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Abstract—We present an end-to-end system for operating
energy-aware cloudlets with a low-footprint cluster manager and
an adaptive client-side load balancing approach. Our system is
designed for small-scale high-density compute clusters that host
stateless services and have stringent energy resource constraints.
It features cluster and service management, runtime monitoring,
adaptive load balancing and cluster reconfiguration policies.
Furthermore, we present an experimentation and analytics sys-
tem that allows coordinated execution of complex workload
experiments to evaluate different operational strategies.

Index Terms—edge computing, load balancing, cloudlets

I. INTRODUCTION

Cloudlets are a fundamental infrastructural component for
edge computing [1], and it is crucial that they operate ef-
ficiently, especially in forward-deployed scenarios such as
tactical environments [2]. Operating efficiently means that
workload is balanced across cluster nodes as to minimize
application latency, and that the cluster configuration (i.e.,
active nodes and request routing) is adapted during runtime
to trade off latency and energy consumption.

Systems that solve similar problems in data-center scale
clusters [3] are not applicable to the domain of portable
energy-aware cloudlets for reasons we have outlined in a
previous publication [4]. First, the operational scale impedes
the use of components typical in cloud architectures, such
as dedicated L4 or L7 load balancers. Second, the models
used for energy management in data centers often build on
assumptions that do not hold for smaller scale hardware that
already has very effective built-in energy management. Third,
resource management systems for cloud clusters, such as
OpenStack or Kubernetes, are often very resource intensive
in and of themselves and require powerful servers to operate.

This demo paper presents Symmetry – an end-to-end imple-
mentation of the system architecture we presented at SEC’18
[4] that addresses the described issues. The system is designed
to manage high-density compute clusters with around 2-20
nodes, such as a cluster prototype we have presented in [4],
or an Ubuntu Orange Box, and manage stateless services
such as image recognition models, database query serving,
or similar applications. Symmetry takes the role of the cluster
controller, and is designed to run on a Raspberry Pi. It features
service management on top of Docker, runtime monitoring
of black-box metrics, power draw, and application latency,
client-side load balancing, and dynamic cluster reconfiguration
mechanisms. We provide load balancing and cluster reconfig-

uration policies such as round-robin or reactive autoscaling,
but also give developers tools and APIs to build their own.
Complementary, we present Galileo – an experimentation and
analytics system for evaluating such operational policies.

II. SYSTEM DESCRIPTION

We have described details of the system design decisions
for energy-aware portable cloudlets in [4]. In this demo we
showcase the implementation and its application. Figure 1
shows the overall system architecture. Symmetry orchestrates
a cluster of low-power compute nodes (e.g., Xeon servers).
Galileo workers are physical machines that can emulate mul-
tiple clients to generate workload. All code is open source
and available in our Git repositories under the mc2 – Mini
Compute Cluster project umbrella.1
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Figure 1: System architecture overview

A. Symmetry: Cluster Management and Monitoring
Symmetry comprises a set of lightweight Python compo-

nents that together make up the system control software.
Cluster nodes are server computers that host services, and
require no software other than Docker and an SSH server.

a) Command Line Interface and REST API: Operators
interact with Symmetry via a CLI to deploy services to the
cluster or activate specific load-balancing policies. REST APIs
provide ways to control the cluster state and request routing,
and enable the modular development of additional operational
logic. A runtime dashboard provides insights into the current
cluster utilization, power draw, and application performance.

1https://git.dsg.tuwien.ac.at/mc2
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Figure 2: The Galileo subsystem enables complex experiments on physical testbeds using client and workload emulation

b) Symmetry core: The core platform component of
Symmetry is a Redis instance running on the cluster controller.
All layers of Symmetry, as well as the Galileo experiment plat-
form, are integrated via this Redis instance, which facilitates
both data storage (such as service metadata) as well as inter-
process communication using an eventbus architecture. Due to
its lightweight design and highly optimized I/O functionality,
Redis performs extremely well in this scenario.

c) Service management: Applications are hosted on clus-
ter nodes as HTTP services in Docker containers. Symmetry
starts on each cluster node an NGINX instance to internally
route requests to the correct container and to monitor applica-
tion performance. Services are described via YAML files that
specify necessary metadata. The CLI command symmetry
deploy my-service.yml then deploys the service to
each node, starts the necessary containers, registers the service
endpoints, and updates the node’s NGINX config accordingly.

d) Telemetry daemon: The telemetry daemon aggregates
runtime metrics from various sources and publishes them as
time series data into a pub/sub topic that encodes the node
and the metric, for example, telemetry:node1:cpu. It
implements pull-style monitoring by connecting to the cluster
nodes via SSH and executing commands for measuring CPU
utilization, CPU core frequency, or parsing the NGINX logs.
For power data it connects to an Arduino that provides access
to readings from Adafruit INA219 current sensors. If a node
shuts down, it informs other components via the eventbus.

e) Cluster daemon: The cluster daemon enacts the load
balancing and cluster reconfiguration policy. One policy that
Symmetry provides out-of-the-box is Reactive Autoscaling,
which activates or suspends a node if a system metric exceeds
a given threshold for a specified amount of time. For example,
our default implementation activates an additional node if
the average CPU utilization is above 85% for more than 10
seconds, and suspends it if drops below 25%.

f) Client-side request routing: Making clusters appear as
a single system is typically achieved via dedicated L4 or L7
load balancers, through which all service requests are routed.
Instead, we take a client-side request routing approach that

uses simple weighted-random load balancing, where weights
are updated dynamically by the load balancing policy in a way
that meets some operational goal. A routing table specifies for
each service how much of the workload should be directed
to a given node. Updates to the routing table are propagated
to the clients via Redis pub/sub. This way, request routing is
decentralized, but simplified such that the client components
necessary to call services are kept simple.

B. Galileo: Experimentation and Analytics Subsystem

The main purpose of Galileo is to simplify the development
and evaluation of different operational strategies implemented
in Symmetry. It coordinates physical devices to emulate client
workload, and provides user-facing components to define ex-
periments and analyze the results. Galileo records monitoring
data coming from Symmetry into a configurable datastore,
in our case a MySQL instance. Figure 2 shows the frontend
components of Galileo, and the testbed we use for the demo.

A user can interact with the experiment platform either via
the experiment editor shown in 2a, or an interactive experiment
shell that provides commands to scale up/down the number
of emulated clients, change the load they are generating,
change the balancing policy, and control the node states via
Symmetry. The shell also acts a scripting environment and
provides simple flow control via sleep commands. Finally,
the analytics dashboard shown in Figure 2b allows ad-hoc
exploration of experiment result data. It shows system metrics
for each node, aggregated energy consumption, and application
performance such as processing time and queuing delay.

The environment shown in Figure 2c hosts the presented
system and encompasses (i) the cluster infrastructure (low-
power Xeon servers), (ii) a Raspberry Pi that hosts Symmetry
and the Galileo controller, and (iii) Galileo workers for emu-
lating clients and workload.
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