Advanced Data Processing Techniques for Distributed Applications and Systems

Hong-Linh Truong
Distributed Systems Group, TU Wien

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong
@linhsolar
What this lecture is about?

- Large-scale data analytics
- Advanced messaging
 - Apache Kafka
- Advanced data analytics with streaming data processing
 - Stream processing with Apache Apex
- Advanced data analytics with workflows
 - Data pipeline with Airflow/Beam
Large-scale data analytics

- Analytics-as-a-service
 - Understand monitoring information, logs, user activities, etc.
 - Provide insightful information for optimizing business
- Big data analytics
 - Handle and process big data at rest and in motion
- Key issues
 - Collect/produce messages from distributed application components and large-scale monitoring systems
 - Need scalable and reliable large-scale messaging broker systems
 - Require workflow and stream data processing capabilities
 - Integrate with various different types of services and data sources
Example from Lecture 4

- Multiple topics
- Amount of data per topic varies
- Should not have duplicate data in database

• Should I use docker? VMs?
• Where elasticity can be applied?
• Topic/data distribution to ingest clients?
Implementation atop Google cloud

Source: https://cloud.google.com/solutions/architecture/streamprocessing
Example: monitoring and security

Security-related information and metrics from distributed customers

Cloud services and big data analytics

Data sources (sensors, files, database, queues, log services)

Messaging systems (e.g., Kafka, AMQP, MQTT)

Storage and Database (S3, InfluxDB, HDFS, Cassandra, MongoDB, Elastic Search etc.)

Batch data processing systems (e.g., Hadoop, Airflow, Spark)

Stream processing systems (e.g., Apex, Storm, Flink, WSO2, Google Dataflow)

Warehouse Analytics

Operation/Management/Business Services

Elastic Cloud Infrastructures (VMs, dockers, OpenStack elastic resource management tools, storage)
Recall: Message-oriented Middleware (MOM)

- Well-supported in large-scale systems for
 - Persistent and asynchronous messages
 - Scalable message handling

- Message communication and transformation
 - publish/subscribe, routing, extraction, enrichment

- Several implementations

- Amazon SQS
- Apache Qpid™
- Apache Kafka
- JMS
- stormmq
- RabbitMQ
Recall: Workflow of Web services

- You learn it from the Advanced Internet Computing course
- Typically for composing Web services from different enterprises/departments for different tasks
- For big data analytics and Analytics-as-a-Service
 - Tasks are not just from Web services
http://kafka.apache.org/, originally from LinkedIn

APACHE KAFKA
Some use cases

- Producers generate a lot of realtime events
- Producers and consumers have different processing speeds
 - E.g. activity logging
- Rich and diverse types of events
 - E.g. cloud-based logging
- Dealing with cases when consumers might be on and off (fault tolerance support)

Which techniques can be used to control this?
Kafka Design

- Use cluster of brokers to deliver messages
- A topic consists of different partitions
- Durable messages, ordered delivery via partitions
- Online/offline consumers
- Using filesystem heavily for message storage and caching
Messages, Topics and Partitions

- Ordered, immutable sequence of messages
- Messages are kept in a period of time (regardless of consumers or not)
- Support total order for messages within a partition
- Partitions are distributed among server

Source: http://kafka.apache.org/documentation.html
Consumers

- Consumer **pulls the data**
- The consumer **keeps a single pointer** indicating the position in a partition to keep track of the offset of the next message being consumed

Why?
- allow customers to design their speed
- support/optimize batching data
- easy to implement total order over message
- easy to implement reliable message/fault tolerance
Example of a Producer

```java
public SimpleProducer(String url, String inputFile, String topic) {
    Properties props = new Properties();
    props.put("bootstrap.servers", url);
    props.put("client.id", "rusea.io.training.demo");
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    producer = new KafkaProducer<Integer, String>(props);
    this_topic = topic;
    this.inputfile = inputFile;
}

public void run() {
    int messageNo = 1;
    // read data from file:
    try {
        BufferedReader in = new BufferedReader(new FileReader(inputFile));
        Iterable<CSVRecord> records = CSVFormat.RFC4180.withFirstRecordAsHeader().parse(in);
        for (CSVRecord record : records) {
            JsonObject event = new JsonObject();
            event.addProperty("USERPHONE", 6645);
            event.addProperty("TIME", Long.parseLong(record.get("TIME")));
            event.addProperty("lat", Float.parseFloat(record.get("LATITUDE")));
            event.addProperty("lon", Float.parseFloat(record.get("LONGITUDE")));
            event.addProperty("GSM BIT ERROR RATE", Float.parseFloat(record.get("GSM_BIT_ERROR_RATE")));
            event.addProperty("GSM SIGNAL STRENGTH", Float.parseFloat(record.get("GSM_SIGNAL_STRENGTH")));
            // A simple way to handle missing data is to skip the record
            if (!record.get("LOC_ACCURACY").equals("")) {
                event.addProperty("LOC_ACCURACY", Float.parseFloat(record.get("LOC_ACCURACY")));
            } else {
                continue;
            }
            if (!record.get("LOC_SPEED").equals("")) {
                event.addProperty("LOC_SPEED", Float.parseFloat(record.get("LOC_SPEED")));
            } else {
                continue;
            }
            String eventString = "{"event": " + event + "}";
            try {
                producer.send(new ProducerRecord<Integer, String>(topic, messageNo, eventString)).get();
            } catch (ExecutionException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
    }
```
Example of a consumer

```java
public class SimpleConsumer {
    private final KafkaConsumer<Integer, String> consumer;
    private final String topic;
    private final int pollNr;
    public SimpleConsumer(String url, String topic, int pollNr) {
        Properties props = new Properties();
        //just use standard example configuration
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, url);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, "TDSEA Simple Consumer");
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "30000");
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        consumer = new KafkaConsumer<Integer, String>(props);
        this.topic = topic;
        this.pollNr = pollNr;
    }

    public void readData() {
        consumer.subscribe(Collections.singletonList(this.topic));
       ConsumerRecords<Integer, String> records = consumer.poll(pollNr);
        for (ConsumerRecord<Integer, String> record : records) {
            System.out.println("Received message: ", record.key(), ", ", record.value(), ", at offset ", record.offset());
        }
    }

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        if (args.length < 3) {
            System.out.println(Usage: SimpleProducer kafka_broker topic nr); System.exit(0);
        }
        int pollNr = Integer.valueOf(args[2]);
        SimpleConsumer consumer = new SimpleConsumer(args[0], args[1], pollNr);
        consumer.readData();
    }
}
```
Scalability and Fault Tolerance

- Partitions are distributed and replicated among broker servers
- Consumers are organized into groups
- Each message is delivered to a consumer instance in a group
- One partition is assigned to one consumer

http://kafka.apache.org/documentation.html#majordesignelements
Partitions and partition replication

- Why partitions?
 - Support scalability
 - enable arbitrary data types and sizes for a topic
 - enable parallelism in producing and consuming data

- But partitions are replicated, why?
 - For fault tolerance
The leader handles all read and write requests.

Source: http://de.slideshare.net/junrao/kafka-replication-apachecon2013
Consumer Group

- Consumer Group: a set of consumers
 - is used to support scalability and fault tolerance
 - allows multiple consumers to read a topic
- In one group: each partition is consumed by only consumer instance
 - Combine „queueing“ and „publish/subscribe“ model
- Enable different applications receive data from the same topic.
 - different consumers in different groups can retrieve the same data
Group rebalancing

Key Questions/Thoughts

- Why do we need partitions per topic?
 - arbitrary data handling, ordering guarantees, load balancing
- How to deal with high volume of realtime events for online and offline consumers?
 - partition, cluster, message storage, batch retrieval, etc.
- Queuing or publish-subscribe model?
 - check how Kafka delivers messages to consumer instances/groups
STREAMING DATA
PROCESSING
Batch, Stream and Interactive Analytics

Batch – Ad-hoc queries on large data sets. I/O Bound

Interactive – Querying historical data

Real Time Streaming

Data

Source: https://dzone.com/refcardz/apache-spark
Recall: Centralized versus distributed processing topology

Two views: streams of events or cloud of events

Complex Event Processing (centralized processing)

Event cloud

Processing

node

node

node

Usually only queries/patterns are written

Streaming Data Processing (distributed processing)

Processing

node

Processing

node

Code processing events and topologies need to be written
Structure of streaming data processing programs

- Data source operator: represents a source of streams
- Compute operators: represents processing functions
 - Native versus micro-batching
Key concepts

- Structure of the data processing
 - Topology: Directed Acycle Graph (DAG) of operators
 - Data input/output operators and compute operators
 - Accepted various data sources through different connectors
- Scheduling and execution environments
 - Distributed tasks on multiple machines
 - Each machine can run multiple tasks
- Stream: connects an output port from an operator to an input port to another operator
- Stream data is sliced into windows of data for compute operators
Implementations

- Many implementation, e.g.
 - Apache Storm
 - https://storm.apache.org/
 - Apache Spark
 - https://spark.apache.org/
 - Apache Apex
 - https://apex.apache.org/

Check:
http://www.cakesolutions.net/teamblogs/comparison-of-apache-stream-processing-frameworks-part-1

Recall:

Data stream: a sequence/flow of data units

Data units are defined by applications: a data unit can be data described by a primitive data type or by a complex data type, a serializable object, etc.

In Apache Apex: a stream of atomic data elements (tuples)
Example of an application in Java

```java
@ApplicationAnnotation(name="MySecondApplication")
public class BTSApplication implements StreamingApplication {
    String topic = "apextest";
    QoS qos;

    public BTSApplication() {
        this.qos = QoS.AT_MOST_ONCE;
    }

    @Override
    public void populateDAG(DAG dag, Configuration conf) {
        System.out.println("Start the application by connecting to MQTT...");
        MqttClientConfig btsmqttConfig = new MqttClientConfig();
        btsmqttConfig.setHost("localhost");
        btsmqttConfig.setPort(1883);
        btsmqttConfig.setUserName("guest");
        btsmqttConfig.setPassword("guest");
        btsmqttConfig.setCleanSession(true);
        //creating input operator
        VieturnControlMQTTInput btsInput = dag.addOperator("input", VieturnControlMQTTInput.class);
        btsInput.setMqttClientConfig(btsmqttConfig);
        System.out.println("Subscribe topics");
        btsInput.addSubscribeTopic(topic, qos);
        //just a simple example to output the data to the console
        ConsoleOutputOperator cons = dag.addOperator("console", new ConsoleOutputOperator());
        cons.setSilent(false);
        System.out.println("Just create one single stream");
        dag.addStream("test", btsInput.out, cons.input).setLocality(Locality.CONTAINER_LOCAL);
    }
}
```
Apex - Operators

- Streaming applications are built with a set of operators: for data and computation

Some common data operators (related to other lectures)
- MQTT
- AMQP
- Kafka

Source: https://apex.apache.org/docs/malhar/
Apex Operators

- Ports: for input and output data
- Data in a stream: streaming windows

Source: https://apex.apache.org/docs/apex-3.6/operator_development/
Processing data in operators

Different types of Windows: GlobalWindows, TimeWindows, SlidingTimeWindows, etc.

Source: https://apex.apache.org/docs/apex/operator_development/
Operators Fault tolerance

- Checkpoint of operators: save state of operators (e.g. into HDFS)
 - @Stateless no checkpoint
 - Check point interval: CHECKPOINT_WINDOW_COUNT

- Recovery
 - At least once
 - At most once
 - Exactly once
Fault tolerance - Recovery

- **At least once**
 - Downstream operators are restarted
 - Upstream operators are replayed
- **At most once**
 - Assume that data can be lost: restart the operator and subscribe to new data from upstream
- **Exactly once**
Execution Management

- Using YARN for execution tasks
- Using HDFS for persistent state
Understand YARN/Hadoop to understand Apex operator execution management

Source: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
Scalability

- Locality configuration for deployment of streams and operators
- Affinity and anti-affinity rules
- Possible localities:
 - THREAD_LOCAL (intra-thread)
 - CONTAINER_LOCAL (intra-process)
 - NODE_LOCAL (inter-process but within a Hadoop node)
 - RACK_LOCAL (inter-node)
Example of Partitioning and unification

- **Dynamic Partition**
 - Partition operators
 - Dynamic: specifying when a partition should be done
 - Unifiers for combining results (reduce)

- **StreamCodec**
 - For deciding which tuples go to which partitions
 - Using hashcode and masking mechanism

Source: https://apex.apache.org/docs/apex/application_development/#partitioning
Exercise

How to make sure no duplication results when we recover End-to-End Exactly Once?

How to use hash and masking mechanism to distributed tuples?

How to deal with data between operators not in a CONTAINER_LOCAL or in THREAD_LOCAL
Use cases

- Access and coordinate many different compute services, data sources, deployment services, etc, within an enterprise, for a particular goal.
- Implementing complex „business logics“ of your services.
-Analytics-as a service: metrics, user activities analytics, testing, e.g.
 - Analytics of log files (generated by Aspects in Lecture 3)
 - Dynamic analytics of business activities
Workflows: a set of coordinated activities
- Generic workflows of different categories of tasks
- Data workflows → data pipeline

 “a pipeline is a set of data processing elements connected in series, where the output of one element is the input of the next one”

Source: https://en.wikipedia.org/wiki/Pipeline_%28computing%29

- We use a pipeline/data workflows to carry out a data processing job
- But analytics have many more than just data processing activities.
Example of Pipeline in Google Dataflow

JAVA

```java
public static void main(String[] args) {
    // Create a pipeline parameterized by commandline flags.
    Pipeline p = Pipeline.create(PipelineOptionsFactory.fromArgs(args));

    p.apply(TextIO.Read.from("gs://...")) // Read input.
        .apply(new CountWords()) // Do some processing.
        .apply(TextIO.Write.to("gs://...")); // Write output.

    // Run the pipeline.
    p.run();
}
```

https://cloud.google.com/dataflow/model/pipelines#a-simple-example-pipeline
Data analytics workflow execution models

Execution Engine

Data sources

Data analytics workflows

Local Scheduler

Web service

Web service

Web service

job

job

job

job
Your are in a situation:

- Many underlying distributed processing frameworks
 - Apex, Spark, Flink, Google
- Work with different underlying engines
- Write only high-level pipelines
- Stick to your favour programming languages
Apache Beam

- Goal: separate from pipelines from backend engines

Read data analytics → Post-processing result → Store analysis result
Appache Beam

- https://beam.apache.org/
- Suitable for data analysis processes that can be divided into different independent tasks
 - ETL (Extract, Transform and Load)
 - Data Integration
- Execution principles:
 - Mapping tasks in the pipeline to concrete tasks that are supported by the selected back-end engine
 - Coordinating task execution like workflows.
Basic programming constructs

- **Pipeline:**
 - For creating a pipeline

- **PCollection**
 - Represent a distributed dataset

- **Transform**
 - Possible transforms: ParDo, GroupByKey, Combine, etc.

\[
[\text{Output PCollection}] = [\text{Input PCollection}] \mid [\text{Transform}]
\]
A simple example with Google Dataflow as back-end engine

```python
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions

p = beam.Pipeline(options=PipelineOptions())

entries = p | 'ReadHadoopResult' >> beam.io.ReadFromText('gs://.../electricity_alarm_frequency-2017-05-11-00-vn.csv')

class ExtractAlarmFrequency(beam.DoFn):
    def process(self, elements):
        ....
        return ....

frequency = entries | beam.ParDo(ExtractAlarmFrequency())

frequency | 'write' >> beam.io.WriteToText('gs://.../ElectricityAlarm')

result = p.run()
result.wait_until_finish()
```
But what if you need diverse types of tasks with various back-end services?

→ Workflow systems
Example of using workflows

Representing and programming workflows/data workflows

- Programming languages
 - General- and specific-purpose programming languages, such as Java, Python, Swift

- Descriptive languages
 - BPEL and several languages designed for specific workflow engines
Airflow from Airbnb

- Features
 - Dynamic, extensible, scalable workflows
 - Programmable language based workflows
 - Write workflows as programmable code

- Good and easy to study to understand concepts of workflows/data pipeline
Airflow Workflow structure

- Workflow is a DAG (Direct Acyclic Graph)
 - A workflow consists of a set of activities represented in a DAG
 - Workflow and activities are programed using Python – described in code
- Workflow activities are described by Airflow operator objects
 - Tasks are created when instantiating operator objects
Airflow from Airbnb

- Rich set of operators
 - So that we can program different kinds of tasks and integrate with different systems

- Different Types of operators for workflow activities
 - BashOperator, PythonOperator, EmailOperator, HTTPOperator, SqlOperator, Sensor,
 - DockerOperator, HiveOperator, S3FileTransferOperator, PrestoToMysqlOperator, SlackOperator
Example for processing signal file
Example for processing signal file

```python
dag = DAG(DAG_NAME, schedule_interval=None, default_args=default_args)

def checkSituation(**kwargs):
    f = 'f'
    t = 't'
    return t

downloadlogscript = 'curl file:///home/truong/myprojects/mygit/rdsea-mobifone-training/data/opensignal/sample-0ct182016.csv -o /opt/data/air

t_downloadlogtocloud = BashOperator(
    task_id="download_signal_file",
    bash_command=downloadlogscript,
    dag = dag
)

t_analytics = BashOperator(
    task_id="analyticsinternetusage",
    bash_command='"/usr/bin/python /home/truong/myprojects/mygit/rdsea-mobifone-training/examples/databases/elasticsearch/uploader/src/upload.py"
    dag = dag
)

t_sendresult = SimpleHttpOperator(
    task_id="sendresults",
    method="POST",
    http_conn_id="station1",
    endpoint="api/update/credit",
    data=json.dumps({'userphone':"066412345","credit":10}),
    headers={"Content-Type": "application/json"},
    dag = dag
)

t_analytics.set_upstream(t_downloadlogtocloud)
t_sendresult.set_upstream(t_analytics)
```
<table>
<thead>
<tr>
<th>#</th>
<th>DAG</th>
<th>Schedule</th>
<th>Owner</th>
<th>Recent Statuses</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>example_bash_operator</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>example_branch_dop_operator_v3</td>
<td>On 0 * * * *</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>example_branch_operator</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>example_http_operator</td>
<td>On 1 day, 0:00:00</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>example_passing_params_via_test_command</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>example_python_operator</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>example_short_circuit_operator</td>
<td>Off 1 day, 0:00:00</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>example_skip_dag</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>example_subdag_operator</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>example_trigger_controller_dag</td>
<td>Off @once</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>example_trigger_target_dag</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>example_twitter_dag</td>
<td>Off</td>
<td>Ekhlar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>example_xoom</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>signal_upload_file</td>
<td>Off</td>
<td>hong-linh-truong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>tutorial</td>
<td>Off</td>
<td>airflow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elasticity control for Workflows/Data Flows

- How to scale the workflows?
- Scheduling in a large resource pool (e.g., using clusters)
- Elasticity controls of virtualized resources (VMs/containers) for executing tasks
- Distributed Task Queue, e.g. Celery

Job description/request sent via queues
Results from jobs can be stored in some back-end
Other systems, e.g., AWS Data Pipeline

Summary

- Analytics-as-a-service for large-scale distributed applications and big data analytics require different set of tools
- Kafka, Apache Apex and Airflow are just some of the key frameworks
 - There are a lot of tools
- Need to understand common concepts and distinguishable features
- Select them based on your use cases and application functionality and performance requirements

Exercises:
- a small application utilizing Kafka/MQTT and Apache Apex
- Log analytics using AOP and Kafka and Airflow
Further materials

- http://kafka.apache.org
- https://cloud.google.com/dataflow/docs/
- http://storm.apache.org/
https://storm.apache.org/

STREAMING ANALYSIS WITH APACHE STORM
Apache Storm – Key concepts

- Originally from Twitter
- Data
- Structure of the data processing
 - Topology
 - Spouts
 - Bolts
 - Stream groupings
- Scheduling and execution environments
 - Processes, Executors and Tasks
Data stream is the key abstraction

Recall:

Data stream: a sequence/flow of data units
Data units are defined by applications: a data unit can be data described by a primitive data type or by a complex data type, a serializable object, etc.

Apache Storm: a stream is „an unbounded sequence of tuples” → data units = tuples
Example of data stream

System to capture data for vehicles crossing the checkpoint.

LogFile
[AB123, 90, NCity]
[CD234, 60, SCity]
[PQ453, 70, NCity]

FileListenerSpout
[AB123, 90, NCity]
[CD234, 60, SCity]
[PQ453, 70, NCity]

BOLT

Spout: represents a source of streams
- Read tuples from an external source and feed the tuples to the topology

Bolt: represents processing functions
Spouts and Bolts

Spouts
- Can emit multiple streams
- unreliable/reliable
- Main APIs
 - `nextTuple()`
 - `fail(Object msgId)`
 - `ack(Object msgId)`

Bolts
- Can emit multiple streams
- Main methods
 - `execute(Tuple input)`
 - `prepare(Map stormConf, TopologyContext context, OutputCollector collector)`

DST 2017
Structure of data processing program

```java
setSpout(String id, IRichSpout spout, Number parallelism_hint)
setBolt(String id, IRichBolt bolt, Number parallelism_hint)
```
Stream grouping defines how tuples are streamed to Tasks in Bolts.

Examples:
- Shuffle grouping, Fields grouping, Partial Key grouping, All grouping, Global grouping, None grouping, Direct grouping, Local or shuffle grouping
Stream grouping (2)

Source: https://www.safaribooksonline.com/blog/2013/06/11/your-guide-to-storm/
Example of programming stream grouping

```java
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
```

Source: https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_storm-user-guide/content/storm-stream-stream-groupings.html
Integration example

Thanks for your attention

Hong-Linh Truong
Distributed Systems Group, TU Wien
truong@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/staff/truong
@linhsolar