
Elastic High Performance Applications – A Composition Framework

Tran Vu Pham
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

t.v.pham@cse.hcmut.edu.vn

Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

Abstract—With diverse and rich offerings from cloud com-
puting providers in the open cloud market, scientists have
great opportunities to design and conduct complex appli-
cations by utilizing and combining computational resources,
software components and data sources in elastic manners.
While existing techniques focus mainly on resource elasticity
in single cloud infrastructure, scientists expect to design their
applications being elastic in multiple dimensions to ensure
that they applications can operate on multiple clouds with
minimum software engineering effort. In this paper we will
focus on providing techniques for scientists to compose elastic
high performance applications by utilizing traditional software
components, user-provided components and cloud services. We
characterize elastic compositions via their resource, quality,
cost, available time and usage right elasticity, thus enabling
scientists to evaluate and decide how to develop, deploy and
control the compositions to match their elastic needs. To
illustrate our approach, we will present several real-world
application compositions for multi-cloud environments.

I. INTRODUCTION

Given complex computational models, scientists need to
gather and assembly computational resources and software
components to model and execute them. In conventional
high performance computing (HPC) environments, typi-
cally scientists can (i) select, buy and deploy existing
(licensed)software applications, and (ii) develop, select and
buy software components and build customized applications
by combining existing self-developed and free/bought soft-
ware components.

With the emerging cloud computing paradigm, in addition
to the above methods, scientists can also subscribe to cloud
services (i.e. Software-as-a-Service (SaaS), Infrastructure-
as-a-Service (IaaS)) or lease different components, such
as applications, middleware, operating systems, and hard-
ware infrastructures, and then compose them together with
bought, free or owned components to meet their particular
needs. Depending on different factors, with the same ap-
plication, some scientists may want to be delivered at the
very good quality in a very short time, while others may
prefer to use it with a minimal cost, regardless of service
quality and time. In short, requirements from scientists are

The work mentioned in this paper is partially funded by TRIG Program
of Vietnam National University - Ho Chi Minh City.

elastic in different dimensions, including resource, quality,
cost, available time and usage rights.

Currently, efforts for HPC application development have
been devoted for moving existing applications onto clouds.
However, for scientists, who do not have dedicated systems,
support for application composition process to meet their
requirements is crucial: applications should be utilized what-
ever exist in traditional software components, cloud services
as well as user-provided components, and should be exe-
cuted in suitable, possible cross-provider, private computing
and public cloud systems. However, it is challenging to re-
alize this for the HPC domain in which complex application
compositions are typically done manual by scientists and
various market factors, such as software cost and licensing,
are not well examined.

In this paper, we introduce a framework for compos-
ing high performance applications from existing hardware
and software components and available services in cloud
environments to meet the various requirements from sci-
entists. In addition to functional constraints, the composi-
tion framework will also take into account different elastic
factors in order to flexibly meet scientists’ demands. The
composed applications can be deployed and executed in
clouds. They can be used for modeling internal structure
of applications so that we can make decision on which
software components should be developed, bought or rented
in order to extend/move existing applications into multi-
cloud environments. We refer to these newly composed and
deployed applications as elastic high performance applica-
tions (eHPAs), which are characterized by multi-elasticity
dimensions, including resource, cost, quality, available time
and usage rights. In order to achieve this objective, the
framework addresses two important issues: (i) modeling
various components that exist in HPC cloud computing
environments and their elastic properties. (ii) composing the
various available components into eHPAs that satisfy elastic
user requirements.

The rest of this paper is organized as follows. Section
II presents the background, motivation and related work.
In Section III we conceptualize our elastic components and
eHPA models. We describe our prototype in Section IV and
experiment in Section V. Section VI concludes the paper
and outlines our future work.

II. MOTIVATION AND RELATED WORK

A. Motivation

Cloud computing opens up many different ways for the
users to access HPC capabilities. Various stakeholders are
involved in a HPC cloud market environment. Infrastruc-
ture Providers (e.g. Amazon EC2) provide computational
resources (RAM, CPU cycles, storage, networks, etc.) in
form of IaaS and computational platforms as Platform-
as-a-Service (PaaS). Software Providers can contribute to
the environment software components in binary/source code
formats or in form of SaaS. Service Vendors can utilize
available resources (e.g. code, software, SaaS, PaaS and
IaaS) on the environment, compose them and deliver the
composed functionalities as SaaSs. End Users, in addition to
consuming the products provided by other stakeholders, can
also provide their own code/prototypes to the environment.
Ideally, in HPC cloud environments, End Users should be
able to select various components, e.g. HPC programs,
libraries, operating systems, virtual machine images, Web
Services, SaaS, PaaS and IaaS, and compose them together,
deploy and run on cloud infrastructures to achieve the
desired HPC capability.

With the offerings in the HPC cloud market, scientists –
End Users in our work – have great opportunities to scale
in/out their complex experiments using resources available in
HPC cloud environments. As common in scientific research,
the scientists may find and compose different components
for their applications, and, if needed, to develop missing
components for the applications. Then, they can deploy the
application package on on-premise or public cloud com-
puting infrastructures. Based on the deployment, different
experiments could be defined and executed.

Composing such complex applications in clouds needs
to take into account the scientists’ different elastic require-
ments. They need some specific functions to be performed at
certain quality. However, they are constrained elastically by
time and money, and hence the HPC resources that they can
access. Within these constraints, the composed applications
should be able to scale in and out across different executing
environments (e.g. on-premise and public clouds) as smooth
as possible, so that scientists can take the most advantages
from the resources they have access to, while minimizing ef-
forts required for rebuilding or developing new components.
To this end, we need:

• to solve complex system dependencies and conflicts
for HPC software components in multiple execution
environments as applications do not follow a single
execution environment or programming model.

• to characterize elastic properties and to determine and
associate these properties with applications explicitly in
order to support the evaluation and control of elasticity
of applications across multiple execution environments.

Resolving system dependencies and conflicts in HPC

is challenging. It gets more complicated when there is a
mixture of different software components and cloud services
involved. Solutions for resolving software dependency and
compatibility have been implemented in traditional software
management systems (e.g. Linux yum and RPM), but they
only deal with the software dependencies and compatibilities
centered around a fixed operating system. They cannot
be applied to the above scenario, where the focus is on
applications. Dependency resolutions also exist in workflow
composition systems, but they are often limited to the
matching of service inputs and outputs. In HPC, an eHPA
may span on multiple computer systems (i.e. MPI programs).
Therefore, the dependencies and conflicts exist between
not only components within a computing system but also
components of different systems. Secondly, with respect to
elasticity properties, current existing solutions on workflow
or service compositions deal mainly with resources. Some
solutions take into account of cost and quality of services.
However, these properties are considered as fixed (non-
elastic) properties. In our case, we will deal with elasticity in
many different dimensions, including cost, quality, resource,
available time and rights.

B. Related Work

Our work focuses on building eHPAs atop clouds, by
composing available hardware, software and services avail-
able in cloud environments. Although similar, but it is not
a workflow-based composition. It is also different from
building and resolving software dependencies in traditional
HPC applications, where everything happens in a specific
environment. Therefore, existing scientific workflow com-
position techniques [1], [2], high performance application
component models [3], or wrapping scientific applications
for cloud environments [4] are not adequate.

To some extent, the software composition model for
eHPAs introduced in this paper is similar to that of software
product lines [5]. However, unlike software product lines,
in which software components are owned by the organi-
zation/people whole run the product lines, in our models,
software components come from many different sources in-
cluding cloud services. This leads to several new constraints.
Relating to software product line engineering (SPLE), non-
functional aspects (performance, licensing etc.) are also
considered. However, one of the major limited features is
that they do not support elasticity of software components
in the composition processes. Typically, SPLE supports only
a set of fixed, known software in-house components. Thus,
it also does not deal with issues related to licensing and
multiple cost models. In Web services composition, several
non-functional approaches exist but they focus only on the
service model.

Scientific workflows and service composition support the
composition of different software and services [1], [2],
[6]. In existing workflow systems, they mostly support

the composition of applications and services which have
been deployed with clear functionality. Typically, workflows
assume that applications and services to be composed are
readily. In our work, we build different types of software
components considering their system dependencies and con-
flicts. Furthermore, we consider software components at
different levels, such as applications, libraries, middleware,
and operating systems. Workflow composition techniques do
not consider software at multiple levels of abstractions.

Techniques to model variability in existing tools [7] do
not consider rich elastic properties in eHPAs, for exam-
ple, cost, quality, available time and usage right. Several
tools have been proposed for building and deploying multi-
tenant applications [8] in business domain and they also
consider different dynamic properties. However, eHPAs are
much more complex than these multi-tenant applications
with respect to software component types and execution
environments. In our work, we focus on composing and
modeling eHPAs which can be passed to other tools to build
and move eHPAs to clouds. Therefore, existing package
tools [9] and multi-cloud execution frameworks [10] are
complementary to our work.

III. ELASTIC HIGH PERFORMANCE APPLICATION
MODELS

A. eHPA Component Model

System Entity

Software
Hardware

Application Library Operating
System

Virtual Machine
Image

HPC Hardware
Infrastructure

HPC System
Platform 0..1 0..n

consists of
0..10..1

 consists of

0..1 1

consists of

0..1 0..n
consists of

0..10..n
consists of

0..n

0..1

depends on

0..n

0..1

is compatible with

License

Free Software
License

Proprietary
Software License

Open Source
Software License

Service
Entity

IaaS

PaaS

SaaS

0..1

0..n

provides

0..1

0..n

provides

0..n

0..1

is governed by

0..1

0..n
provides

Figure 1. eHPA components and their inter-relationships

Figure 1 conceptualizes various HPC components and
their inter-relationships, with respect to the HPC open mar-
ket discussed in Section II. Two groups of entities exist in
the model: system and service entities. System entities are
those that reside in computer systems. In particular, System
entities are grouped into the following categories:

• Software: refers to all software components. It is further
classified into Application Software, Middleware and
System Software. Application software delivers directly
some capability to End Users. such as visualization.
Middleware refers to third party libraries or shared

APIs. System Software is used to describe operating
systems and system software such as drivers.

• Hardware: is used to describe computing hardware in
general, such as type of CPU and storage.

• Software Platform: refers to platforms on which soft-
ware applications can run. A platform generally con-
sists of an operating system and some common mid-
dleware in an integrated view. The entire software
platform may be packed in a virtual machine image.
It is typical in cloud computing environment that users
may request for a virtual machine, then load a desired
virtual machine image to set up the software platform.

• Hardware Infrastructure: refers to complete sets of
computer hardware such as CPU, memory, storage
and network. Hardware infrastructures may be virtually
provided in form of IaaS.

• HPC Compute Node: for describing a compute node in
an HPC systems, e.g. a node in a cluster.

• HPC System Platform: is used to describe a complete
HPC systems, such as a cluster. An HPC system
platform consists a software platform and hardware
infrastructure. If the HPC system is a cluster, it may
consists of many HPC compute nodes.

We use service entities to represent services available in
clouds, such as IaaS, SaaS and PaaS. As in cloud computing
service model, system entities can be provided via service
entities.

Components in the above-mentioned categories can de-
pend on or conflict with each others. Furthermore, compo-
nents having similar attributes can be grouped into a Type,
which is useful in case where a component depends on a type
of component instead of any specific component of that type.
In cloud-based HPC, an eHPA will consist of entities that
will be executed in cloud-based HPC System Platforms.

B. Component Elasticity

In addition to the functional apsects, such as dependency
and conflict, each component is also characterized by a set
of non-functional properties including resoures, cost, quality,
available time and usage rights. Similar to user requirements,
these properties are also elastic. For example, in terms of
resource, an parallel application may only function properly
within a specific range of processes. Its cost may also be
elastic according to the actual number of processes it uses.
Table I shows a summary of these elastic properties and
respective requirements from End User/Service Vendor and
Software/Infrastructure Providers.

Due to elastic properties, discovering and matching user
requests to components eHPAs during composition process
are not only performed on the functional properties but also
on elastic properties of the request and components.

Properties Description End
User/Service
Vendor

Software /In-
frastructure
Provider

Functional properties
Functions the tasks of a software application needs + +
Dependencies other components that the component depends on in order to function. A dependeny

may exist within a computer system (e.g. applications depend on operating systems,
and hardware). Dependencies may also exist between components of different computer
systems (e.g. a web application on one server may need a database from another
services.)

+

Conflicts the set of components that a component cannot co-exist with in the same system. +
Non-functional properties

Resource the amount of resources needed for the component to function. For example, an MPI
application may require a minimum numbers of processes in order to properly function.
It can only also effective up to a maximum number of processes.

+

Cost the amount of money, or equivalent credit, for the needed functions + +
Quality the quality expected from or promised for the application and related services + +
Time the period in which the application and related services can be used + +
Rights of use the rights associated with that the applications and results + +

Table I
PROPERTIES SPECIFIED BY END USER/SERVICE VENDOR AND SOFTWARE/INFRASTRUCTURE PROVIDER

C. Formal Models for Elastic Components and eHPA

This section introduces a formal model of elastic compo-
nents and eHPA. The current model only takes into account
the following properties: functional capabilities, internal and
external dependencies, conflicts, resources, cost, quality,
available time and usage rights.

1) eComponent: Let ec be an elastic component, ec can
be denoted as:

ec = {Fp, Ep}

where, Fp and Ep are functional and elastic property groups
of the component ec, and:

Fp = {F,Di, Dx, C}

where, F , Di, Dx, and C are functions, internal dependen-
cies, external dependencies and conflicts associated with the
component ec respectively.

Ep = {Re, Ce, Qe, Te, Rte}

where, Re, Ce, Qe, Te, and Rte represent elastic re-
sources, cost, quality, available time and usage rights, re-
spectively.

(Virtual) Machine
Single instance

(Virtual) Machine
Multiple instances

(Virtual) Machine
Single instance

eC1

eC3 eC4

eC2

eC4

eC5

eC6
eC7

eC9

eC8i

i

i

x

i
i

i x
i

i

i

Figure 2. An illustrating example of eHPA with (i) internal and (x) external
dependencies

2) eHPA: An eHPA is a collection of elastic components,
linked by their dependencies and associated with a set of
elastic properties. Formally, an eHPA can be represented as a

graph, as illustrated in Figure 2. Each node of the graph is an
elastic component. Each edge of the graph is a dependency,
either internal or external. Interal dependencies are internal
within a computer system. For example, an MPI applica-
tion needs MPI runtime environment. Components linked
by internal dependencies are tightly coupled, and reside
together within a machine, as shown in the figure. External
dependencies exist in form of data or control dependencies.
Components linked by external dependencies are loosely
coupled, and reside on different machines. As discussed, an
eHPA can span on multiple computer systems. An eHPA
also has its own set of elastic properties that are aggregated
from the properties of its constituting components. Let ehpa
be an eHPA, then:

ehpa = {eC,D,Ep}

where, eC, D and Ep is a set of constituting elastic com-
ponents, dependencies and elastic properties of the eHPA,
respectively. The graph derived from the set of components
eC and the set of dependencies D. We denote a dependency
d indicating that component eci depends on component ecj
as follows:

d = eci → ecj

We use di = eci
i−→ ecj and dx = eci

x−→ ecj to indicate
internal and external dependencies, respectively.

D. Elastic Measurements and Aggregation

1) Resource: For the sake of simplicity, resource is mea-
sured by the number of processes that a component needs
in order to properly perform its functions. If the component
can be elastic in terms of resources, Re will be represented
by a range: Re[m..n], where 0 < m < n. If two different
components, ec1 and ec2 have different resource elasticity,
such as:

ec1(Re) = [m1..n1] and ec2(Re) = [m2..n2]

then, depending on the types of dependencies that link the
two components, the aggregated resource elasticity ec(Re)
will be decided accordingly. If the two components are
linked entirely by internal dependencies (they will be to-
gether on a single machine), the aggregated resource elas-
ticity will be:

ec(Re) = [max(m1,m2)..min(n1, n2)]

The aggregated result will not be valid if max(m1,m2) >
min(n1, n2). It means that the two components should not
be aggregated. In practice, resources can be over or under
provisioned, and the system can still work. However, in
such a case, it cannot be guaranteed that their functions and
quality will be performed as expected.

If the two components are linked by an external depen-
dency, we calculate the aggregated resource elasticity as:

ec(Re) = [(m1 +m2)..(n1 + n2)]

When an eHPA span on multiple systems, resource elasticity
aggregation should be computed for components on each
system first. Then, the aggregation between systems will be
calculated later.

2) Cost: Elasticity of cost of a component is measured
by a positive range of real numbers, and represented as
Ce[x..y], where 0 < x < y. The aggregated cost of the
two components ec1 and ec2 is calculated as below:

ec1(Ce) = [x1..y1] and ec2(Ce) = [x2..y2]

then,
ec(Ce) = [(x1 + x2)..(y1 + y2)]

3) Quality: Quality can be understood as performance,
reliability, security, quality of output, etc. For simplicity,
enumerated positive integer values from 1 to 5 are used to
describe the degree of quality a component can deliver. One
(1) is for the lowest and five (5) is for the highest quality. The
elasticity of quality is also represented by a range Qe[m..n],
where 1 <= m <= n <= 5. The aggregated quality of two
components are calculated as:

ec(Qe) = [min(m1,m2)..min(n1, n2)]

4) Available Time: Available time is the period that the
component is available for use. Elasticity of available time is
measured by a positive range from zero, and represented as
Te[t1..t2], where 0 <= t1 <= t2. This expression means
that the component is available for use in between time
t1 and t2. Aggregated available time of two components
ec1Te

[t11..t12] and ec2Te
[t21..t22] is calculated as:

ec(Te) = [max(t11, t21)..min(t12, t22)]

The aggregated available time will not be valid if
max(t11, t21) > min(t12, t22).

5) Right: Rights associated with a component (e.g. spec-
ified as license terms) are a set of terms, represented as
ec(Rte). Aggregated rights of the two components in the
intersection of the two sets.

ec(Rte) = ec1(Rte) ∩ ec2(Rte)

The aggregated value is invalid if the two sets of rights do
not overlap each other.

IV. PROTOTYPE IMPLEMENTATION

A. Elastic Component Information Model

To realize the conceptual model described in Section III,
we extend the ontology used in [11]. The ontology is
extended with object and data properties to model elastic
properties of components. In order to populate instance
information for the ontology, we gather information from
different cloud providers.

B. eHPA Composition Tool

We have developed a Composition Tool for composing
eHPAs, which accepts user requests consisting of functional
information, resource, cost, quality, available time and rights.
The core of this tool is a Composer, which consists of dif-
ferent plug-able modules for different processing purposes.
Currently, four different modules have been implemented,
including Dependency and Conflict Solver, Candidate eHPA
Assembler, Elasticity Calculator and Elasticity Filter for
resolving dependencies, analyzing elastic requirements of
the users and properties of eHPAs.

C. Composition Algorithms

Let UR represent a user request, then, UR = {P,Ep}
where P is the set of requested partition, and Ep is the set
of elasticity requirements. Each requested partition pi ∈ P
contains a set of initial requested components eC. Let
G{eC,D} be the dependency graph extracted from the
ontology, where each node eci ∈ eC is a component and
each edge di ∈ D is a dependency that exists between two
component. The graph G may contains disconnected sub-
graphs. The following funtions are defined:

• resolveDependencies(ec): resolves dependencies of
component ec and returns a set of components that ec
depends.

• checkConflict(Set<eC>, ec): checks for conflict be-
tween component ec and a set of existing components
eC; returns true if there is a conflict, false otherwise.

• findCandidatePartition(Set<eC>): finds candidate par-
titions that contains the initial set of components eC;
returns a set of candidate partitions.

• formCandidateeHPA(Set<Set<P>>): forms candidate
eHPAs from candidate set of partitions P ; returns a set
of candidate eHPAs.

• checkERequirements(Set<eHPA>,Ep): checks for elas-
ticity requirements on candidate set of eHPAs against

the set of elastic properties Ep; returns a set of eHPAs
that satisfy the requirements.

Algorithm 1 eHPA composition algorithm
1: Initialize set of partition collection pCol
2: for all rpi ∈ UR(P) do
3: Initialize set of candidate partition cPart
4: cPart = findCandidatePartition(rpi(eC))
5: Add cPart to pCol
6: end for
7: Initialize set of candidate eHPA ceHPA
8: ceHPA = formCandidateeHPA(pCol)
9: Initialize set of qualified eHPA qeHPA

10: qeHPA = checkERequirements(ceHPA, UR(Ep))
11: return qeHPA as the result of assembling process

The overall composition algorithm is designed as shown
in Algorithm 1. The most significant part of Algorithm 1 is
the function findCandidatePartition. This function traverses
the dependency graph G{eC,D} to looks for all possible
partitions from an initial set of requested components. The
process used by this function is described in Algorithm 2.

Algorithm 2 Find candidate partition from a given set of
requested components eC

1: Initialize set of candidate partition cP
2: while The graph G{eC,D} is not exhaustively searched

do
3: Initialize set of temporarily components tempComp
4: for all eci ∈ eC do
5: tempdep = resolveDependencies(eci)
6: for all ecj ∈ tempdep do
7: if Not checkConflict(tempComp, ecj) then
8: Add ecj to tempComp
9: else

10: Clear tempComp
11: Break for loop
12: end if
13: end for
14: end for
15: if tempComp is not empty then
16: Form a candidate partition p from tempComp
17: Add p to cP
18: end if
19: end while
20: Return the set of candidate partition cP

V. EXPERIMENTS

A. Modeling Star3D

In this section, we illustrate an modeling example for
Star3D program, which is developed for solving Euler
equations in the cases of 3D flows. It is an MPI parallel

program, written in Fortran. To use with Star3D, a CAD
model needs to be pre-processed to generate a mesh for
computation. Many different tools can be used for generating
meshes, ranging from commercial licensed to free and open
source software. The data generated by Star3D is then post-
processed by analysis and/or visualization tools. Similar to
pre-processing, there are many different tools can be used
for post-processing.

1) Modeling Dependencies: Star3D component can only
function properly if the system that it is installed and con-
figured has a compatible Fortran 90 compiler, MPI runtime.
These dependencies are modeled as internal dependencies,
as they are mandatory and reside internally within the same
system as Star3D. Star3D application takes output from
Gridgen-C as its input. Its output is then further processed
by ParaView for visualization. To complete an experimental
process with Star3D, we can say that Star3D depends on
Gridgen-C and ParaView. However, these dependencies are
data/control based, and not mandatory for Star3D. Therefore,
these dependencies are modeled as external dependencies.
Other components such as Open MPI, ParaView, Gridgen-
C or Fortran 90 also have their own set of dependencies.
Each set of dependencies is a directed and connected graph.
Linking many sets of dependencies of different components
will result in a big dependency graph. Using this dependency
graph, we can identify necessary components for running an
application.

Dependency relationship can also exist between a compo-
nent and an abstract type, which is created to represent com-
ponents of with same functionality. For example, LinuxOS
Type can be created to represent all Linux family operating
systems. As Star3D can be used with any operating system
of type ‘Linux OS’, we can model that Star3D version 1.0
is dependent on LinuxOS Type, as in Figure 3.

Figure 3. Visualizing Star3D and its relationships using OntoGraf

2) Modeling Elastic Properties: The current version of
Star3D is programmed to work in parallel up to 32 processes.

It is also able to work with single process as a sequential
program. Hence, in resource dimension, the current version
of Star3D can scale from one to 32 processes. The authors
develop the software for their own use and are also willing
to share its current version with others in their community
for academic purpose, evaluation and student usage free of
charge, for an unlimited time. Therefore, in terms of usage
right, the users can use the software for these two purposes.
The cost of the software is free, and the available time
is unlimited. Quality of a software component is reflected
in a number features such as performance, correctness,
reliability, support, etc. In the current model, we use discrete
integer values from 1 to 5 to represent the degree of quality
associated the software, from the lowest to the highest. The
current version of Star3D, we subjectively rank it from 2 to
4, inclusively.

B. Star3D-based eHPAs

Let us examine the effect of using elasticity properties
in the composition process. Supposed that we want to run
Star3D on Amazon EC2 cloud with Amazon Linux machine
image, and that Gridgen-C application is chosen as a tool
for mesh generation to produce input for Star3D. Gridgen-
C will run on a separate system from Star3D-based eHPA.
To support the composition process, we have created 75
components in the knowledge base, using information from
the Internet.

There are 12 different combinations of available compo-
nents that satisfy the request. Elastic properties of resulted
eHPAs are shown in Table II. Four groups of solutions
have similar values: {2,5},{8,11}, {0,3,6,9} and {1,4,7,10}.
Although all solutions of a group have the same elastic
properties, the sets of components that make up the solutions
are different. The most noticeable difference between these
groups is in cost. The cost of Star3D program is free
for academic, student and evaluation use. However, to run
Star3D, we also need an MPI runtime, Fortran compiler and
a Amazon cloud platform. In our experiment, the cost of
running Star3D includes basically the cost of using Amazon
EC2 cloud (10 US cent/core/hour, allocation size varied
from 20 to 1000 cores), and the cost of Portland Fortran
compilers (if selected). Solution 2, 5, 8 and 11 use a free
version of Fortran, as shown in Figure 4. Therefore, the cost
is only made up by using Amazon EC2. Other solutions
use different parallel versions of Portland Fortran (for 64
and 256 processes), as in Figure 5. Therefore, the costs are
varied. Other elastic properties such as resource, quality,
available time, and right are constrained by properties of
Star3D and Gridgen-C. We use the value of 365 to denote
unlimited available in one year time frame.

C. Discussions

In this paper, we address the issues of elasticity of applica-
tions when running in cloud computing environments. Five

different properties: resource, cost, quality, right and time
are proved to be elastic, and should be addressed during
the preparation for deploying and running application on
clouds. In this paper, for demonstration purpose, we model
these attributes in their most simplest forms. In reality, each
elastic property can be further modeled into sub-dimensions.
For example, instead of using single values for max and min
cost, cost can be further analyzed into detail, such as using
cost units (per core, per hour, per license, etc.). In addition,
these elastic properties are not totally independent from each
other. Cost is influenced by license type, numbers of current
processes used, available time, etc. During the composition
process, values of elastic properties of different components
are aggregated for the resulted eHPA, and then re-applied
back to all related components. The change of one elastic
property (e.g. license) will influence other properties (e.g.
cost). Although we are aware of these issues, they are not
addressed in the current version of the prototype.

Apart from automatic finding different combination of
software components for packing and running in clouds,
the framework can also be used as an application modeling
tools for cloud. By visualizing different required components
of an application and their inter-relationships, the users can
realize which components can be benefit from clouds and
which one should be run on their own private platforms.
They can then further customize the inputs to the composi-
tion processes to find better solutions.

Figure 4. An eHPA solution using free a Fortran compiler (solution 8)

VI. CONCLUSIONS AND FUTURE WORK

Supporting scientists to move and design their complex
high performance applications for multiple cloud environ-
ments requires us not only to deal with complex soft-
ware dependencies and conflicts but also to determine and
characterize elastic properties of these applications. In this
paper, we introduce techniques to build eHPA (elastic high
performance applications) and to characterize them with
multi-elasticity dimensions, covering resource, quality, cost,
available time and usage rights. By utilizing these elastic
properties, we can determine to which extend an eHPA in
multiple clouds is elastic. Based on that, we can decide not

Solution Cost Resource Quality Right Time
No Min Max Min Max Min Max Rights Min Max
2 2 100 21 33 2 4 ForAcademicOnly; 0 365
5 2 100 21 33 2 4 ForAcademicOnly; 0 365
8 2 100 21 33 2 4 ForAcademicOnly;ForEvaluation;ForStudent; 0 365
11 2 100 21 33 2 4 ForAcademicOnly;ForEvaluation;ForStudent; 0 365
0 2901 10249 21 33 2 4 ForAcademicOnly; 0 365
3 2901 10249 21 33 2 4 ForAcademicOnly; 0 365
6 2901 10249 21 33 2 4 ForAcademicOnly; 0 365
9 2901 10249 21 33 2 4 ForAcademicOnly; 0 365
1 4701 8899 21 33 2 4 ForAcademicOnly; 0 365
4 4701 8899 21 33 2 4 ForAcademicOnly; 0 365
7 4701 8899 21 33 2 4 ForAcademicOnly; 0 365
10 4701 8899 21 33 2 4 ForAcademicOnly; 0 365

Table II
EXPERIMENT RESULTS

Figure 5. An eHPA solution using Portland Fortran compiler, licensed for
use up to 256 MPI processes (solution 4).

only which software components should be used but also
when to use which cloud environments.

Our future work focuses on enriching our information
model to support composition and modeling. Furthermore,
we are currently developing and integrating our techniques
to runtime packing and deploying eHPAs.

REFERENCES

[1] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim,
“Wings for pegasus: Creating large-scale scientific applica-
tions using semantic representations of computational work-
flows,” in AAAI. AAAI Press, 2007, pp. 1767–1774.

[2] S. Bowers, B. Ludascher, A. H. H. Ngu, and T. Critchlow,
“Enabling scientificworkflow reuse through structured
composition of dataflow and control-flow,” in Proceedings
of the 22nd International Conference on Data Engineering
Workshops, ser. ICDEW ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 70–. [Online]. Available:
http://dx.doi.org/10.1109/ICDEW.2006.55

[3] R. Armstrong, G. Kumfert, L. C. McInnes, S. Parker,
B. Allan, M. Sottile, T. Epperly, and T. Dahlgren,
“The cca component model for high-performance scientific
computing,” Concurr. Comput. : Pract. Exper., vol. 18,
pp. 215–229, February 2006. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1107430.1107433

[4] Y. Simmhan, C. van Ingen, G. Subramanian, and J. Li,
“Bridging the gap between desktop and the cloud for
escience applications,” in Proceedings of the 2010 IEEE
3rd International Conference on Cloud Computing, ser.
CLOUD ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 474–481. [Online]. Available: http:
//dx.doi.org/10.1109/CLOUD.2010.72

[5] J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl,
“Guest editors’ introduction: Initiating software product
lines,” IEEE Software, vol. 19, no. 4, pp. 24–27, 2002.

[6] J. Rao and X. Su, “A survey of automated web service
composition methods,” in Semantic Web Services and Web
Process Composition, ser. Lecture Notes in Computer
Science, J. Cardoso and A. Sheth, Eds. Springer Berlin /
Heidelberg, 2005, vol. 3387, pp. 43–54. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30581-1 5

[7] R. Wolfinger, S. Reiter, D. Dhungana, P. Grünbacher, and
H. Prähofer, “Supporting runtime system adaptation through
product line engineering and plug-in techniques,” in ICCBSS.
IEEE Computer Society, 2008, pp. 21–30.

[8] R. Mietzner, T. Unger, and F. Leymann, “Cafe: A generic
configurable customizable composite cloud application frame-
work,” in OTM Conferences (1), ser. Lecture Notes in Com-
puter Science, R. Meersman, T. S. Dillon, and P. Herrero,
Eds., vol. 5870. Springer, 2009, pp. 357–364.

[9] C. Bunch, N. Chohan, C. Krintz, and K. Shams, “Neptune:
a domain specific language for deploying hpc software on
cloud platforms,” in Proceedings of the 2nd international
workshop on Scientific cloud computing, ser. ScienceCloud
’11. New York, NY, USA: ACM, 2011, pp. 59–68. [Online].
Available: http://doi.acm.org/10.1145/1996109.1996120

[10] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance
cloud computing: A view of scientific applications,” in ISPAN.
IEEE Computer Society, 2009, pp. 4–16.

[11] T. V. Pham, H. Jamjoom, K. Jordan, and Z.-Y. Shae, “A
service composition framework for market-oriented high per-
formance computing cloud,” in ACM HPDC 2010, Chicago,
USA, June 2010.

