
KuVS-Fachgespräch Fog Computing 2018

Boris Koldehofe, Andreas Reinhardt, Stefan Schulte (Eds.)

boris.koldehofe@kom.tu-darmstadt.de, reinhardt@ieee.org, s.schulte@infosys.tuwien.ac.at

Technical Report Vienna, Darmstadt, Mar. 7, 2018

https://www.kuvs.de/fg/fogcomputing/

Editors

Boris Koldehofe
Multimedia Communications Lab
TU Darmstadt
Rundeturmstr. 10
64283 Darmstadt
Germany
boris.koldehofe@kom.tu-darmstadt.de

Andreas Reinhardt
TU Clausthal
Institut für Informatik
Julius-Albert-Str. 4
38678 Clausthal-Zellerfeld
Germany
reinhardt@ieee.org

Stefan Schulte
TU Wien, Distributed Systems Group
1040 Wien, Argentinierstrasse 8/194-2
Austria
s.schulte@infosys.tuwien.ac.at

Copyright c© 2018 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors.

mailto:boris.koldehofe@kom.tu-darmstadt.de
mailto:reinhardt@ieee.org
mailto:s.schulte@infosys.tuwien.ac.at

PREFACE

Fog computing is a recent computing paradigm which
brings well-known principles from cloud computing to the
edge of the network. This includes (i) on-demand provisioning
of computational resources, (ii) rapid elasticity, (iii) unified
management interfaces, and (iv) virtualization. Apart from
incorporating basic principles from cloud computing, fog
computing is also based on concepts from the fields of mobile
cloud and in-network processing.

Through the application of fog computing principles, it
is possible to provide Internet of Things (IoT)-based com-
putational resources in a similar vein as virtual machines
and software containers are offered on the cloud. The result
is a virtualized computing infrastructure that spans cloud
data centers, various intermediary nodes such as routers and
gateways, and IoT devices. Fog computing has recently gained
much interest by the research community, especially since it
allows to (pre-) process or filter IoT data on-site instead of
sending data to the cloud.

Since fog computing addresses several research topics
which are closely linked to the “Kommunikation und Verteilte
Systeme” (KuVS) community, we are happy that the KuVS
board accepted our proposal for a “Fachgespräch” on this
very recent research topic. In general, Fachgespräche provide a
forum for (young) researchers to exchange ideas in an informal
setting. The goal is to provide the opportunity to identify
potential collaborations by presenting early work and research
ideas.

We are happy that – despite being the inaugural edition of
this Fachgespräch – we have received a number of high-quality
submissions. This shows the interest by the KuVS community
regarding this topic.

Nine submissions have been selected for presentation at the
Fachgespräch on March 8th and 9th, 2018. Within their paper
Fog Computing: Current Research and Future Challenges,
Julien Gedeon et al. present an overview of research questions
in the field, with a focus on future challenges. Olena Skarlat
et al. present a concrete testbed for fog computing in their
paper FogFrame: IoT Service Deployment and Execution in
the Fog. Sevil Dräxler et al. analyze cloud services with
regard to resource demands in their paper Towards Predicting
Resource Demands and Performance of Distributed Cloud
Services. Peter Danielis et al. present a potential use case for
fog computing in their paper A Distributed Protocol for Crowd
Counting in Urban Environments. Manisha Lutra et al. present
an approach to apply Complex Event Processing in the fog or
in the cloud in their paper Adaptive Complex Event Processing
over Fog-Cloud Infrastructure Supporting Transitions. An
approach to provide data processing using heterogeneous IoT
devices is presented by Aditya Raj and Andreas Reinhardt in
CLAP: Cooperative Locality-Aware Data Processing in Het-
erogeneous Fog Environments. Zoltan Mann provides insights
on Data Protection in Fog Computing through Monitoring and
Adaptation, with a special focus on adaptive approaches to
data protection. In their paper Migrating IoT Processing to

Fog Gateways, Daniel Happ et al. apply on-site gateways for
sensor data processing. Stefan Geissler and Thomas Zinner
present an approach to pipeline processing, which helps to
overcome device heterogeneity in their paper TableVisor 2.0:
Hardware-independent Multi Table Processing.

In addition to these talks, there were two keynotes: Ruben
Mayer gave insights on Fog Computing: On the Road to an
Open Infrastructure for the Internet of Things, and Lasse
Lehmann from AGT International gave an industrial keynote.

We’d like to thank the local organization team at TU
Darmstadt for their help with setting up the Fachgespräch.
Also, we thank the Profile Area Internet and Digitization at
TU Darmstadt and the DFG Collaborative Research Center
Multi-Mechanisms Adaptation for the Future Internet (MAKI)
for supporting this event. We’d like to thank our industrial
sponsors AGT International and Ascora GmbH. Through their
help, it was possible to organize the Fachgespräch with reason-
able registration fees for all participants. Last but not least, we
thank the keynote speakers Ruben Mayer and Lasse Lehmann.

Vienna, Darmstadt, Mar. 7, 2018
Boris Koldehofe, Andreas Reinhardt, Stefan Schulte

CONTENTS

Julien Gedeon, Jens Heuschkel, Lin Wang, Max Mühlhäuser –
Fog Computing: Current Research and Future Challenges . 1

Olena Skarlat, Stefan Schulte –
FogFrame: IoT Service Deployment and Execution in the Fog . 5

Sevil Dräxler, Manuel Peuster, Marvin Illian, Holger Karl –
Towards Predicting Resource Demands and Performance of Distributed Cloud Services . 9

Peter Danielis, Sylvia T. Kouyoumdjieva, Gunnar Karlsson –
A Distributed Protocol for Crowd Counting in Urban Environments . 13

Manisha Luthra, Boris Koldehofe, Ralf Steinmetz –
Adaptive Complex Event Processing over Fog-Cloud Infrastructure Supporting Transitions. 17

Aditya Raj and Andreas Reinhardt –
CLAP: Cooperative Locality-Aware Data Processing in Heterogeneous Fog Environments . 21

Zoltán Ádám Mann –
Data Protection in Fog Computing through Monitoring and Adaptation . 25

Daniel Happ, Sanjeet Raj Pandey, Vlado Handziski –
Migrating IoT Processing to Fog Gateways . 29

Stefan Geissler and Thomas Zinner –
TableVisor 2.0: Hardware-independent Multi Table Processing . 33

Fog Computing: Current Research and Future
Challenges

Julien Gedeon, Jens Heuschkel, Lin Wang, Max Mühlhäuser
Telecooperation Lab, Technische Universität Darmstadt

Email: {gedeon, heuschkel, wang, max}@tk.tu-darmstadt.de

Abstract—Acknowledging the shortcomings of cloud comput-
ing, recent research efforts have been devoted to fog computing.
Motivated by a rapidly increasing number of devices at the
extreme edge of the network that imply the need for timely and
local processing, fog computing offers a promising solution to
move computational capabilities closer to the data generated by
those devices. In this vision paper, we summarize these current
research efforts, describe applications where fog computing is
beneficial and identify future challenges that remain open to
bring fog computing to a breakthrough.

I. INTRODUCTION

Cloud computing infrastructures are the predominant way to
store data and perform computations today. Cloud computing
offers powerful and reliable infrastructures that are scalable
and accessible via flexible pay-as-you-go models. However,
with the increasing number of resource-constrained mobile
devices at the edge of the network (e.g., mobile phones,
connected cars, internet of things (IoT) sensors) that need
to offload data and computations, cloud computing creates
network bottlenecks. Future applications running on these
kinds of devices require ultra-fast processing of data, e.g., for
augmented reality applications or real-time event detection.
Today’s cloud computing infrastructures are unable to fulfill
these requirements. Therefore, we can observe a trend in
research to move computations away from the cloud and closer
to the data sources and their consumers.

Fog computing1 [3], [4], [5] is a promising research di-
rection in this domain. Compared to the cloud, fog computing
offers proximate, small-scale resources that can be instantiated
dynamically. Fog infrastructures are located between (mobile)
end devices and the cloud in an intermediate layer, as depicted
in Figure 1. Most often, this intermediate layer represents the
access network (e.g., Wifi routers or cellular base stations)
and network middleboxes. Because of this, compared to cloud
computing, fog computing can provide context awareness and
a better support for user mobility. It is important to note
that fog computing infrastructures are heterogeneous, i.e., fog
computing infrastructures can be hosted on different kinds of
physical devices. Table I summarizes the differences between
cloud computing and fog computing.

1A similar concept is edge computing [1], [2]. In this paper, we use the
term fog computing in general to denote infrastructures that are close to the
mobile end devices.

Table I
COMPARISON BETWEEN CLOUD COMPUTING AND FOG COMPUTING

Cloud Computing Fog Computing
Proximity low high

Latency high low
Geo-distribution locally clustered widespread

Infrastructure centralized datacenters decentralized cloudlets
Heterogeneity low high

Deployment fixed, static dynamic, opportunistic
Virtualization heavyweight (e.g., VMs) lightweight (e.g., containers)
Connections long-thin short-fat

Access through core network typically via 1-hop wireless
Mobility support limited yes

Context Awareness no yes

F
og

 C
om

pu
ti

ng
 L

ay
er

C
lo

ud
 L

ay
er

Figure 1. Fog Computing Architecture

In the remainder of this paper, we outline current research
topics in fog computing, its possible applications and future
challenges.

II. SURVEY OF CURRENT FOG COMPUTING RESEARCH

In this section, we review current research efforts in two
different domains related to fog computing.

A. Offloading of Data and Computations

Mobile device are inherently constrained in terms of com-
puting power and battery lifetime and, thus, there is the need to
offload complex computation to more powerful infrastructures.
With potentially many fog locations available, the question
arises where to place resources and how to allocate them.
Making good placement decisions most often requires detailed

1

knowledge wrt. the performance of the offloading system.
Meurisch et al. [6] have investigated the probing of unknown
services, i.e., how to support the decision on where to offload
without detailed prior knowledge of the target system.

While most of the work focuses on the offloading of com-
putations, data offloading is another issue worth considering.
Instead of storing data in distant cloud centers, we envision
storing data close to where it is used. This is especially relevant
if multiple users or applications reuse or share the same data.
Of course, this means the storage decision needs to be made
in consideration of the current context in which the data is
captured. Gedeon et al. present a framework for Android
devices that enables context-aware micro-storage of data [7].

B. Fog Computing Infrastructures

Fog computing can be realized on different—mostly already
existing—physical infrastructures. One possibility is to col-
locate computational capacities on the radio access network
(RAN), e.g., cellular base stations. Besides implementing fog
computing on the RAN, some research also studied the use of
privately owned Wifi routers as fog computing devices, either
to perform computations [8] or as a mechanism to facilitate
service discovery [9]. This is motivated by the fact that
these devices are ubiquitously present and often underutilized.
Several initiatives already promote free Wifi access (e.g.,
freifunk2 in Germany). We believe that an open computing
ecosystem is the next logical step. Of course, this ecosystem
requires new programming models. As an example, Hong et
al. [10] have suggested MobileFog, a lightweight programming
model targeting IoT applications in fog computing.

C. Holistic Resource Management

Achieving efficient operation of fog computing systems is
critical, as fog resources are not as abundant as in mega data
centers. Ideally, fog nodes should be able to offer compute
or storage resources to any user in close proximity through
an open and standardized mechanism, which allows a set of
fog nodes in the same geographic region to form a shared
resource pool. With the help of lightweight virtualization
technologies, resources will be allocated holistically at a fine
granularity (per user) subject to quality of service and system-
wide optimization goals.

Compared to resource management in cloud data centers,
resource management in fog computing is more challenging
due to the fact that fog nodes are more heterogeneous and
uncertainties are imposed by multiple factors such as user
mobility. While it is still not available yet, a general centralized
framework for holistic fog resource management is envisioned.
Based on this assumption, a handful of works have been
carried out for fog resource allocation and job scheduling [11],
[12], [13], [14], [15], [16], [17]. Jia et al. [12] study the load
balancing among multiple fog clouds. Tong et al. [13] discuss
workload placement for delay minimization in a hierarchical
fog computing architecture. Wang et al. [14] focus on stochas-
tic frameworks for optimizing dynamic workload migration

2https://freifunk.net/

based on Markov Decision Processes (MDPs). Recently, Tan
et al. [15] studied online job dispatching and scheduling in
fog clouds. Wang et al. investigate online mobility-oblivious
resource allocation for fog computing [16] and also develop
a service entity placement strategy for social virtual reality
applications in the fog environment [17].

III. APPLICATIONS FOR FOG COMPUTING

In this section, we turn our attention to different use cases
where we consider fog computing to be beneficial.

A. Internet of Things

The IoT [18] is predicted to grow to billions devices in
the upcoming years. According to a recent study by BGC,
the predicted market size for the IoT is to reach 267 billion
dollars by the year 2020.3 Comprised of small-scale sensors
and actuators, data produced by IoT devices is often consumed
only locally. Each of these devices will be delivering massive
amounts of data to be used in real-time analytics, event
detection or complex event processing. If we consider high-
volume data like video, it is obvious that this does not scale.
Fog computing however provides the possibility to scale the
IoT to a huge number of devices by offering proximate
processing of IoT data [4], [19].

B. Smart Cities

An especially useful and palpable usage scenario for fog
computing can be found in the vision of Smart Cities [20],
where urban areas are augmented to provide services to their
citizens. This requires to process a multitude of sensor data
and distribute it to different actuators. An example is smart
traffic management. In this vision, traffic lights would not be
programmed statically but adapt their cycle based on different
types of data as input. Among others, the data may be provided
by inductive loops, video cameras mounted above busy inter-
sections and third-party applications that notify about events,
e.g., accidents that have occurred. A comprehensive survey on
the implications of fog computing for smart cities can be found
in [21]. With the future development of connected cars and
autonomous vehicles, quick processing of data to recognize
ambient events becomes even more important.

Fog Computing is also interesting for the scenario of
emergency response and in crises situations, where other
communication infrastructures have become unavailable. In
such a scenario, opportunistic infrastructures like smart lamp
posts or locally deployed cloudlets can be used to provide
disaster relief services [22], [23].

C. Augmented Reality & Virtual Reality

Recently, augmented reality (AR) and virtual reality (VR)
applications have gained attention both in research and con-
sumer products. These new classes of applications require
ultra fast processing of data, i.e., mostly real-time analysis of
video streams. Because even small delays have a considerable

3https://www.forbes.com/sites/louiscolumbus/2017/01/29/internet-of-
things-market-to-reach-267b-by-2020/

2

impact on the perceived quality of service, cloud offloading
cannot be used. As an example, Ha et al. [24] develop a
cognitive assistance application using Google Glasses that
allows real time scene interpretation by offloading the com-
putations to VM-based cloudlets. It is worth mentioning that
AR and VR applications have other specific challenges related
to previously mentioned research, such as the placement of
services [17].

IV. FOG-SUPPORTING TECHNOLOGIES

In this section, we outline how the emerging technologies
of lightweight virtualization via cloudlets and SDN/NFV can
support fog computing.

A. Cloudlets and Lightweight Virtualization

One prominent concept that has been proposed to contrast
cloud computing are cloudlets [25], which are micro clouds
located at the edge of the network. Cloudlets therefore can run
on a variety of devices, including the ones with constrained
resources such as network routers. Fog computing requires
new lightweight virtualization techniques in order to provide
quick provisioning and migration of services on heterogeneous
resources. The latter is motivated by the high mobility of users
at the edge of the network. In this domain, a lot of research
has investigated the use of container-based virtualization, such
as Docker4, focusing on migration [26] or adapting Docker for
the provisioning of resources at the edge of the network [27].
Recently, library operating systems such as unikernels5 have
received quite some attention as an alternative to the VM-
based virtualization technology. Unikernels can be very help
in edge computing due to the fact that they are lightweight
and are much more secure than containers.

B. SDN and NVF

Software Defined Networking (SDN) splits up the data
plane and control plane of networks and is a technology that
has recently received a lot of attention. In the context of fog
computing, SDN can be leveraged to facilitate the management
and organization of networks. Instead of configuring every
device individually, a set of rules can be managed and installed
by a centralized controller software, leveraging a (potentially)
global view on the network. Hence, it is possible to plan and
optimize the network traffic even in big and complex systems
like the core network of Internet Service Providers (ISPs) [28]
by executing these rules on the forwarding devices.

Along with SDN, network function virtualization (NFV)
plays a big role in upcoming ISP networks. Virtualization
of network functions gives the well-known cloud advantages,
like dynamic scaling and better cost efficiency, since special
hardware is replaced through cheap commercial off-the-shelf
(COTS) servers where virtual network functions can be orches-
trated within seconds. However, the usage of COTS servers

4https://www.docker.com/
5http://unikernel.org

comes at a price since they arise as bottleneck for 1) network-
intensive tasks (simple operations on a huge amount of pack-
ets) and 2) compute-intensive tasks (complex functions on a set
of data) [29]. To solve this problem, researchers can leverage
domain-specific hardware, such as field-programmable gate
arrays (FPGAs), to accelerate network functions. Since FPGAs
are a very limited resource, they have to be organized in a
flexible way. Therefore, Noback et al. proposed a dynamic
scheduling scheme for leveraging FGPAs to speed up crucial
network functions in an optimized manner [30].

Applications typically choose TCP as the transport protocol,
resulting in a big potential for SDN to optimize the network
protocol stack by bringing application requirements, transport
protocol and link layer in harmony. Heuschkel et al. [31] ex-
panded the SDN paradigm to end devices in order to enable a
dynamic control for network protocols. This network protocol
virtualization (NPV) approach decouples the applications from
specific network protocols, delegating the choice of network
protocols to a management instance and enabling the cross-
layer optimization of application requirements with the given
network environment and available transport layer protocols.
To centralize the approach and to give a global view for
an end-to-end optimization, Heuschkel et al. [32] proposed
an OpenFlow-inspired protocol to communicate management
commands, rules and network monitoring information to the
end devices. Along with the SDN integration, the NPV ap-
proach enables small network functions on end devices, placed
as additional layer in the network protocol stack. With these
pieces in place, NPV adapts the features of SDN and NFV for
end devices, and thus, uses the network stack in a dynamic
and optimizable way.

V. FUTURE CHALLENGES

Despite the recent efforts in research outlined before, many
challenges still remain open. In particular, we identify the
following challenges for future research:
Migration of Data and Applications. Users and devices
in most fog computing scenarios are highly mobile. Hence,
the services required should also follow these dynamics.
This requires the migration of application and data instances
across different fog instances. While today this is done mostly
reactively, we envision doing this proactively based on the
predicted mobility and access patterns of users and data.
Orchestration and Seamless Interplay Between Fog and
Cloud. While fog computing undoubtedly offers several
benefits and meaningful use cases, we still need cloud infras-
tructures to persistently store and batch process big data. Data
gathered at the edge of the network might be both interesting
for the immediate processing as close as possible, but also
for cloud applications. Orchestration between cloud and fog
services therefore is necessary.
Business Models. The term fog computing was initially
coined by Cisco in order to promote their IOx platform. From
this history we can see the importance of fog computing
as a business opportunity for manufacturers of networking
hardware, who can rent out parts of their devices’ capabilities

3

for general-purpose computing. However, this requires new
business and pricing models that capture the cooperative nature
of fog computing, as migration of data and services needs to
be feasible across the domains of different stakeholders. This
becomes even more important when users are competing for
resources.
Security and Privacy. If we envision executing container-
based applications from different application providers on
existing infrastructures, this has obvious security implications,
such as third party applications maliciously interfering with the
infrastructure. Therefore, strong sandboxing/isolation mecha-
nisms are required if we expect fog computing to be an open
ecosystem. Several other security challenges in fog computing
have been outlined by Stojmenovic et al. [33]. Because fog
computing processes the data close to where it originates,
it offers the possibility to employ privacy-preserving mech-
anisms early in the processing chain. Imagine for instance
a video camera stream that is fed as a raw data source to
an application that detects the presence of objects on a city
street. For this particular application, the faces of pedestrians
and license plates of cars are not required and are a threat to
one’s privacy. Fog computing would allow the blurring of these
elements before forwarding the data stream to applications.
Application models that can give these kinds of privacy are
not yet present in today’s fog landscape.

VI. CONCLUSION

In this paper, we have outlined the current research efforts
towards fog computing. We further described applications
where fog computing can complement existing cloud infras-
tructures and identified future challenges that need to be
addressed for the widespread adoption of fog computing.

ACKNOWLEDGEMENT

This work has been funded by the German Research Foun-
dation (DFG) as part of the Collaborative Research Center
(CRC) 1053 - MAKI.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing the
cloud to the edge,” in Proc. INFOCOM Workshop, 2014, pp. 346–351.

[3] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, 2014.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” Proc. MCC Workshop, pp. 13–16,
2012.

[5] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog Computing: Platform and
Applications,” in Proc. HotWeb, 2015, pp. 73–78.

[6] C. Meurisch, J. Gedeon, T. A. B. Nguyen, F. Kaup, and M. Mühlhäuser,
“Decision support for computational offloading by probing unknown
services,” in Proc. ICCCN, July 2017, pp. 1–9.

[7] J. Gedeon, N. Himmelmann, P. Felka, F. Herrlich, M. Stein, and
M. Mühlhäuser, “vStore: A Context-Aware Framework for Mobile
Micro-Storage at the Edge,” in Proc. MobiCASE, 2018, pp. 1–18.

[8] C. Meurisch, A. Seeliger, B. Schmidt, I. Schweizer, F. Kaup, and
M. Mühlhäuser, “Upgrading wireless home routers for enabling large-
scale deployment of cloudlets,” in Proc. MobiCASE, 2015, pp. 12–29.

[9] J. Gedeon, C. Meurisch, D. Bhat, M. Stein, L. Wang, and
M. Mühlhäuser, “Router-based brokering for surrogate discovery in edge
computing,” in Proc. ICDCS Workshops, 2017, pp. 145–150.

[10] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
ehofe, “Mobile fog: A programming model for large-scale applications
on the internet of things,” in Proc. MCC Workshop, 2013, pp. 15–20.

[11] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task
assignment and scheduling in mobile edge clouds,” in Proc. ICNP, 2016,
pp. 1–6.

[12] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in Proc. INFOCOM, 2016.

[13] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in Proc. INFOCOM, 2016.

[14] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Networking,
2015.

[15] H. Tan, Z. Han, X.-A. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in Proc. INFOCOM, 2017.

[16] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in Proc. ICDCS,
June 2017, pp. 1281–1290.

[17] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
Proc. INFOCOM, 2018.

[18] E. Borgia, “The internet of things vision: Key features, applications and
open issues,” Computer Communications, vol. 54, pp. 1–31, 2014.

[19] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of
things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116, Aug
2016.

[20] J. M. Schleicher, M. Vögler, S. Dustdar, and C. Inzinger, “Enabling
a smart city application ecosystem: Requirements and architectural
aspects,” IEEE Internet Computing, vol. 20, no. 2, pp. 58–65, 2016.

[21] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog computing for sustainable smart cities: A survey,” ACM Comput.
Surv., vol. 50, no. 3, pp. 32:1–32:43, Jun. 2017.

[22] C. Meurisch, T. A. B. Nguyen, J. Gedeon, F. Konhauser, M. Schmittner,
S. Niemczyk, S. Wullkotte, and M. Mühlhäuser, “Upgrading wireless
home routers as emergency cloudlet and secure DTN communication
bridge,” in Proc. ICCCN, 2017, pp. 1–2.

[23] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” IEEE Pervasive
Computing, vol. 12, no. 4, pp. 40–49, Oct 2013.

[24] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. MobiSys, 2014, pp.
68–81.

[25] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[26] L. Ma, S.Yi, and Q. Li, “Efficient Service Handoff Across Edge Servers
via Docker Container Migration,” in Proc. SEC, 2017.

[27] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge,” in Proc. SEC, 2016, pp.
1–13.

[28] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking : A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14 – 76, 2015.

[29] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform handling and
abstraction of nfv hardware accelerators,” IEEE Network, vol. 29, no. 3,
pp. 22–29, 2015.

[30] L. Nobach, B. Rudolph, and D. Hausheer, “Benefits of conditional FPGA
provisioning for virtualized network functions,” in Proc. Netsys, 2017,
pp. 1–6.

[31] J. Heuschkel, I. Schweizer, and M. Mühlhäuser, “Virtualstack: A frame-
work for protocol stack virtualization at the edge,” in Proc. LCN, 2015,
pp. 386–389.

[32] J. Heuschkel, M. Stein, L. Wang, and M. Mühlhäuser, “Beyond the core:
Enabling software-defined control at the network edge,” in Proc. Netsys,
2017, pp. 1–6.

[33] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of fog
computing and its security issues,” Concurr. Comput.: Pract. Exper.,
vol. 28, no. 10, pp. 2991–3005, 2016.

4

FogFrame: IoT Service Deployment and Execution
in the Fog

Olena Skarlat∗, Kevin Bachmann‡, and Stefan Schulte∗
Distributed Systems Group, TU Wien, Austria

∗Email: {o.skarlat, s.schulte}@infosys.tuwien.ac.at
‡ kevin.bachmann@gmx.at

Abstract—Despite existing theoretical foundations, the adop-
tion of fog computing is still at its very beginning. A particular
research challenge is the combination of decentralized data
processing needed for Internet of Things (IoT) services with
the benefits of fog computing. In this paper, we consider fog
computing as an umbrella paradigm that comprises three levels of
resources in the network: IoT devices, edge and cloud resources.
These resources have become a foundation for a fog landscape.
In this work, we address questions of how to virtualize resources
in the fog landscape, how to control the fog landscape, and how
to deploy and execute services in the fog landscape. To address
these questions, we present the architecture and implementation
details of a fog computing framework, called FogFrame.

I. INTRODUCTION

The support of decentralized processing of data on Internet
of Things (IoT) devices in combination with the benefits of
cloud technologies and virtualization has been identified as a
promising approach to reduce communication overheads and
data transfer times in the IoT [1]. For this, it is necessary to
move parts of the computational and storage resources, needed
to execute IoT services, closer to the edge of the network [2].
Hence, a coordinated control over the IoT landscape and
virtualization of IoT resources has to be established. We follow
the fog computing definition of the OpenFog consortium [3]
where fog computing operates in cloud-to-thing-continuum. To
establish such a coordinated control over the cloud-to-thing
continuum, it is necessary to develop distributed execution
environment which aims to integrate available edge and cloud
resources into a fog landscape, provide necessary resource vir-
tualization mechanisms, manage resources of the volatile fog
landscape, and optimize their consumption. Therefore, in this
work, we identify and answer the following research questions:
(i) What are the mechanisms to provide virtualization of IoT
resources? (ii) What are the methodologies and tools to realize
the software environment that manages the fog landscape and
executes IoT services? (iii) How to optimize fog resource
provisioning?

We answer these questions by means of a fog computing
framework called FogFrame [4]. This framework aims to
become a testbed for researchers giving the opportunity to
implement and evaluate various policies and mechanisms in
the real-world fog landscape based on Raspberry Pi units. The
framework provides mechanisms to execute services and con-
trol the fog landscape, to place, deploy and migrate services,
and to reconfigure the fog landscape infrastructure, optimize

resource provisioning. With regard to resource provisioning,
in FogFrame several approaches have been designed and
implemented to (i) analyze resource utilization within the fog
landscape, (ii) create a service placement plan to allocate
resources for services, and (iii) perform infrastructural changes
and monitoring in the fog landscape.

The remainder of this paper is organized as follows: First,
we explain a resource model of a fog landscape in Section II
and FogFrame system architecture in Section III. Next, in
Section IV, we discuss the service deployment issues related
to the heterogeneous nature of the fog landscape. We shortly
elaborate on the state-of-the-art work in the area of fog
computing frameworks in Section V. Finally, in Section VI
we conclude the paper and highlight our future work.

II. ARCHITECTURE OF A FOG LANDSCAPE

To discuss a resource model of a fog landscape, we use the
notion of fog colonies (Fig. 1). At the bottom of a fog colony,
there are ‘thin’ IoT devices, e.g., sensors and actuators. These
IoT devices are connected to ‘fat’ edge devices, which have
computational power and execute services in the fog colony.
We call such ‘fat’ edge devices fog cells. In each colony there
is exactly one head fog cell called fog control node, which
controls and orchestrates fog cells in its colony and performs
dynamic service placement. Such a hierarchical construct of
edge devices forms a fog colony. Fog colonies are intercon-
nected between each other via their corresponding fog control
nodes. The communication layer between a fog landscape and
the cloud is provided by a cloud-fog control middleware. Every
fog colony connects to the cloud-fog control middleware via
its fog control node.

Based on this concept of fog colonies, we are able to orches-
trate fog cells and to provide optimal resource provisioning
and service placement approaches, i.e., a solution on how to
place services on virtualized resources in a fog landscape. For
this, we formalized an optimization problem that maximizes
the utilization of existing resources in the fog and adheres
to the Quality of Service (QoS) parameters of services. To
solve the proposed optimization problem, we apply different
approaches, namely the exact optimization method and its
approximation through a greedy first-fit heuristic and a ge-
netic algorithm. Also, we compared the results to a classical
approach that neglects fog resources and runs all services in
a centralized cloud.

5

IoT

Edge
Fog Colony

CloudStorage

Fog Colony

Fog CellFog Cell

IoT
device

IoT
device

IoT
device

IoT
device

IoT
device

IoT
device

Compute Units

Cloud–Fog Control Middleware

Fog Cell Fog Cell

Fog Control Node Fog Control Node

 F
o
g
 L

a
n
d

s
c
a
p
e

Fig. 1. Fog Landscape Overview

 Fog Cell

Reasoner
R

Shared
Storage

Watchdog

Compute
Unit

Service
Registry

Fog Action
Control

 Computational
 Components
 Storage
 Components

 Networking
 Components

API

 Exposed
 Interfaces

 Consumed
 Interfaces

API

Monitor

Propagation
Component

 Fog
 Control Node
 ExtensionsR

R

R

RDatabase

Fig. 2. Fog Cell and Fog Control Node Architecture

At first, we simulated such a fog landscape by the means
of modeling frameworks CloudSim [5] and iFogSim [6] and
evaluated the model with the capabilities of those modeling
frameworks [7], [8], [9] with regard to deployment times
of applications, adherence to QoS parameters, utilization of
resources, and cost of execution. Afterwards, the architecture
and functionalities of a fog landscape have been implemented
in a fog computing framework, called FogFrame [4].

III. FOG COMPUTING FRAMEWORK

In this section, we discuss the architecture and implemen-
tation details of FogFrame. Service deployment and execution
have to be performed both in fog colonies and cloud resources.
We support a hierarchy of fog colonies by the means of the
cloud-fog control middleware. As was mentioned before, the
further layers of the hierarchy are fog control nodes, fog cells,
and finally IoT devices at the very bottom of the hierarchy (see
Fig. 1).

The cloud-fog control middleware is responsible for the
execution of applications in the cloud and support of all con-
nected fog colonies. Such support is performed continuously
or on-demand, depending on system events, e.g., if new fog
cells appear, or in order to recover after faults of fog cells.
It has to be noted that the cloud-fog control middleware can
overrule fog control nodes in fog colonies, but the latter may
also act autonomously in case no middleware is available.

The cloud-fog control middleware can either be instantiated
in a cloud VM, or any device at the edge of the network,
which has an established connection with fog colonies and
the cloud provider. The cloud-fog control middleware has to
be supplemented with valid authentication credentials, e.g., in
the case of using AWS services, the AWS credentials has to
be provided.

Fog cells are software components which serve as access
points allowing to control and monitor the underlying IoT
devices, i.e., sensors and actuators. The architecture of a
fog cell is presented on the right hand side of Fig. 2. The
database stores data about received requests, current system
utilization and monitoring data. We use a Redis database,
which has to be instantiated in a Docker container on the
same host as the fog cell. The fog action control performs
actions according to the service placement plan produced by
the fog control node, e.g., to deploy and start a particular
service. The compute unit provides the actual computational
resources for the deployment and execution of services. The
monitor observes service executions. Fog cells expose REST
APIs for data transfer and control actions, i.e., instantiating,
starting, stopping, and deleting services.

To enable a fog cell in a fog colony, the fog cell has to
be supplemented with a property file containing: (i) the IP
address and port of the cloud-fog control middleware to be
able to request pairing with other devices in the fog landscape;
(ii) the IP address and port of a fallback control node as a
fallback mechanism in the case when the cloud-fog control
middleware is unavailable; (iii) its own IP address to enable
communication in the network; (iv) coordinates of the fog cell
in a fog landscape to enable pairing with the closest fog control
node; and (iv) service types which the fog cell can execute. In
future work, obtaining and changing these properties can be
automated.

Fog control nodes are fog cells with extended function-
ality which support and control their own fog colonies. In
contrast to fog cells, fog control nodes receive requests for
execution of IoT applications from users. The fog control
node is able to propagate requests for service placement to
the cloud-fog control middleware or to other fog colonies.
For this, fog control nodes use reasoning mechanisms for
service placement and resource allocation. On the left-hand
side of Fig. 2, the extensions needed for fog control nodes
are shown. The reasoner implements the service placement
and resource provisioning policies. In the reasoner, several
different approaches are realized, i.e., a greedy first-fit heuristic
algorithm, an exact optimization algorithm, and a genetic
algorithm. These algorithms are based on the optimization
problem which we described in our former works in details [7],
[8], [9]. If the considered fog colony does not provide enough
resources for service execution, requests are propagated to
other fog colonies by the propagation component. The watch-
dog monitors the utilization of the fog colony. This data is also
part of an input for the reasoner to perform calculations. The
service registry stores service implementations and enables the
fog action control to search for services and to deploy them on

6

Hardware (Raspberry Pi3)

Operating System (Hypriot)

Fog

Cell

Local

Storage

Service

1

Service

n
...

D
o

c
k
e
r

H
o

o
k

Fig. 3. Fog cell deployment

suitable fog cells. The service registry is located in the storage
unit of control nodes, since storing service implementations is
resource-consuming. For the service registry, we use the shared
Redis data storage, running in an own Docker container on the
host device of a fog control node. The database additionally
stores service placement plans produced by the reasoner.
Similarly to a fog cell, we use again a Redis database, which
is instantiated in a Docker container on the same host as the
fog control node. The fog action control performs the service
placement according to the plan produced by the reasoner.
Apart from properties of a fog cell, properties of a fog control
node include a location range, which is reported to the cloud-
fog middleware to enable calculation of the closest parent fog
control node for fog cells entering the fog landscape.

IV. SERVICE DEPLOYMENT IN THE FOG

During the implementation of FogFrame, we tackled a
problem of how to deploy services in the heterogeneous
environment of a fog landscape, i.e., in fog colonies and in
the cloud. In this section, we present our findings.

Deployment in fog colonies. Services are executed either
in fog colonies, or in the cloud. Because fog colonies and
cloud resources are different in processor and system ar-
chitecture, service deployment in fog colonies differs from
service deployment in the cloud. In our work, to create fog
colonies we use Raspberry Pi units with the ARM processor
architecture and a Hypriot operating system. In order to deploy
services, Docker containers are used. Therefore, the base
Docker images of services to be executed in fog colonies have
to be compatible with the ARM processor architecture. These
images have to be stored in a repository which is shared in
a fog colony between fog cells and a fog control node of the
fog colony, or between several fog colonies. The fog cell and
fog control node are applications running inside own Docker
containers in the Docker runtime of a Raspberry Pi which is
provided by the host operating system of the fog device. To
make it possible for fog cells and fog control nodes to deploy,
start, and stop further Docker containers on the host device,
we make use of a the Docker hook (see Fig. 3 and 4) [4].
This Docker hook resolves a problem of instantiating other
Docker containers on the Docker runtime of the host device
from inside the Docker containers of the running fog cells and
fog control nodes.

Hardware (Raspberry Pi3)

Operating System (Hypriot)

Fog

Control

Node

Local

Storage

 Shared

Storage

Service

1

Service

n
...

D
o

c
k
e
r

H
o

o
k

Fig. 4. Fog control node deployment

Deployment in the cloud. Service deployment in the cloud
is different from the approach presented above. Services are
also deployed in Docker containers, but on VMs which need to
be deployed and managed. VMs in the cloud have a different
processor architecture compared to Raspberry Pi units. Each
cloud VM has a CoreOS1 operating system with a Docker
runtime preconfigured. Docker images have to be based on
different base images compared to those images running in
fog colonies, and have to be stored in a centralized repository,
e.g., Docker Hub2. When a service request is propagated to
the cloud-fog control middleware from a fog colony and there
is no deployed VM in the cloud, the cloud service leases and
starts a new VM. If a VM is already running, the Docker
container which corresponds to the necessary service of the
service request is deployed on that VM. The containers are
deployed on a cloud VM until a certain limit of containers
is reached to ensure the stability of the environment. If there
is no free space for another container, a new VM is leased.
After execution, when some containers are stopped, and the
VM is running with no load, the VM is stopped and the cloud
resources are released.

V. RELATED WORK

Being a relatively new topic, a lot of research work in the
field of fog computing is based on simulation environments.
Therefore, in this section, we cover the existing real-world
prototypes and testbeds for service deployment and execution
in fog computing.

An IoT ecosystem for elastic stream processing called VISP
is proposed in the work of Hochreiner et al. [10]. It allows
users to create complex network topologies. VISP analyzes
these network topologies and performs constraint-based ser-
vice placement. Compared to our work, this framework is
limited to using cloud resourced. Another framework called
DIANE is proposed in the work of Vögler et al. [11]. The
framework deploys topologies for IoT applications dynami-
cally and monitors the deployment infrastructure. While in
DIANE, only rule-based algorithm is used for resource pro-
visioning, in our work we formulate a concrete optimization
problem.

1https://coreos.com/
2https://hub.docker.com/

7

de Brito et al. [12] proposes a mechanism to orchestrate
microservices in the fog. The architecture of the prototype
consists of a fog orchestration agent and for orchestrator. The
fog orchestration agent resembles our notion of fog cells, and
the fog orchestrator has the same purpose as a fog control
node. The prototype is implemented by the means of Docker
Swarm and OpenMTC M2M Framework in the Fraunhofer
FOKUS IoT testbed. Compared to their work, we consider
concrete communication mechanisms in a fog landscape.

In the work of Brogi et al. [13], the prototype FogTorch
is presented which is a tool for resource provisioning. The
specification of an infrastructure, definition of an application
to be deployed, binding of fog devices and deployment policy
are provided as an input to FogTorch. After applying various
algorithms, FogTorch outputs eligible deployment plans. In
our work, we consider multiple fog colonies, and formalize the
optimization problem to place services between those colonies.

Vandeputte et al. [14] introduce a ranking-based ‘service
probe’ to assess effectiveness of services. Those probes are
accounted for in the constraints of optimization problems. This
approach is evaluated by the means of a FUSION framework
which is a testbed that provides flexible testing of approaches
on the computational nodes of various hardware generations.
In our work, we have different reasoning mechanisms, and
evaluate them based on a reals-world testbed.

In our previous works [7], [8], we have modeled and
simulated a fog landscape by the means of CloudSim and
iFogSim. As presented in this paper, we have implemented
out model and the functonalities of a fog landscape in the fog
computing framework FogFrame. The framework is applied as
a foundation for our work on resource provisioning and service
placement mechanisms, infrastructure replanning policies, and
fault tolerance mechanisms.

VI. CONCLUSION

In this paper, we considered open issues in fog computing
dealing with virtualization of fog resources, a flexible and
dynamic software environment to execute services, and service
placement and execution in a fog landscape. These issues are
addressed by the fog computing framework FogFrame. The
framework is built upon light-weight technologies and loosely-
coupled components to establish a stable and fault-tolerant
distributed system.

We have identified that service execution in a fog land-
scape in practice requires compatibility with according com-
putational environments, i.e., edge and cloud resources. To
enable service execution in both these environments, different
container images have to be used, as well as two different
service repositories have to be established, i.e., shared service
repository for fog colonies, and a separate repository contain-
ing images of services executable in the cloud. These aspects
are also addressed in FogFrame.

In the future, we will continue to work with the fog
computing framework. The architecture can be enhanced by
fault tolerance mechanisms to account for mobility in the fog
landscape. Another aspect of our future work is the systematic

observation of the fog landscape to obtain real-world net-
work data to evaluate the behavior of resource provisioning
approaches.

ACKNOWLEDGMENT

This paper is supported by TU Wien research funds. This
work is partially supported by the Commission of the Euro-
pean Union within the CREMA H2020-RIA project (Grant
agreement no. 637066).

REFERENCES

[1] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing:
A Platform for Internet of Things and Analytics,” in Big Data and
Internet of Things: A Roadmap for Smart Environments, ser. Studies
in Computational Intelligence. Springer, March 2014, vol. 546, pp.
169–186.

[2] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog Computing: Principles, Architectures, and Applications,” in Inter-
net of Things: Principles and Paradigms. Morgan Kaufmann, 2016,
ch. 4, pp. 61–75.

[3] “OpenFog Reference Architecture for Fog Computing,” https://www.
openfogconsortium.org/ra/, Feb. 2017.

[4] K. Bachmann, “Design and Implementation of a Fog Computing Frame-
work,” Master’s thesis, Vienna University of Technology (TU Wien),
Vienna, Austria, 2017.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Softw.
Pract. Exp., vol. 41, pp. 23–50, 2011.

[6] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, Edge and Fog computing Environments,” Softw.
Pract. Exp., vol. 47, pp. 1275–1296, 2017.

[7] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource Provi-
sioning for IoT Services in the Fog,” in 9th IEEE Int. Conf. on Service
Oriented Computing and Applications (SOCA 2016). Hong Kong,
China: IEEE, 2016, pp. 32–39.

[8] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-
aware Fog Service Placement,” in 1st IEEE Int. Conf. on Fog and Edge
Computing (ICFEC 2017). Madrid, Spain: IEEE, 2017, pp. 89–96.

[9] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” SOCA J., pp. 1–17, 2017.

[10] C. Hochreiner, M. Vögler, P. Waibel, and S. Dustdar, “VISP: An Ecosys-
tem for Elastic Data Stream Processing for the Internet of Things,” in
2016 IEEE 20th Int. Enterprise Distributed Object Computing Conf.
(EDOC). Vienna, Austia: IEEE, 2016, pp. 1–11.

[11] M. Vögler, J. Schleicher, C. Inzinger, and S. Dustdar, “Optimizing
Elastic IoT Application Deployments,” Trans. Serv. Comput., vol. PP,
no. 99, pp. 1–14, 2016.

[12] M. S. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls,
O. Keilsa, and F. Schreiner, “A Service Orchestration Architecture for
Fog-enabled Infrastructures,” in 2nd Int. Conf. on Fog and Mobile Edge
Computing (FMEC’17). Valencia, Spain: IEEE, 2017, pp. 127–132.

[13] A. Brogi and S. Forti, “QoS-aware Deployment of IoT Applications
Through the Fog,” IEEE Internet of Things Journal, vol. PP, no. 99, pp.
1–8, May 2017.

[14] F. Vandeputte, L. Vermoesen, D. Griffin, T. K. Phan, M. Rio, P. Simoens,
P. Smet, D. Bursztynowski, F. Schamel, and M. Franke, “Evaluator
Services for Optimised Service Placement in Distributed Heterogeneous
Cloud Infrastructures,” in 24th European Conf. on Networks and Com-
munications (EuCNC). Paris, France: IEEE, June 2015, pp. 439–444.

8

Towards Predicting Resource Demands and
Performance of Distributed Cloud Services

Sevil Dräxler, Manuel Peuster, Marvin Illian, Holger Karl
Paderborn University, Paderborn, Germany

{sevil.draexler, manuel.peuster, millian, holger.karl}@uni-paderborn.de

Abstract—Understanding the behavior of distributed cloud
service components in different load situations is important for
efficient and automatic management and orchestration of these
services. For this purpose and for practical research in distributed
cloud computing in general, there is need for benchmarks and
experimental data. In this paper, we describe our experiments
for characterizing the relationship between resource demands of
application components and the expected performance of applica-
tions. We present initial results for predicting the interdependence
between resource demands and performance characteristics using
support vector regression and polynomial regression models. The
data gathered from our experiments is publicly available.

I. INTRODUCTION

Distributed cloud services like Internet video streaming
consist of several components like encoders, caches or content
servers. These services run on top of an infrastructure, typi-
cally managed by an orchestration system that places, deploys,
and scales the service and its components. For example, to
ensure that the users are served with an acceptable latency,
the orchestration system must instantiate the right number of
instances for service components in the right locations in the
underlying network. The right amount of resources needs to be
calculated and allocated to each instance so that the fluctuating
amount of load can be handled without violating any service-
level agreements or exceeding the capacity constraints of
the underlying network. To do so, the orchestration system
needs knowledge about the distributed cloud service, typically
provided by a service’s descriptors.

Existing descriptors for service components rely on the
knowledge of the component developer to provide the exact
and specific amount of resources required to handle a given
load. Service components can then be deployed with the
requested amount of resources and scaled out/in, e.g., upon
reaching pre-defined thresholds. This approach can result in
over-/under-estimating the required resources and lead to sub-
optimal states for both the service and the underlying network.

In previous work [1], we have proposed the more flexi-
ble service template embedding approach for optimizing the
scaling and placement of services in a single decision step.
In this approach, a service template describes the required
components of a distributed cloud service and the desired
connection patterns among them. Additionally, the template
specifies the resource demands of each service component as
a function of the load it needs to handle. The load can be
characterized, for example, in terms of the data rate on each
incoming connection point of the service component. Using

such a service template and based on the current load, the
components are scaled out and embedded into the network.

To use the flexibility offered by the service template em-
bedding approach, it is important to specify the relationship
between the resource demands of service components (e.g.,
CPU, memory) and the values of performance metrics of
interest for each service (e.g., frame rate, video resolution).
This is cumbersome to do for a developer. By integrating
an automatic profiling step [2], [3] in the management and
orchestration systems, these relationships can be identified
and used for optimizing the placement and scaling of the
services, as well as many other applications, without the
service developers having to understand and estimate them.

Such an automatic profiling system could be validated by
testing it against well-known services with different perfor-
mance characteristics. However, there is a pervasive lack
of publicly available benchmarks and experimental data for
components of distributed cloud services. To overcome this
lack, we have set up a testbed to characterize such relationships
in a video streaming scenario, which is a common application
deployed on distributed networks. We present some results
from analyzing the data from these experiments. We will use
this data to demonstrate the feasibility of our service template
embedding approach; but it should also be useful for other
research activities in this field. The data we have gathered
from our experiments is publicly available [4].

After an overview of existing work for profiling service
components (Section II), we describe our experimental setup
(Section III) and introduce our prediction models based on
polynomial regression and support vector regression (Sec-
tion IV).

II. RELATED WORK

In this section, we give an overview of related approaches to
the two aspects of our work, namely, predicting resource de-
mands for achieving a certain performance and estimating the
achievable performance under a given resource configuration.

Gmach et al. [5] determine the minimum resource needs
to run a certain workload, based on the distribution of his-
toric traces in a data center setup. Rasoolzadeh et al. [6]
focus on optimizing energy consumption by estimating and
adjusting the CPU cycles required for video encoding. Fan
and Wang [7] compare responsiveness of web servers under a
heavy request load, in a bare-metal environment. In contrast

9

TABLE I
VIDEOS USED AS INPUT FOR THE ENCODING PROCESS

Name Frames/s Mb/s Characteristics

bunny [11] 60 3.826 vibrant colors, balanced pace
docu 1 [12] 25 14.333 faded colors, grainy, fixed camera
docu 2 [13] 29.97 3.453 balanced colors, balanced pace
game [14] 60 5.4533 vibrant colors, fast
noise [15] 25 13.173 monochrome, no recognizable pattern

to these attempts, our work focuses on characterizing resource
requirements to fulfill a certain target performance.

Xu et al. [8] model the relationship between throughput
and response time of a web server, for request rates below
the peak load. In their experiments, they vary the memory
allocation and the number of CPU time slices before po-
tentially being preempted. Do et al. [9] focus on predicting
the performance of applications on virtual machines (VMs).
Given a target performance, their models determine whether
or not it can be achieved on a certain system. Giannakopoulos
et al. [10] approximate service performance, given a certain
hardware configuration. They use neural networks and linear
regression and approximate the performance using a Gaussian
distribution. We also approximate and verify functions that
take available resources as input and yield possible values for
certain performance metrics. Additionally, we use SVR as a
machine learning technique and polynomial regression.

In a previous related work [2], we have analyzed the practi-
cal requirements of a profiling system to generate performance
behavior information, which can be used to support resource
allocation decisions for virtual network functions in service
chains. This is a work in progress and we are working on
integrating the profiling information into service orchestration,
to optimize flexible placement and scaling decisions.

III. METHODOLOGY

We have done test runs using a video encoder function and
a cache function. Because of space limitations, we only show
a subset of results from analyzing the video encoder.

We have performed our experiments on top of an OpenStack
testbed. The OpenStack controller and the video encoder func-
tion were deployed on two different physical machines to avoid
resource allocation conflicts among different functionalities.
We have deployed the video encoding function as a virtual
machine running ffmpeg for the actual encoding and ffserver
for distributing the video stream. We have collected CPU and
memory utilization data once per second using the Unix tool
ps. It is a lightweight tool that provides the percentage of used
CPU time and memory utilization for each process.

As the resource demands during the encoding process might
vary based on the video, we have used multiple videos with
different frames per seconds, average data rates, and visual
characteristics, as described in Table I. Each video has a
resolution of 1920x1080 and 60 seconds duration.

We used the MP4 format for the source videos, with the
video stream encoded in H.264 format, the standard video

codec for the distribution of video content over Internet. Data
rate of the videos including the audio ranges from 628 Kb/s
to 101,628 Kb/s. We used the encoder x264, which requires
a preset value for the trade-off between video quality and
encoding time. We used the value medium for videos with
low bit rates and good visual quality.

For each video file, described in Table I, we altered the
following variables, resulting in a total of 10,500 test runs:

• Resolution: 426x240, 640x360, 854x480, 1280x720,
1920x1080

• Frame rates: 24, 30, 40, 50, 60
• Bit rates: 500 Kb/s to 10500 Kb/s in steps of 500
• Number of vCPUs: 1 to 4
We present the results of these experiments, including anal-

ysis of CPU utilization, memory consumption, and achievable
frame rates in the following sections. To analyze the data,
we have used support vector regression (SVR) [16] and
polynomial regression (PR), as two fundamentally different
methods with different advantages and limitations.

PR can be applied to linear and non-linear problems by
adjusting the degree of the polynomial. SVR is a machine
learning technique which works for both linear and non-linear
problems. SVR can be applied reliably to avoid producing
over-fitted functions. PR requires manual examination of the
results to decrease the degree of the polynomial in case of
over-fitting. When using SVR, only the so-called support
vectors, which are a subset of the input data, have influence
on the model. Therefore, wrong parameters can lead to results
that ignore important input data points. To avoid these effects,
careful parameter tuning is necessary for both approaches.

The general goal of the SVR approach is to find a function
that gives estimated values with a deviation of at most ε
from the actual training data points. To relax the requirements,
slight errors are also allowed in the model. These errors are
penalized using a value C, which defines the trade-off between
the allowed deviations and the complexity of the model. We
have tested and validated our models using different values for
these parameters, to get balanced values for our predictions.

We have evaluated the quality of our models using the mean
squared error (MSE). The error is a nonnegative value and
represents how much predictions of a model deviate from
the actual values they should predict. We have additionally
evaluated the visual plots of the models to make sure they are
not over- or under-fitting and adapted them if necessary.

IV. ANALYSIS

In this section, we present examples of the prediction
models we have developed. A complete report of the models
is available as a bachelor’s thesis [17].

We used SVR- and PR-based models for predicting the
minimum required vCPUs. The training data we have used for
creating the SVR-based model consists of the test runs where
the frame rate was never below the targeted frame rate, using
the minimum number of vCPUs among all such observations.
We have set C=106 and ε=10−12 after testing a wide range of
values for these parameters and evaluating them based on MSE

10

and their visual representations. Figure 1(a) shows a plot for
predicting the number of vCPUs based on bit rate, resolution,
and frame rate. To be able to visualize this 4-dimensional
relationship, here we have fixed the bit rate to 5500 Kb/s.

For the PR-based approach, we have tested degrees 0 to
10 for the polynomial. While degree 7 gave the lowest mean
squared error, the plots suggest a highly over-fitted model
using this degree. Figure 1(b) shows the PR model (for bit
rate 5500 Kb/s) using the following 1st-degree polynomial,
which resulted in the best trade-off between MSE value and
observable over-fitting. c(b, r, f) represents the number of
vCPUs, given bit rate b, resolution r, and frame rate f 1. Black
dots represent the measured data points.

c(b, r, f) = 3.29 · r + 1.77 · f + 1.10 · b− 0.96

Comparing the mean squared errors and different plots of
the SVR and PR models, the SVR-based approach gives better
predictions for the minimum number of required vCPUs.

We have also developed additional SVR and PR models to
predict the minimum number of required vCPUs c based on
the target bit rate b, resolution r, or frame rate f individually.
We omit the corresponding plots due to space constraints and
present only the corresponding functions as follows.

c(b) = 15.12 · b5 − 50.31 · b4 + 62.12 · b3 − 35.20 · b2
+ 9.58 · b+ 0.10

c(f) = −0.017 · f2 + 0.93 · f + 1.70

c(r) = −111.57 · r2 + 35.55 · r + 0.73

Predicting and allocating the right amount of memory to
the video encoding and streaming VM ensures that no data is
swapped into the hard drive and eliminates this performance-
limiting factor for the video streaming application. Similar
to the prediction models for the number of required vCPUs,
we have developed SVR and PR models for predicting the
maximum amount of required memory.

As training data for the SVR-based prediction model, we
have taken the used memory in test runs where the minimum
number of vCPUs are used and no violation of the target
values for bit rate, resolution, and frame rate has occurred
for all video files. Figure 2(a) shows the SVR-based model
with C=10 and ε=10, for bit rate of 5500 Kb/s. With these
values we could observe the lowest MSE. Figure 2(b) shows
the PR-based model using a 1st-degree polynomial, which
resulted in the best trade-off between the MSE and the over-
fitting detectable in different plots. In this function, m(b, r, f)
represents the maximum required memory (in MB) to achieve
a given bit rate b, resolution r, and frame rate f .

1All coefficients in this and all following functions have been rounded to 2
decimal points. b is given as Kb/s, r as height of the video in pixels assuming
a 16:9 aspect ratio, and f as frames/s. Moreover, we have divided the values
of these parameters by powers of 10 in our experiments, such that all values
are between 0 and 1, to avoid computational errors we were observing in our
SVR models using the actual values.

m(b, r, f) = 472.54 · r + 196.77 · f + 18.38 · b− 130.51

The SVR-based model predicts the maximum required
memory with a lower mean squared error than the PR-
based model. However, examining different plots for both
models shows that the predictions from both models cover
the measured data points similarly well in most cases.

Using similar approaches, we have developed prediction
models for the achievable frame rate based on bit rate, res-
olution, and the number of available vCPUs. In our test runs,
we have observed seconds where no frames were encoded,
e.g., because of encoding delays. To prevent having these
values distorting the prediction model, we have calculated
the frame rate per configuration with a confidence interval at
95 % confidence. For this, we have taken all values for frame
rate f(r, b, c) over all encoding processes using all values for
resolution (r), bit rate (b), number of vCPUs (c), and all video
files. Instead of the actual minimum value for observed frame
rate, we have used the lower bound of the confidence interval
as the minimum observed frame rate for training our model.

Figure 3(a) shows a plot for the SVR-based prediction, using
C = 108 and ε = 10−7, for bit rate 5500 Kb/s. Figure 3(b)
shows the PR-based prediction using a 4th-degree polynomial
function. The function has 36 coefficients, so we omit it in
the paper. As shown in the plots, both approaches give only
partially reasonable predictions and cannot adapt to all values.
The reason for this could be the large diversity in the observed
values for different metrics. The model might be improved by
analyzing different subsets of the gathered data individually,
for example, by separating the data gathered with different
number of vCPUs.

V. CONCLUSION AND FUTURE WORK

This work is an attempt to provide some insights into the
performance and resource demands of components of a video
streaming service. We have done experiments using a video
encoding and streaming function, as well as a cache function
under different resource constraints and different performance
targets. Our models show the feasibility of characterizing
the resource demands and performance metric values of dis-
tributed cloud service components. Our analysis shows that
these relationships are non-trivial even for simple applications,
reinforcing the need for experimental data.

As our models are based on data from specific hardware
settings, a more generic model can be obtained by normalizing
the results based on experiments in different environments.

ACKNOWLEDGMENTS

This work has been supported by the 5G-PICTURE project,
co-funded by the European Commission 5G-PPP Programme
under grant number 762057. This work has been performed
in the framework of the German Research Foundation (DFG)
within the Collaborative Research Center On-The-Fly Com-
puting (SFB 901).

11

(a) SVR approach (b) PR approach

Fig. 1. Prediction of required vCPUs based on bit rate, resolution, and frame rate, shown for bit rate of 5500 Kb/s.

(a) SVR approach (b) PR approach

Fig. 2. Prediction of required memory based on bit rate, resolution, and frame rate, shown for bit rate of 5500 Kb/s.

(a) SVR approach (b) PR approach

Fig. 3. Prediction of achievable frame rate based on bit rate, resolution, and number of vCPUs, shown for bit rate of 5500 Kb/s.

REFERENCES

[1] S. Dräxler, H. Karl, and Z. Á. Mann, “Joint optimization of scaling and
placement of virtual network services,” in IEEE/ACM CCGrid, 2017.

[2] M. Peuster and H. Karl, “Understand your chains: Towards performance
profile-based network service management,” in IEEE EWSDN, 2016.

[3] ——, “Profile your chains, not functions: Automated network service
profiling in devops environments,” in IEEE NFV-SDN, 2017.

[4] “Data from the experiments in this paper.” [Online]. Available:
https://uni-paderborn.sciebo.de/index.php/s/G9q2hmUNg4n8LEg

[5] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity manage-
ment and demand prediction for next generation data centers,” in IEEE
ICWS, 2007.

[6] S. Rasoolzadeh, M. Saedpanah, and M. R. Hashemi, “Estimating appli-
cation workload using hardware performance counters in real-time video
encoding,” in 7th Int. Symposium on Telecommunications (IST), 2014.

[7] Q. Fan and Q. Wang, “Performance comparison of web servers with
different architectures: A case study using high concurrency workload,”
in IEEE HotWeb, 2015.

[8] X. Xu, T. Xu, Y. Yin, and J. Wan, “Performance evaluation model of
web servers based on response time,” in IEEE Conf. Anthology, 2013.

[9] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and B. B. Zhou,
“Profiling applications for virtual machine placement in clouds,” in IEEE
CLOUD, 2011.

[10] I. Giannakopoulos, D. Tsoumakos, N. Papailiou, and N. Koziris, “Panic:
Modeling application performance over virtualized resources,” in IEEE
Int. Conf. on Cloud Engineering, 2015.

[11] [Online]. Available: https://peach.blender.org/download/
[12] [Online]. Available: http://www.imdb.com/title/tt2608732/
[13] [Online]. Available: http://www.imdb.com/title/tt3996164/
[14] [Online]. Available: https://www.youtube.com/watch?v=ERTIWNfx93w
[15] [Online]. Available: https://www.youtube.com/watch?v=

DH0BQtwEAsMw
[16] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”

Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.
[17] M. Illian, “Prediction of resource requirements and performance of

virtualised network functions in a video streaming context,” Bachelor’s
Thesis, Paderborn University, 2017.

12

A Distributed Protocol for Crowd Counting in
Urban Environments

Peter Danielis∗, Sylvia T. Kouyoumdjieva† and Gunnar Karlsson†
∗Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany

†ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, Sweden
E-mail: peter.danielis@uni-rostock.de,{stkou,gk}@kth.se

Abstract—Monitoring, control, and estimation of spontaneous
crowd formations in cities, e.g., during open-air festivals or rush
hour, are necessary actions to be taken by city administration.
The most common way to implement these measures is via
installation of observation cameras for the purpose of crowd
counting. However, cameras are more suitable for intensive
surveillance of restricted hot spots during well-defined time
periods than for long-term monitoring of big areas. In this
work, we present a fully distributed crowd counting protocol
for urban environments with high crowd densities. It relies on
nodes equipped with mobile phones roaming around in an urban
area and participating in the distributed crowd estimation. Each
node collects crowd size estimates from other participants in
the system whenever in communication range and immediately
integrates these estimates into a local estimate. The objective of
the proposed protocol is to produce a precise mapping of the local
estimate to the real value. We evaluate the proposed protocol via
simulations of realistic mobility models. We demonstrate that in
dense environments the local estimate does not deviate by more
than 7%.

I. INTRODUCTION

Crowds can occur in urban environments during city fes-
tivals, sport events, rush hours, or in shopping areas. As a
result, monitoring, control, and estimation of crowd densities
and sizes are crucial for city administration, especially for
managing disaster situations. In this work, we investigate
the use case of crowd counting with particular focus on the
estimation of the size of dense crowds with hundreds of
people. Crowd counting can be applied for the purpose of
urban planning and is particularly useful if global knowledge
about the crowd size is unknown, e.g., inside a subway station.
Nowadays, observations cameras are often deployed for crowd
counting. However, the application of cameras imposes several
disadvantages. The achievable image quality depends on the
environment, in which cameras are deployed, and privacy
issues are raised. Alternative solutions execute crowd counting
based on measurements obtained from central instances or
acquired by devices carried by humans.

In this work, we introduce a fully distributed protocol
for distributed crowd counting in urban environment with
moving pedestrians. It obtains information required for the
accurate crowd estimation through mobile device-to-device
communication between the mobile phones of pedestrians and
hence does not need additional infrastructure. The proposed
protocol enables the calculation of a local estimate of the
current crowd size in an area. Note that people in a crowd

are often only temporarily connected since solely a few are in
direct communication range of each other at a point in time.
Moreover, a crowd is subject to churn, i.e., pedestrians arrive
steadily in an area, linger there for some time, and eventually
exit. Consequently, the pedestrians have to refresh their local
estimate of the crowd size continually to consider the churn.
They update their local estimates immediately as soon as they
are in range of another pedestrian by exchanging crowd size
information through any wireless communication interface on
their mobile phones.

In this extended abstract, we present selected results based
on a previously published work [1]. It was shown in [1]
that for densities above 0.1 nodes/m2, the distributed crowd
counting protocol quickly converges to precise estimates under
realistic mobility. We describe the fully distributed protocol
for crowd counting, which is able to operate in urban areas
with moving pedestrians who continually enter and leave the
area. We evaluate it by means of simulations with realistic
mobility models. In dense urban scenarios, distributed crowd
counting is able to determine precise estimates and achieves
an accuracy of at least 93%. As opposed to the state-of-art,
our protocol is able to correctly estimate the crowd size even
in highly dynamic scenarios.

II. THE DISTRIBUTED PROTOCOL FOR CROWD COUNTING

The proposed protocol works fully decentralized in that
each pedestrian determines a precise estimate of the people
in a crowd. Moving pedestrians, further referred to as nodes,
therefore continually broadcast data containing all nodes they
have got to know about (shared nodes) and who have exited
the area (left nodes) and thereby the data is distributed
epidemically. Received data of other nodes is merged with
own data in order to compute the current crowd size from the
difference of the number of shared and left nodes. Since nodes
do not only arrive in an area but also leave it after some time,
each node needs to announce its intention to exit once it enters
a specific boundary region of the area. To avoid considering
the same nodes more often than once, shared and left nodes
can be kept in bit vectors, in which a bit position denotes a
particular node. All bit positions except the one referring to
the own ID are initialized with 0s. Bit positions are set to 1
once knowledge about shared or left node is received from
another node.

13

Area under consideration

Boundary region

ID=1

ID=4
ID=2 ID=6

ID=3
ID=5

Shared-nodes bit vector 0 0 1 0 1 1
0 0 0 0 1 0Left-nodes bit vector

1ID 2 3 4 5 6

Fig. 1. An example of the execution of the proposed protocol for six moving
nodes.

In order to explain how our protocol works, we give an
example of six moving nodes in Fig. 1. If a node arrives in
an area, it enters himself into its shared-nodes vector while its
left-nodes vector remains empty. For instance, nodes 2 and 4
as well as nodes 3 and 5, have already exchanged their vectors
and hence identically estimate the crowd size. Moreover, node
6 has already exchanged its vector with node 3 and 5 before
node 5 announces its intention to leave.

Nevertheless, [2] shows that keeping crowd size estimates
in a binary bit vector does not scale well due to the fact
that the size of the bit vector grows linearly with the number
of people in a crowd. To solve this issue, we utilize D-GAP
compression [3], which has been shown to be beneficial in [4].
Bit vectors are therefore actually represented by two D-GAP
vectors. To preserve the privacy of a node, the position, in
which its information is stored in the D-GAP vectors, is
computed by a hash function like MD5, e.g., from the MAC
address of a node’s mobile phone.

III. EVALUATION SCENARIOS

In this section, we describe the realistic pedestrian scenario,
the simulation setup, and the performance metric. Mobility
scenarios are characterized by an arrival rate λ, with which
nodes arrive in an area A. They stay in the area with a lifetime
T before they exit.

A. Realistic pedestrian mobility

To model pedestrian mobility in a realistic way, we make
use of the Walkers traces [5] captured in the commercial
simulator Legion Studio [6]. Its multi-agent pedestrian model
relies on analytical and empirical models, which have been
calibrated by measurement studies. Each simulation run pro-
duces a trace file, which comprises a snapshot of the positions
of all nodes every 600 ms. Fig. 2(a) and 2(b) depict the realistic
environments considered in our evaluation: an outdoor urban
scenario, modeling a city square in central Stockholm, Sweden

(a) (b)

Fig. 2. Urban scenarios: (a) a square in downtown Stockholm, Östermalm,
and (b) a two-level subway station.

(which we later denote as the Östermalm scenario), and an
indoor scenario, recreating a two-level subway station. The
Östermalm scenario comprises a grid of interconnected streets.
Fourteen passages connect the observed area to surrounding
places. The active area, i.e., the total surface of the streets,
is 5872 m2. The nodes are continually moving and thus the
scenario exhibits high mobility. The Subway station has train
platforms connected via escalators to an entry level. Nodes
arrive on foot from any of five entries, or when a subway
arrives at the platform. The subway arrivals lead to burstiness
in the node arrivals and departures. Nodes gather while waiting
for a subway at one of the platforms, or while having a rest
in the store or the coffee shop at the entry level. The active
area is 1921 m2.

B. Simulation setup

In our evaluation scenarios, for the sake of simplicity we
suppose that all nodes carry mobile phones and all are taking
part in the crowd counting. Scenarios, in which not all people
participate or are malicious, are out of scope and left for future
work. For the evaluation, we make use of an opportunistic con-
tent distribution system in the OMNeT++ modeling framework
MiXiM [7]. Each simulation run is executed in synchronous
rounds of 600 ms which corresponds to the granularity of the
mobility traces. Nodes broadcast their shared-nodes and left-
nodes vector at the start of each round. To reduce collisions on
the wireless medium, the broadcast transmission of each node
in each round is distributed uniformly at random U(0, 500) ms.
The transmission range is set to 10 m.

C. Performance metric

We evaluate our results by means of the accuracy ∆
as performance metric. The deviation is a measure of the
accuracy of the proposed protocol, i.e., it demonstrates how
close the local estimate of a node is to the real value. Let x̂
be the local estimate and x the actual real value. Then, the
deviation is calculated as:

∆ =

∣∣∣∣
x̂− x
x

∣∣∣∣ (1)

IV. SELECTED SIMULATION RESULTS

In this section, we evaluate the accuracy of the proposed
protocol with respect to different arrival rates. We first present

14

(a)

(b)

(c)

Fig. 3. Local crowd size estimates of all nodes vs. real value for the Östermalm
scenario: (a) λ = 0.42 nodes/s, (b) λ = 0.98 nodes/s, and (c) λ = 2.1 nodes/s.

(a)

Fig. 4. Local crowd size estimates of all nodes vs. real value for the Subway
scenario.

selected results for the Östermalm scenario. Figure 3 depicts
the local estimates vs. real value over time for λ = {0.42,
0.98, 2.1} nodes/s with average node numbers of {137, 312,
614} nodes. The results confirm that in sparser scenarios,
Figure 3(a) and 3(b), the crowd estimate is often overestimated
due to poor information spreading. However, as λ increases,
the local estimate approaches the real value leading to an
accuracy of 95% in Figure 3(c) (λ = 2.1 nodes/s, average node
number = 614 nodes).

Finally in Figure 4, we show the accuracy in the Subway
scenario with an average node number of 205 nodes. We would
like to point out that the scenario is more challenging than the
Östermalm scenario due to the bursty nature of node arrivals
and departures. The results reveal that the proposed protocol
is able to correctly estimate the crowd size in the area with
deviations from the real value of no more than 7%.

V. RELATED WORK

The three different techniques that can be used for crowd
counting comprise image-based, device-free non-image based,
and device-based non-image based. Our approach falls into the
latter category since nodes carry a mobile phone and hence
we compare our protocol to device-based non-image based
techniques.

In [8] and [9], a system is described, in which users
voluntarily scan the environment for discoverable Bluetooth
devices with their mobile phones to analyze crowd conditions
in urban environments. The authors acknowledge that their
solution needs to recruit volunteers who regularly move around
the city and leave investigations on the volunteers’ number and
mobility patterns for future work. A system using audio tones
is proposed in [10]. Mobile devices receive audio frequencies
from other devices and broadcast a corresponding bit pattern
as crowd size estimate. In an experimental setup consisting
of 25 Android devices, crowd size estimates with 90% ac-
curacy are obtained while the accuracy decreases to 50%
in other scenarios. Moreover, the counting latency increases
tremendously when the number of device increases, which
makes the system unsuitable for large-scale scenarios. An
approach to compute concurrent estimates in dense wireless
networks with up to 100 nodes is proposed in [11]. This
solution uses the rendezvous time to capture the density of
the environment. Although mobility is taken into account,
the evaluation setup solely comprises a few moving nodes.
The work of Khan et al. suggests using the acoustic and
motion sensors of mobile phones to determine the number
of people in a group [12]. However, their solution is only
suitable for small groups of up to 10 people. Our protocol
however scales well with an increasing number of nodes in an
area and can estimate crowds of different sizes. Pajevic et al.
propose an approach to estimate the size of a (mobile) crowd
by epidemically broadcasting small messages among users
[13]. They investigate the performance of their approach using
a stochastic model. However, the model is unable to capture
changes in scenarios with bursty arrivals and departures such
as a subway scenario. In contrast to this work, our protocol
can also determine the size of highly dynamic crowds.

Crowd counting can also be realized by distributed aggrega-
tion protocols with a counting objective [14]. However, such
protocols either perform poorly in dynamic environments or
they lack accuracy. In contrast to these protocols, our proto-
col is able to achieve accurate estimates in highly dynamic
environments.

15

VI. CONCLUSION

Monitoring, control, and estimation of spontaneous crowd
formations in urban environments, e.g., during open-air fes-
tivals or rush hours, are important measures for city ad-
ministration. In this work, we introduced a fully distributed
protocol for crowd counting via device-to-device communi-
cation, which is able to operate in urban environments with
moving nodes and churn. Each mobile device carried by a
pedestrian collects crowd size estimates from other participants
in the system whenever in direct communication range and
immediately integrates these estimates into its own local esti-
mate. We evaluated the proposed protocol via simulations of
realistic mobility models. We demonstrated that for sufficiently
dense scenarios, distributed crowd counting produces precise
estimates. When the density is sufficient, we showed that
the proposed protocol is able to produce a local estimate
with at least 93%. Moreover, we presented that it provides
a scalable solution for crowd counting for both indoor and
outdoor scenarios. As part of our future work, we plan to
evaluate other scenarios in a realistic testbed.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) (research fellowship, GZ: DA 1687/2-1)
and Stockholm County Council (SLL) (research grant LS2016-
1423) for their financial support.

REFERENCES

[1] P. Danielis, S. T. Kouyoumdjieva, and G. Karlsson, “Urbancount:
Mobile crowd counting in urban environments,” in 2017 8th IEEE
Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Oct 2017, pp. 640–648.

[2] D. Chronopoulos, “Extreme chaos: Flexible and efficient all-to-all data
aggregation for wireless sensor networks,” Ph.D. dissertation, TU Delft,
Delft University of Technology, 2016.

[3] A. Kuznetsov, “D-gap compression,” 2002. [Online]. Available:
http://bmagic.sourceforge.net/dGap.html

[4] P. Danielis, S. T. Kouyoumdjieva, and G. Karlsson, “Divote: A dis-
tributed voting protocol for mobile device-to-device communication,”
in 2016 28th International Teletraffic Congress (ITC 28), vol. 01, Sept
2016, pp. 69–77.

[5] S. T. Kouyoumdjieva, Ó. R. Helgason, and G. Karlsson, “CRAW-
DAD data set kth/walkers (v. 2014-05-05),” Downloaded from
http://crawdad.org/kth/walkers/, May 2014.

[6] “Legion Studio,” http://www.legion.com/.
[7] Ó. R. Helgason and K. V. Jónsson, “Opportunistic networking in

OMNeT++,” in Proc. SIMUTools, OMNeT++ workshop, 2008.
[8] J. Weppner and P. Lukowicz, “Collaborative crowd density estimation

with mobile phones,” Proc. of ACM PhoneSense, 2011.
[9] J. Weppner, P. Lukowicz, U. Blanke, and G. Tröster, “Participatory

bluetooth scans serving as urban crowd probes,” IEEE Sensors Journal,
vol. 14, no. 12, pp. 4196–4206, Dec 2014.

[10] P. G. Kannan, S. P. Venkatagiri, M. C. Chan, A. L. Ananda, and L.-S.
Peh, “Low cost crowd counting using audio tones,” in Proceedings of the
10th ACM Conference on Embedded Network Sensor Systems. ACM,
2012, pp. 155–168.

[11] M. Cattani, M. Zuniga, A. Loukas, and K. Langendoen, “Lightweight
neighborhood cardinality estimation in dynamic wireless networks,”
in Proceedings of the 13th international symposium on Information
processing in sensor networks. IEEE Press, 2014, pp. 179–189.

[12] M. A. A. H. Khan, H. M. S. Hossain, and N. Roy, “Sensepresence:
Infrastructure-less occupancy detection for opportunistic sensing ap-
plications,” in Mobile Data Management (MDM), 2015 16th IEEE
International Conference on, vol. 2, June 2015, pp. 56–61.

[13] L. Pajevic and G. Karlsson, “Characterizing opportunistic communi-
cation with churn for crowd-counting,” in World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015 IEEE 16th International
Symposium on a, June 2015, pp. 1–6.

[14] L. Nyers and M. Jelasity, “A comparative study of spanning tree and gos-
sip protocols for aggregation,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 16, pp. 4091–4106, 2015, cpe.3549.

16

Adaptive Complex Event Processing over
Fog-Cloud Infrastructure Supporting Transitions

Manisha Luthra
Technical University of Darmstadt

Multimedia Communication Lab (KOM)
Darmstadt, Germany

manisha.luthra@KOM.tu-darmstadt.de

Boris Koldehofe
Technical University of Darmstadt

Multimedia Communication Lab (KOM)
Darmstadt, Germany

boris.koldehofe@KOM.tu-darmstadt.de

Ralf Steinmetz
Technical University of Darmstadt

Multimedia Communication Lab (KOM)
Darmstadt, Germany

ralf.steinmetz@KOM.tu-darmstadt.de

Abstract—Fog Computing is an emerging trend that can enable
profound applications in the Internet of Things (IoT) arena. The
IoT applications typically deliver vital information from multiple
sources to the end-users in the form of notifications e.g., heart
status in health monitoring. Complex Event Processing (CEP) is
a powerful paradigm that bridges this gap from raw sensor data
to meaningful information. But, IoT applications involves a wide
distribution of heterogeneous devices that are highly dynamic
(e.g. mobile nodes). This poses a strict need for a highly adaptive
system. Consequently, first we propose a TCEP system that
allows in-network processing of CEP operator graph on the fog-
cloud infrastructure. Secondly, we describe how such a system
can benefit from transitions between different CEP algorithms
(mechanisms) to overcome the heterogeneity and dynamics of
the fog-cloud infrastructure. This leads us to important research
questions related to transition that are presented and addressed
in this research work.

Index Terms—Fog Computing, Internet of Things (IoT), Com-
plex Event Processing (CEP)

I. INTRODUCTION

Nowadays, there is a growing surge of Internet of Things
(IoT) applications like smart cities, health, industry (Industrie
5.0) etc. [1] The IoT applications connect a multitude of
devices over an interoperable communication network, ex-
changing enormous amount of information about themselves
and their surroundings. Complex Event Processing (CEP)
is an important paradigm to extract meaningful information
from disparate sources in real-time. Typically, a CEP system
consists of event producer(s) generating low-level data streams
e.g., sensor data that are to be processed and correlated. The
event consumer(s) or the IoT application end-users can specify
the events of interest as a continuous query with the system.
The query is transformed into an operator graph, where oper-
ators are the semantic units of query e.g., joins, filter, windows
etc. The event broker(s) perform distributed in-network query
(operator graph) processing, in order to determine the events
of interest. The CEP system then notifies the events of interest
to the event consumer(s). In this way, CEP provides a powerful
way to deliver meaningful information to the end user for IoT
applications.

However, the emerging wave of IoT applications e.g.,
in Smart City environment are demanding in one or more
performance objectives, stringent latency requirement, net-
work bandwidth constraints, mobility support and location-

Cloud

Fog

Things

N
etw

o
rk

 H
iera

rch
y

Fig. 1. Fog-Cloud infrastructure for deployment of IoT applications.

awareness. Fog-computing [2] is an emerging platform that
provides some of the aforementioned characteristics. It ex-
tends the cloud-computing paradigm to bring computation
towards the edge near to the end-users (consumers). Big cloud
providers like Amazon and Google have recently launched
fog locations, Amazon CloudFront1 and Google Cloud CDN2

respectively, that enable new breed of such applications in
gaming, e-commerce, social media etc.

It is often pointed out that a federation of cloud and fog
can allow wider range of applications where latency sensitive
operators can be placed at the fog, while compute intensive
operators at the cloud. An example of such a network hierarchy
is illustrated in Fig. 1 [3].

Such a diffused infrastructure is suitable to support large-
scale distributed CEP systems enabling deployment of IoT
applications. For instance, to perform in-network continuous
query processing over the fog-cloud infrastructure. However,
there are two main challenges in this: 1) presence of hetero-
geneous infrastructure as illustrated in Fig. 1 by the three
layers (things, fog and cloud) ranging from smartphones,
vehicles to switches and routers to data center, 2) dynamic
streaming environment consisting of: a) data streams pro-
duced at varying data rates, b) devices that can be mobile
and c) fluctuating properties of the communication network
e.g., bandwidth. Most importantly, the dynamic environment
influences performance objectives of a large number of users.
The distributed CEP system must take into account these
challenges to deliver the desired performance e.g., low latency
to an IoT application. Yet, state of the art distributed CEP
(DCEP) systems fall short in their support towards highly

1https://aws.amazon.com/cloudfront/ [Accessed January 2018]
2https://cloud.google.com/cdn/docs/locations [Accessed January 2018]

17

dynamic nature of event consumers, producers and brokers.
Considering mobility, there exists some approaches [3] that
allow producers and consumers to be mobile, but connected
to a fixed or quasi-stationary broker network. Additionally,
they are restricted in their flexibility of providing mechanisms
at run-time, that could deal with the dynamic nature of
the environment. Some authors proposed elasticity in DCEP
systems to deal with varying workload, but lack support for
higher mobility [4].

To this end, we propose a concept for a highly adaptive
DCEP system over a fog-cloud infrastructure that supports
strong dynamics of streaming environment (viz. producers,
consumers and brokers) for IoT applications. This is accom-
plished by runtime adaptation, aka. transition [5] between
distributed CEP mechanisms. The transition to a new DCEP
mechanism must fulfil varying and conflicting performance
objectives from a large number of users. The ultimate goal
is to provide methods to enable adaptation between DCEP
mechanisms to deal with a dynamic streaming environment
and performance objectives. Towards this, we investigate the
following research questions for a Transitive-CEP (TCEP)
system:

1) What are the potential mechanisms in a DCEP system
that can benefit from transitions?

2) How can we specify transitions in a DCEP system?
3) How, when and who triggers the transitions in a TCEP

system?
4) How to enable uninterrupted user experience using

TCEP system?
We elaborate further on the problem based on a case study

on Smart City Environment in Section II, where flexibility in
performance objectives is desired. Afterwards, we enumerate
important challenges identified in the case study, that influ-
ences the execution of an CEP operator graph, in Section III.
Next, we identify key transitions in DCEP mechanisms for
operator graph and overlay network in Section IV. Finally,
we conclude and give next steps for our fog-cloud assisted
Transitive-CEP (TCEP) system in Section V.

II. CASE STUDY: SMART CITY ENVIRONMENT

According to Cisco3, the Smart-city market is estimated
to generate a revenue of hundred billion dollars by 2025.
Running projects on the smart cities like European Smart
Cities4, highlight the increasing significance of key industry
and service sectors in this domain including Smart Mobility,
Smart Health, Smart Home, and other value added services.
While the IoT space offers an end-to-end solution, our focus
in this work is to enable real-time processing of IoT data using
DCEP.

Current IoT architectures rely on either of the two extremes
for data processing – cloud, or fog [2]. On the one hand,
sending all the data to the cloud for high capacity storage and

3The city of the future: Smart and connected, from http://www.cisco.
com/web/tomorrow-starts-here/connectedcities/preview.html [Accessed Jan-
uary 2018]

4http://www.smart-cities.eu/ [Accessed January 2018]

computation, e.g., video surveillance for traffic monitoring.
On the other hand, time-critical applications like autonomous
driving rely on local computation (on the sensors), particularly
the Things layer in Figure 1. Still, IoT applications e.g., in the
Smart City scenario pose challenges that are not solved by the
two extreme architectures. For instance, routing data to the
cloud can take several hundred milliseconds to react, that can
lead to life critical situation, e.g., for future autonomous car
to car communication. On the other side, some IoT devices
are resource constrained, hence processing data locally can
also be complex as well as costly. For instance, widely used
Raspberry Pi devices used for multiple purposes comes with
1.2 GHz processor and 1 GB RAM. Such devices can only
be used for pre-processing primitive events. Another concern
is that sending data over a communication network to a
cloud server consumes much energy and bandwidth. This
implies a complex trade-off, particularly if local nodes are
battery-powered. In this paper, we address these limitations
of current IoT architectures by flexible and adaptive DCEP
enabling in-network query processing guided by transitions
(cf. Section IV). Therefore, we focus on three important
questions: 1) where, 2) how to perform processing and 3)
how placement of processing operators impact performance
objectives of IoT end users.

A. Traffic Control

According to INRIX 2017 Global Traffic Scorecard5,
European drivers spent over 91 hours in congestion last year.
The traffic congestion continues to rise, if it is left unchecked.
A multitude of sensors in smart cities such as smart cameras,
environmental sensors like audio, radars, induction loops and
GPS sensors on smart cars can be used to derive insightful
information about traffic. For example, notifications can be
delivered to the drivers regarding the traffic flow, congested
roads, unobstructed roads, or warning about road condition and
accidents. DCEP allows this correlation of sensor data from
the multiple data sources to derive higher level information
such as the status of traffic congestion. This is performed by
processing the information inside the network at multiple de-
vices (e.g., fog or cloud nodes). We look into three possibilities
of distributed CEP: 1) distributed local/fog CEP, 2) distributed
cloud CEP or 3) distributed fog-cloud CEP.

Although, devices such as smartphones operate on high-
speed processors with clock frequencies upto 1 GHz, pro-
cessing big video streams from traffic monitoring cameras,
locally on these low-powered sources is not resource efficient.
A typical traffic monitoring camera captures at a resolution
>= 320 × 240 pixels and frame rate 10fps i.e. 768,000
pixels/data points per second, approximately. Sending all of
this data to a cloud server imposes a significant cost. On the
other side, processing lower level sensor data from vehicular
sensors can be performed at local/fog nodes. Thus, trade
off between performing DCEP locally or at cloud must be
considered.

5http://inrix.com/scorecard/ [Accessed January 2018]

18

The detection of complex event like traffic congestion is
time and location dependent. It is not mindful to send a
notification for traffic congestion when it has been cleared
(time), or for a road where the user is not travelling (loca-
tion). Thus, for an accurate and efficient decision, the system
must be time and location-aware, but also be aware of other
environmental factors (context-aware) that are significant for
controlling traffic congestion. For example, it is important to
note that the traffic conditions are not the same the entire day,
as they are during rush hours. Therefore, it is very important
to reconfigure DCEP mechanisms at runtime in accord with
the traffic conditions and the need of end-users. For instance,
for emergency services the notifications must be delivered
undelayed, in contrast to a normal user.

B. Smart Health Monitoring

With the commence of IoT, there has been a growing num-
ber of devices that allows efficient health monitoring, including
fitbit, body cardio scale, blood pressure (BP) monitor, Kito+
and many more. DCEP allows to collaboratively process the
information from this variety of sensors to gain meaningful
insights on one’s health, e.g., heart status. However, to make
full use of these vital sensors, information must be processed
quickly and efficiently. The power of cloud can be used to
process the information quickly, but transferring data to cloud
for processing is time consuming, and the delays caused might
lead to life critical situations like a heart stroke. Besides, cloud
computing can also be a source of data privacy concerns. The
privacy can be protected if the data is processed locally, either
within the sensor, the body or the house/hospital where it was
produced. Since user tend to be mobile, once the data leaves
the private sphere, sophisticated DCEP mechanisms must be
deployed to guarantee protection of privacy. On the other hand,
prevalent insights can be obtained by data collection and batch
processing offered by cloud, e.g, heart status over an year.

Vital signs from various sensors can be used to predict
individual’s health status e.g., by means of tools like Early
Warning Score (EWS) system. It is a manual tool widely
used in hospitals to track the condition of patients. It involves
measuring five physiological parameters namely heart rate,
systolic BP, breath rate, SPO2 and body temperature and
assigning them score between 0 and 3, with a lower score
meaning a better condition [2]. IoT-enabled wearables for
health monitoring can be used to empower systems like EWS,
to continuously track and predict individual’s health in an
automated way. However, the system alone faces open issues
that must be addressed [2]. Environmental factors influences
the vital signs like heart rate etc., which must be considered
to reach to a more realistic solution. For instance, a heart
rate of 120 beats per minute would be an alarming sign for a
patient who is sleeping, while it can be completely normal for
who is exercising. If not considered, such characteristics can
drastically decrease the performance of the system in terms of
accuracy and precision. Corresponding DCEP mechanisms are
needed to adjust the scores in order to avoid false alarms as
well as guaranteeing protection of privacy in such systems.

To summarize, there is a strong need to reconsider DCEP
mechanisms to cater the needs of different end users of IoT
applications in accord with the environmental context.

III. CHALLENGES

In this section, we summarize the challenges brought by
IoT applications studied in the aforementioned case study
examples of traffic control and health monitoring.

Dynamic streaming environment. a) Data streams pro-
duced by IoT devices arrive at varying rates and volume,
but also with a constantly changing quality (or certainty).
E.g., sensor data produced by some devices can be noisy
and erroneous, while by some devices can be more accurate.
Besides, b) the streamed data has to be processed by user
devices that perhaps can be resource and memory constrained
(cf. Section II-A). In addition, due to mobility some devices
might become unavailable for processing. Furthermore, c)
the communication network that connects the IoT devices,
possess highly fluctuating properties e.g., time varying latency,
bandwidth, etc., that might have an influence on performance.

Varying performance objectives. As pointed out earlier
in our case study, the dynamic streaming environment causes
changes in the performance objectives of the IoT application.
For instance, latency requirement of an emergency service
(ambulance) for traffic notification will be significantly urgent
than of a normal user. Similarly, in health monitoring the
environment or user context (like location and activity) impact
the performance perceived by the end user – privacy and
accuracy, respectively.

Heterogeneity of infrastructure. The diffused infrastruc-
ture of fog-cloud itself is a challenge because of network and
system heterogeneity. Some nodes might be geographically
located far away, while some could be near. Because of this,
there can be huge latencies between some nodes. Thus, TCEP
system must prepare for proper coordination and planning of
execution, i.e. where to process an operator – on cloud or fog
node, split an operator to fog and/or cloud or perform parallel
processing at both of them. The decision varies based on the
adaptive selection of CEP mechanisms.

IV. MECHANISM TRANSITION IN DCEP

A. Need for Transition in DCEP mechanisms

In the view of the aforementioned challenges, there is a
strong need of run-time adaptation of the underlying DCEP
mechanisms. Current systems neglect that the DCEP mecha-
nism performs well only under the given environmental condi-
tions, the respective assumptions and performance objectives.
However, if dynamics are introduced into the environment, the
system’s performance objective might not be met. For instance,
higher workload might render system unreliable and ineffi-
cient, as observed in the case study presented in Section II.
Besides, performance needs of large number of users might
vary significantly e.g., for emergency service in traffic control
and exercising habits of different users in health monitoring.
Thus, a DCEP system must adapt its mechanisms at runtime
subject to the performance objectives of the end-users. In our

19

existing work [5], we show that in this case a transition is
well suited. We extend this work, to show our hypothesis
that transition in CEP mechanisms e.g., operator placement
(cf. Section IV-B) could aid us in run-time fulfilment of
performance objectives for dynamic user environment.

B. Mechanism: Overlay and operator graph transitions

DCEP system detects events of interest by distributed
in-network processing of operator graph over the fog-cloud
infrastructure. To do this, an appropriate selection of a node
to deploy an CEP operator is performed, i.e. well known
as operator placement problem. The operators are assigned
to the nodes such that the performance objectives specified
by the system are achieved. The performance objective are
such that, they best satisfy the end-user’s requirements. Once
the operators are placed on the nodes, the operator graph is
processed in a CEP overlay called an operator network [3]. It
has been proven in the literature, that an optimal assignment
of an operator to a node is a NP-complete problem. Thus,
many heuristics and approximation algorithms are proposed
for operator placement [6]. Although, each algorithm provides
a solution to optimally place an operator to a node, they
make different assumptions for the respective problem. The
design characteristics of the placement are based on these
assumptions and the performance objective of the application.
The dynamics in the environment as discussed before (cf. Sec-
tion III) influences the assumptions, performance objectives
and hence choice of the placement mechanism.

Centralized vs. Decentralized Algorithms. The placement
algorithms are characterized based on: 1) how the placement
decisions are made and 2) whether the decisions require cen-
tralized knowledge about the environment [6]. The centralized
algorithms have central knowledge about the environment e.g.,
on network state, workload and the resources, whereas the
decentralized algorithms make decision on placement based
on local knowledge. Apparently, centralized algorithms suffer
from scalability issues while decentralized algorithms not. The
event workload on the system in the IoT applications vary
significantly, as specified in our case study. Thus, transitions
between centralized and decentralized algorithms are to be
explored, to ensure that the CEP overlay is not under-utilized
but also not over-utilized. Scalability can be provided in a
distributed CEP system in two ways: 1) vertical scalability
(scale up), 2) horizontal scalability (scale out). Scaling up
means to add/remove resources to/from the nodes, while
scaling out means to add/remove nodes in/from the CEP
overlay network. Techniques like parallel processing (scale up)
or load partitioning and balancing (scale out) can be used
to adapt to decentralized algorithm and thereby satisfying
the workload requirements. Recently, there is an increasing
interest in providing such adaptations by using auto-scaling
strategies [4]. This work could be a start point to further
analyze the CEP overlay transitions.

Static vs. Dynamic Operator Network. Mobility is one
of the major causes of dynamics in the IoT applications. De-
centralized algorithms can efficiently respond to such dynamic

changes at runtime. This requirement raises important issues
like efficient operator migration. It refers to efficient move-
ment of an operator from one node to another to optimally
satisfy a performance objective, in response to changes in
the environment e.g., mobility. However, operator migration
is costly, especially for stateful operators [3]. Thus, transition
between mechanisms for static vs dynamic networks are in-
vestigated to avoid additional costs and to provide an efficient
and seamless transition. For static or quasi-static networks it
is recommended to avoid operator migration, as it is very
expensive. On the other hand, for extremely dynamic operator
network, migration is crucial. Existing work [3], [5] looks into
this problem but not for mobile operator network. Additionally,
methods for cost of operator migration are yet undiscovered.
Moreover, existing approaches for operator placement and
migration satisfy the same performance objective i.e. statically
specified at the design time. However, there are situations in
an IoT environment where the performance objective changes
as illustrated in the case study. For this reason, transitions in
the identified CEP mechanisms are prevalent.

V. PRELIMINARY CONCLUSION AND FUTURE WORK

In this paper, we presented important research questions
motivating the need for transitions between different existing
CEP mechanisms in a highly adaptive and context-aware CEP
system. We presented a case study on Smart City environment
for two different applications, traffic congestion control and
smart health monitoring. Several scenarios (traffic control and
health) are identified where transitions in CEP mechanisms can
be beneficial with assistance of a fog-cloud architecture. Fi-
nally, important CEP mechanisms are identified for transitions
corresponding to the situations in our case study. Intuitively,
transitions are costly and therefore in the near future, we will
look into its cost and benefits w.r.t. aforementioned scenarios.
Furthermore, important research questions such as how, when
and who triggers the transition are to be investigated.

Acknowledgement: This work has been co-funded by the German
Research Foundation (DFG) as part of the project C2 within the Collaborative
Research Center (CRC) 1053 – MAKI.

REFERENCES

[1] P. Samulat, Die Digitalisierung der Welt: Wie das Industrielle Internet der
Dinge aus Produkten Services macht. Wiesbaden: Springer Fachmedien
Wiesbaden, 2017, pp. 103–124.

[2] M. A. Rahmani, L.-S. P. Preden, and A. Jantsch, Fog Computing in the
Internet of Things. Springer International Publishing, 2018.

[3] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “MCEP: A Mobility-Aware Complex Event Processing
System,” ACM Transactions on Internet Technology (TOIT), vol. 14, no. 1,
pp. 1–24, 2014.

[4] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware
elastic scaling for distributed data stream processing systems,” in Pro-
ceedings of the 8th ACM International Conference on Distributed Event-
Based Systems, ser. DEBS ’14. ACM, 2014, pp. 13–22.

[5] P. Weisenburger, M. Luthra, B. Koldehofe, and G. Salvaneschi, “Quality-
aware runtime adaptation in complex event processing,” in Proceedings of
the 12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS ’17, 2017, pp. 140–151.

[6] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for internet-
scale data stream systems,” IEEE Internet Computing, vol. 12, no. 6, pp.
50–60, 2008.

20

CLAP: Cooperative Locality-Aware Data
Processing in Heterogeneous Fog Environments

Aditya Raj
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
aditya.raj@tu-clausthal.de

Andreas Reinhardt
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
reinhardt@ieee.org

Abstract—Wireless Sensor Networks deployed in recent years
often share the commonality of relying on homogeneous hardware
platforms. The upcoming vision of the Internet of Things, how-
ever, is strongly based on the co-existence of embedded devices
manufactured and operated by different stakeholders. Thus,
device heterogeneity will become an omnipresent characteristic
of future sensor deployments, particularly within the scope of
fog computing. In this paper we present CLAP, a collaborative
data processing approach that exploits device heterogeneity for
collaborative data processing instead of trying to mitigate its neg-
ative effects. Through simulations, we demonstrate that CLAP,
in conjunction with a data collection protocol, can effectively
reduce the volume of traffic and thus cater to energy savings
and consequently prolonged network runtimes.

I. INTRODUCTION

In the past decade, Wireless Sensor Networks (WSNs)
have shown tremendous potential for application domains like
disaster relief, healthcare, or intelligent buildings [1]. Based on
low-power embedded sensing systems with a limited energy
budget and low computational power, WSNs commonly gather
information from distributed locations and collect them at
devices on the network edge (often referred to as base stations,
BS), for processing. A dedicated family of routing protocols
has emerged to accommodate this traffic flow: Collection
protocols, such as MultiHopLQI [2] or CTP [3]. However, one
of the key limitations of data collection WSNs is their concen-
tration of wireless traffic around the base station, leading to a
quicker energy depletion of nodes located there. To cater for
a more balanced use of energy inside the WSN, in-network
processing techniques have been proposed, e.g., distributed
outlier detection [4], clustering [5], or aggregation [6]. When
executed close to the data collection points, distributed data
processing reduces energy demand and wireless traffic alike.

Along with the vision of the upcoming Internet of Things,
sensor nodes (SNs) can be expected to carry more diverse
traffic than traditional WSNs. Moreover, device heterogeneity
in terms of computational power, storage capacity, wireless
range, or the available energy budget will become omnipresent
characteristics. Despite the technological support for advanced
in-network processing operations, however, current systems
generally lack the option for a seamless data exchange on
application level, and do not leverage heterogeneity at all. By
presenting CLAP, we lay the foundation for a better utilization
of device heterogeneity by allowing heterogeneous SNs to co-

operate and harness the in-network data processing capabilities
of dedicated Processing Devices (PDs). In a nutshell, CLAP
allows SNs to find PDs in their vicinity, exploit their hetero-
geneous computational capabilities for in-network processing,
and subsequently forward processed data to their destination.

This work builds on a theoretical energy assessment of
heterogeneous networks in own prior work [7]. However, we
make the following two novel contributions in this paper:
(1) We introduce the concept of Cooperative Locality-Aware
Data Processing (CLAP), which enables SNs to actively coop-
erate, and present selected implementation details in Sec. II.
(2) We evaluate CLAP and demonstrate its efficacy in two
simulated scenarios in Sec. III. We conclude this paper in
Sec. IV.

II. OBJECTIVES AND APPROACH

Our primary research objective is to assess to what extent
the presence of computationally heterogeneous nodes in a
WSN deployment can lead to a reduction of communications
overhead when decentralized data processing takes place. An
example application scenario is shown in Fig. 1. Two data
sources (DS1 and DS2) are part of a collection tree, rooted at
the BS. While DS1 would normally forward its data via the
dashed link towards the sink, the availability of a processing
device in its one-hop neighborhood changes this route. Its
data are consequently routed to processing device PD1, where
they are processed and only the result is forwarded along
the established collection tree. In case of DS2, the next PD
is two hops away. An intermediate node is used as a relay
device and configured to forward incoming traffic from DS2

to PD2, which in turn uses the underlying collection protocol
to forward its processed data to the BS.

BS

SN

PD

DS

Base Station

Sensor node

Processing device

Data source

SN BSSNSN

SN

PD
1

SN

DS
1

SN SN SN SN

SN

SN

DS
2

SN

PD
2

SN

Fig. 1. Two sample application cases for the proposed collaborative data
processing approach. Continuous arrows indicate the resultant collection tree,
while dashed arrows show the data flow without collaborative data processing.

21

Sensor node

Radio

transceiver

Collection

/

Routing
d

a
ta

CLAP

beacons

processed data

routing metric values

Sensor

sampling and

conversion

sensor

inputs

PD

known?

no

yes

unprocessed data

raw data
relayed data

negotiation

Fig. 2. Sensor nodes’ network stack to realize collaborative data processing.

A. Requirements Analysis

To enable heterogeneous devices on the IoT to collabora-
tively process collected data in their locality, the following
fundamental requirements need to be fulfilled:

1) SNs must be able to determine whether any PDs exist
within their neighborhood. To avoid excessive deviations
from the collection route to the BS and to eliminate the
complexity of including an additional routing protocol,
CLAP does not consider PDs more than two hops away
from a SN.

2) SNs must be able to establish a path to one of the PDs
in their vicinity (directly or via an intermediate node)
and send their sensor data along this route instead of
forwarding them to the BS using the collection tree.

B. Overview of CLAP

A conceptual overview of CLAP’s integration with the data
flow on a regular sensor node is shown in Fig. 2. If a PD
is known and available for collaborative data processing, the
CLAP module takes care of data routing and processing.
However, if CLAP finds no PD in the node’s vicinity, the
SN’s data flow remains identical to the case of running a col-
lection protocol without CLAP. The functionalities required to
accomplish the seamless collaborative in-network processing
are detailed in the following subsections.

C. Finding Processing Devices

In order to utilize data processing capabilities of PDs, SNs
must become aware of the presence of any PDs in their two-
hop neighborhood. CLAP relies on proactive advertising of
PDs through beacons, which leads to less announcement traffic
in case the number of SNs exceeds the number of PDs in the
network. The identification of PDs and their capabilities is
accomplished on demand through probing messages to ensure
a reliable communication can be established with the PD even
when its announcements have been received a while ago.

In CLAP, PDs periodically send advertisement beacons to
make their availability known to their neighborhood. Beacons
are re-broadcast once by the nodes in the immediate neighbor-
hood of the PD and can thus be assumed to reach all two-hop
neighbors. These advertisement beacons contain three fields:
the network address of the PD itself, its routing metric value
according to the collection protocol (e.g., the ETX to the BS),

and the address of a relaying node. The latter field is initially
empty, and only populated when the advertisement beacon
is re-broadcast by a PD’s neighboring device. Knowledge
of the PD’s routing metric assists in selecting the best PD
for the data processing, as detailed in Sec. II-D. However,
the routing metric can easily be substituted by other desired
quality constraints to improve the PD selection process.

Each node maintains a list of the PDs from which advertise-
ments have been received. Upon reception of an advertisement
beacon from a PD or a relaying node, the receiving node
updates its list of PDs accordingly. A threshold for the
minimum number of beacons received from a PD is being
used in order to only enter PDs with stable network links into
the list. Stale members are periodically purged from the list.

D. Selecting a Processing Device

In order to choose the processing device for locally collected
data, all entries in the PD list are sorted based on their
distance to the local device (i.e., hop count) and their routing
metric value of the underlying collection protocol. The main
reason for using this sorting technique is to ensure that
locality is preferred. Relaying nodes to accomplish two-hop
transmissions are only used in case no PD exists in the SN’s
direct neighborhood.

E. Negotiating Processing Data Transfers

Data transfers to a PD are always preceded by a request-
reply handshake, initiated by the SN in need of in-network data
processing. A request packet is sent to the selected PD, with
the network addresses of the data source and the requested
PD contained in its payload; if a relaying device is required
to transfer data from the source to the PD, its address is
also explicitly specified. Besides addressing information, the
request message contains the type of the requested processing
operation and the temporal duration for which the processing is
needed. When a PD receives the request message and is ready
to accept the client, it acknowledges the reservation by sending
a reply message to the sender. The handshake is completed
through a final reply message, confirming the successful
resource reservation, which carries the same information fields
as the request packet. In case a PD does not respond within
a timeout period, the SN proceeds to negotiate collaborative
data processing with the next entry in its PD list. Once the
negotiations of processing device, duration, and function have
been completed, the data transfers can commence.

This separate transfer handshake, executed before actual
data transmissions, is implemented for three reasons: Firstly, to
ensure availability of desired PD to receive and process data.
Secondly, to allow the PD to perform computations on the
incoming data based on the desired service requested through
the handshake messages. Thirdly, to configure an intermediate
device (if SN and PD are only within two-hop distance of
each other) to relay all following data from the SN to the PD.
In case a preferred PD is not ready to process data or cannot
offer the requested processing service, the handshake does not
complete successfully, and another PD will be approached.

22

F. Exchange of Application Data

In CLAP, data transmissions between an SN and its selected
PD are always preceded by the aforementioned handshake to
indicate the start of a data transmission, and terminated by a
final delimiting message. By encapsulating data transmissions
this way, PDs can schedule the use of their processing re-
sources better. On reception of end-of-transmission packet, the
PD performs the requested computation on the data received
so far and forwards the resulting packet over the underlying
collection tree on behalf of its original sender. CLAP does not
explicitly provide flow or congestion control, but is interoper-
able with transport protocols offering such features.

G. Typical Communication Flow

Figs. 3a and 3b show typical communication flows when
running CLAP. At first, the PD’s announcements of its pro-
cessing abilities to its one-hop neighborhood are visible. These
messages are then re-broadcast by all immediate neighbors
to publicize the PD’s existence to its two-hop neighbors.
Subsequently, a data processing request is made by SN 2 (in
Fig. 3a), or SN 1 (in Fig. 3b), respectively. Depending on the
number of simultaneously allowed data processing operations,
the PD can individually determine whether to accept a request
or not. In the figures, the PD is configured to provide pro-
cessing services to at most one SN at a time. Consequently,
the successful handshake completion message sent to SN 2
in Fig. 3a acts as a trigger to initiate data transmissions, and
simultaneously serves as a negative acknowledgment for SN 3;
therefore, SN 3 continues sending unprocessed data using the
underlying data collection protocol. Data transfer takes place
through unicast transmissions (possibly involving a relay node,
shown in Fig. 3b) and ends with a delimiter message from the
sender.

4. Data

sending

(one-hop)

1. Periodic PD

announcement to

one-hop and two-

hop neighbors

2. Interested

senders request

access to the PD

SN 1 SN 2 SN 4SN 3PD

3. PD

responds to

sender

request

(a) Typical flow of exchanged messages for one-hop data transmissions.

Data

sending

(two-hop)

Beacon indicating

end of data transmission phase

Beacon indicating

start of data

transmission phase

SN 1 Relayer SN 4SN 3PD

(b) Typical flow of exchanged messages for two-hop data transmissions.

Fig. 3. Communication flows for one-hop and two-hop collaborative data
processing using CLAP.

III. EVALUATION

We present our evaluation results after outlining the experi-
mental setup and introducing the network topologies analyzed.

A. Evaluation Setup

Across all of our evaluations, we assume a heterogeneous
network setting, in which several SNs and PDs exist, and
the BS is the recipient of all data collected on the sensing
devices. We use the Collection Tree Protocol (CTP) [3] as the
underlying collection protocol because of its reliability and
its available implementation for the TinyOS operating system.
CTP forms an acyclic tree, based on adaptively updated ETX
values, to relay data to the BS. Although the ETX values
can be used in CLAP to sort PDs for better performance
and reliability, their availability is not mandatory for CLAP’s
operation.

All following evaluations have been conducted using the
COOJA simulator [8], using the tmote sky [9] as the SN.
The maximum number of clients a data processing device can
serve simultaneously has been set to one. This ensures a higher
competition for PDs in our analysis.

Heterogeneous processing capabilities in the simulation
have been realized by adding a data processing service on
a small fraction of the simulated devices. Although the
demanded service for data processing by SNs is always a
summation of all received values (generated as a 16-bit random
payload every 100 ms at every SN), more complex algorithms
can be substituted easily. CLAP is agnostic to the choice
of processing algorithms offered by PDs, thus we do not
investigate different algorithms in this research work.

B. Simulated Topologies

We run our simulations in two topologies, shown in Fig. 4,
which demonstrate differently expected traffic flows. In both
scnearios, the devices with identifiers 3, 5, and 8 are configured
as PDs, and node 1 serves as the base station. Continuous lines
indicate the tree formed by the collection protocol, whereas
dashed lines show additional wireless connectivity. In the tree
topology (shown in Fig. 4a), each data generating SN, has
at least one PD in its direct neighborhood, and most even
find two PDs in their two-hop neighborhoods. In contrast, in
the ellipsoid topology in Fig. 4b, each SN has exactly two
neighbors in one-hop distance.

C. Advantages of using CLAP and CTP

Experiments were performed to assess how much messaging
overhead can be saved by performing computations on PDs
instead of forwarding unprocessed data to the BS. For this,
we set up two simulations, one with only CTP is enabled, and
another one with both CLAP and CTP enabled. The number of
packets received at the base station in 25 minutes of simulation
time at different data generation rates is shown in Fig. 5. In all
simulations, SNs have been configured to make reservations
for data processing operations for durations of 12–20 seconds.

The maximum difference in the number of packets received
at the BS can be observed when a high volume of data packets

23

1

3 5

6 2 4 9 10 7

8

(a) Tree topology.

1

23

4

5

6

7 8

9

10

(b) Ellipsoid topology.

Fig. 4. Network topologies used in our analyses. The node with identifier 1 always serves as the base station; devices shaded in grey are processing devices.

50 80 100 120 150 180 200 220230 250
0

10

20

30

40

50

Inter-packet data transmission interval (in milliseconds)

N
u

m
b

e
r

o
f

pa
c
k
e

ts
 d

e
liv

e
re

d
 (

in
 t

h
o

u
s
a

n
d

s
)

50 80 100 120 150 180 200 230 250220

0

10

20

30

40

50

Data processed using CLAP

Unprocessed collection via CTP

Fig. 5. Comparison of the number of packets delivered to the base station.

are being generated. In fact, more than seven times as many
packets are received at the BS when running CTP as compared
to the use of CLAP for a 50 ms data transfer interval. While
the absolute difference in terms of the number of received
packets shrinks with growing inter-packet intervals, collecting
unprocessed data via CTP always results in a higher number
of messages being delivered to the BS. In contrast, the number
of processed data packets is almost constant when CLAP is
being used, as collection packets are only emitted whenever
a processing operation has terminated. Even though this is
the expected result from shifting data processing operations
into the network and allowing for their collaborative execution,
the reduction of traffic directly translates into energy savings.
It thus confirms CLAP’s efficacy and its viability to combat
energy holes around the BS.

IV. CONCLUSION

The IoT is growing fast and expected to be composed of
billions of heterogeneous systems [10]. However, even when
IoT devices use the same wireless communication standards,
they suffer from a lack of application-level interoperability.
This is especially important in the domain of fog computing,
where IoT devices will be interfaced with a broad range of

other systems. In this paper we have proposed CLAP as a
method to overcome this limitation. CLAP runs on top of any
tree-based routing or data collection protocol (such as CTP or
RPL) and provides an abstraction from system heterogeneity.
Simulations comparing CLAP to a setting without in-network
data processing show the high potential of exploiting device
heterogeneity to reduce the number of packets delivered to
the base station. Even though heterogeneity is often seen as
an obstacle, we have shown the potential of exploiting it in
data collection sensor network deployments instead of trying
to mitigate its effects. CLAP has performed demonstrably well
for data aggregation; we consider investigations into other
distributed data processing algorithms and the scalability of
the algorithm to different topologies as future work.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, 2002.

[2] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “TEP119: Collec-
tion,” Online: https://github.com/tinyos/tinyos-main/blob/master/doc/txt/
tep119.txt, 2006.

[3] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and
P. Levis, “CTP: An Efficient, Robust, and Reliable Collection Tree
Protocol for Wireless Sensor Networks,” ACM Transactions on Sensor
Networks, vol. 10, no. 1, 2013.

[4] J. W. Branch, C. G. amd Boleslaw Szymanski, R. Wolff, and H. Kar-
gupta, “In-network Outlier Detection in Wireless Sensor Networks,”
Knowledge and Information Systems, vol. 34, no. 1, 2013.

[5] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocol for Wireless Microsensor Networks,”
in Proceedings of the 33rd Hawaii International Conference on System
Sciences (HICSS), 2000.

[6] C.-M. Chao and T.-Y. Hsiao, “Design of Structure-free and Energy-
balanced Data Aggregation in Wireless Sensor Networks,” Journal of
Network and Computer Applications, vol. 37, 2014.

[7] A. Reinhardt and D. Burgstahler, “Exploiting Platform Heterogeneity
in Wireless Sensor Networks by Shifting Resource-Intensive Tasks
to Dedicated Processing Nodes,” in Proceedings of the 14th IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2013.

[8] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings of the
31st IEEE Conference on Local Computer Networks (LCN), 2006.

[9] Memsic Inc., TelosB data sheet. [Online]. Available: http://www.
memsic.com/userfiles/files/Datasheets/WSN/telosb datasheet.pdf

[10] D. Evans, “The Internet of Things – How the Next Evolution of the
Internet is Changing Everything,” Cisco Internet Business Solutions
Group (IBSG) White Paper, 2011.

24

Data protection in fog computing through
monitoring and adaptation

Zoltán Ádám Mann
paluno – The Ruhr Institute for Software Technology

University of Duisburg-Essen
Essen, Germany

Abstract—Fog computing has enormous potential to offer
increased computational capacity with acceptable latency near
the network edge. However, fog computing also introduces many
risks relating to the protection of sensitive data, which threaten
the practical adoption of the fog computing paradigm. In this
paper, the main challenges of data protection in fog computing
and potential mitigation techniques are briefly reviewed. We
argue that, given the highly dynamic nature of fog computing
systems and the negative side-effects of existing data protection
techniques, such techniques should be used adaptively, always in
accordance with the relevant data protection risks. We sketch an
approach to monitor a fog system and activate data protection
techniques adaptively, followed by a research agenda to elaborate
the details of the proposed approach.

I. INTRODUCTION

Fog computing is the natural next step in the evolution of
cloud computing, bringing cloud-like elastic compute capacity
to the network edge, near to end user devices [1]. This way,
computation-sensitive tasks can be offloaded from the end
devices (like mobile phones, wearable devices, or cameras)
to fog resources (i.e., compute resources at or near the net-
work edge, e.g., in routers, base stations, or geographically
distributed data centers of telecommunication providers). Of-
floading is advantageous for many applications that require
higher computational capacity than what is available in end
devices. Compared to offloading compute tasks to a large
centralized cloud data center, fog computing has the advantage
of considerably lower latency in the data transfers, which is
essential for several time-critical applications [2].

Nevertheless, fog computing is also subject to several
challenges. In particular, fog computing offers a plethora of
opportunities for malicious parties to gain access to, or even
manipulate, sensitive information [3]. Some of these threats
are inherited from cloud computing, but some are new and
specific to fog computing. More importantly, concerns about
data protection can significantly hinder the adoption of the fog
computing paradigm.

Of course, there are several known security techniques
with which the access to sensitive data can be protected.
However, the available techniques also have some limitations
(e.g., some assume the availability of special hardware) or
drawbacks (e.g., overhead). Therefore we argue that security
techniques should be applied in an adaptive way. That is, the
most appropriate technique should be selected based on the
current situation. Adaptations should be carried out at run

time, since also the situation may change dynamically at run
time. Therefore, the current system state has to be monitored,
so that risks concerning data protection can be identified and
mitigated on the fly.

The contributions of this paper are as follows:
• A review of data protection challenges in fog computing;
• A proposed framework for adaptive handling of risks

relating to data protection;
• Identification of research challenges to realize the pro-

posed concept.

II. DATA PROTECTION CHALLENGES IN FOG COMPUTING

For a more detailed survey of the general field of security
and privacy in fog computing, the reader is referred to [4].
Here we only review the most important challenges related to
the protection of sensitive information in fog computing.

Just like in cloud computing, users lose control of their data
by uploading them to a server that is beyond their control [5].
Thus, the provider operating the given cloud or fog resource
may get access to users’ confidential data. The provider
may also let third parties access the data – intentionally or
unintentionally, with or without consent from the user – so that
also these third parties may abuse the data. Moreover, because
of the intrinsic multi-tenancy of both the cloud computing and
fog computing paradigms, other users may also use the same
server or fog resource, which might make it possible for those
other users to gain unauthorized access to sensitive data. In
some cases, it is also possible that users try to get access to
confidential data of the provider, for instance to get to know
important business secrets about the provider’s infrastructure.
All these types of attacks are conceivable in both cloud and
fog computing.

In addition, there are some specific characteristics of fog
computing that make data protection even more challenging
than in cloud computing:

• Reduced physical protection. While cloud data centers
are typically protected by strict physical access control
mechanisms (e.g., doors that can be opened only by
authorized personnel with their entry cards), fog resources
are often deployed “in the wild” where malicious parties
can get physical access much more easily. Even more
importantly, fog computing is mostly based on wire-
less networking technologies which may be broken into
without physical contact. In contrast, cloud computing

25

is mostly based on wired networks, which are easier to
protect.

• Less clarity about stakeholders. In cloud computing,
users choose service providers explicitly and deliberately,
also giving explicit consent regarding the use of their
data. On the other hand, in some fog computing scenarios,
a device may use a variety of fog services for offloading
computations, without the user of the device – or the data
subject about whom the device is collecting data – being
aware of the stakeholders that operate those resources or
have otherwise access to the resources.

• Direct access to confidential information. A device us-
ing fog computing resources may leak sensitive personal
information even without transferring any data explicitly
to the fog resources. For example, since devices prefer
to use nearby fog resources, an attacker might be able to
determine a user’s approximate location or the route of
a mobile user based on which fog resources the user’s
device has connected to, thus violating location privacy
[6], [7]. Another example is the violation of usage privacy
in smart metering where the information gathered by
smart meters reveals usage patterns of electronic devices
in a household [8].

• Scarce resources. Existing methods for data protection,
such as advanced cryptographic protocols or data ob-
fuscation techniques, are often resource-intensive. This,
however, is a problem in end devices that have limited
computational capacity, limited battery power, and lim-
ited network bandwidth.

For these reasons, data protection is a very challenging
problem in fog computing.

III. THE CASE FOR ADAPTIVE DATA PROTECTION

Fog computing systems are very dynamic: end devices con-
nect to fog resources and then disconnect, fog resources appear
and disappear, wireless network connections get stronger or
weaker etc. [9], [10]. With all those changes, also risk levels
keep changing. For instance, from the point of view of an
end device, risk levels may be low if the device can connect
to a known and trusted fog resource, but the risk of data
protection issues gets much higher if the connection to the
trusted fog resource is lost and an unknown fog resource must
be connected instead.

As already mentioned, existing security techniques that can
ensure the protection of sensitive data often have downsides.
For instance, homomorphic encryption makes it possible to
offload computations on encrypted data to an untrusted server.
Since the server gets access to the ciphertext only, it cannot
abuse the actual data. However, homomorphic encryption
introduces a large performance overhead [11]. Another option
is the use of secure hardware enclaves, i.e., special hardware
enabling the protection of code and data even from attackers
with highest operating system privileges [12]. Performing
computations in a secure enclave thus shields the data both
from co-located applications and even from the operator of
the server. However, also the use of secure enclaves incurs

some overhead (although lower than in the case of homomor-
phic encryption) and even more importantly, it presumes the
availability of appropriate hardware.

For these reasons, we argue that data protection mechanisms
should be applied in an adaptive manner. In other words, data
protection mechanisms should be activated only when needed
to minimize their negative impact on resource consumption;
moreover, from available alternative mechanisms always the
most appropriate one should be chosen, taking into account
the sensitivity of the data and the current configuration of the
fog system.

In the following subsections, we review how adaptive appli-
cation of data protection mechanisms can be achieved – first
in general, and then focusing on the viewpoints of end users
and fog service providers, respectively.

A. Enabling adaptations

The fundamental model underlying most adaptive systems
is a control loop according to the MAPE (monitor, analyze,
plan, execute) principle [13]. This principle can also be applied
to the problem of adaptive data protection in fog computing,
as follows.

The basis for any decision-making is monitoring. That is,
the current configuration of the fog computing system needs to
be monitored, including the available resources, the planned
computations, the involved data, and any other information
that may have an impact on risks (e.g., known vulnerabilities
or reputation of stakeholders). Monitoring may be comple-
mented by prediction, e.g. to predict the future availability
of wireless network connections or the duration of offloaded
tasks [14]. Based on the information provided by monitoring
and potentially prediction, an analysis has to be carried out
to determine the risks of data protection violation and the
possible risk-mitigating actions. The results of the analysis
form the input to planning. The aim of planning is to decide
which risk-mitigating action(s) to take, based on the impact
of the possible actions on both data protection risks and other
system goals like performance or costs. Finally, the chosen
actions have to be executed.

For implementing the MAPE loop, a model-based approach
is advantageous. This means that a model of the fog computing
system is maintained at run time in a machine-readable format.
Monitoring updates the model so that it remains in sync with
reality. Analysis and planning can be performed directly on the
model, while execution ensures that modifications performed
on the model are also transferred to the real world.

In our previous work, we have proposed a run-time model
for reasoning about data protection in cloud systems [15].
This model should be extended and adjusted to capture the
necessary entities of fog computing.

B. Adaptation in end devices

In the simplest case, an end device wants to offload some
computations to a fog resource. Monitoring and analysis could
be used to answer the following questions:

26

• Can the provider of the fog resource be trusted (e.g.,
because of previous experience or because of high repu-
tation in publicly available provider evaluations)?

• What security capabilities does the resource offer (e.g.,
secure hardware enclaves)?

• How sensitive are the data involved in the planned
compute task?

• What would be the impact of the available client-side
data protection mechanisms, and how critical would that
impact be in terms of system goals like performance and
energy consumption?

Based on these pieces of information, a sound decision can
be made on the action to be taken. For example, if the data are
not sensitive and/or the provider is trusted, then the compu-
tation can be offloaded without using further data protection
mechanisms. Otherwise, if the targeted fog resource features
secure hardware enclaves, then the computation should be per-
formed within an enclave. Otherwise, if the resource situation
allows it, homomorphic encryption should be used. If none of
the above is applicable, then the computation should not be
offloaded because the associated risks cannot be effectively
mitigated.

There can also be more complicated cases, e.g., if not
only an edge device and a fog resource are involved, but
additionally a central cloud as well. To keep the analysis
and planning manageable, a pattern-based approach can be
used, like we suggested previously for cloud computing [16].
In this approach, the system configurations that would lead
to unacceptably high risks of data protection violation are
captured in the form of so-called risk patterns. If an instance
of a risk pattern can be found as a substructure of the run-time
model, then the risk is too high. An appropriate adaptation is
needed so that the run-time model will not contain any of the
identified risk patterns as substructure.

C. Adaptation in fog resources

For a provider of fog resources, the goal is to fulfill the
data protection requirements, while serving as many end client
devices as possible and also ensuring a smooth and efficient
operation [17]. This leads to interesting optimization problems
[18]. For example, if a subset of the resources owned by the
provider offer secure hardware enclaves, then taking this into
account when allocating client requests to resources is a useful
lever for keeping costs low while fulfilling data protection
requirements. Our previous experience has shown that, with
appropriate optimization algorithms, if only a small fraction
of resources offer secure hardware enclaves, this can already
lead to considerable savings in energy consumption [19].

IV. RESEARCH CHALLENGES

In this paper, we sketched why adaptive data protection
in fog computing is sensible and how it might be achieved.
However, to make adaptive data protection in fog computing
a reality, several research challenges need to be addressed (the
list is not intended to be exhaustive):

• Appropriate models should be devised that incorporate
all entities of fog computing deployments (along with
their attributes and relations) that are relevant for data
protection.

• The underlying trust models and attack models need to
be better understood, categorized, formalized, and made
available to automated run-time decision-making.

• A catalog of risk patterns needs to be elaborated that cap-
ture the relevant risks to data protection in fog computing.

• Appropriate monitoring techniques are necessary to effi-
ciently and effectively monitor fog computing systems.

• Analysis, planning, and optimization algorithms need to
be elaborated that can efficiently cope with decision-
making on the different layers of fog computing systems
(end devices, fog resources, cloud).

• Algorithm efficiency and scalability are crucial to ensure
that adaptation works well in real time even under high
dynamics.

• Testing, auditing, and verification techniques need to
be devised to improve the credibility of data protection
solutions in fog computing.

• The interplay among multiple autonomous systems that
perform self-adaptations on their own needs to be better
understood, including the possible coordination models
and emergent behavior.

Moreover, it would be advantageous for fog computing
research in general to define and make publicly available some
representative examples that can be used to objectively assess
and compare different approaches.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 research and innovation programme under grant
731678 (RestAssured).

REFERENCES

[1] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data. ACM, 2015, pp. 37–42.

[2] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource
provisioning for IoT services in the fog,” in IEEE 9th International
Conference on Service-Oriented Computing and Applications. IEEE,
2016, pp. 32–39.

[3] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Federated Conference on Computer Science and
Information Systems. IEEE, 2014, pp. 1–8.

[4] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing:
A survey,” in International Conference on Wireless Algorithms, Systems,
and Applications. Springer, 2015, pp. 685–695.

[5] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From security to
assurance in the cloud: A survey,” ACM Computing Surveys, vol. 48,
no. 1, 2015, article 2.

[6] Z. Riaz, F. Dürr, and K. Rothermel, “On the privacy of frequently visited
user locations,” in 17th IEEE International Conference on Mobile Data
Management, vol. 1. IEEE, 2016, pp. 282–291.

[7] T. He, E. N. Ciftcioglu, S. Wang, and K. S. Chan, “Location privacy in
mobile edge clouds: A chaff-based approach,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 11, pp. 2625–2636, 2017.

[8] A. Reinhardt, F. Englert, and D. Christin, “Averting the privacy risks
of smart metering by local data preprocessing,” Pervasive and Mobile
Computing, vol. 16, pp. 171–183, 2015.

27

[9] A. Aral and I. Brandic, “Quality of service channelling for latency
sensitive edge applications,” in IEEE International Conference on Edge
Computing. IEEE, 2017, pp. 166–173.

[10] S. Dräxler, H. Karl, and Z. A. Mann, “Joint optimization of scaling and
placement of virtual network services,” in 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 2017, pp.
365–370.

[11] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 64, no. 3, pp. 698–706, 2015.

[12] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in USENIX Security Sympo-
sium, 2016, pp. 857–874.

[13] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[14] G. Orsini, D. Bade, and W. Lamersdorf, “CloudAware: A context-
adaptive middleware for mobile edge and cloud computing applications,”
in IEEE International Workshops on Foundations and Applications of
Self* Systems. IEEE, 2016, pp. 216–221.

[15] Z. A. Mann, A. Metzger, and S. Schoenen, “Towards a run-time model
for data protection in the cloud,” in Modellierung 2018, I. Schae-
fer, D. Karagiannis, A. Vogelsang, D. Méndez, and C. Seidl, Eds.
Gesellschaft für Informatik e.V., 2018, pp. 71–86.

[16] S. Schoenen, Z. A. Mann, and A. Metzger, “Using risk patterns to
identify violations of data protection policies in cloud systems,” in 13th
International Workshop on Engineering Service-Oriented Applications
and Cloud Services, 2017.

[17] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in IEEE 37th
International Conference on Distributed Computing Systems, 2017, pp.
1281–1290.

[18] Z. A. Mann, Optimization in computer engineering – Theory and
applications. Scientific Research Publishing, 2011.

[19] Z. A. Mann and A. Metzger, “Optimized cloud deployment of multi-
tenant software considering data protection concerns,” in Proceedings
of the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE Press, 2017, pp. 609–618.

28

Migrating IoT Processing to Fog Gateways
Daniel Happ, Sanjeet Raj Pandey, Vlado Handziski

Technische Universität Berlin, Telecommunication Networks Group (TKN)
{happ, pandey, handziski}@tkn.tu-berlin.de

Abstract—Internet-connected sensor devices usually send their
data to cloud-based servers for storage, data distribution and
processing, although the data is often mainly consumed locally
to the source. This creates unnecessary network traffic, increases
latency and raises privacy concerns. Fog and edge computing
instead propose to migrate some of those functions to the edge
of the network. In particular, on premise gateways have the
potential to offer more privacy preserving and low-latency local
storage and processing capabilities. In this study, we outline
our ongoing efforts to combine the benefits of fog and cloud
sensor data processing. We present our work-in-progress towards
a system that automatically selects the most suitable execution
location for processing tasks between cloud and fog. We present
a protocol for migration of processing tasks from one system to
another without service interruption, and propose a reference
architecture. We additionally introduce an analytical cost model
that serves as basis for the placement selection and give advice on
its parametrization. Finally, we show initial performance results,
gathered with an early prototype of the proposed architecture.

I. INTRODUCTION

The Internet of Things (IoT) enables applications that interact
with the physical world around us in real-time by embedding
sensors, software and network connectivity into physical objects.
Additional software components for sensor data distribution,
storage, and analytics, are often offered as services by cloud
providers [1]. However, cloud computing is not always the most
suitable option for offering those services in the IoT context,
especially for latency and privacy sensitive applications [2].
Instead of forcing all data through cloud servers that are
possibly located far away, fog computing proposes to move
some of those services to the edge of the network [3], in our
case to existing gateways devices.

We envision the architecture of future IoT systems to have
3 layers, as shown in Figure 1. The device layer consists of
sensor and actuator devices, which are severely constrained in
terms of processing power, memory and energy. Those ”things”
are connected to a nearby gateway which relays their data to the
Internet. Fog and cloud layers provide the means to distribute,
store and process sensor data. While fog instances are relatively
local and thus closer to the end-user, the centralized remote
cloud provides ubiquitous and seemingly infinite access to
storage and processing.

We expect that all the components use the publish/subscribe
pattern to communicate [2], [4]. In this one-to-many pattern,
the matching between consumer and producer of data is done
by message brokers, which we expect to run on cloud and fog
instances. We mainly consider the topic based naming scheme,
where the symbolic channel addresses are strings.

We identify gateway devices as a prime candidate for local,
low-latency and privacy preserving storage and processing.
While sensor devices themselves are very constrained, today’s
IoT gateway hardware include powerful embedded single-board
computers (Raspberry Pis, BeagleBone Blacks, Intel NUCs,
home routers, etc.) and smartphones and are powerful enough
to take over some of the services the cloud is providing today.
Gateways in industrial and home environments are usually
mains-powered and not energy constrained. We argue that
already deployed gateway hardware has a significant amount
of potential processing power and storage available right on
premise that is not yet fully utilized. Through leveraging
local processing on gateway devices and migrating heavy
computation to resourceful cloud servers on demand, the
resource constraints of local gateway hardware regarding CPU-,
memory-, or network-intensive tasks can be overcome while
still benefiting from the locality gateways provide.

In this work, we present our ongoing effort aimed at
developing a flexible framework for IoT process relocation. Al-
though the concepts provided here universally apply to process
migration in distributed IoT systems using publish/subscribe,
we consider the context of gateway to cloud offloading as an
example. Our main contributions in this work are threefold: 1)
We outline a migration mechanism and a framework for sensor
processing tasks. 2) We provide a cost model for processing task
migration and give advice on a suitable parametrization. 3) We
show preliminary measurements of a research prototype. Those
parts of this paper describing the framework and measurements
are largely based on already published work [5]. The in-depth
analysis of the cost model for task migration has not been
published before.

Low

Latency

High

Latency
Cloud

Sensors

Last Mile Link

DSL, Cable, 3G

Gateways

VM

GW GW GW

S S

S
S S

S

VM …

Fig. 1. Overall architecture of a simplified Fog-enabled IoT platform.

,

29

Migration Request

Transfer Code

Suspend Sensor

GetState

Delete

Migration Response

(accept)

Verify Code

Setup

Subscribe

Acknowledge Code

SetState

Resume

Acknowledge Start

Hypervisor Hypervisor

Fig. 2. Migration between two hypervisors.

II. GATEWAY TO CLOUD OFFLOADING OF SENSOR
PROCESSING TASKS

In this work, we define a sensor processing task very broadly
as an arbitrary computation on a set of input sensor streams that
create one or more output streams. Input streams are exclusively
obtained by subscribing to a pub/sub system. Likewise, the
output is published on one or more output topics. The process
can be defined freely by the user; we do not make any
assumptions about the function provided.

A process has two parts, the code that defines its function
and its state. To enable migration, we need a standard way
to snapshot the state and to restore it at the new location.
We therefore require each processing task to implement a
predefined set of operations, which are given in Table I. The
getState method is used to extract the current process state.
The setState method is called to set the (initial) state of the
task. The state has to be serialize to a byte stream. The specific
encoding of the state is up to the task developer, as long as it
is serialized to a byte stream.

For starting, suspending and resuming tasks, we use addi-
tional operations. Since we do not want to make any assumption
on the specific type of task, each one has its own constructor/de-
constructor (setup/delete) methods to initialize the process, e.g.
with a pub/sub broker. The subscribe method starts to subscribe
on every input topic given and fills the relevant queues with
sensor data. It does not start processing any data. This is
triggered by a call to the resume method, which takes the
sequence number of the next value to process. A process is
likewise suspended using the suspend call, which returns the
next sequence number to process.

The system we envision should dynamically adapt to the
current state of each available processing instance and offer
migration from cloud to gateway and from gateway to cloud.
While not specifically targeted in this work, a gateway to
gateway offloading would be possible as well. As a simplified
example, we use one gateway and one cloud instance. We
envision that the system has a default entry point that stays
responsible for the task. In our case, this is the local gateway.
Each task is defined by code, initial state and estimates for
resource usage. Since different task have different requirements,

TABLE I
OVERVIEW OF SPECIFIC PROCESSING TASK METHODS.

Method Desciption
setup called before launch to initialize task
subscribe called to subscribe to input topics and fill buffers
setState called to set initial state to representation given
resume called to start processing
restart called to restart processing
suspend called to suspend processing
getState called to get representation of the process state
delete called for terminating the processing task

Decision
Engine

Hypervisor

Execution
Environment

Controller

Profiling

Fog enabled Gateway Cloud

Hypervisor

Execution
Environment

Profiling Plugins
CPU

Memory
Network Traffic

Task Issuer

Administrator

Optimizer

Fig. 3. Simplified gateway to Cloud offloading architecture.

not all tasks are equally suitable for remote execution. The task
issuer may thus give additional constraints, e.g. if a task must
not be offloaded. The placement of the processing task must
comply with the given constraints, as well as the available
resources on the gateway. Resource usage is continuously
monitored and the corresponding task meta-data updated.

Figure 3 depicts the high-level architecture of the offloading
system. Every entity offering execution of processing tasks has
a Hypervisor that suspends, resumes and migrates processing
tasks. The execution environment is instrumented with profilers
that monitor the overall and per task resource usage. The
entities that not only support processing of existing tasks but
also issuing new processing tasks have a controller that receives
the necessary task definitions and relevant metadata. A decision
engine decides whether and where to offload the task based on
constraints, issued tasks, optimization goal and profiling data.

We further identify three distinct roles to interact with the
system: The local administrator defines constraints for the
execution environment, e.g. total CPU or memory consumption
can be restricted. The task issuer defines the processing
function and additional metadata, such as estimates of resource
consumption and input and output topics as well as estimated
output frequencies. The optimizer sets the optimization goal.

III. ADAPTIVE OFFLOADING POLICY

A core part of the presented offloading system is the decision
engine, which determines which processes should be offloaded.
The problem of assigning processing tasks to processing nodes
is related to the knapsack problem and NP-hard. In order to
get further insights into the trade-offs of different offloading
policies, we formulate the problem of assigning tasks to
processing nodes as an optimization problem. We then derive

30

a greedy strategy and give some pointers for future work in
the area.

We assume the simplified case of one fog gateway that
can either run processing tasks locally or give them upstream
to the next higher layer, which in our case is a cloud
backend. We further assume that the cloud can provide
infinite resources and the gateway has zero cost for unused
resources. We model the system as time discrete with time
steps on the creation or destruction of processing tasks and
at regular intervals where resource usage is updated and the
assignment problem reevaluated. Let us suppose that we
have n processing tasks P1, P2, . . . , Pn. We further assume
a processing task Pi during the time frame t yields an
output from the profilers which is characterized as the tuple
〈cpui(t),memi(t), rxi,loc(t), rxi,rem(t), txi,loc(t), txi,rem(t)〉,
where cpui(t) is the amount of computing resource required
during the time frame (e.g. CPU usage), memi(t) is the
amount of memory used for the task, rxi,loc(t) and txi,loc(t)
are the number of bytes of traffic received and transmitted
locally on the same gateway and rxi,rem(t) and txi,rem(t)
the amount of external traffic to the cloud. When the process
is first started, the variables are set to the metadata provided
by the task issuer.

We further introduce the decision variable xi ∈ {0, 1}
determining if Pi should be run locally (x = 0) or in the
remote cloud (x = 1). This yields the following function
for the monetary cost of the system, which would be one
possible optimization goal. The cost function has three parts:
The first part describes the bandwidth cost from gateway to
cloud. The second and third part are costs for computing power
and memory in the cloud respectively. Weight parameters have
to be defined according to the cost for CPU, memory and
bandwidth of each individual cloud provider. Since we only
look at a fixed t, we omit this parameter for clarity:

min
xi∈0,1

(ctransfer · ωtr + cmemory · ωmem + ccpu · ωcpu) (1)

where

ctransfer =

n∑

i=1

xi (rxi,loc + txi,loc)

+(1− xi)(rxi,rem + txi,rem) (2)

cmemory =
n∑

i=1

memi · xi (3)

ccpu =
n∑

i=1

cpui · xi (4)

Additionally, we identify several constraints, namely that
processes run locally may in total not exceed a predefined
fraction of the available resources:

n∑

i=1

cpui · (1− xi) ≤ availcpu · fcpu (5)

n∑

i=1

memi · (1− xi) ≤ availmem · fmem (6)

TABLE II
GOOGLE CUSTOM MACHINE PRICES.

Item Price ($) ω
vCPU 0.033174 / vCPU hour 0.210463

Memory 0.004446 / GB hour 0.028207
Bandwidth 0.12 / GB 0.761329

n∑

i=1

rxi,rem · (1− xi) + txi,loc · xi ≤ availbw↓ ∗ frx (7)

n∑

i=1

txi,rem · (1− xi) + rxi,loc · xi ≤ availbw↑ ∗ ftx (8)

To evaluate different offloading policies, we additionally
need to find a suitable parametrization of the aforementioned
model, i.e. the weights for the cost parameters. Since these
parameters are subjective to the system configuration, we give
advice on parametrization with a specific but realistic example.
We use prices provided by Google for a ”custom” virtual
machine types as listed in Table II. We can use those prices
to determine the weights ωtr, ωmem and ωcpu by dividing the
individual price for one traffic, memory and CPU item by the
sum of all prices.

As a first example, this cost function can trivially be
transformed into a greedy strategy. First, all processes that were
determined to never be offloaded due to provided metadata are
copied to the ”local” set and resources are allocated accordingly.
The algorithm sorts the remaining processes by the specific
gain w.r.t. the cost function. It iterates over this sorted list of
remaining processes and adds the one with the highest gain to
the ”local” set and allocates local resources if enough resources
are available. That means it effectively determines the process
that is saving the most amount of monetary cost when running
locally in contrast to running it in the cloud. If that does not
yield a possible allocation, the algorithm should stop or reject
tasks, e.g. the tasks that where created last.

We plan to use Markov decision processes (MDPs) to
determine the solution to our offloading problem in future work.
MPDs are discrete time stochastic control processes, which
can be used to model decision processes with partly random
outcome. Since processing task have event-based input data that
shows partly random behavior and random external impact on
the system, such as background processing tasks, MPDs seem
to be a good fit for the problem at hand. If the state transition
function P and the reward function R of an MPD are known,
a policy can be computed. Because of the random nature of
the amount of input data over a specific timeframe, P and R
cannot be expected to be static and known in advance. Our
idea is to use reinforcement learning to continuously reestimate
the current values for both functions. With this approach, the
system would in any state with a relatively low probability
”try out” assignments that are expected to give a suboptimal
reward to rediscover better solutions in case of an outdated
estimate of P and R and update the functions accordingly. As
mentioned above, this is part of future studies.

31

ams blr fra lon nyc sfo sgp tor
Datacenter

0

500

1000

1500

2000

M
ig

ra
tio

n
Ti

m
e

[m
s]

Fig. 4. Migration between two hypervisors.

IV. EVALUATING MIGRATION TIME

In the previous model we have ignored the cost and time
of task migrations. We use a prototype of our system to
evaluate this time. The prototype is written in python and uses
Message Queue Telemetry Transport (MQTT) as the messaging
middleware between all components of the framework and also
as the pub/sub system the actual processing tasks uses for
input and output data. As a first step, we use the prototype to
evaluate the migration time between a gateway node in Berlin,
Germany and a cloud-based virtual machine, manifests as a
perceived service interruption or lag.

We use a Beaglebone Black as the local gateway and cloud
instances in every datacenter of the provider Digital Ocean. We
use a processing task that we assume to be realistic to offload,
namely a motion detection task that analyses webcam footage.
The size of this task is around 3kB. The state of the task is a
background image which is used to detect changes and varies
in size depending on the image. In our example it is 21kB.

Figure 4 shows the migration times of 64 migrations back and
forth along with a red dot marking an estimate calculated from
round trip time and throughput measurements, which can be
easily done using widely available tools. The migration time is
in the worst case under 2.5s even to very remote destinations.
Due to the additional overhead and latency introduced by
the messaging middleware, the actual average migration time
shows to be considerably higher than the prediction, with the
estimation being the lower bound of the migration time.

In conclusion, since we do not expect migrations across the
globe to happen often, the migration time is small enough to
be tolerable by the end-user for most sensor applications; espe-
cially for migrations to cloud backends on the same continent,
which are well below 200ms. The measurements additionally
highlight the need for a prototypical implementation of the
system. First, the migration time that is ignored in our model
has to be taken into account by future work on the topic.
Second, it shows that parameters of an extended model can
potentially not be accurately derived from simple estimations
but have to be verified by measurements in realistic settings.

V. RELATED WORK

Many mechanisms have been proposed in previous work
that address the challenges of seemless offloading, particularly

mobile offloading from phones to infrastructure. In the IoT con-
text, existing work is still limited. The authors of [6] describe
an integrated fog cloud IoT (IFCIoT) architectural paradigm,
including application, analytics, virtualization, reconfiguration,
and hardware layer. In [7], the authors propose a virtual
machine migration mechanism for fog computing. Aazam
and Huh [8] present a resource estimation and pricing model
for fog-based IoT, including resource prediction, estimation,
reservation, and pricing. We complement this existing work
by focusing on the specific context of processing tasks using
publish/subscribe. Additionally, previous work often lacks the
notion of state, which we deem necessary.

VI. FUTURE WORK AND CONCLUSION

In this work, we argue that the full potential of globally
interconnected sensor technology will only be fully utilized
through increased local sensor data processing. To realize this
vision, we present an offloading mechanism and an initial
architecture of a generic offloading framework which enables
flexible definition of processing tasks as well as constraints
and optimization targets. We provide a formal definition of
the offloading problem, give advice on the parametrization and
give hints on potential solutions. We highlight the need for a
prototypical implementation of such a framework and show
that processing tasks found in IoT systems can be migrated in a
reasonable short time. We further plan to expand our platform
to not only take into account the available resources, but to
optimize the offloading decision with regard to a wider range of
performance targets, such as reduced latency, minimization of
energy consumption, or reduced network traffic. We also plan
to expand the model and the evaluation in terms of migration
time and cost and more realistic use cases.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[2] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek,
E. Lee, and J. Kubiatowicz, “The cloud is not enough: Saving iot from
the cloud,” in 7th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’15). Santa Clara, CA: USENIX Association, Jul. 2015.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New York,
NY, USA: ACM, 2012, pp. 13–16.

[4] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting
IoT Platform Requirements with Open Pub/Sub Solutions,” Annals of
Telecommunications, vol. 72, no. 1, pp. 41–52, 2017.

[5] D. Happ and A. Wolisz, “Towards gateway to cloud offloading in iot
publish/subscribe systems,” in Second International Conference on Fog
and Mobile Edge Computing, FMEC 2017, Valencia, Spain, May 8-11,
2017, 2017, pp. 101–106.

[6] A. Munir, P. Kansakar, and S. U. Khan, “Ifciot: Integrated fog cloud
iot architectural paradigm for future internet of things,” CoRR, 2017.
[Online]. Available: http://arxiv.org/abs/1701.08474

[7] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards virtual
machine migration in fog computing,” in 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Nov
2015, pp. 1–8.

[8] M. Aazam and E. N. Huh, “Fog computing micro datacenter based dynamic
resource estimation and pricing model for iot,” in 29th International
Conference on Advanced Information Networking and Applications, March
2015, pp. 687–694.

32

TableVisor 2.0: Hardware-independent Multi Table
Processing

Stefan Geissler∗, Thomas Zinner∗
∗University of Wuerzburg, Germany

Email: {stefan.geissler|zinner}@informatik.uni-wuerzburg.de

I. INTRODUCTION

The fog computing paradigm aims to extend the concept of
centralized cloud environments by creating a geographically
widespread network of distributed compute and network re-
sources at the network edge. The core defining characteristics
of fog computing are, among others, low latency and location
awareness and a very large number of heterogeneous nodes [1].
The concept thereby promises the flexibility and efficiency of
cloud computing while achieving far smaller latencies through
geographical distribution of compute and network resources.
In order to utilize this concept of highly distributed compute,
storage and network nodes most efficiently, the fog computing
paradigm leverages the concept of programmable networks
by designing edge cloud applications against a standardized
network and compute API to realize application specific edge
cloud networks, e.g. CloudNets [6] or the Network Cloud [9].
The implementation of this type of dynamically programmable
network, however, relies strongly on the concepts of software
defined networks (SDN) and network function virtualization
(NFV). The application of these paradigms to the network
edge consisting of a large number of devices poses several
challenges regarding, for example, network function placement
[11], network or application performance [17] or device het-
erogeneity [16]. One of these challenges, the heterogeneity of
devices, is discussed in this paper.

The original idea of Software Defined Networking is to
control a network consisting of COTS (Commercial Off the
Shelf) hardware switches by programming their forwarding
behavior using a standardized configuration protocol. To this
end, the SDN paradigm aims to separate the control plane
from the forwarding plane by moving control elements from
the switching hardware towards a dedicated controller. This
separation of control and data plane allows a clear separation
of concerns among networking components as the controller
is only responsible for network management and configuration
while the switches handle the forwarding of data plane traffic.
This approach not only simplifies network management and
configuration tasks, but also enables new and use cases.
In the context of fog computing, this approach to network
configuration is well suited to provide the means to realize the
edge cloud platform required in fog computing [14]. In order
to provide the edge cloud platform as a paas (platform-as-
a-service), the underlying infrastructure needs to be designed
with flexibility in mind. Since fog computing environments are

expected to consist of a multitude of different, mostly short
living, applications, the requirements regarding, for example,
latency or bandwidth, are also expected to be diverse. In addi-
tion, the hardware infrastructre deployed in these geographi-
cally distributed networks will consist of heterogenous devices.
This is where the programmability promised by the SDN,
and lately the NVF (network function virtualization) concept
comes into play. The SDN paradigm, and its accompanying
split of control and data plane, promises to enable centralized
configuration using standardized configuration protocols like
OpenFlow [13]. However, this vision of a unified interface
towards the data plane is not always held up in practice. SDN-
enabled switches are often shipped with different hardware
capabilities and configurations, e.g., with a varying number of
flow tables or support for only certain data plane features [4],
[12], [5], [10]. Moreover, most SDN switches have highly
limited hardware accelerated flow tables.

At the same time, many control plane applications depend
on specific data plane capabilities like pushing new headers
for VLAN or MPLS. Therefore, missing hardware features,
hardware heterogeneity or storage limitations are growing
problems for software defined networks. This can be character-
ized as a general mismatch between control plane requirements
and data plane capabilities.

The gravity of this problem may in the future be reduced
by the deployment of switches with programmable data plane
capabilities (e.g. P4 enabled hardware [3]), but can not be
solved today, as such switching hardware will not be broadly
available for some time. To alleviate this issue, we previously
proposed TableVisor [7], [8], a system that addresses the
mismatch between control and data plane by aggregating,
potentially heterogenous, switching hardware to form a single
emulated switch which provides all the capabilities of the
underlying hardware devices. Current limitations of TableVisor
do not allow the preservation of OpenFlow metadata between
physical switches or support for arbitrarily large flow tables.

Hence, in this work we summarize the extensions of the
original TableVisor software. The metadata feature allows to
maintain OpenFlow metadata between switches of the emu-
lated device. The main challenge here is to somehow attach the
metadata to a network packet so that the data remains available
for all switches involved in the emulated device. The table
extension feature allows emulation of a single, large flow table
by combining the table space of multiple hardware devices.
The key challenge here is to ensure consistency while pushing

33

Multi-Table-Switch

Controller

Ta
bl

eV
is

or

Switch 1 Switch 2 Switch 3

Switch Endpoint

Controller Endpoint

ConfigMessage Rewriting

eth0

eth1

ethN

OpenFlow

OpenFlow

Fig. 1: Logical Layers of TableVisor.

flow rules to multiple switches and to enable the update of flow
rules that are distributed among multiple devices.

II. BACKGROUND

A. Multi Table Processing

The Multi Table Processing (MTP) functionality was intro-
duced into the OpenFlow 1.1 standard and allows switching
hardware to perform multiple actions by combining the capa-
bilities of multiple flow tables of a single hardware device.
MTP is well suited to alleviate the problem of flow table
explosion inherent to various types of SDN applications. This
problem commonly occurs as many use cases (e.g. MAC
address learning) require independent matches of source and
destination addresse and thus require a quadratic number of
flow rules to solve a problem that can, using MTP, be solved
using a linear number of flow rules.

B. Programmable Data Plane

The Programmable Data Plane (PDP) approach is another
relevant trend, not only in the SDN domain, but also regarding
the realization of an edge cloud platform infrastructure. The
basic idea is to design devices that provide fully customizable
packet processing pipelines with hardware accelleration. Com-
mon approaches in this direction are P4 [2] or Domino [15].
These approaches enable further use cases in both centralized
and distributed cloud environments by providing ASIC-like
performance in fully programmable devices.

III. TABLEVISOR 2.0

A. Architecture

Figure 1 shows the logical architecture of the TableVisor
software. The TableVisor proxy layer, sitting between the
controller and the deployed switching hardware, emulates a
multi table switch towards the controller while acting as a
regular OpenFlow controller towards the underlying switching
hardware.

The Switch Endpoint is responsible for establishing a
connection to the controller. This layer allows TableVisor to
be completely transparent towards the controller and act like

a single OpenFlow switch regardless of the number of actual
hardware switches connected.

Message Rewriting handles all OpenFlow messages com-
ing from either the controller or one of the hardware switches.
Thereby, the content of the messages is adapted in such a way,
that regular OpenFlow messages sent by the controller can be
distributed to the underlying switching hardware.

Finally, the Controller Endpoint allows switches to con-
nect to TableVisor as they would to an OpenFlow controller.

In [7] we presented the pipeline processing feature of
TableVisor by realizing an MPLS label edge router through
the combination of different OpenFlow switches. The core idea
behind pipeline processing is to emulate a single multi table
device whichs capabilities are only limited by the functionality
provided by the involved hardware switches. This provides
very high flexibility regarding the capabilities of emulated
devices as new capabilities can be added or removed by simply
altering the switches involved in the pipeline.

This section describes the two extensions of the TableVisor
software presented in this work.

B. OpenFlow Metadata

The first extension described in this work is the new
metadata feature. This allows to maintain OpenFlow packet
metadata between hardware switches of the emulated device.
Usually, the meta information is lost as soon as a packet leaves
an OpenFlow switch. The transmission of meta information
between hardware switches is solved by exploiting packet
header fields that are not required for the functionality of
TableVisor. Hence, the metadata is not stored in a switch spe-
cific register, like during normal OpenFlow operation, but in a
packet header field that is not used for the current TableVisor
use case. Currently, MAC address fields as well as the VLAN
tag can be used to store metadata. This, on the one hand,
increases the flexbility of the TableVisor pipeline processing
feature, as packets can be handled based on different metadata
tags. On the other hand, this feature is required for the table
extension functionality presented in the following section.

C. Hardware Table Extension

The second feature provided by the current implementation
is the extension of hardware tables. Since the required TCAM
(Ternary Content-Addressable Memory) storage is very com-
plicated and expensive to build, hardware manufacturers limit
the provided size in order to provide appliances at competitive
prices. Since the flexibility of SDN heavily depends on the
number of available hardware flow rules, this is a severe
limitation for software defined networks [10].

To overcome this issue, TableVisor supports the combi-
nation of multiple hardware switches to emulate a single,
large hardware flow table. Thereby, all flow rules of a certain
priority are distributed among all switches while higher or
lower priority flow rules are stored in the first or last switch
of the aggregate respectively. In order to allow for consistency
during updates, the switch to hold a flow rule is thereby deter-
mined through hashing of the flow mod message. To ensure

34

that packets are not matched multiple times, the previously
described metadata feature is used to tag matched packets
which are then ignored by all later switches of the emulated
flow table.

IV. CONCLUSION & OUTLOOK

This work presents two extensions to the functionality of
TableVisor, a transparent proxy layer software tool that allows
pipeline processing and the extension of hardware flow table
sizes by using multiple hardware switches.

The goal of TableVisor is to overcome the mismatch be-
tween data plane capabilities and control plane requirements
present in current software defined networks. Especially in
the context of fog computing, these requirements are highly
heterogeneous and call for highly flexible solutions to realize
the edge computing infrastructure.

In the future it will be interesting to see how it is possible
to apply the TableVisor concept with P4 enabled devices.
Challenges in this context will be how to compile P4 code
into an emulated switch and how to translate P4 code down
to involved pipeline switches.

REFERENCES

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,
2014.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,
July 2014.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, pages 99–110, New York, NY, USA,
2013. ACM.

[5] C. Jasson Casey, Andrew Sutton, and Alex Sprintson. tinynbi: Distilling
an api from essential openflow abstractions. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, HotSDN ’14,
pages 37–42, New York, NY, USA, 2014. ACM.

[6] Anja Feldmann, Manfred Hauswirth, and Volker Markl. Enabling wide
area data analytics with collaborative distributed processing pipelines
(cdpps). In Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on, pages 1915–1918. IEEE, 2017.

[7] Steffen Gebert, Michael Jarschel, Stefan Herrnleben, Thomas Zinner,
and Phuoc Tran-Gia. Table visor: An emulation layer for multi-table
open flow switches. In 2015 Fourth European Workshop on Software
Defined Networks, pages 117–118, Sept 2015.

[8] Stefan Geissler, Stefan Herrnleben, Robert Bauer, Steffen Gebert,
Thomas Zinner, and Michael Jarschel. Tablevisor 2.0: Towards full-
featured, scalable and hardware-independent multi table processing. In
Network Softwarization (NetSoft), 2017 IEEE Conference on, pages 1–8.
IEEE, 2017.

[9] Marco Hoffmann, Michael Jarschel, Rastin Pries, Peter Schneider,
Admela Jukan, Wolfgang Bziuk, Steffen Gebert, Thomas Zinner, and
Phuoc Tran-Gia. Sdn and nfv as enabler for the distributed network
cloud. Mobile Networks and Applications, pages 1–8, 2017.

[10] Maciej Kuźniar, Peter Perešı́ni, and Dejan Kostić. What You Need to
Know About SDN Flow Tables, pages 347–359. Springer International
Publishing, Cham, 2015.

[11] Stanislav Lange, Alexej Grigorjew, Thomas Zinner, Phuoc Tran-Gia,
and Michael Jarschel. A multi-objective heuristic for the optimization
of virtual network function chain placement. In 29th International
Teletraffic Congress (ITC), 9 2017.

[12] Aggelos Lazaris, Daniel Tahara, Xin Huang, Erran Li, Andreas Voellmy,
Y. Richard Yang, and Minlan Yu. Tango: Simplifying sdn control with
automatic switch property inference, abstraction, and optimization. In
Proceedings of the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’14, pages 199–
212, New York, NY, USA, 2014. ACM.

[13] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[14] ETSI Industry Specification Group (ISG) Mobile Edge Computing
(MEC). Etsi gs mec 003 v1.1.1: Mobile edge computing (mec);
framework and reference architecture. 2016.

[15] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-
eown, and Steve Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 15–28. ACM, 2016.

[16] Ivan Stojmenovic and Sheng Wen. The fog computing paradigm:
Scenarios and security issues. In Computer Science and Information
Systems (FedCSIS), 2014 Federated Conference on, pages 1–8. IEEE,
2014.

[17] Thomas Zinner, Stefan Geissler, Stanislav Lange, Steffen Gebert,
Michael Seufert, and Phuoc Tran-Gia. A discrete-time model for opti-
mizing the processing time of virtualized network functions. Computer
Networks, 125:4–14, 2017.

35

	Julien Gedeon, Jens Heuschkel, Lin Wang, Max Mühlhäuser–Fog Computing: Current Research and Future Challengesto.44em.
	Olena Skarlat, Stefan Schulte–FogFrame: IoT Service Deployment and Execution in the Fogto.44em.
	Sevil Dräxler, Manuel Peuster, Marvin Illian, Holger Karl–Towards Predicting Resource Demands and Performance of Distributed Cloud Servicesto.44em.
	Peter Danielis, Sylvia T. Kouyoumdjieva, Gunnar Karlsson–A Distributed Protocol for Crowd Counting in Urban Environmentsto.44em.
	Manisha Luthra, Boris Koldehofe, Ralf Steinmetz–Adaptive Complex Event Processing over Fog-Cloud Infrastructure Supporting Transitionsto.44em.
	Aditya Raj and Andreas Reinhardt–CLAP: Cooperative Locality-Aware Data Processing in Heterogeneous Fog Environmentsto.44em.
	Zoltán Ádám Mann–Data Protection in Fog Computing through Monitoring and Adaptationto.44em.
	Daniel Happ, Sanjeet Raj Pandey, Vlado Handziski–Migrating IoT Processing to Fog Gatewaysto.44em.
	Stefan Geissler and Thomas Zinner–TableVisor 2.0: Hardware-independent Multi Table Processingto.44em.

