inputs managed by SBS for an HBS work or managing outputs

from HBS work. Furthermore, it can be used to provision SBS as utilities for HBS work

(e.g., requiring HBS to utilize specific SBS in order to produce the result where SBS is

provisioned by the consumer).

Examples Listing 1.1 shows an example of programming a combination of HBS

and SBS for a task using our cloud APIs and JClouds. In this example, we want to

invoke Amazon S3 to store a log file of a Web application sever and invoke an HBS to

find problems. Using this way, we can also combine HBS with HBS and of course SBS

with SBS from different clouds.

/ / u s i n g JClouds APIs t o s t o r e l o g f i l e o f web a p p l i c a t i o n s e r v e r

B l o b S t o r e C o n t e x t c o n t e x t =

new B l o b S t o r e C o n t e x t F a c t o r y () . c r e a t e C o n t e x t ("aws-s3" ,"REMOVED

" ,"REMOVED") ;

B l o b S t o r e b l o b S t o r e = c o n t e x t . g e t B l o b S t o r e () ;

/ / and add f i l e i n t o Amazon S3

Blob b lob = b l o b S t o r e . b l o b B u i l d e r ("hbstest") . b u i l d () ;

b lob . s e t P a y l o a d (new F i l e ("was.log")) ;

b l o b S t o r e . pu tB lob ("hbstest" , b l ob) ;

S t r i n g u r i = b lob . g e t M e t a d a t a () . g e t P u b l i c U r i () . t o S t r i n g () ;

VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;

/ / assume t h a t WM6 i s t h e HBS t h a t can a n a l y z e t h e Web Middleware

problem

vieCOMHBS . s t a r t H B S ("WM6") ;

HBSRequest r e q u e s t = new HBSRequest () ;

r e q u e s t . s e t D e s c r i p t i o n ("Find possible problems from " + u r i) ;

vieCOMHBS . runRequestOnHBS ("WM6" , r e q u e s t) ;

Listing 1.1. Example of HBS combined with SBS

4.3 Forming and Configuring iSCUs

A cloud provider can form an iSCU and provide it to the consumer as well as a con-

sumer can select iICU and SBS to form an iSCU . An iSCU not only includes HBS

(iICU or other sub iSCU) but also consists of possible SBS for ensuring the connect-

edness within iSCU and for supporting the work. There are different ways to form

SCUs. In the following, we will describe some approaches for forming SCUs to solve

a dependency graph of tasks.

Selecting resources for iSCU Given a task t ∈ DG, our approach in dealing with

t is that we do not just simply take required management resources suitable for t but

we need to consider possible impacts of other tasks when solving t and the chain of

dependencies. To this end, we utilize DG to determine a set of suitable human resources

to deal with t and t’s possible impact. Such human resources establish HBS capabilities

in an iSCU . Overall, the following steps are carried out to determine required SCU:

– Step 1: determine DGBAU ⊆ DG where DGBAU includes all tj ∃ a walk (tj , t),
tj is the task that must be dealt together with t in typical Business-As-Usual cases.

– Step 2: determine DGCA ⊆ DG that includes tasks that should be taken into

account under corrective action (CA) cases. DGCA = {tr} ∃ a walk(tr, tj) with

tj ∈ DGBAU .

– Step 3: merge DGSCU = DGBAU ∪DGCA by (re)assigning weighted factors to

links between (tk, tl) ∈ DGSCU based on whether (i) tk and tl belong to DGBAU

or DGCA, (ii) reaction chain from t to tk or to tl, and (iii) the original weighted

factor of links consisting of tk or tl.
– Step 4: traverse DGSCU , ∀ti ∈ DGSCU , consider all (ti, ri) where ri is manage-

ment resource node linking to ti in order to determine human resources.

Based on the above-mentioned description different SCU formation strategies can be

developed. Note that our principles mentioned above aim at forming iSCU enough

for solving main tasks and let iSCU evolve during its runtime. There could be several

possible ways to obtain DGBAU and DGCA, dependent on specific configurations and

graphs for specific problems. Therefore, potentially the cloud of HBS can provide sev-

eral algorithms for selecting HBS to form SCUs. As we aim at presenting a generic

framework, we do not describe here specific algorithms, however, Table 2 describes

some selection strategies that we implement in our framework. Listing 1.2 describes an

example of forming an SCU.

Setting up iSCU connectedness After selecting members of iSCU , we can also

program SBS and HBS for the iSCU to have a complete working environment. iSCU

can have different connectedness configurations, such as

– ring-based iSCU : the topology of iSCU is based on a ring. In this case for each

(hbsi, hbsj) ∈ iSCU then we program hbsi →
request

hbsj based on message-

passing or shared memory models. For example a common Dropbox directory can

be created for hbsi and hbsj to exchange requests/responses.

– star-based iSCU : a common SBS can be programmed as a shared memory for

iSCU . Let sbs be SBS for iSCU then ∀hbsi ∈ iSCU give hbsi access to sbs. For

example, a common Dropbox directory can be created and shared for all hbsi ∈
iSCU .

Algorithms Description

SkillWithNPath Select iICU for iSCU based on only skills with a pre-defined network path

length starting from the task to be solved.

SkillMinCostWith

NPath

Select iICU for iSCU based on only skills with minimum cost, considering

a pre-defined network path length starting from the task to be solved.

SkillMinCostMax

LevelWithNPath

Select iICU for iSCU based on skills with minimum cost and maximum

skill levels, considering a pre-defined network path length starting from the

task to be solved.

SkillWithNPathUn

Directed

Similar to SkillWithNPath but considering undirected dependency

MinCostWithNPath

UnDirected

Similar to MinCostWithNPath but considering undirected dependency

MinCostWithAvail

NPathUnDirected

Select Select iICU for iSCU based on skills with minimum cost, consider-

ing availability and a pre-defined network path length starting from the task

to be solved. Undirected dependencies are considered.

Table 2. Examples of SCU formation strategies

– master-slave iSCU : an hbs ∈ iSCU can play the role of a shared memory and

scheduler for all other hbsi ∈ iSCU .

Listing 1.3 presents an example of establishing the connectedness for an iSCU us-

ing Dropbox. Note that finding suitable configurations by using HBS information and

compliance constraints is a complex problem that is out of the scope of this paper.

4.4 Change Model for Task Graph’s Human Power Unit

When a member in an iSCU receives a task, she might revise the task into a set of sub-

tasks. Then she might specify social computing power required for sub tasks and revise

the task graph by adding these sub-tasks. As the task graph will change, its required

social computing power is changed. By capturing the change of the task graph, we can

decide to scale in/out the iSCU . Listing 1.4 describes some primitives for scaling in/out

iSCU based on the change of HPU.

5 Related Work

Most clouds of SBS offering different possibilities to acquire SBS on-demand. How-

ever, similar efforts for HBS are missing today. Although both, humans and software,

can perform similar work and several complex problems need both of them in the same

system, currently there is a lack of programming models and languages for hybrid ser-

vices of SBS and HBS. Most clouds of SBS offering different possibilities to acquire

SBS on-demand, however, similar efforts for HBS are missing today.

Existing systems for utilizing crowds for solving complex problems [14, 5] do not

consider how to integrate and virtualize software in a similar manner to that for hu-

mans. As we have analyzed, current support can be divided in three approaches [2]:

(i) using plug-ins to interface to human, such as BPEL4People[4] or tasks integrated

D e f a u l t D i r e c t e d G r a p h<Node , R e l a t i o n s h i p > dg ; / / graph o f prob lems

/ / . . .

double hpu = HPU . hpu (dg) ; / / d e t e r m i n e

SCUFormation app = new SCUFormation (dg) ;

ManagementRequest r e q u e s t = new ManagementRequest () ;

/ / d e f i n e r e q u e s t s p e c i f y i n g o n l y main prob lems t o be s o l v e d

/ /

/ / c a l l a l g o r i t h m s t o f i n d s u i t a b l e HBS . Path l e n g t h =2 and

a v a i l a b i l i t y from 4am t o 19pm i n GMT zone

R e s o u r c e P o o l scu = app .

M i n C o s t W i t h A v a i l a b i l i t y N P a t h U n D i r e c t e d F o r m a t i o n (r e q u e s t , 2 ,

4 , 19) ;

i f (scu == n u l l) { re turn ; }
A r r a y L i s t<HumanResource> scuMembers = scu . g e t R e s o u r c e s () ;

SCU iSCU = new SCU () ;

iSCU . setScuMembers (scuMembers) ;

/ / s e t t i n g up SBS f o r scuMember . . .

Listing 1.2. Example of forming iSCU by minimizing cost and considering no direction

into SQL processing systems[11], (ii) using separate crowdsourcing platforms, such as

MTurk[15], and (iii) using workflows, such as Turkomatic [8]. A drawback is that all of

them consider human individually and human capabilities have not been provisioned in

a similar manner like software capabilities. As a result, an application must split tasks

into sub-tasks that are suitable for individual humans, which do not collaborate to each

other, before the application can invoke humans to solve these sub-tasks. Furthermore,

the application must join the results from several sub-tasks and it is difficult to integrate

work performed by software with work performed by humans. This is not trivial for the

application when dealing with complex problems required human capabilities. In terms

of communication models and coordination models, existing models such as in MTurk

and HPS are based on push/pull/mediator but they are platforms/middleware built-in

rather than reusable programming primitives of programming models.

In our work, we develop models for clouds of HBS. Our techniques for virtualizing

HBS and programming HBS in a similar way to SBS are different from related work.

Such techniques can be used by high-level programming primitives and languages for

social computers.

6 Conclusions and Future Work

In this paper, we have proposed novel methods for modeling clouds of HBS and de-

scribe how we can combine them with clouds of SBS to create hybrid services. We

believe that clouds of hybrid service is crucial for complex applications which need to

proactive invoke SBS and HBS in similar ways. We describe general frameworks and

programming APIs where and how hybrid services can be programmed.

In this paper, we focus on designing models, frameworks and APIs and illustrating

programming examples. Further real-world experiments should be conducted in the fu-

SCU iSCU ;

/ / . . . f i n d members f o r SCU

DropboxAPI<WebAuthSession> scuDropbox ; / / u s i n g dropbox a p i s

/ / . . .

AppKeyPair appKeys = new AppKeyPair (APP KEY , APP SECRET) ;

WebAuthSession s e s s i o n =

new WebAuthSession (appKeys , WebAuthSession . AccessType .

DROPBOX) ;

/ / . . .

s e s s i o n . s e t A c c e s s T o k e n P a i r (acce s sToken) ;

scuDropbox = new DropboxAPI<WebAuthSession >(s e s s i o n) ;

/ / s h a r i n g t h e dropbox d i r e c t o r y t o a l l scu members

/ / f i r s t c r e a t e a s h a r e

DropboxAPI . DropboxLink l i n k = scuDropbox . s h a r e ("/hbscloud") ;

/ / t h e n send t h e l i n k t o a l l members

VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;

f o r (HBS hbs : iSCU . getScuMembers ()) {
vieCOMHBS . s t a r t H B S (i c u) ;

HBSMessage msg = new HBSMessage () ;

msg . setMsg ("pls. use shared Dropbox for communication " +

l i n k . u r l) ;

vieCOMHBS . sendMessageToHBS (hbs , msg) ;

/ / . . .

}

Listing 1.3. Example of star-based iSCU using Dropbox as a communication hub

ture. Furthermore, we are also working on the integration with programming languages

for social collaboration processes [7] using hybrid services. Other interesting aspects,

such as pricing models and contract negotiation protocols, will be also investigated.

References

1. : The Social Computer - Internet-Scale Human Problem Solving. (socialcomputer.eu) Last

access: 3 May 2012.

2. Dustdar, S., Truong, H.L.: Virtualizing software and humans for elastic processes in mult

iple clouds – a service management perspective. International Journal of Next-Generation

Computing (IJNGC) (2012) To appear.

3. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in web-scale

collaborations. IEEE Internet Computing 12(3) (2008) 62–68

4. : WS-BPEL Extension for People (BPEL4People) Specification Version 1.1. (2009)

http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf.

5. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.

Commun. ACM 54(4) (2011) 86–96

6. Oppenheim, D., Varshney, L.R., Chee, Y.M.: Work as a service. In Kappel, G., Maamar,

Z., Nezhad, H.R.M., eds.: ICSOC. Volume 7084 of Lecture Notes in Computer Science.,

Springer (2011) 669–678

SCU iSCU ;

/ / . . .

iSCU . setScuMembers (scuMembers) ;

/ / s e t t i n g up SBS f o r scuMember

/ / . . .

double hpu = HPU . hpu (dg) ; / / d e t e r m i n e c u r r e n t hpu

/ / SCU s o l v e s / adds t a s k s i n DG

/ /

/ / graph change − e l a s t i c i t y based on human power u n i t

double dHPU = HPU . d e l t a (dg , hpu) ;

D e f a u l t D i r e c t e d G r a p h<Node , R e l a t i o n s h i p > changeg raph ;

/ / o b t a i n changes

Set<C l o u d S k i l l> changeCS = HPU . d e t e r m i n e C l o u d S k i l l (changeg raph) ;

i f (dHPU > SCALEOUT LIMIT) {
iSCU . s c a l e o u t (changeCS) ; / / expand iSCU

}
e l s e i f (dHPU < SCALEIN LIMIT) {

iSCU . s c a l e i n (changeCS) ; / / r e d u c e iSCU

/ / . . .

}

Listing 1.4. Example of elasticity for SCU based on task graph change

7. Liptchinsky, V., Khazankin, R., Truong, H.L., Dustdar, S.: Statelets: Coordination of so-

cial collaboration processes. In: 14th International Conference on Coordination Models and

Languages (Coordination 2012), Stockholm, Sweden (2012)

8. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow

design for mechanical turk. In: Proceedings of the 2011 annual conference extended abstracts

on Human factors in computing systems. CHI EA ’11, New York, NY, USA, ACM (2011)

2053–2058

9. Barowy, D.W., Berger, E.D., McGregor, A.: Automan: A platform for integrating human-

based and digital computation. Technical Report UMass CS TR 2011-44, University

of Massachusetts, Amherst (2011) http://www.cs.umass.edu/ emery/pubs/AutoMan-UMass-

CS-TR2011-44.pdf.

10. Baird, H.S., Popat, K.: Human interactive proofs and document image analysis. In: Proceed-

ings of the 5th International Workshop on Document Analysis Systems V. DAS ’02, London,

UK, Springer-Verlag (2002) 507–518

11. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins.

Proc. VLDB Endow. 5 (2011) 13–24

12. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Computing 15(3)

(2011) 64–69

13. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable cloud services using tosca. IEEE

Internet Computing 16(3) (2012) 80–85

14. Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to track

sentiment in online media. In: Proceeding of the 2010 conference on ECAI 2010: 19th Euro-

pean Conference on Artificial Intelligence, Amsterdam, The Netherlands, The Netherlands,

IOS Press (2010) 145–150

15. : Amazon mechanical turk (2011) Last access: 27 Nov 2011.

