
VTDL: A Notation
for Data Stream Processing Applications

Christoph Hochreiner,
Stefan Schulte and Schahram Dustdar

Distributed Systems Group,
TU Wien, Austria

{c.hochreiner, s.schulte, s.dustdar}
@dsg.tuwien.ac.at

Matteo Nardelli
University of Rome

Tor Vergata, Italy
nardelli@ing.uniroma2.it

Bernhard Knasmueller
TU Wien, Austria

bknasmueller@gmail.com

Abstract—The continuing growth of the Internet of Things
(IoT) requires established stream processing engines (SPEs) to
cope with new challenges, like the geographic distribution of IoT
sensors and clouds hosting the SPEs. These challenges obligate
SPEs to support distributed stream processing across different
geographic locations which also require a new approach on how
data stream processing topologies are defined. In this paper, we
identify required features for next-generation SPEs and intro-
duce the Vienna Topology Description Language (VTDL). This
language is specifically designed to address challenges for next-
generation SPEs and proposes several novel aspects compared
to existing topology description concepts. To assess not only the
feasibility but also the reduced management overhead due to the
VTDL, we evaluate the VTDL within the VISP stream processing
ecosystem and show that the usage of the VTDL approach results
in a management time reduction of up to 18 times.

I. INTRODUCTION

Due to the constant rise of the Internet of Things (IoT) and
the transition towards a data-centric society, today’s stream
processing engines (SPEs) need to deal with a continuous
increase of streaming data concerning volume, variety, and
velocity [1]. These three properties are the main drivers for
the evolution of SPEs like System S [2], Apache Storm [3]
or Apache Spark [4] as well as the design of new ones like
Heron [5] or CSA [6]. These SPEs are designed to run on
clouds and excel at processing huge data volumes at high
velocity for social media applications, like Twitter [5] and
LinkedIn [7] or other areas such as financial analysis [2].
However, they do not consider the geographic location of IoT
sensors and of cloud-based computational resources used to
run the SPEs [8].

The structure of stream processing applications (SPAs) is
defined by topologies, which represent a choreography of
stream processing operators which manipulate the data [2]
provided by data sources. Most data sources in the IoT, e.g.,
sensors, are running in different geographic locations which
are often far away from computational resources on public
clouds [6]. This data needs to be transferred to SPEs which
can either be directly running on private clouds next to the
data sources or on rather centralized public clouds over the
Internet which requires networking resources [9]. After the
data is processed, it needs to be delivered to the designated

receiver, which is either in proximity to the data source, e.g.,
actuators for the data source, or at an arbitrary geographic
location, e.g., a system operator who wants to monitor the
status of manufacturing machines on a mobile device.

Up to now, most SPEs either deploy multiple SPE instances
close to the data sources on private clouds or deploy one
centralized SPE on a public cloud [6]. Both approaches
exhibit major problems: The distributed approach promises
low latency but requires high setup efforts by establishing
the communication among the different SPEs. The centralized
approach exposes a high degree of latency as well as potential
network congestions because the data needs to be transferred
to the SPE over the network before it can be processed [10].

Furthermore, today’s SPAs are often subject to change [11].
The changes are mostly triggered by operational aspects at
run time, e.g., due to reconfigurations of operators. These
reconfigurations can occur due to Quality of Service (QoS)-
related aspects, like changes in the underlying computational
infrastructure, e.g., addition or removal of computational re-
sources [12], or due to changes in the incoming workload
which require the replication of specific operators [13].

Besides these operational changes, there are also other
reasons to update the deployment of SPAs. These reasons
range from updates for single operators, e.g., to fix software
bugs, to organizational changes, like the addition of new data
sources and consumers, e.g., sensors and users, or new legal
restrictions that enforce the processing of data within a distinct
geographic area [14]. To improve the management of SPAs
in terms of their management overhead and deployment time
especially across different geographic locations, we propose
the Vienna Topology Description Language (VTDL), which
extends on the concepts of SPL [15] which was introduced
for IBM System S and supports the outlined features. Further-
more, we have integrated the VTDL into the VISP Ecosystem1

to provide a reference implementation for the VTDL. In
addition, we have designed a protocol which allows the use
of the features enabled by the VTDL, such as the isolated
operator updates while continuing the data processing in the
unaffected part of the SPA.

1Available as open source software at https://visp-streaming.github.io

https://visp-streaming.github.io

China Portugal

Austria

Filter Temperature
(FT)Transform (T)

Calculate
OEE (O)

Analyze
Progress (A)

Collect Data
(C)

Update
Dashboard (UD)

Update
Dashboard (UD)

Analyze
Temperature (AT)

Inform User
(IU)

T

O A

C

FT

FT

Spain

T

O A

C

FT

 Redact Data
(RD)

Event 2
(E2)

Event 3
(E3)

Production Data Sensor Temperature Sensor

Updated Stream
Processing Operator

Initial Data Transmission
 Route

Manufacturing Machine

Event 1
(E1)

Event 1
(E1)

Event 2
(E2)

Data Transmission
Route after the Event

Disabled
Manufacturing Machine

External Event

Stream Processing
Operator

Fig. 1: Motivational Scenario

The remainder of this paper is structured as follows: First,
we provide a motivational scenario in Section II and discuss
the required features for next-generation SPEs in Section III. In
Section IV, we introduce VTDL and in Section V we discuss
the requirements for SPEs to support the VTDL. Section VI
presents the evaluation of the VTDL and a discussion thereof.
Section VII discusses the related work and Section VIII
concludes the paper.

II. MOTIVATION

A. Topology Structure

In this section, we provide a simplified stream processing
topology from the manufacturing domain, which is inspired by
the EU H2020 project CREMA (Cloud-based Rapid Elastic
Manufacturing) [16]. For our scenario, we consider a com-
pany with production facilities in China, Portugal, Spain, and
Austria as well as a headquarter in Austria as shown in
Figure 1. Each geographic location hosts a different amount
of manufacturing machines which are equipped with sensors.
In our scenario, we consider two sensors per manufacturing
machine as data sources, and several operators that process
data before presenting the information to users.

The first sensor is the Production Data Sensor, which
emits production-related attributes from the manufacturing
machines every minute, such as produced items, faulty items,
or downtimes. This information is encoded in a binary data
format and needs to be transformed into machine-readable
data before it can be processed by succeeding operators. The
transformation is conducted by the Transform (T) operator that
also forwards the data to succeeding operators. These operators

calculate the Overall Equipment Efficiency (OEE), a metric
commonly used in the manufacturing domain to assess the
usage rate of their manufacturing machines [17], and analyze
the production progress. These metrics are then collected by
the Collect Data (C) operator to be transferred to the central
reporting location, i.e., the headquarter in Austria. Here, the
Redact Data (RD) operator redacts the individual metrics and
triggers the Update Dashboard (UD) operator, which shows
relevant information on a dashboard to inform the user about
the current efficiency and the overall progress.

The second sensor is the Temperature Sensor, which emits
temperature readings of the machine every second. These tem-
perature readings are filtered by the Filter Temperature (FT)
operator to only forward distinct temperature readings, e.g.,
when the temperature exceeds a predefined threshold. How-
ever, due to the high volume of data, it is imperative to locate
this filtering operator near the sensor to avoid a large volume
of data to be transferred over the Internet. After the filtering
operation, the critical readings are forwarded to an Analyze
Temperature (AT) operator before they are presented to the
user.

B. Deployment Scenarios

Although the topology is identical for all four production lo-
cations, there are different deployment possibilities, as shown
in Figure 1.

The first deployment scenario is to split the topology into
two parts and deploy all metric calculation operators near the
data source, e.g., on a private cloud, as done for the plant in
China. Due to the high amount of data from the manufacturing
machines, it is reasonable to preprocess the data next to the
data source and only transfer the filtered data over the Internet.

For the second deployment scenario, we consider the plant
in Portugal, which only hosts the filter operator locally and
forwards all other data to a private cloud located at the plant
in Spain. This common usage of computational resources
requires only little computational resources for the plant in
Portugal, relatively low network cost due to the small number
of machines, and low geographic distance as well as a higher
utilization of the private cloud in Spain. After calculating the
metrics on close to the data sources, the results are then sent
to the headquarter in Austria for the remainder of the SPA.

Finally, the last deployment scenario can be found for
the plant and headquarter in Austria. For this scenario, all
operators are located on a big private cloud of the plant in
Austria. This geographic co-location avoids the transfer of the
data from the manufacturing machines over the Internet.

C. Topology Changes

While the topology in Figure 1 may appear rather fixed at
first, there are several events which can occur at run time.

The first event (E1 in Figure 1) is a communication outage.
In our scenario, the manufacturing machines in Portugal and
Spain use the same computational infrastructure in Spain to
calculate the OEE and progress metrics.

This setup is feasible as long as the network connection
between these two plants is intact. Nevertheless, whenever
there is a communication outage, the SPA needs to be reconfig-
ured to continue data processing. Based on the geographical
location, it is possible to reroute the raw data to Austria to
compensate the outtake and resume data processing.

The second event (E2) represents a volume reduction for the
SPE. Occasionally, manufacturing machines have downtimes
and the full data processing capacities of the SPE are not
required anymore. Whenever the full processing capabilities
are not required anymore, it is feasible to release computa-
tional cloud resources and reroute the data to reduce the total
operational cost. For E2, several manufacturing machines are
switched off in Spain and similar to the previous event it
is possible to reroute the raw production data to Austria for
processing.

While the first two events are triggered by operational
aspects, it may also be required to replace individual operators
due to organizational reasons. For the third event (E3), we
consider a software update for the UD operator. This software
update fixes an internal flaw of the operator implementation,
but the overall semantics of the operator, i.e., the input and
output data structure, remains the same. For this update,
it should not be required to redeploy the whole topology,
as required for most of the established SPEs, like Apache
Storm or Apache Spark. SPEs should only need to buffer the
incoming traffic for a short time until the new UD operator is
in place and can continue with its operations.

It should be noted that the simplified example provided in
this section is illustrative only. In fact, the handling of data
streams is not a singularity in the smart manufacturing, but
rather a prerequisite in smart systems in general, e.g., smart
cities [18], smart grids [19], or smart healthcare [20].

III. FEATURES FOR NEXT-GENERATION SPES

Based on the motivational scenario, we identify some basic
as well as six next-generation features that are not available in
today’s SPEs (see Section VII). The main difference between
the basic features and the next-generation features is that the
basic features are already mostly covered by existing topology
description languages, such as SPL [15] or CQL [21].

A. Basic Features

The primary feature of any topology description approach
is to define how data sources, operators, and information
consumers, are connected to realize an SPA. Stream pro-
cessing topologies are usually represented as directed acyclic
graphs [15], where vertices represent the operators and edges
represent the data streams between the operators. A data
source feeds data into the topology and has no incoming
data streams. Hence, each topology requires at least one data
source, but there can be arbitrarily many. The data provided
by the sources is then processed by one or more operators.

Operators execute user-defined code, whether it is a simple
operation like filtering, aggregation, merging or more complex
ones such as regression, classification [2]. Operators can obtain

data from arbitrarily many vertices, i.e., data sources or other
operators, and emit new data to other vertices, i.e., other
operators or data sinks. Data sinks or consumers represent
the endpoints of an SPA since they only consume data, i.e.,
only have incoming edges and each SPA needs at least one
data sink.

B. Next-Generation Features

Deployment Preferences (F1): The most important fea-
ture for geographically distributed SPAs is deployment prefer-
ences for individual operators [6]. While this is not relevant for
SPAs in a single location, it becomes crucial for geographically
distributed ones. Each operator needs to be able to provide a
set of admissible deployment locations where it can operate
and satisfy real-world constraints. These constraints mainly
affect data sources, e.g., a temperature sensor or a camera,
which are running in a fixed location cannot be relocated.
Additionally, it may also be prohibited to transfer specific data,
e.g., medical data, to certain locations like public clouds [14]
which also limits the deployment of some operators.

QoS Compliance (F2): Although QoS compliance is
commonly used for software services, such as SPAs [22], it is,
to the best of our knowledge, not considered by state-of-the-art
SPEs on an operator level.

While the application-level QoS compliance may be suffi-
cient for most users, research for microservices has shown that
a more fine-grained approach, i.e., on an operator level, allows
identifying bottlenecks. Based on such a bottleneck analysis
resource provisioning algorithms can achieve lower costs by
only scaling specific operators instead of the whole SPA [23].
Furthermore, an operator-level QoS compliance also allows
the integration of external operators on a software-as-a-service
basis into SPAs [24].

Fault Tolerance (F3): To compensate operator failures
or hardware failures, it is imperative that SPEs are capable of
applying automatic failure compensation mechanisms. Nowa-
days, SPEs already provide basic fault tolerance mechanisms,
like the automatic restart of operators whenever they fail [25].
Nevertheless, it is required to also support more sophisticated
fault tolerance mechanisms, like deploying an updated topol-
ogy for SPAs to reroute the traffic (as required for event E1).
This feature builds on top of the QoS compliance feature (F2),
which allows the SPE to detect operator failures, e.g., based
on a high latency, or infrastructure outages.

Operator Composability (F4): To ensure the compatibil-
ity among the operators, it is required to provide simple seman-
tic annotations, regarding incoming as well as outgoing data
types as already proposed for the streaming data itself [26].
These semantic annotations can be used to check whether
operators are compatible and in a further step also to apply an
automatic semantic operator selection. This would allow the
user to only provide an abstract description for the operator
task, and the SPE can autonomously create the topology which
reduces the users’ workload for designing SPAs. This feature is
already available for other domains like sensor networks [27],
but is still missing for SPAs running on SPEs.

Topology Modifications at Runtime (F5): The need for
topology modifications at run time, as required for the third
compensation mechanism (E3) in the motivational scenario,
has also been identified in the literature [28], [29]. Stream
processing topologies are often deployed for long-term data
processing, which makes it hard to apply minimal updates,
such as bug fixes for individual operators, without redeploying
the whole SPE. Therefore, the SPE needs the possibility to
pause the data flow for individual operators, to apply the
update. As long as the operator composability (F4) does not
render any inconsistencies, it is sufficient to only pause the
processing for the operator that needs to be updated. This
allows to update topologies with software updates or enable
fine-grained failure compensation measures.

Different Data Transfer Modes (F6): Due to the geo-
graphically distributed deployment, it is required that some
operators are connected via the Internet instead of a local
connection which is common for centralized SPE deploy-
ments. The network connection over the Internet may result
in a high communication overhead because each data item
is sent individually which is only efficient in local settings.
To mitigate this communication overhead, it is often more
efficient to create so-called micro-batches, i.e., to aggregate
multiple data items and send them as a single group (or batch)
over the Internet. This reduces not only the communication
overhead and network load but also improves the performance
of the data processing [30].

IV. VTDL – VIENNA TOPOLOGY DESCRIPTION
LANGUAGE

The goal of the VTDL is to support both the basic fea-
tures, as already present for existing topology description
approaches, as well as the next-generation features that we
have identified in the previous section. We have chosen the
SPL [15], which was initially developed for System S as a
starting point since it already provides some of the identified
features compared to other description approaches (see Sec-
tion VII). The description of the SPA topology is provided
through a VTDL file, which contains a list of the operators,
their roles, and attributes, as well as information on how they
are connected.

In VTDL, each vertex of a topology is identified by a
textual identifier, which is prefixed with a $ character, as
presented in Listing 1. Directly after the identifier, the role of
the vertex is indicated, namely Source(), Operator(), or Sink();
the latter two roles need to take at least one operator identifier
as the input parameter, to describe the data flows between
the operators. When the operator needs to receive data from
several upcoming sources, their identifiers are specified in a
comma-separated list, e.g., $oeeS, $progressS. In addition to
the structural description, each vertex is assigned a set of key-
value pairs, as listed in Table I, which include attributes of
interest for the deployment time and run time management.
These key-value pairs can be categorized into three categories:
required attributes, attributes with default values, and optional
attributes.

Listing 1: Excerpt of a Topology Description for an SPA
$productionData = Source() {
concreteLocation : ":::::ffff:8083:c001/cpu",
type : "source",
outputFormat : "productiondata"

}
$transform = Operator($productionData) {
allowedLocations : ":::::ffff:8083:c001"

":::::ffff:8083:c002",
poolPreferences : "cpu gpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "productiondata",
type : "transformData",
outputFormat : "machinereadableProductionData",
stateful : "false",
maxResponseTime : "0.5"

}
$oee = Operator($transform) {
allowedLocations : ":::::ffff:8083:c001"

":::::ffff:8083:c002",
inputFormat : "machinereadableProductionData",
type : "oeeCalculator",
outputFormat : "oeeData",
compensation : "redeployTopology"

}
$progress = Operator($transform) {
allowedLocations : ":::::ffff:8083:c001"

":::::ffff:8083:c002",
inputFormat : "machinereadableProductionData",
type : "analyzeProgress",
outputFormat : "progressData",
compensation : "mailto:admin@tuwien.ac.at"

}
$collectData = Operator($oee, $progress) {
allowedLocations : *,
poolPreferences : "ssd",
concreteLocation : ":::::ffff:8083:c001/ssd",
inputFormat : "oeeData progressData",
type : "collectData",
outputFormat : "dataCollection",
maxQueueLength : "200",
protocol : "microbatch/50items",
compensation : "deploy:www.visp.io/backup.vtdl"

}
$informUser = Sink($collectData) {
concreteLocation : ":::::ffff:8083:c002/general",
inputFormat : "dataCollection",
type : "informUser"

}

The most important attribute is the type of the vertex, which
describes the functionality of the operator, whose concrete
implementation is resolved by the SPE. The second most
important attribute of the VTDL is the location aspect of the
operator as required for F1. Each location is identified by an IP
address, which defines the concrete location of the SPE, data
source or data sink and is a must-have attribute. The default
value is *, which does not restrict the deployment locations.
Nevertheless, it is also possible to restrict the locations by
providing a list of allowed ones.

Each geographic location may have different resource types
available, e.g., resources with specific hardware aspects, like
solid state drives (SSDs), high-performance CPUs or GPUs.
VTDL assumes that these resources are handled as resource
pools, e.g., a resource pool with high-performance CPUs,
and the SPA designer can indicate deployment preferences
by providing a list of poolPreferences. This allows the SPE
deploying the operators according to their resource preferences
if the specific hardware is available. If the specific hardware is
not available, the SPE will select any computational resource
which is available.

TABLE I: Operator Attributes

Attribute Mandatory Values Default Description
type 3 string – Reference to the operator logic

allowedLocations 3 IP+ – Allowed deployment locations
poolPreferences string+ general Hardware preferences

concreteLocation IP/poolIdentifier* – Preselected location
inputFormat string+ – Implemented input formats

outputFormat string – Data output format
maxResponseTime numerical 5s Maximum operator response time
maxQueueLength numerical 100 Maximum queued messages

stateful {true | false} true Presence of operator state
replicationAllowed {true | false} false Operator replication

protocol {stream | microbatch:<X>items | stream Operator processing mode
microbatch:<X>ms }

compensation {redeploySingle | redeployTopology | redeploySingle Failure recovery mode
deploy:<URL> | mailto:<email> | none }

The concreteLocations value is composed of an IP address
and the pool identifier. This attribute needs to be provided at
design time for data sources and sinks since they are fixed.
For operators, this attribute is optional, but it can be used to
indicate concrete deployment instructions. All other concrete
locations are selected at deployment time, as discussed in
Section V-B. Later at run time, this concrete location can be
updated if necessary to improve the performance of the SPA,
e.g., to recover from a failure or to meet QoS requirements.

Besides the type attribute, the VTDL also features several
attributes for the semantic description of the operator to enable
composability checks (F4) or automatic semantic operator
selections. Due to the fact that these composability checks
are not essential for the data processing, these attributes are
optional. These composability checks are represented by the
outputFormat attribute that defines the semantic type of the
data, which is forwarded to succeeding vertices for each source
and operator and the counterpart (inputFormat), which is used
for all operators and sinks.

The next category of attributes considers the QoS as-
pects of the operator (F2). Up to now, the VTDL considers
the maxResponseTime for one processing operation and the
maxQueueLength, which measures the amount of data items
waiting for processing. Nevertheless, there are also other QoS
aspects like the maximum CPU or memory utilization for a
particular operator, which could be easily added as attributes
for the operators. To inform the execution framework regarding
the operator behavior at run time, VTDL comprises three more
attributes: stateful, replicationAllowed, and protocol.

The stateful attribute describes whether the operator is
stateful, i.e., computes the output data using the incoming
data together with internal state information. This attribute is
required to indicate the required effort to migrate operators,
because it is easy to relocate stateless operators, but it requires
extra effort to migrate the state for stateful ones [31].

The replicationAllowed attribute describes whether multiple
instances of the same operator can be executed concurrently
by the SPE, whereas the SPE needs to take care of the concrete
partitioning-scheme of the data. Both operational attributes
stateful and replicationAllowed are optional. To apply a con-
servative approach to preserve the application integrity, we
recommend to assume by default each operator as stateful and
with no replication allowed.

The protocol attribute (F6) allows for defining the data
transmission type (see the collectDataS operator in Listing 1).
It can take two types: stream, which is the default option,
and microbatch, which requires collecting data in groups (i.e.,
batches) before applying the operator function. For the latter
option, the batch size for the micro-batch is provided by
either the number of items for the micro-batch, as shown in
Listing 1 or by the time in milliseconds, e.g., 100 ms, for
sliding intervals. The default setting for this attribute is the
individual transmission and it only needs to be set to enforce
the micro-batch transmission.

The final attribute is the compensation attribute (F3), which
describes the failure compensation mechanism in case one
operator becomes unavailable. Currently, VTDL supports four
different failure compensation mechanisms, as shown in List-
ing 1. The first compensation mechanism scope is motivated
by the literature [32] and is identified by the keyword rede-
ploySingle: it requires to deploy a new instance of the faulty
operator, cache the incoming data during the new instance
startup time, and finally replay the cached data.

The second compensation mechanism, identified by rede-
ployTopology, requires restarting the whole SPA, thus resulting
in a possible loss of currently cached and processed data.
This data loss is also the case for the third compensation
mechanism, which allows to deploy an alternative topology
when a failure of the current one occurs (as required for
E1); the option deploy:<URL> specifies this compensation
mechanism, where the URL indicates the location of an
alternative topology which is deployed as a replacement for the
existing one. The last option two options are strictly speaking
not a compensation mechanism. They allow the SPE to notify
a user via email, i.e., mailto:<email-address>, or to simply
ignore the failure indicated by none.

V. MANAGEMENT FOR VTDL

To enact topologies, which are defined based on the VTDL,
SPEs are required not only to parse the incoming topology
descriptions but also to apply topology modifications at run
time (F5). First, we provide a short overview of the VISP
architecture, which serves as a reference implementation for
the VTDL. Then, we present the required functionality by the
VISP Runtime to support all features of the VTDL.

VISP Runtime

Topology Definition

 Computational Resources

Virtual Machine 1

Operator 1

Operator N

Virtual Machine N

Operator X

Operator Z

Messaging Infrastructure

Resource
Optimization

Resource
Provisioning

Resource MonitorData Source N

Data Source 1

R

Operator Image N

Operator Image 1

Operator Repository

Shared State

VISP
Runtime

VISP
Runtime

VISP
Runtime

VISP
Runtime

R

Fig. 2: Architecture of the VISP Ecosystem

A. System Architecture of the VISP Ecosystem

This section provides a short overview of the architecture
of the VISP Ecosystem [24], which uses the VTDL for
topology descriptions. The VISP Ecosystem is a distributed
research prototype, which is capable of running geographically
distributed stream processing topologies without any specific
interactions required by the user. The core component is
the VISP Runtime, represented in Figure 2 (based on the
FMC notation [33]), which works in cooperation with several
other components, namely the computational resources and
the operator registry. The computing resources are needed
for executing the operators, whereas the latter is a library of
publicly existing operators that can be used to create new data
SPAs.

When an SPA is deployed on computational resources, it
processes data emitted by data sources (on the left-hand side
of Figure 2), to generate high-value information for users, as
shown on the right-hand side of Figure 2. The application can
be distributed across multiple VISP instances, which are self-
contained regarding data processing. This allows the usage of
VISP Runtimes as data sources as well as data sinks to realize
distributed SPA topologies.

The data to be processed is provided by data sources or
preceding VISP Runtimes that push the data to the messaging
infrastructure. The actual data processing is conducted by
operators, which are running on computational resources, e.g.,
virtual machines provided by a public or private cloud. At
deployment time, each operator is started from a dedicated
operator image, e.g., a Docker Image, which is hosted on
an external operator repository. As soon as all operators
are started, the operators fetch the data from the messaging
infrastructure, process it and return the results to the messaging
infrastructure. These results are then either fetched from suc-
ceeding operators within the same VISP Runtime or forwarded
to other VISP Runtimes in different geographic locations.

The remaining components of the VISP Runtime are in
charge of ensuring enough processing capabilities, e.g., by
replicating individual operators or initiating failure compen-
sation mechanisms, such as notifications or the redeployment

of operators. For a detailed description of the individual
components, we refer to our previous work [24].

B. Implementation of the VTDL

In this section, we are going to discuss the required
functionality of SPEs based on the reference implementation
update procedure for the VISP Runtimes as shown in Figure 3.
The overall update procedure consists of 13 steps (S1 – S13)
which are conducted by a managing VISP Runtime, i.e., the
VISP Runtime that first receives the new topology description
as well as all other involved VISP Runtimes, which are
affected by the topology instantiation or update. Each new
topology update operation, including its initial deployment,
is triggered by the upload of a new VTDL file to any VISP
Runtime (S1). This VISP Runtime is then promoted to be the
managing VISP Runtime and checks the composability of the
topology (S2) based on semantic annotations provided by the
VTDL file. Then, the managing VISP Runtime evaluates if
each operator is already assigned a concrete location. If this is
not the case, the managing VISP Runtime assigns concrete
locations based on the available locations in the topology
grounding step (S3); this location is selected based on values
of the allowedLocations key. VISP currently supports two
grounding approaches, i.e., selecting the first suitable location
for a given pool preference for an operator or selecting a
random location based on the available ones.

After the preparation phase, the VISP Runtime informs
all other involved VISP Runtimes of the update. To apply
only one update at a time, the VISP Runtime checks that
no other updates are in place. Therefore, the managing VISP
Runtime starts a synchronized query, asking for the status
of the other VISP Runtimes (S5). If no other updates are
in place, it initializes the update (S6): Each of the involved
VISP Runtimes is blocked for other updates, and the managing
VISP Runtime distributes the updates to all involved VISP
Runtimes. The concrete number of updates depends on the
actual changes for the SPA. This set of updates is derived
by comparing the currently deployed topology against the
new one and generating an update command for each change
between the topologies. The update sets either consist of
creation commands for new operators, deletion commands for
operators which are not required anymore or a reconfiguration
command for the messaging infrastructure if the data flow is
redirected. When there is no topology available, the set of
update commands comprises of the whole topology. But in
most cases, there are only small changes to existing topologies
which result in partial updates.

After all required update commands are distributed to the
affected VISP Runtimes, they evaluate whether the update
is feasible based on the locally available computational re-
sources. If this is the case, the managing VISP Runtime
is informed of the successful update checks; otherwise, an
exception is raised (S8). Up to this step (S8), no changes
have been applied to any already running operators, which
allows a stop of the topology update command without any
compensation mechanism required. The first actual changes

(S
7)

 D
is

tri
bu

te
 u

pd
at

e
op

er
at

io
ns

(S
6)

 In
iti

at
e

up
da

te

(S
10

) U
pd

at
e

m
es

sa
ge

in

fra
st

ru
ct

ur
e

No compensation required Compensation
required

Managing VISP Runtime

All involved VISP Runtimes

All involved VISP Runtimes
synchronized by managing
VISP Runtime

(S
1)

 R
ec

ei
ve

 n
ew

to

po
lo

gy

(S
2)

 C
he

ck
 Ii

nt
eg

rit
y

fo
r

ne
w

 to
po

lo
gy

(S
3)

 T
op

ol
og

y
gr

ou
nd

in
g

(S
4)

 D
is

tri
bu

te
 n

ew

to
po

lo
gy

(S
5)

 C
he

ck
 th

at
 n

o
up

da
te

 is
 in

 p
la

ce

(S
8)

 V
al

id
at

e
re

so
ur

ce

av
ai

la
bi

lit
y

(S
9)

 S
to

p
pr

oc
es

si
ng

 o
f

in
vo

lv
ed

 o
pe

ra
to

rs

(S
11

) A
pp

ly
 o

pe
ra

to
r

up
da

te
s

(S
12

) C
he

ck
 in

te
gr

ity

(S
13

) C
on

tin
ue

pr

oc
es

si
ng

Data is being processed / No topology in place Data processing stopped

Fig. 3: Topology Update Procedure

are applied in the next step (S9), which triggers a processing
stop for all affected operators.

This marks a major distinction in contrast to other SPEs,
which need to terminate the complete SPA before deploying
new of updated topologies and therefore suffer downtimes.
The VTDL approach allows the SPE to continue the data
processing for those operators that are not affected by the
update operation. After stopping the data processing, each
involved VISP Runtime applies the updates to its messaging
infrastructure (S10), removes obsolete operators and instanti-
ates new ones (S11). These two steps represent the only critical
steps, where manual compensations may be required if any
reconfiguration fails. As soon as all update commands have
been executed, all VISP Runtimes apply another composability
check to ensure that the topology is enacted as intended (S12)
and, if this check does not raise any issues, the processing is
continued for all operators (S13).

VI. EVALUATION

A. Evaluation Scenarios

To evaluate the VTDL and the reduced management over-
head for distributing the topology across different geographic
locations and applying the topology configuration at each
location, we conduct a case study consisting of several sce-
narios based on the motivational scenario. These scenarios
are evaluated regarding duration as well as required user
interactions for both the VTDL approach and a baseline
approach. The baseline approach represents the state of the
art for most established SPEs, e.g., Apache Storm, which
do not support any partial updates. In contrast to the VTDL
approach, the baseline approach also does not consider SPAs
across multiple geographic locations which require the user
to apply topology deployment for each geographic location
individually.

1. New Topology in one Location: For the first scenario,
we assume a topology deployment for a single location. This
scenario represents the state of the art for established SPEs
and requires no update activities for other SPEs.

2. New Topology across four Locations: The second
scenario represents an initial deployment for the motivational
scenario. Hereby, the VTDL approach is only required to
upload the topology to one VISP Runtime in one location,

whereas the baseline approach requires uploading a subset of
the topology to all involved locations one after another. The
first and the second scenario consider both the messaging in-
frastructure configuration as well as the operator instantiation
for the SPA.

3. Network Disruption (E1): For the network disruption
scenario, the VTDL approach can rely on the automatic
failure detection and compensation of VISP Runtimes to detect
network disruptions between two regions and reconfigure the
data flow based on a given alternative topology. This feature
is not available for other SPEs and therefore, the evaluation
of the baseline approach for this scenario is not possible.

4. Resource Reconfiguration (E2): The resource recon-
figuration scenario evaluates the time to reconfigure the data
flow between a sensor and an operator for the VTDL approach.
This reconfiguration only requires an update to the messaging
infrastructure, since the operators are already running in the
target location. For the baseline approach, it is required to
upload a new topology for all the affected regions, which also
requires the deployment of new operators.

5. Single Operator Update (E3): The last scenario eval-
uates the time required to update a single operator. For this
scenario, it is sufficient for the VTDL approach to only update
the specific operator, whereas the baseline approach requires
the redeployment of the complete topology for the affected
location.

B. Evaluation Setup
To conduct the evaluation, we have set up four VISP

Runtimes, which represent the individual locations of the
motivational scenario, on an OpenStack-based private cloud2

and on three regions of Amazon EC23 to simulate the different
geographic regions.

The interactions are conducted by Selenium scripts4 to
eliminate any human-based delays for the evaluation. Each
task of these Selenium scripts, e.g., opening a webpage,
uploading a VTDL file or removing an enacted topology, is
counted as an individual interaction whereas the duration is
assessed by the total run time of the Selenium script for the
complete scenario.

2https://www.openstack.org
3https://aws.amazon.com/ec2/
4http://www.seleniumhq.org

https://www.openstack.org
https://aws.amazon.com/ec2/
http://www.seleniumhq.org

C. Results and Discussion

To eliminate any potential corruption, e.g., side effects by
other cloud users, due to the evaluation in a cloud environment,
each scenario was executed three times. Table II shows the
average results alongside with the standard deviations of the
individual measurements.

For the first scenario, there is no difference between the
VTDL approach and the baseline approach, because both
approaches follow the same instructions. Each topology up-
date requires three interactions: opening the web-based user
interfaces, selecting the desired VTDL file in a file chooser,
and initiating the update procedure by clicking on a button.
The overall scenario takes about 55 seconds, which is mainly
due to the instantiation of Docker Container for each operator.
The Docker Images are already available for all scenarios to
avoid any network-related delays for downloading the Docker
Images.

The first difference between the VTDL approach and the
baseline approach can be seen for the second scenario, where
the topology is deployed across four locations. The VISP Run-
time is capable of deploying the topology to multiple locations
in parallel which results in a shorter duration compared to
the first scenario, although the update instructions need to
be propagated over the network. For the baseline approach,
it is required to upload the individual parts of the topology
one after another to the individual SPEs to ensure the correct
data flow wiring among the different regions. This sequential
approach requires significantly more interactions, i.e., four
times as much than for the VTDL approach which results in an
about 40% faster topology instantiation. Hereby, the majority
of the deployment time can also be attributed to the startup
duration of the Docker Container.

The first event scenario (E1) can only be evaluated for
the VTDL approach because other SPEs do not support any
sophisticated failure compensation on an operator level. For
this scenario, we have selected the deploy functionality as
the compensation mechanism, which obtains a new VTDL-
file from a predefined location and applies the delta update
between the topologies. Here, it is sufficient to reroute the
traffic from Portugal to Austria, which results in a low duration
between the event and the topology update. The event is
detected by the watchdog mechanism of the VISP Runtime,
which evaluates the availability and connectivity among the
individual operators every ten seconds. The detection of the
outtake takes on average 5 seconds, but in the worst case this
can take up to 10 seconds, depending on the cycle of the
watchdog. These changing detection times result in different
compensation durations, which is also indicated by the high
standard deviation for this scenario. This scenario also does
not require any user interactions since the failure compensation
is conducted autonomously by the VISP Runtimes.

The next scenario (E2) describes an active resource con-
figuration within the topology which results in a shorter
average duration as for E1. For the VTDL approach, it is
sufficient to only reroute the data flow between the sensor

and the operator, whereas the baseline approach requires the
removal and redeployment of two sub-topologies, i.e., for
Spain and Austria, which results in an update duration of
almost 54 seconds. That is about 18 times as long as for
the VTDL approach. The baseline approach also requires five
interactions more than the VTDL approach, because it requires
two topology removals and two topology uploads.

The last scenario (E3) requires the removal and update of
one VISP Runtime for the baseline approach compared to
the update of a single operator. For the new instantiation,
all operators are newly deployed which results in a six times
higher duration compared to the VTDL approach, where only
one operator is removed and the updated one is deployed
again.

The evaluation of the VTDL approach against the baseline
approach which is used for established SPEs shows that
the VTDL-based approach can reduce both the duration for
applying changes to a topology as well as the required manual
interactions.

VII. RELATED WORK

Up to now, there is no suitable topology description ap-
proach, which addresses all features identified in Section III.
Nevertheless, there are already several topology description
approaches, which address the features at least partially as
shown in Table III.

For the discussion of the related work, we only analyze
whether the topology description approach supports the de-
sired features. This limitation is specifically relevant for the
fault tolerance aspect (F3): Although most SPEs consider
fault tolerance mechanisms, up to now, there are hardly any
approaches which consider this aspect on a language level. In
addition to the identified features, we also consider whether the
topology description approach allows for an abstract topology
description, i.e., no SPE-specific knowledge is required to
define new topologies.

For the VTDL, the most related topology description ap-
proach is the SPL [15] because the VTDL uses the same
structural concepts. The major differences between the SPL
and the VTDL are a lack of several features for SPL, like
QoS-related attributes and explicit fault tolerance instructions.
The most recent version of the SPL already considers the
placement of operators on specific computational resources
within one System S instance [15]. Nevertheless, the SPL does
not support topologies across multiple System S instances.

The continuous query language (CQL) [21] follows the
design principles of SQL. This enables domain experts to
design individual operators as well as topologies based on
an SQL-like syntax without considering any SPE-specific
aspects, like deployment restrictions or resource elasticity. The
downside of this abstract approach is that none of the next-
generation features are considered within the design of CQL
and the focus on the SQL-like syntax makes it hard to integrate
them into CQL. While CQL provides an easy to use topology
design approach, it is not widely supported by SPEs.

TABLE II: Evaluation Results

VTDL Approach Baseline Approach
duration (ms) interactions duration (ms) interactions

1. New Topology on one Location 54977.33 (σ = 982.03) 3 54977.33 (σ = 982.03) 3
2. New Topology across four Locations 40953.67 (σ = 431.03) 3 68098.00 (σ = 1701.86) 12
3. Network Disruption (E1) 7532.67 (σ = 1921.05) 0 - -
4. Resource Reconfiguration (E2) 3301.33 (σ = 281.56) 3 54056.33 (σ = 1554.08) 8
5. Single Operator Update (E3) 5688.67 (σ = 363.53) 3 35623.33 (σ = 1169.39) 4

To resolve this issue, an intermediate language called
River [34] has been developed, which allows running CQL-
based topologies on System S. This abstraction layer follows
a similar approach as the Apache Beam project does and
also supports the integration of StreamIt [35], a programmatic
topology description language, into System S.

The majority of the SPEs only support a code-based
topology description. For our analysis, we consider Apache
Storm [3] and Apache Spark Streaming [4] as representatives
for established SPEs. Nevertheless their features are similar
for other SPEs like Apache Apex5, Apache Flink [36] and to
some extent also Apache Kafka6. These SPEs already consider
basic QoS-related aspects, like parallelism, and can redistribute
computational resources at run time for replicated operators.
However, none of these SPEs supports structural changes
of topologies at run time (F5). Furthermore, Apache Spark
Streaming also allows some basic fault tolerance mechanism.

To abstract the code-based topology representation for
Apache Storm, the Flux project proposes a Domain Specific
Language (DSL). This DSL allows an abstract description
of an Apache Storm topology, which can then be translated
into a concrete implementation, similar to Apache Beam or
River. Additionally, there are also other topology description
approaches like REPARA [37] or SPar [38], but they also do
not consider the required features for next-generation SPEs.
Based on the comparison shown in Table III, one can see
that the features discussed in Section III are only partially
supported by current topology description approaches, whereas
VTDL considers all of the required features.

The large variety of established (System S [2], Apache
Storm [3] or Apache Spark [4]) and novel (Heron [5] or
CSA [6]) SPEs results in a large variety of topology de-
scription approaches. To address this incompatibility issue,
the Apache Beam project has been initiated. This project
introduces the abstract Beam Model based on the Dataflow
model [30], which is then translated into concrete instruc-
tions for different SPEs, like Apache Spark [4] or Apache
Flink [36]. However, Apache Beam does not support any
of the next-generation features which have been identified
in Section III. This is mainly because Apache Beam only
provides an abstraction layer for other SPEs and therefore
implements the least common denominator of the supported
SPEs.

Besides the SPE-specific topology description languages,
we also evaluated TOSCA [39] as a foundation for the VTDL
because TOSCA already considers different QoS aspects and

5https://apex.apache.org
6http://docs.confluent.io/current/streams/developer-guide.html

capabilities for applications. Although these applications fol-
low similar concepts as operators, the main focus of the
VTDL is on the structural aspects of the stream processing
topology and the technical deployment aspects, the main focus
of TOSCA, are out of scope for the VTDL and need to be
considered by SPEs.

VIII. CONCLUSION

Within this paper, we have motivated the need for a new
topology description approach by discussing the features for
next-generation SPEs. Based on these features we have intro-
duced the VTDL, which extends the SPL with the required
features to support distributed SPAs as well as fine granular
QoS constraints for operators. Besides the abstract notation
of the VTDL, we also presented a concrete management
mechanism, which is required to use the features of the VTDL
within SPEs. This management mechanism has been evaluated
based on five scenarios and the evaluation shows that the
VTDL approach has a significantly lower update duration
for updating topologies compared to traditional approaches.
Additionally, the evaluation also shows that the VTDL also
enables new possibilities for SPAs like the automatic failure
compensation.

For our future work, we plan to evaluate the usability of the
VTDL based on a user study conducted with domain experts.
This user study aims to assess the performance improvement
for designing new topologies based on the VTDL. In addition,
we plan to extend the integration to other SPEs by integrating
the VTDL into the Apache Beam project to leverage Beam’s
already existing integration capabilities.

REFERENCES

[1] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and D. Barton,
“Big data,” The management revolution. Harvard Business Review,
vol. 90, no. 10, pp. 61–67, 2012.

[2] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE:
The System S Declarative Stream Processing Engine,” in International
Conference on Management of Data (SIGMOD). ACM, 2008, pp.
1123–1134.

[3] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm@twitter,” in International Conference
on Management of Data (SIGMOD). ACM, 2014, pp. 147–156.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10–17, 2010.

[5] M. Fu, S. Mittal, V. Kedigehalli, K. Ramasamy, M. Barry, A. Jorgensen,
C. Kellogg, N. Lu, B. Graham, and J. Wu, “Streaming@twitter,” IEEE
Data Engineering Bulletin, vol. 38, no. 4, pp. 15–27, 2015.

[6] Z. Shen, V. Kumaran, M. J. Franklin, S. Krishnamurthy, A. Bhat,
M. Kumar, R. Lerche, and K. Macpherson, “CSA: Streaming engine
for internet of things,” IEEE Data Engineering Bulletin, vol. 38, no. 4,
pp. 39–50, 2015.

https://apex.apache.org
http://docs.confluent.io/current/streams/developer-guide.html

TABLE III: Topology Description Approaches

Apache Beam, Flux, Apache Spark
VTDL Dataflow [30] SPL [15] CQL [21] Apache Storm [3] Streaming [4]

Deployment Preferences (F1) 3 (3)
QoS Aspects (F2) 3 (3) (3)

Fault Tolerance (F3) 3 (3)
Semantic Annotation (F4) 3 3

Runtime Modification (F5) 3 (3) (3)
Data Transfer (F6) 3

Abstract Description 3 (3) 3 3 (3)

[7] Z. Zhuang, T. Feng, Y. Pan, H. Ramachandra, and B. Sridharan, “Effec-
tive multi-stream joining in apache samza framework,” in International
Congress on Big Data. IEEE, 2016, pp. 267–274.

[8] A. Clemm, M. Chandramouli, and S. Krishnamurthy, “DNA: An SDN
framework for distributed network analytics,” in International Sympo-
sium on Integrated Network Management (IM). IEEE, 2015, pp. 9–17.

[9] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of
Cloud Computing and Internet of Things: A Survey,” Future Generation
Computer Systems, vol. 56, pp. 684–700, 2016.

[10] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in 22nd International Conference on Data Engineering, 2006
(ICDE), 2006, pp. 49–49.

[11] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters.” HotCloud, vol. 12, pp. 10–10, 2012.

[12] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32.

[13] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, “Elastic Stream
Processing for the Internet of Things,” in 9th International Conference
on Cloud Computing (CLOUD). IEEE, 2016, pp. 100–107.

[14] European Comission, “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC,” Official
Journal of the European Union, vol. 119, pp. 1–88, 2016-05-04.

[15] M. Hirzel, S. Schneider, and B. Gedik, “SPL: An extensible language
for distributed stream processing,” ACM Transactions Programming
Languages and Systems, vol. 39, no. 1, pp. 5:1–5:39, Mar. 2017.

[16] S. Schulte, P. Hoenisch, C. Hochreiner, S. Dustdar, M. Klusch, and
D. Schuller, “Towards process support for cloud manufacturing,” in
18th International Enterprise Distributed Object Computing Conference,
2014, pp. 142–149.

[17] S. Nakajima, “Introduction to TPM: Total Productive Maintenance,”
Productivity Press, Inc., 1988.

[18] S. Kolozali, M. Bermúdez-Edo, D. Puschmann, F. Ganz, and P. M. Bar-
naghi, “A Knowledge-Based Approach for Real-Time IoT Data Stream
Annotation and Processing,” in 2014 IEEE International Conference on
Internet of Things, IEEE Green Computing and Communications, and
IEEE Cyber, Physical and Social Computing (iThings/GreenCom/CP-
SCom 2014). IEEE, 2014, pp. 215–222.

[19] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adaptive
Rate Stream Processing for Smart Grid Applications on Clouds,” in 2nd
International Workshop on Scientific Cloud Computing (ScienceCloud
’11). ACM, 2011, pp. 33–38.

[20] R. Cortés, X. Bonnaire, O. Marin, and P. Sens, “Stream Processing of
Healthcare Sensor Data: Studying User Traces to Identify Challenges
from a Big Data Perspective,” in 4th International Workshop on Body
Area Sensor Networks (BASNet-2015), ser. Procedia Computer Science,
vol. 52, 2015, pp. 1004–1009.

[21] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
semantic foundations and query execution,” Proceedings of the VLDB
Endowment, vol. 15, no. 2, pp. 121–142, 2006.

[22] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik, “Scalable distributed
stream processing,” in First Biennial Conference on Innovative Data
Systems Research (CIDR 2003). www.cidrdb.org, 2003, pp. 257–268.

[23] M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M. Ve-
rano, R. Casallas, S. Gil, C. Valencia, A. Zambrano et al., “Infras-
tructure cost comparison of running web applications in the cloud

using AWS lambda and monolithic and microservice architectures,” in
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE, 2016, pp. 179–182.

[24] C. Hochreiner, M. Vögler, P. Waibel, and S. Dustdar, “VISP: An Ecosys-
tem for Elastic Data Stream Processing for the Internet of Things,” in
20th International Enterprise Distributed Object Computing Conference.
IEEE, 2016, pp. 19–29.

[25] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based data
stream processing,” in 8th International Conference on Distributed
Event-Based Systems (DEBS). ACM, 2014, pp. 238–245.

[26] A. Rodriguez, R. McGrath, Y. Liu, and J. Myers, “Semantic management
of streaming data,” in 2nd International Conference on Semantic Sensor
Networks, ser. CEUR Workshop Proceedings, vol. 522. CEUR-WS,
2009, pp. 80–95.

[27] W. Wang, P. Barnaghi, G. Cassar, F. Ganz, and P. Navaratnam, “Semantic
sensor service networks,” in IEEE Sensors. IEEE, 2012, pp. 1–4.

[28] G. Jacques-Silva, B. Gedik, R. Wagle, K.-L. Wu, and V. Kumar,
“Building user-defined runtime adaptation routines for stream processing
applications,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
1826–1837, 2012.

[29] F. Baude, L. El Beze, and M. Oliva, “Towards a flexible data stream
analytics platform based on the gcm autonomous software component
technology,” in International Conference on High Performance Comput-
ing & Simulation (HPCS). IEEE, 2016, pp. 34–41.

[30] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al.,
“The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data process-
ing,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792–
1803, 2015.

[31] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using op-
erator state management,” in International Conference on Management
of Data (SIGMOD). ACM, 2013, pp. 725–736.

[32] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative,
self-configuring high-availability solution for stream processing,” in 23rd
International Conference on Data Engineering (ICDE). IEEE, 2007,
pp. 176–185.

[33] F. Keller and S. Wendt, “FMC: An approach towards architecture-
centric system development,” in 10th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems. IEEE,
2003, pp. 173–182.

[34] R. Soulé, M. Hirzel, B. Gedik, and R. Grimm, “River: an intermediate
language for stream processing,” Software: Practice and Experience,
vol. 46, no. 7, pp. 891–929, 2016.

[35] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in International Conference on Compiler
Construction. Springer, 2002, pp. 179–196.

[36] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache FlinkTM: Stream and Batch Processing in a Single
Engine,” Data Engineering Bulletin, vol. 38, no. 4, pp. 28–38, 2015.

[37] M. Danelutto, T. De Matteis, G. Mencagli, and M. Torquati, “Data
stream processing via code annotations,” The Journal of Supercomput-
ing, pp. 1–15, 2016.

[38] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes, “SPar:
A DSL for High-Level and Productive Stream Parallelism,” Parallel
Processing Letters, vol. 27, no. 1, 2017.

[39] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable
Automated Deployment and Management of Cloud Applications,” in
Advanced Web Services. Springer, 2014, ch. 22, pp. 527–549.

	Introduction
	Motivation
	Topology Structure
	Deployment Scenarios
	Topology Changes

	Features for Next-generation SPEs
	Basic Features
	Next-Generation Features

	VTDL – Vienna Topology Description Language
	Management for VTDL
	System Architecture of the VISP Ecosystem
	Implementation of the VTDL

	Evaluation
	Evaluation Scenarios
	Evaluation Setup
	Results and Discussion

	Related Work
	Conclusion
	References

