Evaluating Contract Compatibility for Service Composition in the SeCO₂ Framework

Marco Comerio¹, Hong-Linh Truong², Flavio De Paoli¹, and Schahram Dustdar²

¹ ITIS lab - Innovative Technologies for Information & Services Laboratory
Università di Milano-Bicocca
{comerio,depaoli}@disco.unimib.it

² Distributed Systems Group - Vienna University of Technology {truong,dustdar}@infosys.tuwien.ac.at

C - ServiceWave 2009

ICSOC-ServiceWave 2009 Stockholm, 23-27 November 2009

Contents

- Motivation and Background
- The SeCO₂ Framework
- Modeling and Mapping Service Contracts
- Evaluating Service Contract Compatibility
- Conclusions and Future Works

Motivation and Background

- Besides a WSDL document stating the offered functionalities, a Web Service can be characterized by a service contract.
- A service contract.
 - establishes the understanding between a service consumer and a service provider;
 - specifies conditions on NFPs such as:
 - Quality of Service (e.g., response time);
 - Business terms (e.g., service price);
 - Context terms (e.g., service coverage);
 - License terms (e.g., limitation of liability).
- No/several standard languages for service contract descriptions
 - Several proposals (e.g., WSLA[Ludwig03], WSOL[Tosic05], ODRL-S [Gangadharan07], WS-Policy[wspolicy06])

- The SaaS model allows service providers to compose different services to provide converged services.
 - Services are potentially characterizing by different service contracts specified by different languages.
- The emerging DaaS (Data as a Service) offers different views on service contracts (service APIs versus data)
- The service compositions must not include conflicting service contracts.

- •The heterogeneity of languages specifying contracts
- The compatibility among services in a composition
- •The compatibility between a (composite) service and a consumer's specific-conditions

Past research...

- has neglected contracts of composite services when performing service composition
 - by considering mainly functional parameters
 - by assuming that contracts are described by a single language.
- has not focused on tools and algorithms dealing with contract compatibility evaluation when combining different services from different providers.
 - mainly contract negotiation between consumer and service in a point-to-point manner.

- Some works (e.g., [Zeng03]) address QoS-based compatibility for control flows of service compositions.
- Currently, no techniques to check contract compatibility for data (i.e., the input/output of services), whose contract terms are not always the same to that of the service operations.
 - An example is Google Maps: a free-for-charge service but the copyrighted data (i.e., the maps)
 - ✓ There is still a big debate on data licensing but you can sell your data, e.g., see http://infochimps.org/
- QoS, Business, License and Context terms differently influence data/control flows of the service composition.

	control flow	data flow	independent
Quality of Service (QoS)	X		
Service Context			X
Business	X	X	
License	X	X	

Table 1. Data and control flows in contract compatibility evaluation

The SeCO₂ Framework

- SeCO₂ deals with service contract compatibility by considering
 - ✓ two aspects service APIs and provided data concerns;
 - ✓ a rich set of contract properties (e.g., QoS, Data quality, Business, License and Context terms);
 - several service contract specification languages (e.g., WSLA, WSOL, ODRL-S) together.
- SeCO₂ supports
 - semantic service contract descriptions (namely, SeCO policies);
 - service contract compatibility evaluation and recommendation;
 - compatibility based on both data and control flows of the service composition;
 - ✓ an extensible reference ontology (namely, SeCO reference ontology) and a Contract term knowledge-base;
 - a rich set of mapping and compatibility evaluation rules.

The SeCO₂ Framework

The main part of this paper deals with modeling and mapping service contracts and contract compatibility evaluation among services in a composition

Modeling and Mapping Service Contracts

- Problem: Heterogeneity in service contract specifications.
- Three types of languages for the specification of service contract properties:
 - ✓ Type A (e.g., ODRL-S): includes languages allowing the specification of predefined properties.
 - ✓ **Type B** (e.g., WSLA): includes *languages allowing the* specification of user-defined properties.
 - ✓ **Type C** (e.g., WSOL): includes *languages allowing the* specification of properties defined in user ontologies.
- Ontology alignment tools cannot be used to fully automate the mapping between different specifications.

Modeling and Mapping Service Contracts

- Solution: SeCO₂ makes service contracts comparable through the wrapping to specifications (i.e., SeCO Policies) built on a common meta-model
 - without loss of information;
 - ✓ by means of the SeCO Reference Ontology and predefined mapping rules;
 - ✓ supporting the use of lexical databases (e.g., WordNet) and ontology alignment tools (e.g., H-match).

SeCO Reference Ontology and SeCO Policies

- SeCO Reference Ontology and SeCO Policies
 - ✓ built on the Policy Centered Meta-model (PCM) [DePaoli08].
- SeCO Reference Ontology
 - built applying general modeling rules to profile models;
 - defines expressive descriptions of contract properties.
- ❖ SeCO Policies
 - represent service contracts defined as clusters of contract property istances.

Mapping Service Contracts

- A proper technique for each type of language
 - ✓ Specifications in **Type A** are wrapped applying fixed mapping rules.
 - Specifications in **Type B** and **Type C** can require interactions with service providers to handle the absence of knowledge (i.e., mapping rules).
 - The definition of new mapping rules is supported by lexical databases and ontology alignment tools.

Evaluating Service Contract Compatibility: activities and flows

Evaluating Service Contract Compatibility

- Problem: evaluation of contract compatibility in a service composition.
- Input:
 - service composition description in terms of data and control flows;
 - contracts of the services involved in the composition.
- Output:
 - compatible/incompatible service contract properties.
- The compatibility is checked considering
 - semantic relations among values associated with qualitative contract properties;
 - constraint operators used to define quantitative contract properties;
 - data and control flows of the service composition.

Compatibility Evaluation Rules

Property	Туре	Data Flow	Control Flow	Rule
Service Coverage	Service Context			Partnership
Pricing	Business	Х		Compatible value list
Payment (for data usage)	Business	Х		Binary, Ternary
Payment (for service usage)	Business		Х	Binary, Ternary
Scalability	QoS		X	Binary, Ternary
Permissions	License		Х	Subsumption
Data Ownership	License	Х		Compatible value list

Evaluating Service Contract Compatibility

```
Algorithm 1 Compatibility Evaluation
1: for all s_i \in S do
       for all s_i \in S(j \neq i) do
          From s_j \in S(j \neq i) do
\Omega(s_i, s_j) = \phi \text{ where } \Omega(s_i, s_j) \text{ is a set of triples } [p_w, p_z, \lambda(p_w, p_z)]
For all SeCO Policy couples for all p_w \in P(s_i) do
          for all p_w \in P(s_i) do
 4:
 5:
             for all p_z \in P(s_i) do
                 \lambda(p_w, p_z) = \phi, where \lambda(p_w, p_z) is a set of triples [pr_i, pr_j, result]
                 \Upsilon(p_w, p_z) = \phi, where \Upsilon(p_w, p_z) is a set of comparable properties [pr_1, pr_2]
                 \Upsilon(p_w, p_z) = Matching(p_w, p_z)
                                                          Identify comparable SeCO properties
                 for all [pr_1, pr_2] \in \Upsilon(p_w, p_z) do
 9:
10:
                    rule = Extract(pr_1.name) Extract the evaluation rule
                    if pr_1.type = 'CF - inf' then
11:
                       \lambda(p_w, p_z) = \lambda(p_w, p_z) \cup EvalRuleF(rule, pr_1, pr_2, cf_j \in CF(s_i))
12:
13:
                    else
                          pr_1.type =' DF - inf' then

\lambda(p_w, p_z) = \lambda(p_w, p_z) \cup EvalRuleF(rule, pr_1, pr_2, df_j \in DF(s_i))
                                                                                                                Evaluate according
                       if pr_1.type =' DF - inf' then
14:
                                                                                                                to flow influences
                       else
                          \lambda(p_w, p_z) = \lambda(p_w, p_z) \cup EvalRule(rule, pr_1, pr_2)
                       end if
18:
                    end if
19:
                 end for
                 \Omega(s_i, s_j) = \Omega(s_i, s_j) \cup [p_w, p_z, \lambda(p_w, p_z)]
              end for
           end for
        end for
```

25: end for

Purchase Data Analysis Service

Purchase Processing Service (PPS) Merchant Validation Service (MVS) Payment Verification Service (PS) Shipping Evaluation Service (SES) Purchase Validation Service (PVS)

	Data Ownership	Scalability
Request Service	Personal-use	100 tr/min
Yahoo! MVS	Copyrighted	100 tr/min
XWeb PPS	Free-distribution	100 tr/min
Aivea SES	Free-distribution	100 tr/min
WebX PS	Free-distribution	500 tr/min
DOTS PVS	Free-distribution	500 tr/min

Data Ownership :

- a License term stating how the data are protected;
- ✓ influences the data flow of the service composition;
- assumes values characterized by relations of compatibility/incompatibility
 - copyrighted is compatible with personal-use
 - copyrighted is incompatible with free-distribution

Scalability:

- ✓ a QoS term indicating the maximum number of transactions accepted per minute.
- ✓ influences the control flow of the service composition;
- assumes numeric values.

Data Ownership is evaluated exploiting the axiom:

Scalability is evaluated applying the algorithm

```
VIENNA

VIENNA

VIENNA

VIENNA

ON MILLANO

BICOCCA
```

```
Given pr1,pr2
if(([pr1,pr2].equals("seq"))||([pr1,pr2].equals("par"))){
    if(pr2.value<pr1.value)
        result = "INCOMPATIBLE";
    else
        result = "COMPATIBLE"; }</pre>
```


Some open issues

- Human activity/workflow dealing with modeling and mapping service contract specifications
 - define how to interact with service providers when automatic mapping cannot be done.
- The role of the community in the mapping activity
 - reuse of user-defined mapping rules.
- Compatibility Evaluation Rules
 - support the definition of general rules.
 - allow the customization of general rules.
 - manage conflicting rules and rule priority.
 - optimization of the compatibility algorithm.

Conclusions and Future Works

- SaaS and DaaS and cloud computing require a strong support on contract compatibility
 - Deal with multiple languages, focus multiple aspects in particular those related to data (quality, licensing, and governance)
- Our SeCO₂ in this paper
 - proposes some solutions for dealing with multiple languages and service contract compatibility
- Future works
 - Incorporating human activities and community support into contract mapping and sharing
 - Recommending contracts for service composition

Thank you! Questions?

Source codes will be available in sourceforget.net in Spring 2010

References

- Gangadharan07] Gangadharan, G.R., D'Andrea, V., Iannella, R., Weiss, M.: "ODRL Service Licensing Profile (ODRL-S)". In: "Proceedings of the 5th International Workshop for Technical, Economic, and Legal Aspects of Business Models for Virtual Goods". (2007)
- [Ludwig03] Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: "Web Service Level Agreement (WSLA) Language Specification". IBM Coporation (2003)
- [owls03] OWL-S. Semantic Markup for Web Services. Available at: http://www.daml.org/services/owl-s/1.0/owl-s.html, 2003.
- [Tosic05] Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: "Management Applications of the Web Service Offerings Language (WSOL)". Information Systems 30(7) (2005) 564-586.
- [Akkiraiu05] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.- T., Sheth, A., and Verma, K. (2005). Web Service Semantics WSDL-S. W3C Member Submission 7 November 2005. http://www.w3.org/Submission/WSDL-S/.
- [wspolicy06] Ws-Policy. Web Service Policy 1.2 Framework. Available at: http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/, 2006.
- [wsmo05] WSMO. The Web Service Modeling Ontology (WSMO). Final Draft. Available at: http://www.wsmo.org/TR/d2/v1.2/20050413/, 2005.
- [Zeng03] Zeng L., Benatallah B., Dumas M., Kalagnanam J. and Sheng Z.. Quality Driven Web Services Composition, WWW '03, pages 411–421, 2003.
- [Castano05] S. Castano, A. Ferrara and S. Montanelli. Matching Ontologies in Open Networked Systems: Techniques and Applications. Journal on Data Semantics (JoDS), 2005.
- ♦ [DePaoli08] De Paoli F., Palmonari M., Comerio M. and Maurino A. *A Meta-Model for Non-Functional Property Descriptions of Web Services*. In proc. of ICWS 2008.

