
Architecture-driven Design and

Configuration of Messaging

Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp Waibel

Matrikelnummer 0716754

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: o.Univ.Prof. Mag. Dr. Schahram Dustdar
Mitwirkung: Christoph Dorn, Ph.D.

Wien, 19.02.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Architecture-driven Design and

Configuration of Messaging

Systems

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp Waibel

Registration Number 0716754

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: o.Univ.Prof. Dr. Schahram Dustdar
Assistance: Christoph Dorn, Ph.D.

Vienna, 19.02.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Philipp Waibel
Aichhorngasse 3, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all I want to give my sincere thanks to my advisor Prof. Schahram Dustdar and to my
co-advisor Christoph Dorn who has always taken the time to provide me with feedback and
motivated me to improve myself from the first day on. Additionally I want to thank the people
at ilogs information logistics GmbH for their support and the opportunity to work with them,
which guided us to the fundamental idea of this thesis.

Furthermore I want to thank my fellow students for the interesting discussions during the
years of study and my girlfriend for her ongoing support. Finally I would like to give my sincere
gratitude to my family for their support.

iii

Abstract

Nowadays, the use of services as the foundation stone, to develop a complex and reliable sys-
tem, is an established method. These systems are composed of several services, where each of
them fulfills a special (sub-)task in the overall service-oriented system. Such a system has the
characteristics of extremely loose coupled services, unpredictable service availability, dynami-
cally changing numbers of service instances and discourages a central execution control system.
Among other methods, a message-based communication is an approved and natural way for the
services to communicate. Nevertheless the design and development of a consistent message-
based service system isn’t trivial at all. To be more specific, it is a major problem to achieve
an overall consistent configuration, where the messages get routed as it is provided in the de-
sign of the system. Whereas orchestration and choreography-based approaches have proved to
be successful in designing composite services in workflow-centric styled systems, they aren’t
quite as useful in systems with a message-centric architecture. Though, in different scenarios,
a message-centric architecture can be a better match for complex service systems that have the
characteristics outlined above.

The goal of this work is to investigate how a software architecture-centric approach can
be used to design and configure message-based service systems. More specifically, the ap-
proach uses an architecture description language (ADL) to model the high-level architecture of
a message-based service system, and to configure the message relevant aspects of the services,
respectively system. Furthermore, consistency checking is performed on the ADL document to
ensure the consistency of the system. Finally, the package is completed by an architecture-to-
configuration transformation, which ensures the correct implementation of the planned system.
Furthermore changes of the system, which may be done at a later point in time, are propagated
to the already transformed system without losing any information.

To prove the utility of the approach, a prototype, on basis of xADL and ArchStudio 4, is
developed. The prototypical application is designed to transform the modeled and configured
architecture into Mule ESB workflows and Apache ActiveMQ configuration files. Furthermore
this prototype is used to implement a real world service system.

v

Kurzfassung

Heutzutage ist die Nutzung von Services als Grundbausteine für die Entwicklung von komple-
xen und zuverlässigen Systemen ein etabliertes Verfahren. Diese Systeme werden aus mehreren
Services zusammengestellt, wobei jeder von ihnen eine spezielle (Teil-) Aufgabe in dem Ge-
samtsystem übernimmt. Ein solches System hat die Eigenschaften von locker gekoppelten Ser-
vices, unvorhergesehenen Service Verfügbarkeiten, dynamisch verändernder Anzahl an Service-
Instanzen und sollte falls möglich kein zentrales Steuerungssystem haben. Neben anderen Me-
thoden ist die nachrichtenbasierte Kommunikation eine gute und natürliche Weise für die Kom-
munikation zwischen den Services. Dennoch ist die Konstruktion und Entwicklung eines kon-
sistenten, nachrichtenbasierten Service-Systems nicht trivial. Speziell ist es ein großes Problem,
ein System zu erhalten, in dem die Nachrichten so weitergeleitet werden, wie es in der Pla-
nung des Systems vorgesehen ist. Während sich bei Orchestration- und Choreography-basierten
Ansätzen die Entwicklung von Systemen auf Workflow-basierten Architekturen als erfolgreich
erwies, sind sie nicht sehr nützlich für Systeme mit einer nachrichtenbasierten Architektur. Je-
doch kann, in verschiedenen Szenarien, eine nachrichtenbasierte Architektur besser geeignet
sein, um komplexe Service-Systeme zu entwickeln, die die oben beschriebenen Eigenschaften
haben.

Das Ziel dieser Arbeit ist es zu untersuchen, wie ein Software Architektur-zentrierter Ansatz
verwendet werden kann, um nachrichtenbasierte Service-Systeme entwerfen und konfigurieren
zu können. Dafür verwenden wir eine Architecture Description Language (ADL), um die Ar-
chitektur des Systems modellieren zu können, und um die Nachricht relevanten Aspekte kon-
figurieren zu können. Weiters wird eine Konsistenzprüfung auf dem ADL Dokument durchge-
führt, um die Konsistenz des modellierten Systems zu gewährleisten. Das Paket wird durch eine
Architektur-zu-Konfigurations Transformation abgeschlossen, die sicherstellt, dass das geplan-
te System ordnungsgemäß umgesetzt wird. Des Weiteren können Veränderungen die zu einem
späteren Zeiptunkt getätigt werden, in das bereits transformierte System integriert werden, ohne
dass Informationen verloren gehen.

Um die Nützlichkeit dieses Ansatzes zu beweisen wird ein Prototyp, auf der Grundlage von
xADL und Archstudio 4, entwickelt. Dieser Prototyp transformiert die geplante und konfigurier-
te Architektur in Mule ESB Workflows und in Apache ActiveMQ Konfigurationsdateien. Des
Weiteren wird dieser Prototyp verwendet, um ein reales Service-System zu entwickeln.

vii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivating Scenario . 2

1.2.1 Parking Management System . 2
1.3 Aim of the Work . 4
1.4 Methodological Approach . 4
1.5 Organization . 5

2 Related Work 7
2.1 Design of Distributed Service-Centric Systems 7

2.1.1 Service Composition . 7
2.1.2 Enterprise Application Integration . 8
2.1.3 Message Exchange Pattern . 9
2.1.4 Tool Support . 10

2.2 Architecture-Centric Software Development 10
2.2.1 Architecture Description Languages 11
2.2.2 Architecture-Implementation Mapping 13
2.2.3 Message-System Consistency Analysis 14
2.2.4 Tool Support . 15

3 Approach 17
3.1 Design Principles . 17
3.2 Overview . 18
3.3 Ongoing Example . 21
3.4 Message-Based Service System Consistency 22

3.4.1 Architectural Level Inconsistencies 22
3.4.2 Component Level Inconsistencies . 24
3.4.3 Discussion: Message-Based Service System Consistency Checking . . 25

3.5 Allocation of Message System Aspects to ADL Elements 25
3.5.1 Message-Centric ADL Extension . 27

3.6 Association of Message System Aspects and ADL Elements 37
3.7 Change Propagation . 38

3.7.1 Change Management Strategy . 39

ix

4 Realization 41
4.1 Big Picture . 41
4.2 Architecture-Level Editors . 43

4.2.1 xADL 2.0 Editors . 43
4.2.2 MSG Launcher . 44

4.3 Basic Data Model . 46
4.3.1 Mule ESB Data Model . 46
4.3.2 Apache ActiveMQ Data Model . 51
4.3.3 xADL Data Model . 52

4.4 Message-Centric xADL Extension . 54
4.5 Consistency Check . 57

4.5.1 Consistency Check Definition . 57
4.5.2 Consistency Check Class Structure 58

4.6 Architecture-to-Configuration Transformation 59
4.6.1 Transformation Models . 60
4.6.2 xADL 2.0 to Internal Transformation Model 62
4.6.3 Transformation Model to Output Files 66

4.7 Change Propagation . 69
4.8 Implementation . 71

4.8.1 Installation . 71
4.8.2 Usage . 72

5 Evaluation 75
5.1 Objectives . 75
5.2 Evaluation Scenario and Preparation . 76
5.3 Consistency Check Evaluation . 79

5.3.1 Evaluation Method . 79
5.3.2 Result & Discussion . 80

5.4 Architecture-to-Configuration Transformation Evaluation 82
5.4.1 Evaluation Method . 83
5.4.2 Result & Discussion . 83

5.5 Change Propagation Evaluation . 88
5.5.1 Evaluation Method . 88
5.5.2 Result & Discussion . 89

5.6 Summary . 91

6 Conclusion and Future Work 93
6.1 Future Work . 94

A xADL Extensions 97

B Consistency Checks 103

Bibliography 107

x

List of Figures

1.1 A Modern Parking Management System composed of Parking Sites, Message Filter-
ing & Enhancing, Location or Type-specific Aggregators and Parking Point-Of-Sale
(POS). Note: The icons depict services and not servers. [16] 3

2.1 xADL XML schemas and the relation between them [14]. 12

3.1 Workflow of our suggested approach [16]. 19
3.2 Structural overview of the approach . 20
3.3 Three service system with a publish-subscriber and one point-to-point connection. . 21
3.4 Relation between the structure, type and implementation elements [16]. 27
3.5 Request-Reply pattern of the Submit- and the Execution Service. Note: For a clearer

figure only the request-reply participants (Submit Service and Execution Service) are
shown. 36

3.6 Interface configuration for the request-reply pattern of the Submit- and the Execution
Servicethe Submit- and the Execution Service . 37

3.7 Configuration of the participating request-reply interfaces. 37

4.1 Overview of our implementation. 42
4.2 Architecture-level Editors Module and associated components 43
4.3 Structure of the ongoing example in Archipelago. 44
4.4 Screenshot of our ArchStudio extension, including schema extension (left), the

transformation file mapping (top) and exemplary inconsistency alerts (inset) [16]. . 45
4.5 xADL Model and associated components . 55
4.6 Relation between the structure, type, implementation elements and the new exten-

sions (grey) [16]. 55
4.7 Consistency Check Module and associated components. 57
4.8 Class structure of consistency check classes . 58
4.9 Architecture-to-Configuration Transformation Module and associated components. 60
4.10 Workflow transformation model class diagram. Note: For a clearer diagram the

getter and setter methods to access the attributes are left out. 61
4.11 Message broker transformation model class diagram. Note: For a clearer diagram

the getter and setter methods, to access the attributes, are left out. 63
4.12 MSG Launcher view . 73

xi

5.1 “Parking Management System” evaluation scenario modeled in Archipelago. Ser-
vice components depicted in blue and message broker connectors in beige. 77

5.2 XML-tree structure of the Mule ESB workflows. 87

xii

CHAPTER 1
Introduction

The following will give an introduction into the topic of this thesis. First we will discuss the
general problem and motivating scenario which sets the basis of our work. Afterwards, the aim
of this work is defined and an overview of the thesis structure is given.

1.1 Problem Statement

Nowadays, the use of distributed services is a common way to build complex reliable systems.
This kind of distribution has the advantages of scalability, robustness and easy adaptation, but it
also has to deal with different operating systems, data formats and languages [47]. Furthermore,
a complex service-centric system may has to struggle with (i) unpredictable service availability,
(ii) dynamically changing number of service instances and (iii) no central execution control.
To encourage this new service-centric system trend, several languages, which support the com-
position of different services to one service-centric system, appeared in the last two decades.
Prominent examples are orchestration languages, like BPEL [1] or JOpera [54], and choreogra-
phy languages, like WS-CDL [37] or BPEL4Chor [15]. Nevertheless, those languages assume
a workflow-centric system architecture, which doesn’t fit all application scenarios, especially if
they have to deal with the three problems outlined above. In contrast to this, a publish-subscriber
based architecture is capable of handling unpredictable service availability, dynamic changing
number of service instances and doesn’t require a central execution control. Thus, this architec-
ture approach is a better match for complex service-centric systems that have to deal with those
circumstances.

Nevertheless, the design and configuration of such service-centric systems, which consist
of several decentralized and loosely coupled services, are by no means trivial and raise several
challenging questions. One question is: “Does the implemented system reflect the planned
system?” The optimistic approach, to build a complex service system, consists of two steps:
(1) design the system by specifying the individual services and the connection between them
and then (2) implement the planned system. The output of this approach is on the one hand

1

an informal design document and on the other hand the implemented system. But it doesn’t
guarantee that the implemented system really reflects the planned system. This leads to the
second question: “Will changes in the design or in the implementation be propagated in the
correct way and will the system, after the update, be in a coherent state?” As already seen
in the first question, it can’t be guaranteed that the implemented system reflects the planned
system. It is even harder to guarantee that updates of the design or configuration will be properly
committed to the implementation. All in all it is only a matter of time before the design and the
implementation aren’t consistent anymore. This question also engages a problem that can occur
if an engineer changes the implementation directly. Again this leads to an inconsistency between
the implementation and the planned system and a coherent system can’t be guaranteed. Another
more project management specific question is: “Who is responsible for individual system parts
and who for the overall system design and configuration?” This question engages the problem
of an unclear separation of development and planning concerns.

1.2 Motivating Scenario

Different scenarios where a public-subscriber architecture is used for the underlying messaging
system exist. One use case for such an architecture is a modern parking management system.

1.2.1 Parking Management System

A modern parking management system consists of a high number of distributed services. In a
simplified way a typical system configuration contains four component types:

Parking Sites are the car parks, or more exactly the terminals (e.g. Ticket Terminals at entrance
and exit, Payment Terminals) and servers of a car park. Each modern car park server can
offer different services. This service provides on the one hand static information about the
parking site’s structure (e.g. location, number of parking slots, opening times, rates) and
on the other hand highly dynamic information like current capacity or reserved spots.

Message Filtering & Enhancing are used to filter the parking sites to get only the required
ones, including the required details, and to bring them to a uniform format. This step is
mandatory because of the different car park systems.

Location or Type-specific Aggregators are services for collecting property-specific static data
from the parking sites. Those services are mainly used for administrative work (e.g. car-
rier specific parking sites management and customer account management). Different
types of parking sites can be combined by the same aggregator service. For example, one
aggregator could be used to serve all parking sites in a city, operated by the same carrier,
and another could be used to serve all caravan parking sites.

Parking Point-Of-Sale (POS) are the direct sales services. There are several business cases
like parking slot prebooking at airports, hotels, train stations or car park searching apps
and websites. These services receive the filtered and customized static data from their

2

corresponding aggregator service and the dynamic data directly from the filtered parking
sites.

Figure 1.1 shows a simplified but typical combination of those four component types.

Figure 1.1: A Modern Parking Management System composed of Parking Sites, Message Filtering &
Enhancing, Location or Type-specific Aggregators and Parking Point-Of-Sale (POS). Note: The icons
depict services and not servers. [16]

In addition to the functional requirements, the non-functional requirements also play an
important role. Among other non-functional requirements, the system has to be highly available
and has to operate with a minimum of response time.

As can be seen such a scenario has to deal with the challenges from the introduction. First
of all the system doesn’t rely on a central execution controller which coordinates the informa-
tion exchange between the services. Instead the architecture of the message system defines the
structure and information exchange between them. Furthermore the system has to deal with an
unpredictable service availability, e.g. services can be disconnected (perhaps through a network
failure) or temporarily overloaded. The system must also be able to handle new introduced
services, e.g. a new car park is added or to enable load balancing by adding an already exist-
ing service multiple times, without disturbing the normal operation of the system nor requiring
complicated reconfigurations.

Beside those technical requirements the challenges introduced regarding the design and con-
figuration of such a system must also be considered. It has to be guaranteed that the services
consume and provide their data to the right messaging channels. Even if a service is changed,
a messaging channel name changes, network addresses change, or other changes to the system
occur. Incorrectly performed changes can easily result in situations where Filter services publish
to the wrong topic, a POS service subscribes a false topic, multiple POS services use the same
reply channel for requests or many other similar inconsistencies may occur.

3

1.3 Aim of the Work

The goal of this thesis is an approach which supports the architecture and development of dis-
tributed message-centric service systems. Specifically, our approach will offer a way to model
and describe the high-level architecture of the system by the use of components (representing
services) and connectors (representing the message channels). This architecture model can then
be enriched with specific configuration details for the message-oriented middleware (MOM) and
the service endpoints. A constraint check ensures that the modeled architecture including the
provided configuration is consistent and finally an architecture-to-configuration transformation
generates the planned connection components for the individual services and the configurations
for the message broker. Furthermore the approach will support the propagation of changes in the
architecture and configuration to already transformed configuration without altering user-defined
code.

This approach, especially the combination of consistency check, architecture-to-configuration
transformation and change propagation, will ensure that the planned message-centric service
system and finally transformed system will perform as desired. Furthermore the consistency
check can help system architects to find architectural flaws as early as possible.

To prove the practical utility of the approach we will present an implementation thereof,
which will be finally used to develop a real world service system, to be specific a parking man-
agement system as discussed in Section 1.2.1.

Parts of this thesis are published as a full paper at the ICSOC 2014 conference, with the title
“Architecture-Centric Design of Complex Message-Based Service Systems” [16]. In the paper
we discuss briefly the general problem statement, our approach and the result of the work. The
acceptance of the paper strengthens the scientific relevance of this thesis topic.

1.4 Methodological Approach

The methodological approach consists of the following steps:

• First, related work with focus on the design of distributed service-centric systems and
architecture-centric software development will be analyzed. We will analyze how a sys-
tem can be developed by the composition of different services, which methods/technolo-
gies exist and what their advantages and disadvantages are. The second part focuses on
architecture-centric software development, which is the main concept of our approach.
We will discuss what its nature is and what its benefits are. This will then lead us to archi-
tecture description languages (ADL), architecture-implementation mapping and message-
system consistency.

• Second, we will discuss the design of the approach. For this we will separate the approach
into four parts. The first part is concerned with the general consistency of message-based
service systems. We will discuss which kind of inconsistencies can occur, how our ap-
proach handles them and prevents them. The second part is concerned with the allocation
of the message-based system aspects (e.g. message broker configuration, service endpoint
configuration, channel names) to the architecture description language (ADL) elements

4

(e.g. Components, Connectors, Interfaces). After this the bi-directional association of the
message-based system aspects and the ADL elements will be discussed and finally how
changes can be propagated by using the association discussed above.

• Third, we will introduce the programmed tool that implements our approach. In this part
we will first discuss the overall workflow of our system and the extension of ArchStudio
4 that launches the workflow. Then we will specify what information is required for
the ESB system and the MOM to generate a messaging system. An allocation of this
required information to the xADL elements, on the base of the allocation discussed in
the approach, will then make it possible to use xADL to model and configure a message-
based system. After the allocation, the consistency checks will be discussed and finally
the architecture-to-configuration transformation, including the change propagation which
uses the association of the message system aspects and ADL, as defined in our approach.

• Finally, the motivation scenario “Parking Management System”, presented in Section 1.2.1,
is consolidated to discuss the utility of our approach. To do this we will use the imple-
mented tool support to generate the scenario and present the benefit for a development
team.

1.5 Organization
The remainder of this thesis is structured as following:

• Chapter 2 explains important terms and concepts used for the design of distributed service-
centric systems and in architecture-centric software development. Additionally, the chap-
ter provides an overview on the current related work of these topics.

• Chapter 3 will stepwise introduce the concept and design of our approach by first dis-
cussing general message-based service system consistency challenges. After that the allo-
cation and association of message system aspects to ADL elements will be discussed and
finally the change propagation mechanism.

• In Chapter 4 the implementation of the prototype will be discussed. This implementation
will use Mule ESB and Apache ActiveMQ to prove the concepts of our approach.

• Chapter 5 evaluates the concepts of our approach and the implemented prototype by using
the “Parking Management System” as evaluation scenario.

• Chapter 6 recapitulates the approach and the prototype with a short summary and gives an
outlook of our future work.

5

CHAPTER 2
Related Work

This chapter gives an overview of the terms and concepts that are important for the topic of
this thesis. Additionally, important related work to these terms and concepts are presented and
analyzed. First of all, we will discuss the design of distributed service-centric systems. We
will define what Service-Oriented Computing is and what the benefits are, following the con-
cept of Service Composition and Enterprise Application Integration. Second we will discuss
Architecture-centric Software Development in a greater detail. We will first analyze the concept
of Architecture-centric Software Development and then proceed with Architecture Description
Languages. Finally we will discuss Architecture-implementation mapping and Message-system
Consistency Analysis.

2.1 Design of Distributed Service-Centric Systems
The size and complexity of software programmes increases steadily. Consequently also the de-
velopment time and costs increase. The concept of Service-Oriented Computing (SOC) [33,53]
offers a remedy, because in it, reusable software elements, called services, are used as fun-
damental constructs for rapid and low-cost development of distributed service-centric applica-
tions [53]. Dustdar and Krämer described services as “autonomous, platform-independent com-
putational elements that can be described, published, discovered, orchestrated, and programmed
using standard protocols to build networks of collaborating applications distributed within and
across organizational boundaries” [17]. A service can perform easy functions, like a simple ad-
dition of two integer values, as well as more complex functions. Furthermore a composition of
services can be exposed as a service or may be offered as a new service-centric system [52].

2.1.1 Service Composition

Service composition is the process of solving complex problems by combining and ordering
already existing services in a new way [46]. There are two main service composition paradigms
for designing and configuring a service-centric system [52, 55, 57]:

7

Service Orchestration Orchestration is the concept of reusing and composing existing services
to build up an executable business process. It uses internal as well as external services to
define long-lived and transactional processes [6]. The interaction between the services
is coordinated by a central controlling entity which is responsible for the business logic
and the task execution order at runtime. Only this entity is aware of the other involved
services. To define the order of the service execution and possible conditions under which
they are executed, several process-modelling languages are available [18] such as WS-
BPEL [1], YAWL [60], or JOpera [54]. In contrast to these languages, which all require
a central orchestration service, decentralized orchestration approaches also exist. Those
approaches distribute control flow tasks of the central controlling entity among different
entities. Thus the central controlling entity, as the single point of failure, is eliminated.
Examples of this approach are the works of Nanda et al. [50] and Yildiz et al. [61].

Service Choreography Choreography composes existing services for business collaboration.
It describes the peer-to-peer observable interaction between the services and doesn’t rely
on a central controlling entity [6,57]. Therefore the participating services have to know of
each other and their own role in the system. This characteristic includes that the services
may have to be altered to fulfil this composition. Examples for choreography definition
languages are WS-CDL [37], BPEL4Chor [15], MAP [6], or Let’s Dance [62].

The two composition paradigms overlap somewhat, because choreography can be used to ex-
change messages between different systems that are composed of orchestrated services.

However, both composition approaches use a workflow-like composition where services
play fixed roles and have to be highly available. Our work focuses more on composed ser-
vice systems which rely primarily on more loosely coupled one-way events and less on tightly
coupled request/reply style data exchange.

2.1.2 Enterprise Application Integration

Modern distributed service-centric systems consist of many different services and applications.
According to Hohpe and Woolf “Enterprises are typically comprised of hundreds, if not thou-
sands, of applications that are custom built, acquired from a third party, part of a legacy sys-
tem, or a combination thereof, operating in multiple tiers of different operating system plat-
forms” [32]. To handle this challenge, Enterprise Application Integration (EAI) and later En-
terprise Service Bus (ESB) were introduced. The idea behind EAI is to provide an integration
framework to combine the different, already available, services without requiring significant
changes. Linthicum described EAI as “the unrestricted sharing of data and business processes
among any connected applications and data sources in the enterprise” [39]. To achieve this, EAI
uses adapters and standardized middleware to connect and integrate the services [36]. In general
the communication between the integrated services is handled through Messaging where each
participating service is connected to a common messaging system, normally a message-oriented
middleware (MOM), to exchange data. Scheibler and Leymann provided in their work [58]
a framework for configuration and execution of EAI patterns, which transform the patterns to
platform specific code, namely BPEL.

8

2.1.2.1 Enterprise Service Bus

Enterprise Service Bus (ESB) is a subcategory of EAI, where the communication between the
services is handled over a bus. Clements et al. pointed out in their book [10] that without an
ESB the communication between service provider and service consumer is a direct point-to-
point communication. Though by integrating an ESB the architecture follows a hub-and-spoke
design, where the communication is handled through the ESB system. Therefore an ESB is
operating in an intermediary layer between the service consumer and service provider helping
routing message between them. To support this it provides utilities for message routing, message
transformation, security checks, transaction management and application adapters [9, 10, 44].
In summary, the bus functions as transport facilitator as well as transformation facilitator in a
service-centric system that is composed of several disparate services and computing environ-
ments [52].

2.1.3 Message Exchange Pattern

At this stage we also have to discuss the common patterns for message exchange between com-
posed services. Message Exchange patterns (MEP) are patterns that describe the communication
between two or more services. We will only discuss patterns that are relevant for this thesis. The
interested reader is referred to the book of Josuttis [34] and to the book of Hohpe and Woolf [32].

One-Way As the name suggests, in this pattern a sending service sends a message to a receiving
service without expecting a response message.

Request-Response In contrast to the One-Way pattern this one includes a response message.
The sending (requesting) service sends a message to the receiving (responding) service,
which then sends a response back to the requesting service. Another name for this pat-
tern is Request-Reply. A special version of this pattern is the asynchronous non-blocking
request-response pattern where the sending service doesn’t wait for a response.

Publish-Subscriber The Publish-Subscriber messaging pattern is a pattern where a sender ser-
vice, called publisher, generates new messages/events and publishes them to the commu-
nication medium. The receiving services, called subscribers, are services that listen to
that communication medium and if there is a new message, they read it. The difference
between a publish-subscriber pattern and a point-to-point connection is that in publish-
subscriber the sender (publisher) doesn’t directly send the message to a specific receiver
(subscriber), instead the subscriber registers his interest in a specific topic and the pub-
lisher publishes the message to that topic. For complex service systems this has a signif-
icant advantage over a message queue architecture, namely that the services are loosely
coupled. The publisher doesn’t have to know something about the subscriber, he only
has to know anything about the topic that a subscriber listens to [19]. This characteristic
can help to build complex systems that are not in need of a centralized execution con-
trol, but are still capable of handling unpredictable service availabilities and dynamically
fluctuating service instances (e.g. adding or removing services).

9

2.1.4 Tool Support

Several tools that help to design distributed service-centric systems exist. In this section we will
focus on the tools that are important for this thesis. There are two subsections of tools/technolo-
gies: (i) tools/technologies for the communication between the services and (ii) tools/technolo-
gies for the general service composition.

2.1.4.1 JMS

Java Messaging Service (JMS) API is a message-oriented middleware API based on Java. It
is a messaging standard that allows applications to create, send and receive messages using
reliable, asynchronous and loosely coupled communication [51]. Therefore most modern ESB
systems use JMS-based middlewares as their messaging infrastructure [44]. It supports two
types of communication channels, point-to-point and publish-subscriber. Point-to-point is a
message queue which connects two participants together. Each receiving participant has an
incoming queue which retains received messages until they are consumed or the message time
expired. The publish-subscriber channel uses the already discussed Publish-Subscriber message
exchange pattern where the message gets published to a particular message topic.

Several implementations exist like Apache ActiveMQ [3], OpenJMS [4], HornetQ [30] and
many more. For this project we use the popular Apache ActiveMQ message broker.

2.1.4.2 ESB

Over the last few years, ESB has become more and more popular, so there are several different
platforms [26, 35] like Mule ESB [48], OpenESB [45] or Fuse ESB [31].

We decided to use Mule ESB because it is a modern, often used and reliable ESB system.
It is open-source with an optional commercial support and additional commercial tools. It de-
fines process workflows that can be enriched with different message processing components and
message endpoints. Endpoints at the beginning and end of the workflow define the message
interfaces of the workflow. It uses XML based configuration files to describe the internal struc-
ture of a a workflow and how the workflow components are configured and connected together.
For the underlying messaging infrastructure different JMS implementation, including Apache
ActiveMQ, are supported.

2.2 Architecture-Centric Software Development

To define what architecture-centric software development is, we first have to define what soft-
ware architecture is. Software architecture is concerned with the high-level architectural view
of a system. To define the architecture of a system, coarser-grained architectural elements rather
than lines-of-code are used [43]. Specifically, an architecture describes a system by a set of
components and connectors, their configuration and the interaction among them [59]. Software
architecture represents a method to document the system structure and is therefore an important
planning facility, especially in large complex systems. It helps the development team to focus on
the “big-picture” of the system, document principal design decisions, provide a common ground

10

for discussion, support the reuse of components between different projects and reduce develop-
ment costs [7, 10, 42, 59]. In addition, software architecture provides different analysis methods
to build more reliable, scalable and portable systems [27].

Architecture-centric software development is a development method where the software ar-
chitecture is a key element in the software development process. “Architecture-centric devel-
opment emphasizes that software architecture, instead of being a documentation artifact that
is peripheral to code development, should play an essential role throughout the software de-
velopment lifecycle” [63]. The goal of architecture-centric software development is to use the
software architecture as the blueprint of the software system and use this blueprint to gener-
ate code fragments out of the architecture. This is, in fact, the general idea of our approach.
The generation/transformation of the code fragments and also the propagation of changes is of-
ten supported by tools. In their paper [64] Zheng and Taylor illustrate that architecture-centric
software development can be separated into four variants. Those variants are Architecture re-
finement, Framework and middleware-based development, Architecture description language
tool support and Domain-specific software architectures (DSSA). Architecture refinement is an
approach where an abstract higher-level architecture is mapped to a concrete and finer archi-
tecture. Framework and middleware-based development provides programming constructs and
architecture concepts. In the variant architecture description language tool support, architec-
ture description languages (ADL) are used to describe, model and configure a system. This
modelled architecture then can be used to generate code fragments. Domain-specific software
architectures (DSSA) uses already available domain knowledge and promotes it to a high-level
of abstraction. For our approach we use Architecture description language tool support, because
it allows us to describe the architecture of a message-based service system in a way that it can
be analyzed and transformed to code/configuration fragments.

2.2.1 Architecture Description Languages

Architecture description languages (ADLs) support architecture-centric software development
by providing notations and tools with which the architecture of a system can be modeled, con-
figured and analysed. By now, a wide range of different ADLs exists. Prominent ADL examples
are Darwin [41], Rapide [40], Wright [2], Acme [29] and xADL [12, 14]. All of them have
different varying abilities, nevertheless most of them use Components, Connectors, Interfaces,
Links and Configurations to model an architecture. Both the paper of Medvidovic and Tay-
lor [43] and the book “Software Architecture: Foundations, Theory, and Practice” [59] from
Taylor, Medvidovic and Dashofy present a classification and comparison of different ADLs. In
this research, we will focus on the language xADL 2.0 1. We chose this language because of its
high extensibility and available tool support. In the following we will discuss xADL in detail,
for a description of other ADLs the interested reader is referred to corresponding papers.

2.2.1.1 xADL

xADL is an architecture description language that uses XML and XML-schemas to model
and configure system architectures. An xADL document has to be a well-formed and valid

1Throughout this thesis any reference to xADL, is referring to the version 2.0.

11

XML-document. To guarantee that an xADL document is valid, a set of XML-schemas was
designed [12]. Specifically, the XML-schemas for xADL are defined in a modular design ap-
proach where each logically separable part is a separate module and adds a set of attributes to
the language. The modules combined represent the language xADL 2.0. In addition to the ex-
isting ones, new modules can be added by extending already existing modules or define new
ones. Figure 2.1 shows the current set of xADL schemas and their relationship to each other.
The figure is excerpted from [14]. The modules Structure & Types and Abstract Implementation
are directly related to this thesis and will therefore be discussed in detail. The interested reader
will find a detailed description of the the additional modules in the work of Dashofy, Hoek and
Taylor [12].

Instance Describes run-time
software architecture

Structure & Types Describes design-time
software architecture

VersionsOptionsVariants Abstract Implementation
Describes where
implementation

information goes

Java Implementation

Describes how
elements are

implemented in
an architecture

Boolean Guards

Product-line
schemas describe

architectures
that vary

Figure 2.1: xADL XML schemas and the relation between them [14].

To model the system architecture, xADL uses a Structure & Type schema [12]. This schema
provides the elements Component, Connector, Interface, Links, ComponentType, ConnectorType
and InterfaceType. The elements Component, the loci of computation, and Connector, the loci
of communication, are used to represent the instances of the system at the design-time and the
element Interface is used to set interfaces on the components and connectors. Links are the
wiring between the components and connectors, respectively their interfaces. Component and
Connector together with the wiring between them, represent the architectural topology of the
system. ComponentType, ConnectorType, InterfaceType are used to assign types to the structure
elements. Structure elements, of the same kind (Component, Connector, Interface), with the

12

same behavior or implementation can share a type element to reason about the similarity among
those elements. The component types and connector types expose Signatures which also refer
to an InterfaceType. Each interface of a component or connector refers to a signature of the cor-
responding type. To enrich the architecture with implementation details, they can be mapped to
the individual architecture elements. For this, xADL uses an abstract implementation schema as
an abstract entry point to include concrete implementation to the elements. This abstract entry
point can be extended with a concrete implementation technology. Natively, xADL has the abil-
ity to define a Java-based implementation for the elements, which can be deployed on a single
JVM.

2.2.2 Architecture-Implementation Mapping

The term “architecture-implementation mapping” describes the process of mapping the defined
architecture to implemented code and vice versa. This can be divided into two separate parts:
one-way mapping and two-way mapping. One-way mapping is used when the change propaga-
tion is uni-directional, namely from architecture to implementation. This implies that the com-
plete implementation of the program is generated from the architecture and all changes have to
be done in the architecture and then propagated to the implementation. Two-way mapping, on
the other hand, is bi-directional. This means that changes are propagated from architecture to
implementation and vice versa.

In the work of Zheng and Taylor they present a third mapping approach called 1.x-way
mapping [63]. Their approach only allows the propagation of changes from architecture to im-
plementation. But in difference to one-way and two-way mapping, 1.x-way mapping separates
the architecture-prescribed code from user-defined code. This means that each architectural
component is divided into architecture-prescribed code, code that is generated and altered by
supporting tools, and user-defined code, code that is manually programmed by a developer and
therefore can only be changed by him. To achieve this behavior, the proposed system uses
deep separation where generated and non-generated code is divided in different functions or
classes. This has the benefit that it prevents mistaken changes, both structural and behavioral,
of architecture-prescribed code by a programmer. Programmers are only allowed to do changes
in the user-defined section of each architecture component. By using this method most of the
architectural changes, like configuration and behavioral changes, can be mapped automatically
to the code, respectively the architecture-prescribed code, by an architecture-based code regen-
eration mechanism. Additionally all architectural changes are recorded and classified into an
architectural changes model. Nevertheless some changes also need modifications in the user-
defined code. To address this concern architecture change notifications are generated and sent
to the responsible user-defined code programmer if modifications of this code are necessary.
These notifications contain detailed information about the changed architecture elements so the
programmer can adapt the user-defined code. They proved their approach by providing a tool
for mapping between an architecture and its underlying Java implementation.

13

2.2.3 Message-System Consistency Analysis

Consistency analysis intends to ensure that the planned architecture doesn’t violate predefined
constraints. Therefore, consistency checking plays an important role in architecture-centric soft-
ware development and gets even more important if the system is composed of highly decoupled
components. Even if the verification of each component in an isolated test system is easy, the
verification of the overall system can be a challenging task. The high decoupling of the compo-
nents also furthers the individual development of the component. This will lead to an increasing
complexity of the verification process.

One way to do consistency analysis is a bottom-up approach where the structure of a message
based system is created from the implemented systems. With this approach, a higher level view
of the message system, contrary to the low level code view, can be generated. This higher level
view contains only the necessary information of the message system and therefore it is easier to
find inconsistencies in the implemented message system. Two popular examples are presented in
the papers [25] and [38]. Garcia et al. present in their paper [25] a static analysis tool, called Eos,
that can identify message types and message flows within an already existing distributed event-
based system (DEB). Their approach is able to analyse Java and Scala code to gather message
information. The aim of the tool is to support the development team in maintaining a DEB
system by identifying the scope and impact of required changes. The work of Lee et al. [38]
introduces a visualization and analysis tool for DEB system, called ViVA (Visualizer for eVent-
based Architectures). The tool can visualize the message exchange between the components of
a DEB system. This visualisation can help engineers understand the message flow in a clearer
way. The tool uses the already discussed static analysing tool Eos from Garcia [25] to analyse
the message information.

Another approach for consistency analysis of message based systems is the use of a model
checker. Garlan et al. described in their paper [28] a generic, parametric publish-subscriber
model checking framework. Their approach captures publish-subscriber run-time event man-
agement and dispatch policy and models them in a reusable, parameterized state machine model.
This state model is then checked by the system. Caporuscio et al. present in their paper [8] a
way to compositionally model checking middleware-based software architecture descriptions.
In contrast to the discussed work of Garlan et al. [28], where the verification requires the whole
composite system to be modelled, the focus of Caporuscio is on compositional verification. The
approach uses an assume-guarantee methodology to reduce properties verification from global
to local. In the paper [5], Baresi et al. present an approach that uses a model checker for the
fine-grained verification of systems with a publish-subscriber architecture. For the automatic
verification they extended the input language and the verification engine for the model checker
Bogor [56]. Their approach offers the possibility to evaluate different publish-subscriber guar-
antees, like message reliability, message ordering, message filtering, message priorities and mes-
sage delays. All presented checks require that detailed information about the internal behavior
of the components are known and modelled in the model checker.

Those approaches are not suitable for our use, because (i) our approach only considers the
structure of the message-system, we don’t assume knowledge of the service internal behavior,
and (ii) the listed analysis methods are significantly more fine-grained than our purpose requires.

14

2.2.4 Tool Support

Tool support is an important decision factor for the choice of an ADL. Tool support can be
divided into two parts: (i) support that helps during the development of new tools, those are
tools that are used by tool builders, and (ii) tools that use the language, those are tools that are
used by software architects. In the following we will discuss the available tools for the language
xADL 2.0.

2.2.4.1 xADL Infrastructure Tool Support

As discussed before, the architecture description language xADL offers different kinds of sup-
porting tools [13, 14]. We will now discuss two tools that support the development of new tools
for xADL.

Apigen This is a tool which automatically generates new data binding libraries out of given
xADL schemas (for detailed information about the xADL schemas see Section 2.2.1.1).
Data binding libraries map XML elements and attributes to code, in the case of Apigen
into Java objects. This tool has the benefit that there is no need to manually rewrite the
data binding libraries each time a schema is added, changed or removed. If changes of
the schemas are necessary the changes are done in the corresponding schema documents
and passed to the Apigen tool which generates or, if they already exist, modifies the data
binding libraries. Those new data binding libraries then offer the new object-oriented
interfaces to work with the xADL documents.

xArchADT The previously discussed data binding library provides object-oriented interfaces to
edit xADL documents. This assumes that the tools that are used to edit an xADL document
share an address space. But generally in distributed and event-based systems this is not the
case and therefore the use of such libraries is difficult. To address this concern xArchADT
was developed. xArchADT is a wrapper around the data binding library that provides an
event-based interface. It provides a “flatten” interface where each xADL element gets an
identifier that is used to refer to the element. If the architecture is changed xArchADT
emits an event to inform all tools that are listening for changes.

These tools help to build new tools for working with xADL. Because of these tools and the
extensibility of xADL, it is a perfect choice for investigating new architectural approaches, as
we do here.

2.2.4.2 ArchStudio 4

ArchStudio 4 is a development environment for software architecture modelling and meta-
modelling that uses xADL 2.0 as the primary modelling notation [11]. It is integrated within
the Eclipse platform as a plug-in extension. The ArchStudio environment is composed of differ-
ent tools that help architects to visualize and analyze architecture models. Among others, these
tools are Archipelago, ArchEdit and TypeWrangler.

15

Archipelago This is the graphical editor of ArchStudio, which enables the display of the struc-
ture of an xADL 2.0 architecture in a boxes-and-arrows format. Archipelago provides
a user-friendly point-and-click interface to edit the architectural structure. This inter-
face allows addition or removal of components, interfaces and links to and from the
model. Archipelago accesses the architecture description through the already discussed
xArchADT. Consequently all changes that are done in the editor are immediately reflected
in the underlying xADL document and all tools that are listening for changes are informed
about the change. In addition to the structural modelling, it also offers a basic statechart
and interaction editor for the behavioral modelling of the architecture.

TypeWrangler As discussed in section 2.2.1.1 xADL uses a structure & type schema to model
and configure the elements of the architecture. The tool TypeWrangler can be used to
do the mapping between the structure element (e.g. Component) and the corresponding
type (e.g. ComponentType). For this it offers an easy to use graphical interface. Again,
TypeWrangler is an event-based software component that uses xArchADT to access the
architecture description.

ArchEdit This is a tool which represents the architecture description in a clear tree format
where each node can be expanded, collapsed or edited [14]. In other words, it displays
the tree structure of the xADL document or, more specifically, the XML schema of it,
in a graphical tree structure. This gives the architect of the system direct access to the
architecture description. If the xADL schema is altered (e.g. new features are added to
xADL) the tool doesn’t have to be altered, because ArchEdit builds its view and interfaces
directly from the XML schemas. Also, this tool uses xArchADT to access the architecture
description.

16

CHAPTER 3
Approach

In this Chapter, we present the approach of our work. At the beginning we describe the gen-
eral design principles of our approach. Afterwards we give an overview of the idea behind
the approach, including the workflow and the overall structure, which is split into three main
components: Architecture-level Editor, Consistency Checks and Architecture-to-Configuration
transformation. Then we will introduce a small example which will be used to discuss and ex-
plain the concepts of our approach step by step. After this we will analyze general consistency
problems which may occur during the design of message-based service systems and how they
can be prevented. The next section will first analyze how the message system aspects can be
allocated on different xADL elements, finishing with the final decision on how our approach
distributes them among the xADL elements. Furthermore, this chapter will analyze how the
mapping between the message system aspects and the xADL elements can be achieved. The last
section will discuss the problems that may occur if changes have to be propagated and how our
approach deals with them.

3.1 Design Principles

As stated in Section 1.3, the aim of this work is to support the architecture-centric development
of distributed message-centric service systems. To achieve this goal, the core design principles
of our approach are:

• For architecture-centric development, the support should start at the beginning of the de-
velopment process and should be present during the whole development lifecycle. The
first steps in an architecture-centric development are concerned with the planning of the
system or at least parts of the system. A supporting system has to support all development
phases and therefore the support has to start during the first planning phases.

• The consistency of the messaging system should be guaranteed at all times. It can be
relatively simple to guarantee the consistency of a simple service oriented system, however

17

with increasing complexity of the system, the complexity of the consistency checks also
increase. In addition to the checks that will be done during the first planning phase, the
consistency also has to be guaranteed if the architecture of the system changes during
the development. Those changes may work for a particular part of the system but can
leave the overall system in an inconsistent state. This, for example, can happen when an
engineer who is concerned with the change may not have enough information about the
overall system, especially in a bigger development team.

• The message routing aspects of the system should be separated from messaging process-
ing aspects. For a tool that does architecture-to-configuration transformation and change
propagation, a clear separation of the generated code and the user-defined code is manda-
tory. This separation should reflect the responsibilities of a software architect and a soft-
ware developer. The architecture team members of the system are responsible for message
routing code and the development team members for the message processing code.

• Messaging interfaces that are designed and configured by the system architecture should
be automatically generated as a messaging routing skeleton for the implementation. To
support an architecture-centric development, the tool should be able to transform the
planned messaging system architecture to a messaging routing skeleton. This skeleton
has to include all information that is provided through the architecture document. Dur-
ing the development this generated system will then be enriched with invocation-centric
message processing.

• Architectural changes should be propagated completely to the implementation. Changes,
including altering already planned and implemented components as well as adding new
components, can happen at every stage of the development process. These modifications
have to be propagated to the code without altering the other parts of the implementation.

3.2 Overview

Our approach is an architecture planning and configuration tool for complex service systems.
Furthermore constraint checks ensure that the architecture of the system is consistent before the
messaging interface implementations, including the MOM configuration, will be automatically
generated. Figure 3.1 represents the workflow of our approach.

In the first step, the architecture team plans the high-level architecture of the message-based
system by using a graphical boxes-and-arrow based editor, in which the services are repre-
sented by architecture-level components and the message channels, between the services, by
architecture-level connectors. Each architecture-level component and connector combines sev-
eral architecture-level interfaces, which represent the interaction points among the services via
messages. Links between interfaces of different components and connectors represent the mes-
sage path. The second step is concerned with the configuration of the architecture elements.
Each component, connector and interface can be configured with specific properties like con-
nection addresses, communication directions (in, out, in-out), service specific details, etc. In the
third step, a consistency check algorithm will search for inconsistencies in the architecture and

18

Figure 3.1: Workflow of our suggested approach [16].

in the configuration. It will iterate through all message system relevant components, connectors,
interfaces and links and will check the overall topology for architectural flaws as well as con-
figuration flaws of each element. In the last step, the consistent architecture together with the
configuration details will be used for a model-to-configuration transformation where a messag-
ing skeleton of the planned system will be generated. The transformation will generate on the
one hand the configuration for the MOM, by transforming the connectors including the message-
centric connectors configuration, and on the other hand the service interface implementations,
by transforming the components including the message-centric components configuration. To
provide a stable basis for further development steps, especially the development of the message
processing aspects of the services, our approach will generate service interfaces for an Enterprise
Service Bus (ESB).

To support the development process during all phases, the steps shown in the figure can be
used in an iterative fashion. In other words, any step can be done and repeated at any state of the
development process. Changes in the architecture will be propagated, after the complete system
passes the consistency checks, to the already existing message-based system without changing
user-defined code.

As depicted in Figure 3.2, our approach is composed of three main components, represented
as ovals. The first part is the Architecture-Level Editor, with which the high-level architecture
of the system can be modelled and configured. For expressing the architecture we will use the
highly-extendable Architecture Description Language xADL 2.0. The output of the architecture-
level editor, the architecture document in xADL, will then be used by the Consistency Check
to check all message system relevant elements for consistency. If the provided architecture is
consistent, then the architecture document will be used for the Architecture-to-Configuration
transformation where the implementation or, more specifically, configuration, (represented by a

19

Architecture-
Level Editor

Consistency Check

Architecture-to-
Configuration
transformation

Message routing
implementation

and configuration

Message processing
user-defined code

Architecture document

Checked architecture document

Existing implementation
and configuration

New/Updated implemen-
tation and configuration

Figure 3.2: Structural overview of the approach

rectangle) of the message system skeleton will be generated. If the implementation/configuration
already exists the transformation will read the available parts and change them. An important
aspect of our approach is the separation of the architecture-prescribed implementation and con-
figuration message routing code and the user-defined message processing code. Our system will
only provide the ability to generate the message routing code. The message processing imple-
mentation is then the task of the development team, which is why it is depicted as a dotted box
and connection.

One benefit of publish-subscriber is that it is able to handle a dynamically changing number
of service instances, nevertheless our approach will target event-based systems with a rather
stable set of publishers and subscribers. This won’t be a restriction for most message-centric
systems because most of them don’t have an unpredictable number of services. Of course, our
system will be able to handle unpredictable service availability, especially because of the use of
proven technologies like ESB and MOM. But at least at the development stage, the number of
publishers and subscribers and their type has to be known.

20

3.3 Ongoing Example

In the remainder of this thesis, we will use this example to help the reader understand the dis-
cussed methods and technologies in a clearer way. The examples will be presented in grey
boxes.

This example represents a service system containing three services. The purpose of the sys-
tem is that a user can submit and start time-consuming tasks. These tasks will then be executed
through another service and the results will be sent back to the requesting service. In addition to
the execution service a third service will log all submitted tasks. Figure 3.3 shows the interaction
between the three services.

Figure 3.3: Three service system with a publish-subscriber and one point-to-point connection.

Submit Service This is the publisher service and is responsible for the communication with the
user. The service is a web-service where the user can submit and start a new task. The new
task will then be published to a publish-subscriber channel. After sending the task to the
publish-subscriber channel, it will wait for the response on the point-to-point connection
and will display it.

Log Service This service subscribes the publish-subscriber channel and gets all the published
messages on the channel. It is responsible for logging all submitted tasks.

Execution Service This service also subscribes to the publish-subscriber channel, but in con-
trast to the Log Service, it is responsible for executing the tasks. When a task is accom-
plished, the service will send the result over a point-to-point channel back to the Submit
Service.

Time-consuming task requests This is the publish-subscriber channel that is used to send tasks
from the Submit Service to the Log- and Execution Service.

Result is the point-to-point channel that is used to send the task results from Execution Service
back to Submit Service.

21

For the message transport, one message broker should be used and for a high reliability of
the system, regardless of service or server losses, durable channels should be used. This implies
that the message broker has to persist the messages.

3.4 Message-Based Service System Consistency
During the planning and development of a complex message-centric service system, it can be
difficult to ensure the overall consistency of the system and the message broker configuration.
Especially if the structure and configuration of the system gets modified during the development,
e.g. changes in the message flow or additional services could be integrated. As discussed previ-
ously, the changes could be proper for a particular part of the system, but could leave the overall
system in an inconsistent state. In the following we will discuss the possible inconsistencies of
a message-based service system.

The inconsistencies can be separated into Architectural level and Component level.

3.4.1 Architectural Level Inconsistencies

Architectural level inconsistencies are flaws in the architecture of the messaging system. In the
following, we will discuss some common mistakes that can happen during the message-centric
system development. Most of them have their origin in the configuration of the channel names,
which has to be defined in each endpoint separately. As we will see this can be very error-prone,
e.g. a channel name can be written incorrectly or forgotten to defined.

1. Inconsistency: Two different channels have the same channel name.
Description: This inconsistency has the result that it is unclear which channel will be
used for sending a message and therefore it is uncertain which service will receive it.

Ongoing Example 1: Two different connectors have the same channel name.

For our ongoing example this would be the case if both channels, “Time-consuming
task requests” and “Result”, have the same name. For the functionality it won’t be
a problem, because the type of channel (publish-subscriber and point-to-point) is
different, but the architecture will become unclear.

2. Inconsistency: Two interfaces that are connected over a message channel, have the same
direction.
Description: If two interfaces are connected and are not bidirectional, they must have
different directions, one has to be set to sending and the other one to receiving a message.

Ongoing Example 2: Two connected interfaces have the same direction.

In our ongoing example the interface of the Submit Service, which is listening to the
point-to-point channel “Result”, can be set to a sending interface as opposed to a
receiving interface. If this is the case, the Submit Service wouldn’t be able to receive

22

a result from the Execution Service.

3. Inconsistency: A messaging service endpoint isn’t connected to a channel, i.e. the chan-
nel name isn’t set in the endpoint.
Description: Each messaging service endpoint needs the name of the connected channel.
If the channel name is not set, the service won’t be able to receive a message. This could
be intentional, because for example it will be developed at a future date, but it is also
possible that it has been forgotten to add the channel name.

Ongoing Example 3: A messaging service endpoint isn’t connected to a channel.

For example, the Log Service doesn’t subscribe the channel “Time-consuming task
requests” because the channel name has not been added to its endpoint. If this is the
case the Log Service wouldn’t receive any messages over this channel.

4. Inconsistency: Misspelling in the channel name of a messaging service endpoint.
Description: If the channel name is misspelled, the service won’t be able to receive a
message because it will listen to the wrong or not existing channel.

Ongoing Example 4: Misspelling in the channel name of a messaging service
endpoint.

For example, the Execution Service could listen to the publish-subscriber channel
“Time-consuming” instead of listening to “Time-consuming task requests”. If this is
the case, the Execution Service would never receive a message.

5. Inconsistency: A publish-subscriber channel is used for publishing messages within the
scope of a request-reply pattern.
Description: This could lead to several response messages, because each subscriber could
reply to the request. This could be intentional but then the receiving service has to handle
these multiple replies.

Ongoing Example 5: A publish-subscriber channel is used for publishing mes-
sages within the scope of a request-reply pattern.

In our ongoing example the publish-subscriber channel “Time-consuming task re-
quests” is used for a request-reply pattern, but in the example only the Execution
Service is responding to the Submit Service and so it only receives one result. If
the Execution Service also sent results back to the Submit Service via the channel
“Result”, then this has to be considered in the development of the Submit Service.

6. Inconsistency: Several services are listening to a point-to-point connection.
Description: As the name suggests a point-to-point connection is a connection between
only two participants. If there are several services listening to a new message on the
same point-to-point it can’t be guaranteed who will receive the message. In the end, the

23

behavior of the point-to-point depends on the MOM implementation, but in general only
one participant will receive the message. Again this can be intentional, e.g. for load
balancing systems.

Ongoing Example 6: Several services are listening to a point-to-point connec-
tion.
If the channel “Time-consuming task requests” is configured as a point-to-point con-
nection only the Execution Service or the Log Service will receive the message from
Service the Submit Service.

3.4.2 Component Level Inconsistencies

Component level inconsistencies are flaws in the configuration of each message component.
Once again, the following examples will discuss some common component level inconsistencies.

7. Inconsistency: Two endpoints, connected to the same channel, are configured for differ-
ent channel types.
Description: E.g. the sending endpoint is configured for point-to-point and the listen end-
point is configured for publish-subscriber. With this inconsistency the listening endpoint
won’t receive any messages.

Ongoing Example 7: Two endpoints connected to the same channel are config-
ured for different channel types.

In our ongoing example this can happen to the “Time-consuming task requests” chan-
nel, when the sending endpoint, of the Submit Service, uses the channel for a point-
to-point connection and the listening endpoint, of the Log Service, is configured for
publish-subscriber.

8. Inconsistency: The connection configuration of the interfaces is inconsistent.
Description: For example this can be an incorrectly configured IP-Address of the MOM
or a false port.

Ongoing Example 8: The connection configuration of the interfaces is inconsis-
tent.
If for example, the sending endpoint of the Submit Service has a wrong IP-Address
of the message broker, it won’t be able to send a message to the channel or, more
specifically, to the Log- or Execution Service.

9. Inconsistency: The request-reply service endpoints are not defined correctly.
Description: For the request-reply pattern the replying service has to know where the
answer should be sent to. This can be defined static or dynamic. In the static way the
answer is sent to a predefined channel. For the dynamic way, the message has to be
enriched with the name of the reply channel. This is the responsibility of the requesting

24

endpoint. On side of the requesting service the receiving endpoint has to listen to this
channel for reply messages.

Ongoing Example 9: The request-reply service endpoints are not defined cor-
rectly.

For the reply message a dynamic allocated channel should be used. The requesting
endpoint on the Submit Service will enrich the message with the reply point-to-point
channel “Result”. After the calculations on the Execution Service are done, it will
send the results back to the channel that is defined in the message from the Sub-
mit Service. All four involved service endpoints (requesting endpoint on the Submit
Service, receiving endpoint on the Execution Service, replying endpoint on the Exe-
cution Service and receiving endpoint on the Submit Service) have to be configured
specifically for the request-reply pattern.

3.4.3 Discussion: Message-Based Service System Consistency Checking

During the development of a system, inconsistencies in different parts of the system cannot
be avoided. Those inconsistencies can happen at the first planning stages as well as in later
implementation phases. While during the initial planning phases most inconsistencies can be
found easily and repaired fast, in later phases it can be difficult to find them and even harder
and more expensive to fix them. Consequently finding and resolving inconsistencies as soon as
possible is an important factor for saving both time and money.

Our approach will use consistency checking to help the architecture and development team
preventing inconsistencies as early as possible. As mentioned previously, the consistency checks
can be initialised at every development stage for the best possible inconsistency prevention.
Our algorithm will use the provided xADL architecture document and will iterate through all
message-centric system relevant xADL elements to find flaws at the architecture level as well
as at component level. The algorithm will then declare several errors and warnings, including
recommendations for how to solve the inconsistencies. Table 3.1 discuss how our approach
supports the architecture and development team by detecting and preventing the inconsistencies
discussed in Section 3.4.1 and 3.4.2. The table shows how the consistency is guaranteed and if
our algorithm outputs an error or a warning for that inconsistency.

3.5 Allocation of Message System Aspects to ADL Elements

As already discussed our approach uses the architecture to define the message routing aspects
of the system. This includes the definition of the architecture of the high-level overall complex
service system as well as the configuration of the message-oriented-middleware (MOM). To
achieve this, our approach uses the highly-extensible architecture description language xADL
2.0. It is an architecture description language that uses XML and XML-Schemas to model and
configure system architectures, as discussed in Section 2.2.1. To model the system architec-
ture, xADL uses a Structure & Type schema containing the elements Component, Connector,
Interface, Links, ComponentType, ConnectorType and InterfaceType. The Components are the

25

No. Consistency Check Error /
Warning

1. Compare all channel names for multiple channel name use. Error

2. Check the direction of all connected endpoints. Error

3. As already said we only analyse message-centric system relevant parts. If
an endpoint isn’t connected to another endpoint it isn’t message-centric
system relevant. This has the benefit that an architect can add elements
that will be developed at a future date.

-

4. Can’t happen, because the architecture-to-configuration transformation
will generate the service endpoints with the configuration of the MOM.

-

5. Check if a publish-subscriber channel is used with the connection config-
uration of a request-reply pattern.

Warning

6. Check all point-to-point connections for several connected service end-
points.

Warning

7. Can’t happen, because the architecture-to-configuration transformation
will generate the service endpoints with the configuration of the MOM.

-

8. Can’t happen, because the architecture-to-configuration transformation
will generate the service endpoints with the configuration of the MOM.

-

9. Check if all including endpoints are set correctly. We can only check if
they are set correctly if at least one endpoint is configured for the request-
reply pattern.

Error

Table 3.1: Checks to support the architecture and development team, by finding inconsistencies. (Num-
bers refer to inconsistencies discussed in Section 3.4.1 and 3.4.2)

locality of computation and the Connectors are the locality of communication. Each Component
and Connector can have several Interfaces with which the elements can be connected over Links.
The Component and Connector, together with the wiring between them, define the structure of
the system, the elements ComponentType, ConnectorType and InterfaceType are used to assign
types to the structure elements. Each element can specify concrete implementation details. To
accomplish that, xADL uses an abstract implementation schema as an abstract entry point. This
abstract entry point can be extended with a concrete implementation technology. Figure 3.4
presents the relation between structure, type and implementation.

26

Figure 3.4: Relation between the structure, type and implementation elements [16].

In the following section we discuss the extension of xADL that has to be done to store the
configuration of the message-centric system in xADL.

3.5.1 Message-Centric ADL Extension

To configure a message-centric system we had to extend xADL in a way that it can support an
architect by planning the four core architecture elements of a message-centric complex service
system. Those are (i) the MOM, (ii) the message channels, (iii) the service endpoints and (iv) the
services that combines related service endpoints. To reach this goal we will extend xADL so the
four core architecture elements can be configured within it. We defined three different variants
to distribute those elements among the xADL elements, depicted in table 3.2. In the following
we will discuss those variants and will choose the one that will be used for our approach. In
addition to the configuration of the four architecture elements our approach also requires the ids
(see Section 3.6) and the paths to the output files. We divided each of the four core architecture
elements into three parts (Section 3.5.1.5 will discuss the elements in greater detail):

[Service | Service endpoint | MOM configuration] id Defines the id that is used for the map-
ping between the architecture element and the implementation/configuration element (see
Section 3.6 for details).

[Service | MOM configuration] file path Defines the path of the implementation/configura-
tion file. Each implementation/configuration of an architecture element can be held in
a separate file, defined by this attribute.

27

[Service | Service endpoint | Channel | MOM] configuration Contains the specific configu-
ration attributes of the elements.

28

Va
ri

an
t1

Va
ri

an
t2

Va
ri

an
t3

C
om

po
ne

nt
Se

rv
ic

e
id

Se
rv

ic
e

id
Se

rv
ic

e
id

Se
rv

ic
e

fil
e

pa
th

Se
rv

ic
e

fil
e

pa
th

Se
rv

ic
e

co
nfi

gu
ra

tio
n

Se
rv

ic
e

co
nfi

gu
ra

tio
n

C
om

po
ne

nt
Ty

pe
Se

rv
ic

e
fil

e
pa

th
Se

rv
ic

e
co

nfi
gu

ra
tio

n

Si
gn

at
ur

e
Se

rv
ic

e
en

dp
oi

nt
id

Se
rv

ic
e

en
dp

oi
nt

co
nfi

gu
ra

tio
n

In
te

rf
ac

e
Se

rv
ic

e
en

dp
oi

nt
id

Se
rv

ic
e

en
dp

oi
nt

id
Se

rv
ic

e
en

dp
oi

nt
co

nfi
gu

ra
tio

n
Se

rv
ic

e
en

dp
oi

nt
co

nfi
gu

ra
tio

n
In

te
rf

ac
eT

yp
e

C
on

ne
ct

or
C

ha
nn

el
co

nfi
gu

ra
tio

n
C

ha
nn

el
co

nfi
gu

ra
tio

n
C

ha
nn

el
co

nfi
gu

ra
tio

n
M

O
M

co
nfi

gu
ra

tio
n

fil
e

pa
th

C
on

ne
ct

or
Ty

pe
M

O
M

co
nfi

gu
ra

tio
n

id
M

O
M

co
nfi

gu
ra

tio
n

id
M

O
M

co
nfi

gu
ra

tio
n

id
M

O
M

co
nfi

gu
ra

tio
n

fil
e

pa
th

M
O

M
co

nfi
gu

ra
tio

n
M

O
M

co
nfi

gu
ra

tio
n

fil
e

pa
th

M
O

M
co

nfi
gu

ra
tio

n
M

O
M

co
nfi

gu
ra

tio
n

N
ot

e:
[S

er
vi

ce
|S

er
vi

ce
en

dp
oi

nt
|M

O
M

co
nfi

gu
ra

tio
n]

id
:

Id
fo

rc
ha

ng
e

pr
op

ag
at

io
n.

[S
er

vi
ce

|M
O

M
co

nfi
gu

ra
tio

n]
fil

e
pa

th
:

Pa
th

to
th

e
Se

rv
ic

e
an

d
M

O
M

co
nfi

gu
ra

tio
n

fil
e.

[S
er

vi
ce

|S
er

vi
ce

en
dp

oi
nt

|C
ha

nn
el

|M
O

M
]c

on
fig

ur
at

io
n:

Sp
ec

ia
lc

on
fig

ur
at

io
n

va
lu

es
.

Ta
bl

e
3.

2:
D

iff
er

en
tv

ar
ia

nt
s

to
di

st
rib

ut
e

th
e

co
nfi

gu
ra

tio
n

in
fo

rm
at

io
n

in
th

e
xA

D
L

St
ru

ct
ur

e
&

Ty
pe

sc
he

m
a.

29

3.5.1.1 Variant 1

Service
This variant uses the ComponentType to configure the services. The Components, which have
the same ComponentType, are instances of the same service. Because they receive their configu-
ration from the ComponentType, each service gets a unique id, the id of the assigned Component,
to separate it from the other services.

Pros:

+ If many identical Components are needed, only a few ComponentTypes have to be created.

Cons:

- If many different Components are needed, many ComponentTypes have to be created.

- Also for small differences in the services a new ComponentType has to be created.

- Many different Components and ComponentTypes can lead to an unclear architecture.

Service Endpoint
Due to the fact that the configuration of the services take place in the ComponentTypes, the
configuration of the service endpoints is done in the Signatures of the ComponentTypes. To
propagate possible changes each endpoint gets the id from the Signature.

Pros:

+ The endpoints have to be configured in the ComponentType once and will then be used
for all Components with the same ComponentType.

Cons:

- Also for small differences in an endpoint a new ComponentType has to be created.

MOM
In this variant the configuration of the MOM is done in the ConnectorType and the Connector
defines if the communication channel behaves as a publish-subscriber channel or point-to-point
channel and sets the name of the channel.

Pros:

+ Clear separation of the server configuration (e.g. ports, persistence adapter) and the chan-
nel configuration.

+ Each ConnectorType can be saved in a separate configuration file. This can be used to
create different server configurations.

30

Conclusion
This variant fits well if there are several identical Components. In such a scenario only a few, or
even only one, ComponentType has to be defined, this ComponentType can then be used for all
identical Components. But if the services are different, each Component needs his own Compo-
nentType. This can lead to an unclear and complex architecture and with a growing complexity
there is also a growing risk for an incorrect mapping between a Component and a Component-
Type. The separation of the Connector and ConnectorType, respectively the separation of the
channel configuration and the server configuration, is logical and unambiguous.

Ongoing Example 10: Variant 1

If we applied variant 1 to our ongoing example we would have to create for each service
(Submit, Log, Execution) a Component and a ComponentType. This has to be done be-
cause all services are different from each other: (i) the Log Service has only one interface
while the Submit- and the Execution Service have two, (ii) the Submit Service and also the
Log Service have two interfaces but the interfaces from the Submit Service have to be con-
figured for request-reply (see Section 3.5.1.5) and the interfaces of the Log Service does
not. For the connection, this variant needs one ConnectorType to define all MOM specific
configurations and two Connectors to define the publish-subscriber and the point-to-point
connection for the reply.

Type Amount

Component 3
ComponentType 3
Connector 2
ConnectorType 1

Table 3.3: Needed amount of Components, ComponentTypes, Connectors and ConnectorTypes.

3.5.1.2 Variant 2

Service
In this variant, all configuration information of a service is stored in the Component, therefore
the ComponentType holds no relevant information. This implies that each service needs its own
Component, but they can use the same ComponentType as long as they have the same amount
and type of endpoints. This fits for most scenarios, due to the fact that most of the services are
different and need a specific configuration.

Pros:

+ A ComponentType can be used for different Components, as long as the amount and type
of endpoints are the same.

31

Cons:

- If the services are the same and need the same configuration, it has to be configured for
each Component.

Service Endpoint
Due to the fact that all service information is stored in the Components, the endpoint informa-
tion is stored in the Interfaces. This is meaningful, because often the only difference between
two services are the endpoints, e.g. both services have two endpoints, one in and one out, but
in the first service they are configured for the request-reply pattern and in the second they are
configured as normal in and normal out endpoint. If the endpoint configuration would be in the
Signature both services would require different ComponentTypes.

Pros:

+ Often the only difference between two services are the endpoints, and therefore there is no
need for different ComponentTypes as long as the amount and direction of the interfaces
stay the same.

Cons:

- If the endpoints of several services are the same, they have to be configured for each Com-
ponent again.

MOM
In contrary to Variant 1 this approach stores the file path, for the configuration file of the MOM,
in the Connector. This enables the possibility to generate a new configuration file for each
channel (Connector) without creating different ConnectorTypes. This can be useful if the con-
figuration of the MOM server should be generated for several servers.

Pros:

+ Many different MOM configuration files can be generated easily.

Cons:

- Configuration effort is higher, because for each Connector the correct file path has to be
entered.

- Different configuration files could also be generated with different ConnectorTypes.

Conclusion
This Variant fits well for a complex messaging system where most of the services are different to
each other, which is often the case. In such a scenario it is mandatory to configure each service

32

(Component) for itself and therefore this approach can model the structure in a clear way. As
discussed above, this version stores the file path, for the MOM configuration, in the Connector.
This could be useful if different channels need to be routed over different MOM servers, but if
this is not the case it can be rather complicated to set the right file path to all Connectors.

Ongoing Example 11: Variant 2

For our ongoing example, we would again need three Components and two Connectors.
But in contrast to Variant 1, we only need two ComponentTypes, one for the Log Service
(with one in interface) and one for the the Submit- and the Execution Service (with one
in endpoint and one out endpoint). The configuration of the service endpoints (e.g. the
endpoints of the Submit Service have to be configured for the request-reply pattern) is done
at the interfaces of the Components. As discussed in the specification of this example we
only want one MOM server with an active persistence adapter. To accomplish that, we need
one ConnectorType to configure the persistence adapter. The file path has to be added to
each Connector.

Type Amount

Component 3
ComponentType 2
Connector 2
ConnectorType 1

Table 3.4: Needed amount of Components, ComponentTypes, Connectors and ConnectorTypes.

3.5.1.3 Variant 3

This last variant is a combination of Variant 1 and 2.

Service
For the services the Variant 2 approach is used (discussed in section 3.5.1.2). In this approach
all service configuration information is stored in the Component. The ComponentType will hold
no relevant information for our purpose.

Service Endpoint
For the endpoint, the Variant 2 approach is used as well (discussed in section 3.5.1.2). In Variant
2 all endpoint information is stored in the Interfaces.

MOM
In this variant we use the approach from Variant 1 (discussed in section 3.5.1.1) where the con-
figuration of the MOM server is done in the ConnectorType. This variant uses the Connector to
define a publish-subscriber channel or point-to-point channel and to set the name of the channel.

33

Conclusion
This version takes the service and service endpoint from Variant 2 and the MOM configura-
tion from Variant 1. With the service and service endpoint definition in the Components and
Interfaces it fits well for scenarios where most of the services are different from each other.
The separation of the MOM server configuration and channel name configuration has the same
separation as many available MOM servers, where the channel name is defined in the service
endpoints and not in the MOM.

Ongoing Example 12: Variant 3

For the services we need, same as in Variant 2, three Components, i.e. one for each service
and two ComponentTypes, one for the Log Service and one for the Submit- and the Execu-
tion Service. For the connection, this variant also needs one ConnectorType to define the
JMS server and two Connectors to define the channels.

Type Amount

Component 3
ComponentType 2
Connector 2
ConnectorType 1

Table 3.5: Needed amount of Components, ComponentTypes, Connectors and ConnectorTypes.

3.5.1.4 Summary & Decision

To sum up the three variants:

Variant 1 fits well if there are several identical services. But commonly the services are differ-
ent, at least in a small way.

Variant 2 can handle different services in a more elegant way, because the service and service
endpoint information is stored in Component and Interface. It also supports the developers
if they need several different MOM server configurations.

Variant 3 places the services and service endpoints into Components and Interfaces. Same as
in Variant 2, this combination fits well if there are different services. The MOM server
configuration is set into the ConnectorType and the MOM channel configuration is set into
the Connector.

In our work we decided to implement Variant 3, which combines the best characteristics of
Variant 1 & 2. This is because (i) almost all services in a modern service system are different to
each other and (ii) the separation of MOM server configuration and channel name configuration
is the same separation as reached with many different available MOM implementations.

34

3.5.1.5 Message-Centric Properties

In the following, the purpose and the configuration properties of the previous allocated elements
id, file path and configuration will be discussed in detail.

Id
The id element is used for the association of the message system aspects to the xADL elements
and will be a property in the xADL extensions Service, Service endpoint and MOM. This prop-
erty will be discussed in more detail in Section 3.6.

File path
An important aspect of our approach is the separation of the implementation/configuration into
different files. For this, we included the property file path. The property can be used to define
individual files for each Service implementation or MOM configuration. This supports a clear
separation of development tasks and responsibility.

Configuration
As already defined, the element Configuration contains message system specific configuration
properties of the xADL extensions Service, Service endpoint, Channel and MOM. In the follow-
ing we will specify those properties.

Service configuration applies to an xADL Component. As already mentioned, our approach
doesn’t require knowledge of the internal service behavior and will only use messag-
ing system relevant parts of the system. Therefore this extension is used to mark the
architecture-level component as a service.

Service endpoint configuration applies to an xADL Interface element associated with a com-
ponent and defines a service endpoint in the messaging system. For our approach, these
extensions need three properties. The first one sets the durable name of the endpoint. The
name is required if the endpoint is used as a durable subscriber. The last two properties
are used to specify the participating interfaces in a request-reply pattern, where the reply
interface is set dynamically1. In fact, this pattern comprises four interfaces: on the re-
questing service one sending (sends the request message) and one receiving (receives the
reply message) interface and on the replying service one receiving (receives the request
message) and one sending (sends the reply message) interface. These interfaces have to
be marked as such. We suggest to use two properties to define the special roles, specif-
ically ToReplyInterface and ToRequestInterface. On the requesting service, the sending
interface has to enrich the message header with connection information of the replying
point-to-point channel where the reply should be sent to. This is done via the ToReplyIn-
terface property that adds a reference from the sending interface to the receiving interface.
To complete the requesting service the receiving interface needs a reference to the send-
ing interface via the property ToRequestInterface. On the replying service, the receiving
interface gets a reference to the sending interface with the ToReplyInterface property. To

1For the rest of this work we will assume that the reply channel, of a request-reply pattern, is always set dynamic.

35

fulfill the request-reply pattern the sending interface is referred to the receiving interface
via the ToRequestInterface property. The example box 13 will configure the interfaces of
the Submit Service and the Log Service of the ongoing example for the requesting-reply
pattern.

Channel configuration applies to an xADL Connector element and adds the ability to use it
as a messaging channel. Two properties are needed to define the channel type, publish-
subscriber (topic) or point-to-point (queue), and the name of the channel.

MOM configuration applies to an xADL ConnectorType element and contains the configura-
tion for the MOM. In our suggested approach it will contain the information that is needed
for the connection, like the URL of the message broker.

Ongoing Example 13: Request-Reply pattern configuration

In the ongoing example, the Submit- and the Execution Service use a request-reply pat-
tern to send the time-consuming task and receive the result of the task. In the example,
the Submit Service is the requesting service and the Execution Service the replying one.
Figure 3.5 depicts both Services (colored white) and the communication channels (colored
grey). Note that for a clearer figure the Log Service has been omitted and only the pattern
relevant Submit- and Execution Service are shown.

Figure 3.5: Request-Reply pattern of the Submit- and the Execution Service. Note: For a clearer
figure only the request-reply participants (Submit Service and Execution Service) are shown.

Each service has two interfaces, the arrows in the rectangles represent the communication
direction. As depicted in the figure the interfaces were labeled A.IN, A.OUT, B.IN and
B.OUT to use them for the following description. The request-reply flow is as followed:
(1) A.OUT enriches the message header with the connection information of the reply
channel Result, (2) A.OUT sends the request message over the Time-consuming task
requests channel, (3) B.IN receives the request message and the Execution Service runs the
task, (4) B.OUT sends the result of the task as a reply message over the channel that is
defined in the message header (in this example the Result channel), and finally (5) A.IN
receives the reply message.
To identify the role of the interfaces our approach uses two properties called
ToReplyInterface and ToRequestInterface. Both of them are properties for component
interfaces and refer to a corresponding interface at the same component. Figure 3.6 and
table 3.7 shows on which interfaces the properties have to be defined and to which

36

interfaces the properties refer.

(a) Request-Reply pattern of the Submit- and
the Execution Service.

(b) Request-Reply pattern of the Submit- and
the Execution Service.

Figure 3.6: Interface configuration for the request-reply pattern of the Submit- and the Execution
Servicethe Submit- and the Execution Service

Interface Property Refer to interface

A.OUT ToReplyInterface A.IN
A.IN ToRequestInterface A.OUT
B.IN ToReplyInterface B.OUT
B.OUT ToRequestInterface B.IN

Figure 3.7: Configuration of the participating request-reply interfaces.

3.6 Association of Message System Aspects and ADL Elements
For a tool that supports architecture-centric software development, an explicit mapping between
the architecture elements and the implementation/configuration elements is required.

Among others, the two most used mapping variants are:

Bi-directional Both associated elements get a unique id and each gets a reference to the unique
id of the corresponding element. To find an element one can follow the reference id, stored
in the first element, to the second element. To search in the other direction it is the same
procedure. With this variant it is computationally cheap to find the associated element
because it is not necessary to search through all elements. If the mapping is used for a
1:1 association each element has only one reference to another element. If it is used for
a 1:N, M:1 or M:N mapping, an element has to hold a list of references to the associated
elements.
Pro: It is easy and computationally cheap to find the corresponding element.
Con: Can be complicated to maintain all references correctly and can lead to an inconsis-
tent mapping, especially in more complex systems.

Uni-directional One element gets a unique id and the other element the reference to it. With
this mapping the search for the element with the unique id by the reference stored in the
second element is cheap. But the other way around is computationally expensive, because
all elements have to be checked if they refer to the element with the unique id. If two
elements are connected with a uni-directional mapping, only one element has to hold the

37

reference to the associated element. If more than two elements are connected, one element
has to hold a list of references to the associated elements.
Pro: Only one unique id and a reference to it is needed, therefore it is clearer and easier to
maintain.
Con: The search direction from the second element (the element with the reference) to
the first element (the element with the id) is computationally cheap, the other way is
computational expensive.

For the mapping between the architecture and the implementation/configuration, a 1:N map-
ping is required, because different implementation and configuration elements are connected to
the same architecture elements. In order to achieve a clear structure we suggested to use a uni-
directional mapping where the architecture element has a unique id and the implementation that
is, the configuration, refer to this id. As referring id, we suggest to use the unique xADL id
that each xADL element has. They are used by xADL for the internal linking between different
elements. For more information about the id, the interested reader is referred to the xADL doc-
umentation [21] and the paper of Dashofy, Hoek and Taylor [13]. These ids will stay the same,
even if parts of the elements get changed, and normally the ids don’t have to be changed by a
user. Another benefit of the uni-directional mapping is that it is not necessary to add an addi-
tional attribute to the xADL element to store the reference to the implementation or configuration
elements.

In the following we will discuss the process of finding implementation/configuration element
associated to an xADL element and the other way around:

xADL element! implementation/configuration element Due to the fact that each imple-
mentation/configuration element holds the id of the xADL element it is necessary to search
through all implementation/configuration elements and check if the stored reference id is
the searched xADL id.

Implementation/configuration element! xADL element For this direction, the reference id
must be used, held by the implementation/configuration element, and then searched for
that id in the corresponding xADL architecture document. The search for ids in an xADL
document is supported by tools and computationally cheap.

3.7 Change Propagation

As Zheng and Taylor pointed out in [63], the use of architecture modelling doesn’t stop after
the initial planning phase. It is quite usual that during the development phase the architecture of
the system, or at least the configuration of some parts, will change. For an architecture-driven
design and configuration tool, it is therefore necessary to support the propagation of changes in
the architecture to the already transformed system and thereby retain the consistency between
an architecture specification and the implementation. For the propagation process it must be
considered that user-defined code could also exist in the transformed implementation. This code
has to be preserved during the propagation and only the code that was transformed by the tool
should be changed.

38

For change propagation, four questions have to be considered: (1) Which element has to be
changed, (2) how can the existing code, that needs to be changed, be found, (3) how can the
element be changed without destroying the user-defined code and (4) what can be done if there
is a conflict?

3.7.1 Change Management Strategy

The easiest way to propagate changes is to do a full regeneration of the code. But this would
ignore all user-defined code and would delete those code segments. Therefore, our approach
will only change the architecture-prescribed implementation. To do this we suggest to solve the
four questions mentioned above in the following way:

1. “Which element has to be changed?”: Our approach suggests a complete code regen-
eration of the architecture-prescribed code parts. This means that not only the changed
elements or attributes of them are included but rather all elements that are relevant for
the message system. We decided to use this radical approach because it means we can
guaranteed that the generate/updated system is the planned system, even if parts of an
architecture-prescribed element got changed accidentally in the implementation. The ap-
proach will only incorporate elements that are relevant for the message system. More
precisely it will only include elements that are connected to other elements. This means
that if a service isn’t connected with another service, it won’t be included in the change
propagation, even if the service has a representing component in the architecture docu-
ment.

2. “How can the existing code, that needs to be changed, be found?”: As discussed in Sec-
tion 3.6 we will use the ids provided by xADL to do the mapping between the architecture
elements and the implementation elements. For more details see the corresponding Sec-
tion.

3. “How can the element be changed without destroying the user-defined code?”: Our ap-
proach separates the architecture-prescribed code (message routing) from the user-defined
code (message processing), therefore most changes can be done without touching the user-
defined code. Nevertheless some changes need modifications of the user-defined code, as
discussed in the work of Zheng and Taylor [63]. In their work, they solved the prob-
lem by introducing change notifications that notify the developers if modifications of the
user-defined code are necessary. In the current development stage, our approach doesn’t
provide such a mechanism, it only changes the message routing part and leaves the mes-
sage processing part without comment. This is considered as part of the future work.

4. “What can be done if there is a conflict?”: This can be divided into two subparts.

a) Update conflicts: Those are conflicts that happen if both related attributes have
changed and it can’t be decided which one is the new one. As already discussed
our approach always uses the attributes of the architecture elements and overrides
the attributes in the implementation.

39

b) Remove conflicts: Those are conflicts that appear if an element is removed in the
architecture. If this is the case, our suggested solution lets the user decide if the
corresponding implementation element should be removed, including the message
processing code, or only the mapping id to the architecture element. By deleting the
id, the reference to the architecture element gets lost and will then be considered as
user-defined code. This may be desired if the message processing code should not
be deleted.

Furthermore a change propagation algorithm has to handle three different types of changes: (1)
a new architecture element is added, (2) an existing architecture element is updated and (3) an
architecture element is deleted.

The four answers and the three types of changes in mind, the algorithm has the following
steps:

1. Search for all existing architecture-prescribed code elements, which have to be updated,
by searching for the xADL id.

2. Regenerate the existing architecture-prescribed code elements with the new information.

3. Add all new elements, i.e. all elements that are new but for that no architecture-prescribed
code exists.

4. For all architecture-prescribed code elements which already exist but aren’t used anymore,
i.e. elements that were deleted in the architecture. Ask the user if the implementation
element should be removed or only the mapping xADL id to the architecture element.

a) If the user decides to remove the existing architecture-prescribed code element, re-
move it.

b) If the user decides to remove the mapping to the existing architecture-prescribed
code element, remove the xADL id.

40

CHAPTER 4
Realization

In this chapter, we will present the prototype which is implemented based on the approach. The
first section will present the “big picture” of the implementation. Specifically, we will discuss the
four main parts of the system (xADL extension, Architecture-level Editor, Consistency Checks
and Architecture-to-Configuration transformation) and the collaboration between them. Subse-
quently, each part will be discussed in detail. This chapter will also analyze the data model of
a Mule ESB workflow configuration file, an Apache ActiveMQ configuration file and an xADL
document, including the description how xADL was extended by us. Conclusive we will discribe
the installation and usage of our extension. For the implementation we used xADL 2.0 [21] and
ArchStudio 4 [11, 20]. As output for the transformation we decided to produce Mule ESB [48]
workflow and Apache ActiveMQ [3] configuration files. The system was developed and tested in
a Mac OSX and Windows environment, with an ArchStudio 4 version 4.1.50, Mule ESB version
3.5 and Apache ActiveMQ version 5.9.

4.1 Big Picture

As depicted in Figure 4.1, our implementation has four top level entities:

• xArchADT / xADL 2.0 Document: This is the interface to the xADL architecture docu-
ment that holds all architectural information. It is the central point of our implementation,
because all other entities depend on this interface. To access the xADL elements, we will
use the xADL infrastructure tool xArchADT, which was discussed in Section 2.2.4.1. As
already discussed the provided standard xADL 2.0 Schema will be extended to fit our
special use case.

• Architecture-Level Editors: This entity comprises the ArchStudio 4 editors Archipelago,
ArchEdit, TypeWrangler and MSG Launcher. Note that ArchStudio 4 has more editors,
but for our purpose we will only use these four editors. The first three editors are already
available in ArchStudio 4 and can be used to design and configure the architecture. The

41

last one, MSG Launcher, is implemented by us and is used as a launch point for the
messaging system consistency check and the architecture-to-configuration transformation.

• Consistency Check: This is the module that is concerned with the consistency of the
architecture. Before the transformation process launches the Consistency Check entity
searches for inconsistencies in the architecture.

• Architecture-to-Configuration Transformation: This entity is concerned with the ac-
tual transformation of the architecture to the Mule ESB workflow and ActiveMQ config-
uration. It gets started after the architecture is checked for inconsistencies. It uses the
xADL Model and translates it into an internal model for the Mule ESB workflow config-
uration and for the ActiveMQ configuration. These models will then be used to generate
the actual configuration files.

Figure 4.1: Overview of our implementation.

In the following sections the four top level entities will be discussed in detail.

42

4.2 Architecture-Level Editors
For an easier usage of xADL, we used the development environment ArchStudio 4. ArchStudio
4 is the official tool support for the language and includes different tools to work with xADL. As
depicted in Figure 4.2, our implementation uses already available editors as well as a new tool
that extends ArchStudio 4 with the ability to launch the Consistency Check and the Architecture-
To-Configuration transformation. The tool is called MSG Launcher (Messaging-system genera-
tor Launcher) and will be discussed in the following section.

Figure 4.2: Architecture-level Editors Module and associated components

4.2.1 xADL 2.0 Editors

The included tools Archipelago, ArchEdit and TypeWrangler are the three already available
ArchStudio 4 tools that are primarily used for our suggested solution. All three tools are editors
for xADL 2.0 and are discussed in more detail in section 2.2.4.2 and in [13, 14]. The example
box 14 shows the architecture of the ongoing example, drawn with the tool Archipelago.

Ongoing Example 14: Archipelago Structure

Figure 4.3 shows the architecture of our ongoing example drawn with the ArchStudio 4 tool
Archipelago. The dark blue boxes are components and represent services, the light beige
boxes are connectors and represent the message transport channels.

43

Figure 4.3: Structure of the ongoing example in Archipelago.

4.2.2 MSG Launcher

We extended ArchStudio by the tool MSG Launcher, which is the starting point of the transfor-
mation workflow, including Consistency Check and the Architecture-to-Configuration transfor-
mation. As depicted in Figure 4.2, the tool uses the xADL model and an additional configuration
file to start the process. The xADL model is necessary for defining which structure of the archi-
tecture should be generated. As defined in Section 3.5.1.5 our approach provides the possibility
to separate the transformed ESB workflow implementation and JMS Message Broker configura-
tions in different files. Those different files are defined in the additional configuration file that is
loaded by MSG Launcher. It holds the paths to the ESB workflows and the JMS Message Broker
configuration files, including an id for each path, in an XML file (see example box 15 for the
configuration file of the ongoing example). MSG Launcher can be used to read the configuration
file and edit the file paths and ids. The ids are then used in the xADL Components and Connec-
tors to define where the transformed configuration should be saved. We decided to hold the file
paths in a separate file and map the xADL elements by an id to the file path and not to save the
path directly in the xADL document, to offer the user an easy way to change the paths and to
separate this non architectural information from the architectural ones. After reading this con-
figuration file and defining the architecture structure file, the MSG Launcher extension starts the
Consistency Check. Figure 4.4 depicts our ArchStudio extension including schema extension,
the transformation file mapping and exemplary inconsistency alerts.

44

Figure 4.4: Screenshot of our ArchStudio extension, including schema extension (left), the transforma-
tion file mapping (top) and exemplary inconsistency alerts (inset) [16].

Ongoing Example 15: MSG Launcher Configuration

Listing 4.1 defines a configuration file for the ongoing example where one ActiveMQ mes-
sage broker configuration file and two Mule ESB workflow files will be generated. The
ActiveMQ message broker configuration will be located at the absolute path “/absolute/-
path/to/activemq.xml”, the Mule ESB workflow implementation file for the Submit Service
at “/absolute/path/to/muleSubmit.xml” and for the Log- & the Execution Service at “/ab-
solute/path/to/muleLogExecution.xml”. The corresponding ids Jms_0, Submit_Service and
Service_Log_Execution have to be used in the corresponding xADL Components and Con-
nectorType to map them to the file paths.

45

Listing 4.1: MSG Launcher Configuration for one JMS Message Broker configuration file and
two Mule ESB workflow files.

1 <? xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8" s t a n d a l o n e ="yes"?>
2 < o u t p u t _ f i l e _ c o n f i g >
3 < j m s _ l i s t >
4 < o u t p u t _ f i l e >
5 < id >Jms_0< / i d >
6 < f i l e p a t h > / a b s o l u t e / p a t h / t o / a c t i v e m q . xml< / f i l e p a t h >
7 < / o u t p u t _ f i l e >
8 < / j m s _ l i s t >
9 < m u l e _ l i s t >

10 < o u t p u t _ f i l e >
11 < id > S e r v i c e _ S u b m i t < / i d >
12 < f i l e p a t h > / a b s o l u t e / p a t h / t o / m u l e S u b m i t . xml< / f i l e p a t h >
13 < / o u t p u t _ f i l e >
14 < o u t p u t _ f i l e >
15 < id > S e r v i c e _ L o g _ E x e c u t i o n < / i d >
16 < f i l e p a t h > / a b s o l u t e / p a t h / t o / m u l e L o g E x e c u t i o n . xml<

/ f i l e p a t h >
17 < / o u t p u t _ f i l e >
18 < / m u l e _ l i s t >
19 < / o u t p u t _ f i l e _ c o n f i g >

4.3 Basic Data Model
Before we discuss the xADL extensions we have to discuss the underlying data model of a
Mule ESB workflow, an ActiveMQ configuration file and xADL. For Mule ESB and Apache
ActiveMQ we will also discuss what information and configuration details are mandatory to
build up a messaging system.

4.3.1 Mule ESB Data Model

As discussed in Section 2.1.4.2 Mule ESB uses XML based configuration files to construct the
workflows. These files describe the internal structure of a Mule ESB workflow1 and how the
workflow components are configured and connected together. During runtime, these workflow
components are processed in a sequential order, whenever the workflow is triggered by an event
(e.g. a received message). The example box 16 shows the Mule ESB XML configuration of the
Log Service’s workflow from our ongoing example. The example box will briefly describe the
main elements of the XML-File that are relevant for our purpose. The interested reader will find
a more detailed description on the Mule ESB documentation website [49].

1Throughout this thesis any reference to workflow is referring to a Mule ESB workflow.

46

Ongoing Example 16: Mule ESB workflow XML configuration

Listing 4.2 shows the workflow of the Log Service of the ongoing example. The workflow
listens to a JMS queue and prints out the received message to the console output. The Mule
Components are processed in a sequential order.

Listing 4.2: Minimum Mule ESB Workflow Configuration to listen to a JMS queue
1 <? xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>
2 <mule xmlns : jms ="http://www.mulesoft.org/schema/mule/jms"

xmlns="http://www.mulesoft.org/schema/mule/core"
x m l n s : s p r i n g ="http://www.springframework.org/schema/beans"
v e r s i o n ="EE-3.4.0" x m l n s : x s i ="http://www.w3.
org/2001/XMLSchema-instance" x s i : s c h e m a L o c a t i o n ="...">

3 < jms:act ivemq�connector name="ActiveMQ" brokerURL="
tcp://localhost:61616" / >

4 < f low name="logService" doc:name="Log Service">
5 < jms:inbound�endpoint t o p i c ="request.topic" doc:name="JMS"

c o n n e c t o r� r e f ="ActiveMQ" / >
6 < l o g g e r message="#[payload]" l e v e l ="INFO" doc:name="Logger

" / >
7 < / f l o w >
8 < /mule >

mule is the root element and as such, it encloses all workflows in this file.

jms:activemq-connector defines the JMS broker configuration. This example uses Apache
ActiveMQ as the JMS broker. Apache ActiveMQ is a widely used message server
and is supported by Mule ESB with a specialised connector. In addition to the Ac-
tiveMQ connector, Mule ESB also offers connectors for Web logic JMS and Mule
MQ. Beside the predefined connectors it is also possible to connect to other JMS
servers by defining a ConnectionFactory object. The broker will use the address
tcp://localhost:61616 to send and receive messages, this is defined by the attribute
brokerURL. The attribute name sets the name of the connector, this name has to be
unique and will be used as reference to the connector.

flow is the element which defines the actual workflow. This element encloses all workflow
specific components. Each workflow requires its own flow element as a child of the
mule element. One mule element could have several flow elements.

jms:inbound-endpoint defines the workflow component that is listening to the JMS queue.
If the channel contains a new message, this component will read the message and pass
it to the next component in the workflow. The attribute topic configures the type and
name of the channel, in this example the type is a publish-subscriber channel (for a
point-to-point connection the attribute queue, instead of topic, has to be used) and the

47

name of it is request.topic. The attribute connector-ref is the reference to the corre-
sponding connector. The opposite of an inbound-endpoint is an outbound-endpoint.
The outbound-endpoint is responsible for the output of a message to a channel or to
another communication medium.

logger is the component that will log the received message. This component isn’t part of
the messaging system and therefore we won’t discuss the usage of this component in
detail.

4.3.1.1 Request-Reply

To implement a request-reply pattern, Mule ESB offers a request-reply element. This element
encloses the designated outbound-endpoint (the requesting interface) and inbound-endpoint (the
reply interface). To specify the responding channel the JMS message property MULE_REPLYTO
has to be added before the message will be sent. This has to be done by adding the ele-
ment message-properties-transformer and the enclosed add-message-property. In the example
box 17, we will show the usage of the request-reply pattern on the basis of our ongoing example.

Ongoing Example 17: Request-reply

In our ongoing example the Submit Service implements the request-reply pattern, it sends
the request over the publish-subscriber channel and receives the message by the point-to-
point queue. Listing 4.3 shows the workflow of the Submit Service. For a clear representa-
tion the components that aren’t important for the message transport (the generation of the
message and the print out of the received reply) are commented out. The request will be
send to the publish-subscriber channel (topic), with the name request.topic, and the reply
will be received on the point-to-point channel (queue), with the name reply.queue.

Listing 4.3: Mule ESB Workflow Configuration for a request on topic: request.topic and reply
on queue: reply.queue.

1 < f low name="submitService" doc:name="Submit Service">
2 < !�� Genera te message ��>
3 <message�propert ies� transformer >
4 <add�message�property key="MULE_REPLYTO" v a l u e ="

jms://reply.queue" / >
5 < /message�propert ies� transformer >
6 < reques t�reply >
7 < jms:outbound�endpoint c o n n e c t o r� r e f ="Active_MQ" t o p i c ="

request.topic" / >
8 < jms:inbound�endpoint c o n n e c t o r� r e f ="Active_MQ" queue="

reply.queue" / >
9 < / r e q u e s t�r e p l y >

10 < !�� P r i n t r e c e i v e d r e p l y ��>
11 < / f l o w >

48

message-properties-transformer is the element to add message properties to the message.

add-message-property will add one message property to the current message header. This
element takes a key-value pair. In our scenario it takes the key MULE_REPLYTO, to
specify the reply channel, and the value jms://reply.queue, to specify the name of the
reply channel.

request-reply encloses the corresponding outbound-endpoint (to send the request) and the
inbound-endpoint (to listen to the reply).

4.3.1.2 Mandatory information

To set up a working messaging skeleton it is mandatory to know which information is re-
quired. As we can see above the elements mule, connector (e.g. activemq-connector), flow,
[inbound|outbound]-endpoint are mandatory elements to build up a system and for a request-
reply pattern the elements message-properties-transformer, add-message-property and request-
reply are also needed. Table 4.1 shows mandatory attributes of the elements and table 4.2 the
elements that are needed for a request-reply pattern.

49

Element Attribute name Description

flow name Name of the flow. This name can be used to
make a reference to the flow.

[inbound | outbound]
-endpoint

durableName If durable connection is enabled, this repre-
sents the durable name of the endpoint.

exchange-pattern Defines if this workflow should send a response
or not (allowed values: one-way, request-
response).

[queue | topic] Name of the queue or topic. By using the at-
tribute queue the endpoint is reading/writing a
queue and by using topic the endpoint is pub-
lishing/subscribing a topic.

connector-ref Reference to the corresponding connector.

activemq-connector brokerURL URL to the JMS server

name Name of the connector. This name can be used
to make a reference from the JMS endpoint to
the connector.

durable Defines if the topic subscribers are durable.

specification Sets the JMS specification (allowed: 1.0.2b,
1.1).

Table 4.1: Attributes of Mule ESB component flow.

Element Attribute name Description

message-properties-
transformer

No mandatory attributes

add-message-
property

key Name of the JMS message property (e.g. for
request-reply: MULE_REPLYTO).

value Name of the reply queue.

request-reply No mandatory attributes

Table 4.2: Attributes of Mule ESB component add-message-property.

50

4.3.2 Apache ActiveMQ Data Model

As mentioned earlier, our prototype will use Apache ActiveMQ as the JMS message server. We
decided to use ActiveMQ because it is a widely used, state-of-the-art messaging server and has
good support by Mule ESB. The server configuration of ActiveMQ is also done by an XML-
formatted configuration file. The example box 18 shows the ActiveMQ configuration file for the
ongoing example. Again we will only discuss the parts that are relevant for our purpose. The
interested reader will find a more detailed documentation at the Apache ActiveMQ Website [23].

Ongoing Example 18: ActiveMQ Configuration

Listing 4.4 shows the ActiveMQ message broker configuration file of our ongoing exam-
ple. The server will run on the local machine (IP 127.0.0.1) and will listen on port 61616.
Additionally it will persist the messages by using a KahaDB database at the directory
connect/kahadb.

Listing 4.4: A typical configuration of an ActiveMQ messaging server.
1 <? xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>
2 <beans xmlns="http://www.springframework.org/schema/beans"

xmlns:amq="http://activemq.apache.org/schema/core"
x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance"
x s i : s c h e m a L o c a t i o n ="...">

3 <broker xmlns="http://activemq.apache.org/schema/core">
4 < p e r s i s t e n c e A d a p t e r >
5 <kahaDB d i r e c t o r y ="connect/kahadb" / >
6 < / p e r s i s t e n c e A d a p t e r >
7 < t ranspor tConnec tors >
8 < t ransportConnector u r i ="tcp://127.0.0.1:61616" / >
9 < / t r a n s p o r t C o n n e c t o r s >

10 < /broker >
11 < / b eans >

beans is the root element.

broker is the actual broker element which configures an ActiveMQ broker.

persistenceAdapter encloses all persistence specific elements. This element is only re-
quired if the database path is different to the default one or another database than
KahaDB is used.

kahaDB configures message persistence for the message server. In this example we use
KahaDB to persist the messages. KahaDB is a database specialised in message per-
sistence and is part of the Apache ActiveMQ project [24]. It is the default persistence
solution of ActiveMQ, but ActiveMQ also supports other solutions like LevelDB a

and all the major SQL databases b.

51

transportConnectors define the protocols with which the clients can connect to a broker.
A single broker can have several open connectors with different protocols and listen
ports c.

transportConnector configures one connector. In this example it is a TCP connection on
the port 61616.

ahttp://activemq.apache.org/leveldb-store.html
bhttp://activemq.apache.org/jdbc-support.html
chttp://activemq.apache.org/configuring-transports.html

4.3.2.1 Mandatory information

The mandatory information for a ActiveMQ server configuration are transportConnectors and
the enclosed transportConnector. Table 4.3 shows the minimum attributes for these elements.
To configure the persistence adapter the additional elements persistenceAdapter and the corre-
sponding database element, in our case kahaDB, are required. Table 4.4 shows those attributes.

Element Attribute name Description

transportConnectors No mandatory attributes

transportConnector uri Sets the address of the channel.

Table 4.3: Attributes of an ActiveMQ transport configuration.

Element Attribute name Description

persistenceAdapter No mandatory attributes

kahaDB directory Sets the directory where the persistent messages
should be stored.

Note: For other database types, the element tag name kahaDB has to be changed to the
corresponding tag name, e.g. levelDB for LevelDB Store.

Table 4.4: Attributes of an ActiveMQ persistency configuration.

4.3.3 xADL Data Model

As already discussed in Section 2.2.1.1, xADL 2.0 consists of different XML-Schemas and
extensions of them where each adds a set of attributes to the language. Our approach provides
that xADL will be extended by adding different implementation schemas. Representatively
for the schemas, which were extended by us, the following will discuss the structure of the
XML-Schema InterfaceType. The description starts with the definition of the type, following the
definition of the abstract Implementation extension and at the end the definition of the concrete

52

Java Implementation extension. We will only discuss the extensions that are important for our
research, the interested reader is referred to the detailed extension overview at [22].

Listing 4.5 presents the XML-Schema definition of InterfaceType. For a clearer reading
all header information and comments were removed. As the listing shows the type Interface-
Type has one description element and the already discussed xADL id (see Section 3.6). The
description element can be used to add additional non-functional information, it has the XML-
Schema type archinstance:Description which extends string2. Id has the XML-Schema type
archinstance:Identifier which extends ID2.

Listing 4.5: XML-Schema definition of the InterfaceType
1 <xsd:complexType name="InterfaceType">
2 < xsd: sequence >
3 < xsd :e l ement name="description" t y p e ="archinstance:Description" / >
4 < / x s d : s e q u e n c e >
5 < x s d : a t t r i b u t e name="id" t y p e ="archinstance:Identifier" / >
6 < /xsd:complexType >

Listing 4.6 adds the possibility to define implementations for InterfaceType. Line 1 defines
a new XML abstract type, called Implementation, which is the abstract hook-up point that can
be extended by other XML elements. Lines 3 to 12 add a new type, called InterfaceTypeImpl,
which extends InterfaceType and adds an implementation element of the already defined abstract
Implementation type. Note that the new type, InterfaceTypeImpl, may have an infinite number
of abstract implementations.

Listing 4.6: XML-Schema definition of the abstract Implementation and the InterfaceType Implementa-
tion hook-up point

1 <xsd:complexType name="Implementation" a b s t r a c t ="true" / >
2
3 <xsd:complexType name="InterfaceTypeImpl">
4 <xsd:complexContent >
5 < x s d : e x t e n s i o n base ="archtypes:InterfaceType">
6 < xsd: sequence >
7 < xsd:e l ement name="implementation" t y p e ="Implementation"
8 minOccurs="0" maxOccurs="unbounded" / >
9 < / x s d : s e q u e n c e >

10 < / x s d : e x t e n s i o n >
11 < / x sd:complexContent >
12 < /xsd:complexType >

Finally, to set a concrete implementation for an InterfaceTypeImpl, the abstract Implemen-
tation type has to be extended. Listing 4.7 presents the Java Implementation, which extends the
abstract Implementation type. Thus it can be used for all types that have an abstract Implemen-
tation element defined, like InterfaceTypeImpl.

Listing 4.7: XML-Schema definition of the concrete Java Implementation schema
1 <xsd:complexType name="JavaImplementation">

2http://www.w3.org/2001/XMLSchema

53

2 <xsd:complexContent >
3 < x s d : e x t e n s i o n base ="archimpl:Implementation">
4 < xsd: sequence >
5 < xsd:e l ement name="mainClass" t y p e ="JavaClassFile" / >
6 < xsd:e l ement name="auxClass" t y p e ="JavaClassFile"
7 minOccurs="0" maxOccurs="unbounded" / >
8 < / x s d : s e q u e n c e >
9 < / x s d : e x t e n s i o n >

10 < / x sd:complexContent >
11 < /xsd:complexType >
12
13 <xsd:complexType name="JavaClassFile">
14 < xsd: sequence >
15 < xsd :e l ement name="javaClassName" t y p e ="JavaClassName" / >
16 < xsd :e l ement name="url" t y p e ="archinst:XMLLink"
17 minOccurs="0" maxOccurs="1" / >
18 < / x s d : s e q u e n c e >
19 < /xsd:complexType >
20
21 <xsd:complexType name="JavaClassName">
22 < xsd: s impleContent >
23 < x s d : e x t e n s i o n base ="xsd:string" / >
24 < / x s d : s i m p l e C o n t e n t >
25 < /xsd:complexType >

In our work we extended the abstract Implementation type to add the discussed message-
centric system aspects (see Section 3.5) to the range of possible xADL extensions.

4.4 Message-Centric xADL Extension
As Figure 4.5 depicts, the xArchADT / xADL 2.0 Document module is the central point in our
implementation. It gets filled with the architecture information from the ArchStudio editors
and is then used by the MSG Launcher component. Afterwards, the Consistency Checking
module checks the consistency of the architecture document and finally the Architecture-to-
Configuration transformation module will transform it.

As already discussed, our approach adds several extensions to the xADL data structure. We
extended it by four additional concrete implementations, named Channel Implementation, End-
point Implementation, JMS Implementation and Mule Implementation. Each of them represents
one of the introduced extensions of Section 3.5.1.5. Figure 4.6 extends Figure 3.4 with the new
concrete implementations (colored in grey).

The following will describe the properties of the extensions. In addition to the mandatory
properties discussed in Section 3.5.1.5 we also included optional properties that can be help-
ful but not required for a messaging system. Appendix A contains the XML-schemas of the
suggested xADL extensions.

Channel Implementation (Listing A.1) This is the concrete implementation of the extension
Channel configuration described in the approach and applies to an xADL Connector ele-

54

Figure 4.5: xADL Model and associated components

Figure 4.6: Relation between the structure, type, implementation elements and the new extensions
(grey) [16].

ment. The extension adds two properties, called Topic_Configuration and
Queue_Configuration. The first one identifies the channel as a publish-subscriber (topic)
and the second as a point-to-point (queue) channel. Both of them have a string attribute to
define the channel name.

55

Endpoint Implementation (Listing A.2) This is the concrete implementation of the extension
Service endpoint configuration described in the approach and applies to an xADL Inter-
face element associated with a component. Note that if it is used for an interface associated
with a connector, it will be ignored. This implementation indicates that an interface is an
endpoint of a Mule workflow. The extension adds four properties Durable_Name, Re-
ply_To_Queue, Connection_To_Request_Endpoint and Endpoint_Position_No. The op-
tional property Durable_Name sets the name of the subscriber. The properties
Reply_To_Queue, Connection_To_Request_Endpoint are used to indicate that the inter-
faces are used within a request-reply pattern. The usage of the properties can be found
in Section 3.5.1.5. For the implementation, the property Reply_To_Queue represents the
property ToReplyInterface of the description and Connection_To_Request_Endpoint rep-
resents ToRequestInterface. Although our suggested implementation has an algorithm to
sort the interfaces automatically, sometimes a special order is desired or the algorithm
can’t order the interfaces automatically. Therefore, we included the additional property
Endpoint_Position_No to the concrete implementation. It is optional, takes an integer
value, and can be used to define the order of the interfaces in a Mule workflow manually.
Note that if this property is used all interfaces composed by a component have to be or-
dered by the Endpoint_Position_No property. The first interface gets the smallest number.
The number has to be increased for each following interface.

JMS Implementation (Listing A.3) This is the concrete implementation of the extension MOM
configuration described in the approach and applies to a xADL ConnectorType element.
It defines that a JMS ActiveMQ server is used as message broker. As defined in Sec-
tion 3.5.1.5 it has a property to define the URL of the message broker. This property
is called Transport_Configuration and specifies at least one ActiveMQ connection end-
point URL. Furthermore we added the property JMS_Specification_Version and Persis-
tence_Configuration. The property JMS_Specification_Version can be used to change the
JMS protocol version (default version 1.1) and the property Persistence_Configuration
holds information about the persistence configuration of the message broker. At the cur-
rent stage, it defines the persistence adapter, ActiveMQ uses kahaDB as default, and the
storage directory. Finally the implementation has the attribute file_id which holds the id
of the ActiveMQ configuration file, in which the configuration should be saved. This id
will be mapped to the id discussed in Section 4.2.2. All ConnectorTypes with the same
file_id will end up in the same ActiveMQ configuration file.

Mule Implementation (Listing A.4) This is the concrete implementation of the extension Ser-
vice configuration described in the approach and applies to an xADL Component element.
It indicates that the component represents a service and is specified by a Mule workflow.
Also this extension has the attribute file_id to specify where the workflow should be saved.
All components with the same file_id end up in the same Mule workflow configuration file.
As defined in Section 3.5.1.5, the extension is only used to identify the component as a
service and doesn’t need additional information. Nevertheless, we decided to include the
property Additional_Configuration. The property can be used to define a name/value pair
which will be stored as a XML attribute in the workflow element. This property is optional

56

and can be used an infinite number of times. But our prototype will only copy the pair
into the Mule workflow and won’t check the availability and correct use of the attribute.
Thus, the architect or developer has to check the correctness of the name/value pair.

Natively, xADL provides implementation extensions only for the types ConnectorType,
ComponentType and InterfaceType, though our solution also needs the ability to add implemen-
tations to the structure elements Connector, Component and Interface. Therefore, our extensions
add implementation types for the remaining structures. Those implementation types are also in-
cluded in the listings in the appendix A.

4.5 Consistency Check
The Consistency Check is the second step in the message system generation workflow. As
shown in Figure 4.7, it is launched by the MSG Launcher component and it uses the xArchADT
/ xADL 2.0 Document module to access the messaging system relevant parts, stored in the xADL
architectural document, and checks them for inconsistencies and informs the user of existing
ones. Provided that the system is consistent, the Architecture-to-Configuration transformation
is launched.

Figure 4.7: Consistency Check Module and associated components.

4.5.1 Consistency Check Definition

To support the development, we defined a set of soft and hard consistency checks. Those checks
include the general faults discussed in Section 3.4 and add some Mule ESB and ActiveMQ
specific ones. If an inconsistency can be found the system will inform the user of it. In addition
to the report of sever violations, the system also gives warnings and recommendations on how

57

consistency flaws can be rectified.
In the following, the soft and hard consistency checks will be discussed in detail.

Soft consistency checks They detect flaws where the transformed system is functional but maybe
doesn’t have the intended behaviour. For these kind of violation we issue warnings, in-
cluding recommendations on how to solve them, and let the user decide if the system
should be transformed or the process aborted. Table B.1 shows the checks that are accom-
plished to ensure that the transformed system is consistent.

Hard consistency checks They detect flaws where the transformation can’t be accomplished.
In those cases the transformation process won’t start and the user will be informed. Ta-
ble B.2 shows the hard consistency checks.

In addition to the listed checks, ArchStudio 4 provided several basic validations like type
compatibility.

4.5.2 Consistency Check Class Structure

The consistency check module is composed of six classes (see Figure 4.8), where each of them
is responsible for a specific part.

Figure 4.8: Class structure of consistency check classes

58

1. FileIdConsistencyCheck: This is responsible for checking the correct use of the FileId
property.

2. LinkConsistencyCheck: Checks the correct use of the Links and the connected Inter-
faces. E.g. Are both ends of a Link connected to an Interface?

3. ComponentConsistencyCheck: This is responsible for Component checks. E.g. Do all
Components have an implementation?

4. ConnectorTypeConsistencyCheck: This is responsible for the ConnectorType checks.
E.g. Is the transport property defined?

5. ConnectorConsistencyCheck: This is responsible for the Connector checks. E.g. Do all
Connectors define a Topic_Configuration or Queue_Configuration property?

6. ArchitectureConsistencyCheck: The checks of this class are concerned with architec-
ture of the system. E.g. Check if a publish-subscriber channel is used for Request-Reply
Pattern. These checks require that all other checks (FileId, Link, Component,. . .) are al-
ready processed. This is mandatory because those checks assume that certain constraints
are fulfilled, e.g. All interfaces need a direction.

Our implementation calls the check methods in sequential order, to be specific the order of the
list above.

As can be seen in Figure 4.8 all consistency checks can throw an ArchitectureConsistencyEx-
ception. This exception is thrown when a hard consistency check is violated and the architecture
can’t be transformed. The figure also depicts that the ConnectorType, Connector, Component
and Architecture checks can produce warnings. Warnings will be produced if a soft consistency
check is violated and the architecture can be transformed but may not have the desired behaviour.

To read the xADL elements we used the xADL infrastructure tool xArchADT, which was
discussed in Section 2.2.4.1.

4.6 Architecture-to-Configuration Transformation

The architecture-to-configuration transformation is concerned with the generation of the connec-
tor skeleton for Mule ESB and the configuration for the message broker by using the information
given by the architecture description of the system. As depicted in Figure 4.9, the transformation
is started after the Consistency Checks. Thus it is guaranteed that the architecture of the system
is consistent and that the transformed system will be functional. During the transformation pro-
cess, the xADL architecture model will be transformed into a Mule ESB Workfow model and
a JMS message broker model. Those two models will then be used to generate, respectively to
update, the XML Mule ESB code files and the ActiveMQ configuration files. In the following,
we will first explain the models more deeply (Section 4.6.1), then we will describe the trans-
formation from the xADL architecture document to the models (Section 4.6.2) and finally the
transformation from the models to the output files (Section 4.6.3).

59

Figure 4.9: Architecture-to-Configuration Transformation Module and associated components.

4.6.1 Transformation Models

The transformation models are the internal models that get filled during the transformation pro-
cess and then used to generate the output files. The following two sections will discuss those
models in more detail.

4.6.1.1 Mule ESB Workflow Transformation Model

The Mule ESB Workflow transformation model3 (depicted as ESB Workflow Model in Fig-
ure 4.9) holds the information that is required to generate the Mule ESB workflow configuration
files. Figure 4.10 depicts the class structure of that model. The model represents one workflow
including all endpoints and mandatory connection information. In the following we will discuss
the classes of Figure 4.10.

3From know on we will call it workflow transformation model.

60

Figure 4.10: Workflow transformation model class diagram. Note: For a clearer diagram the getter and
setter methods to access the attributes are left out.

IEsbWorkflow Represents the interface of the whole workflow.

Branch starting with XadlComponentConfiguration This branch holds all information to gen-
erate the Mule ESB workflow XML element. For a clearer separation of the classes
we chose to split the information that is directly necessary for the Mule ESB XML el-
ements, respectively JMS message broker XML elements, from information that are only
needed for the transformation, respectively the output file generation. The information,
which is only required for the transformation, is located in classes whose names start with
Xadl (XadlComponentConfiguration, XadlConnectorConfiguration, XadlInterfaceConfig-
uration). For this branch of the diagram the class XadlComponentConfiguration holds the
archStudioId, which will be required to propagate changes, and the File ID, which is used

61

to define the path of the output file. The class MuleComponentConfiguration holds the
information that is mandatory for the workflow XML element, to be specific the name of
the workflow. The class AdditonalConfiguration is optional. It holds a key-value pair to
define additional attributes for the workflow XML element.

Branch starting with ConnectionEndpoint This branch represents an endpoint in the work-
flow. It holds all information that is required to generate the XML elements that are
responsible for the communication with the message broker, specifically jms:activemq-
connector and jms:[inbound | outbound]-endpoint (recall Section 4.3.1). It is separated in
three sub-branches:

Branch starting with XadlConnectorConfiguration This branch holds the information
that is required to establish a connection to the message broker. The attributes of
this branch flow into the XML element jms:activemq-connector in the Mule ESB
workflow configuration file.

Branch starting with XadlInterfaceConfiguration This branch is used to hold the work-
flow endpoint information. Therefore all attributes are used to configure the XML
elements jms:[inbound | outbound]-endpoint.

Branch starting with IJmsChannel The last branch includes the name and the type (Topic
or Queue) of the JMS Channel. This information also ends up in the XML elements
jms:[inbound | outbound]-endpoint.

4.6.1.2 JMS Message Broker Configuration Model

The JMS Message Broker transformation model4 (depicted as JMS Broker Configuration Model
in Figure 4.9) holds the information that is finally used to generate the configuration file for the
ActiveMQ message broker. Figure 4.11 depicts the class structure of the model. Due to the
fact that this configuration information is the same information that is also required to estab-
lish a connection from the workflow endpoint to the message broker our implementation uses
the same class for it, to be specific XadlConnectorConfiguration, IJmsConnectorConfiguration,
JmsConnectorConfiguration. The additional class PersistenceAdditionalConfiguration holds the
persistence information.

4.6.2 xADL 2.0 to Internal Transformation Model

As depicted in Figure 4.9, the xADL 2.0 to Internal Transformation Model component is the
start point for the transformation and is therefore responsible for the transformation from the
xADL architectural document to the internal transformation models. After the transformation
into these models, the component starts the generation/update of the output files.

The transformation from the xADL architecture document to the transformation model can
be divided into three parts. The first one is the transformation of structural information. The sec-
ond part is concerned with the transformation of attributes that can be transformed directly into

4From now on we will call it message broker transformation model

62

Figure 4.11: Message broker transformation model class diagram. Note: For a clearer diagram the getter
and setter methods, to access the attributes, are left out.

the model and the third part is concerned with model attributes that are not directly transformed
from the architecture.

4.6.2.1 Structural Transformation

The workflow transformation model represents one workflow with all workflow specific con-
figuration attributes, enclosed endpoints and connection information. Furthermore one message
broker transformation model contains the configuration information of one JMS communication
channel. Therefore the whole architecture is transformed in a collection of workflow transforma-
tion models and a collection of message broker transformation models. The models reflect the
architecture structure by the workflows, specifically the combination of the brokerUrl attribute
JmsConnectorConfiguration and the class which implements the IJmsChannel interface, and the
JMS message broker configuration is also taken from the JmsConnectorConfiguration class.

4.6.2.2 Direct Attribute Transformation

Table 4.5 shows the trivial mapping of the xADL attributes to the corresponding class attributes.
Those attributes can be adopted directly from the architecture document.

63

xA
D

L
2.

0
W

or
kfl

ow
tr

an
sf

or
m

at
io

n
m

od
el

xA
D

L
El

em
en

t
A

ttr
ib

ut
e

C
la

ss
A

ttr
ib

ut
e

C
om

po
ne

nt
id

X
ad

lC
om

po
ne

nt
C

on
fig

ur
at

io
n

ar
ch

St
ud

io
Id

C
om

po
ne

nt
de

sc
rip

tio
n

M
ul

eC
om

po
ne

nt
C

on
fig

ur
at

io
n

flo
w

na
m

e
M

ul
eI

m
pl

em
en

ta
tio

n
fil

e_
id

X
ad

lC
om

po
ne

nt
C

on
fig

ur
at

io
n

fil
eI

d
A

dd
iti

on
al

_C
on

fig
ur

at
io

n
na

m
e,

va
lu

e
A

dd
iti

on
al

C
on

fig
ur

at
io

n
na

m
e,

va
lu

e
In

te
rf

ac
e

id
X

ad
lIn

te
rf

ac
eC

on
fig

ur
at

io
n

ar
ch

St
ud

io
Id

In
te

rf
ac

e
di

re
ct

io
n

M
ul

eI
nt

er
fa

ce
C

on
fig

ur
at

io
n

di
re

ct
io

n
En

dp
oi

nt
Im

pl
em

en
ta

tio
n

D
ur

ab
le

_N
am

e
M

ul
eI

nt
er

fa
ce

C
on

fig
ur

at
io

n
du

ra
bl

eN
am

e
C

on
ne

ct
or

fil
e_

id
X

ad
lC

on
ne

ct
or

C
on

fig
ur

at
io

n
fil

eI
d

Q
ue

ue
_C

on
fig

ur
at

io
n

na
m

e
Q

ue
ue

Jm
sC

ha
nn

el
na

m
e

To
pi

c_
C

on
fig

ur
at

io
n

na
m

e
To

pi
cJ

m
sC

ha
nn

el
na

m
e

C
on

ne
ct

or
Ty

pe
id

X
ad

lC
on

ne
ct

or
C

on
fig

ur
at

io
n

ar
ch

St
ud

io
Id

Tr
an

sp
or

t_
C

on
fig

ur
at

io
n

tra
ns

po
rtC

on
ne

ct
or

Jm
sC

on
ne

ct
or

C
on

fig
ur

at
io

n
br

ok
er

U
rl

Pe
rs

is
te

nc
e_

C
on

fig
ur

at
io

n
ad

ap
te

r,
di

re
ct

or
y

Pe
rs

is
te

nc
eA

dd
iti

on
al

C
on

fig
ur

at
io

n
ad

ap
te

r,
di

re
ct

or
y

Jm
s_

Sp
ec

ifi
ca

tio
n_

Ve
rs

io
n

va
lu

e
Jm

sC
on

ne
ct

or
C

on
fig

ur
at

io
n

sp
ec

ifi
ca

tio
nV

er
si

on
N

ot
e:

Th
e

cl
as

s
Pe

rs
is

te
nc

eA
dd

iti
on

al
C

on
fig

ur
at

io
n

is
on

ly
us

ed
fo

rt
he

JM
S

m
es

sa
ge

br
ok

er
m

od
el

.

Ta
bl

e
4.

5:
M

ap
pi

ng
be

tw
ee

n
xA

D
L

ex
te

ns
io

ns
an

d
re

su
lti

ng
to

ol
at

tri
bu

te
s.

64

4.6.2.3 Indirect Attribute Transformation

Some of the class attributes of our model can’t be directly transformed from the architecture
document or be filled with additional information that isn’t stored in the xADL document, e.g.
the attribute name in the class JmsConnectorConfiguration. Such attributes and the origin of the
data is listed in table 4.6.

Workflow transformation model Origin

Class Attribute

JmsConnectorConfiguration name Has to be unique and is gener-
ated automatically. The format
is “JMS_Connector_” + <unique
string>.

JmsConnectorConfiguration durable Is set to true (default is false) if one
of the interfaces is set as durable (it
has a durable name configured).

JmsConnectorConfiguration clientId Has to be unique and is generated
automatically, if it is required. The
format is “Client_Id_” + <unique
string>.

MuleInterfaceConfiguration requestReplyEndpointId Is used to couple the request and
reply interface of a request-reply
pattern together. It is generated
automatically for the first trans-
formed interface.

MuleInterfaceConfiguration requestReplyEndpoint Is set to true if the interface is part
of a request-reply pattern.

MuleInterfaceConfiguration generateInterface If it is set to false (default is true)
the interface won’t be generated.

MuleInterfaceConfiguration replyChannelName Holds the name of the replying
channel. The attribute is set for re-
questing interfaces and is acquired
through the replying interface.

Table 4.6: Class attributes that are not directly filled with attribute values of the xADL document.

4.6.2.4 Endpoints Ordering

Due to the fact that a workflow is sequentially processed the endpoints have to be ordered.
As already said, our xADL extension has a special attribute to order the endpoints manually,
the attribute Endpoint_Position_No. But we also implemented an algorithm that can order the
endpoints automatically. This algorithm uses the simple constraints that are defined by Mule
ESB:

65

• A workflow can only start with an endpoint which has the direction in or inout.

• Endpoints which are combined by a request-reply pattern, or with the direction inout, can
be everywhere in the workflow.

• A workflow can only end with an endpoint which has the direction out.

Note that this constraint means the direct start or end of a workflow, i.e. if there is, for example,
a user-defined code after the out endpoint, then this isn’t the direct end.

With these constraints in mind we constructed the algorithm, which returns a list of ordered
interfaces where the order is:

1. in- or inout-endpoint

2. Remaining request-reply participating endpoints and inout-endpoints

3. out-endpoint

As can be seen, the algorithm can only guarantee the right order for a simple combination of end-
points, that is: maximal one in-endpoint or one inout-endpoint, one request-reply combination
and one out-endpoint. If there are more than those endpoints the algorithm can’t guarantee the
right order and the user should use the Endpoint_Position_No to order all interfaces manually.
As can be seen in the Section 4.5 our Consistency Checking algorithm checks if the algorithm
can order the interfaces. If it can’t order them an error message will be prompted with the ad-
vice to use the Endpoint_Position_No attribute. Algorithm 4.1 shows the ordering algorithm in
pseudocode. .

4.6.3 Transformation Model to Output Files

In the following we discuss the transformation process from the internal model to the Mule
ESB workflow and Apache ActiveMQ configuration files. This process is executed if the files,
which should be generated, do not exist. If they already exist, the change propagation algorithm,
discussed in Section 4.7, will be executed.

4.6.3.1 Mule ESB Workflow Transformation

As depicted in Figure 4.9, this step is done by the ESB Workflow Generator/Updater component.
Table 4.7 lists the mapping between the internal model and the XML-elements of a Mule ESB
workflow configuration. For each workflow object, an XML-element workflow is generated, in
the defined Mule ESB workflow file, with the included endpoints. As discussed in Section 4.3.1,
each endpoint needs a reference to an activemq-connector element, which specifies the connec-
tion information to the message broker, by the attribute connector-ref. This activemq-connector
element must exist for each Mule ESB Server instance and can be used from several endpoints.
This means that if, for example, there is only one message broker, all endpoints, regardless of
whether they are in the same workflow file or in another one, can use this connector element as
long as they are on the same Mule Server instance. However, we decided to add this element

66

Input: List of unordered endpoints hold in all-endpoints
Output: Ordered list of endpoints hold in ordered-endpoints

1 foreach endpoint in all-endpoints do
2 if endpoint direction is IN && endpoint is not part of a request-reply-pattern then
3 Add endpoint to ordered-endpoints;
4 end
5 if no endpoint with direction IN found then
6 foreach endpoint in all-endpoints do
7 if endpoint direction is INOUT then
8 Add endpoint to ordered-endpoints;
9 end

10 foreach endpoint in all-endpoints do
11 if endpoint direction is OUT && endpoint is not part of a request-reply-pattern then
12 saved-out-interface endpoint;
13 end
14 foreach endpoint in the set all-endpoints do
15 if endpoint is not used above then
16 Add endpoint to ordered-endpoints;
17 if endpoint is part of request-reply-pattern then
18 foreach second-endpoint in all-endpoints do
19 if second-endpoint ID is searched ID then
20 Add endpoint to ordered-endpoints;
21 end
22 end
23 if outInterface is set then
24 Add saved-out-interface to ordered-endpoints;

Algorithm 4.1: Order Endpoint interfaces in a workflow.

to each transformed Mule ESB configuration file and give them different reference id, because,
as already said, we want to offer the possibility to use the separated workflow files on different
Mule Servers. If we would include those connector elements only once then each server would
have to load all workflow files. Therefore the transformation algorithm will check for each end-
point if the correct activemq-connector element is already set in the current workflow file. If it
is, then the new endpoint will refer to this connector. If it isn’t, then a new activemq-connector
element will be generated for this workflow file, with a random UID for the name attribute, and
the new endpoint element will get a reference to this connector. Furthermore the transforma-
tion algorithm transforms the archStudioId, which is used for the mapping between the xADL
element and the transformed element, into a XML-Comment which is a XML-Child of the cor-
responding messaging system element, e.g. an XML-Child of the workflow XML-Element flow
which holds the xADL id of the corresponding xADL architectural Component.

In addition to the directly transformed attributes, our transformation algorithm also adds
some automatic generated values. Table 4.8 shows those values, including the discussed activemq-

67

connector name attribute and endpoint connector-ref element. The attributes doc:description
and doc:name are not mandatory for the function of the workflow, specifically the endpoint, but
increase the readability of the transformed workflows.

Workflow transformation model Mule ESB workflow configuration file

Class Attribute XML Element XML Attribute

XadlComponentConfiguration archStudioId flow reference comment
MuleComponentConfiguration flowname flow name
AdditionalConfiguration name, value flow name, value
XadlInterfaceConfiguration archStudioId endpoint reference comment
MuleInterfaceConfiguration durableName endpoint durableName
QueueJmsChannel name endpoint queue
TopicJmsChannel name endpoint topic
XadlConnectorConfiguration archStudioId activemq-connector reference comment
JmsConnectorConfiguration brokerUrl activemq-connector brokerURL
JmsConnectorConfiguration specificationVersion activemq-connector specification

Table 4.7: Mapping between Workflow transformation model and Mule ESB workflow configuration file.

XML Element XML Attribute Value

activemq-connector name Random generated UID
endpoint connector-ref Refer to activemq-connector name
endpoint doc:description “Generated by ArchStudio”
endpoint doc:name “JMS”
flow doc:description “Generated by ArchStudio”
flow doc:name Same as flow name

Table 4.8: Automatically generated and predefined Mule ESB workflow configuration attributes.

4.6.3.2 Apache ActiveMQ Transformation

As depicted in Figure 4.9 this step is done by the JMS Message Broker Configuration Gen-
erator/Updater component. Table 4.9 describes the mapping between the internal message
broker model and the transformed ActiveMQ configuration file. Note that the class attribute
adapterName from the class PersistenceAdditionalConfiguration is transformed to an XML-
Element name (which is an XML-Child of the persistenceAdapter element), rather than to a
XML-Attribute. If another persistence adapter should be used, then the XML-Element, which
defines this persistence adapter, has to be used, e.g. in Section 4.3.2 we used the KahaDB and
therefore the XML-Element name is kahaDB.

68

Workflow transformation model ActiveMQ configuration file

Class Attribute XML Element XML Attribute

XadlConnectorConfiguration archStudioId transportConnector reference comment
JmsConnectorConfiguration brokerUrl transportConnector uri
PersistenceAdditionalConfiguration adapterName persistenceAdapter adapter name
XadlConnectorConfiguration brokerUrl adapter name reference comment
PersistenceAdditionalConfiguration directory adapter name directory
Note: The attribute adapterName gets transformed to a XML-Element name, rather then
to an attribute name.

Table 4.9: Mapping between ActiveMQ transformation model and ActiveMQ configuration file.

4.7 Change Propagation
As outlined above, our approach propagates architecture changes to already transformed config-
uration files. In this section, we describe the change propagation algorithm which is based on
the defined algorithm in Section 3.7.

The change propagation is part of the ESB Workflow Generator/Updater and JMS Message
Broker Configuration Generator/Updater components which are depicted in the overview Fig-
ure 4.9. Those two components first check if the files that should be generated, already exist. If
they don’t exist, the steps discussed in Section 4.6.3.1 and Section 4.6.3.2 will be performed. If
they exist, the files will be loaded and transformed into a DOM-tree on which the change prop-
agation algorithm will be executed. This will be discussed in the following section. As can be
seen in the overview figure, the update algorithm uses the information that is stored in the inter-
nal transformation model and that the system is checked for inconsistencies, by the consistency
checking module, before the update is performed.

The tree structure of the Mule ESB configuration, respectively ActiveMQ configuration,
XML-files (recall Section 4.3.1 and 4.3.2) makes the challenge of finding the right XML-element
easier, since we could iterate through the XML-elements until we reach the desired element. As
defined in the approach we used the unique xADL id, that is assigned by ArchStudio to each
xADL element, for the mapping between the xADL element and the transformed configuration
element. Furthermore the algorithm has to handle three different types of changes, which will be
discussed in the following: (1) a new architecture element is added, (2) an existing architecture
element is updated and (3) an architecture element is deleted.

New architecture element: If this is the case, a distinction has to be made between a Compo-
nent, an Interface, a Connector or a ConnectorType.

a) Component: If the corresponding Mule ESB configuration file doesn’t exist, it has
to be generated and the new workflow can be included. If the file already exists, the
new workflow has to be added to the mule root element (see Section 4.3.1 for a closer
description of the structure). In the mule root element, the order of the workflows
isn’t of importance, so it can be added as the last element of the mule element.

69

b) Interface: The Interface information is used to create the [inbound | outbound]-
endpoints of a workflow. To add a new endpoint the enclosing workflow has to
exist. Due to the fact that the workflow will be generated before the endpoints, this
will definitely be the case. But in contrast to the order of the Components the order
of the Interfaces isn’t arbitrary. To maintain the order, our update algorithm uses the
list of ordered interfaces, which is generated during the transformation, as discussed
in Section 4.6.2.4. The update algorithm sequentially steps through this list of inter-
faces and processes each one after the other. If a new interface has to be included,
which isn’t the first or the last interface, the update algorithm will add the interface
directly after the last updated/added interface. If it is the first interface it will be
added at the beginning of the workflow and if it is the last one it will be added at the
end of the workflow. However, this method also has a restriction. If the workflow
already contains user-defined code the new interface can’t be placed somewhere into
that code automatically, because the new interface will be placed directly after an
interface or at the begin/end of the workflow. Note that if the position of the inserted
endpoint isn’t correct it can be rearranged after the transformation/update manually.

c) Connector: As discussed in Section 3.5.1, the Connector holds the channel infor-
mation. This information is finally stored in the endpoints of the workflows. If the
endpoints, which are connected to the Connector, are new, the channel information
will be added by them (see b)). If they already exist the information will be updated
in them (see “Updated architecture element”).

d) ConnectorType: All stored information in the ConnectorType is directly transformed
into the configuration file for the JMS server. If the corresponding configuration
file doesn’t exist, it has to be generated with the information stored in the Connec-
torType. With an existing configuration file the update algorithm has to check if
the needed sub-elements, of the root element exist (e.g. transportConnectors for the
transport information). For detailed definition of the structure see Section 4.3.2. If
it exists, the new information has to be placed in that sub-element and if it doesn’t
exist it has to be created with the new information.

Updated architecture element: If the updated element can be found in the Mule ESB or Ac-
tiveMQ configuration file, all parameters that are configured in xADL will override the
existing parameters in the configuration files. Changes to the parameters that are done in
the configuration file will be overwritten. At the end, the algorithm checks if the endpoint
order was changed. If this is the case the endpoints are rearranged automatically.

Deleted architecture element: In that case there are two solutions: (1) delete the element and
all of its sub-elements or (2) leave the element and delete only the reference to the xADL
element. The second solution can be useful if the element includes user-defined code that
shouldn’t be deleted. This isn’t recommended, because this can lead to an inconsistency of
the architecture and the implementation, even though in some cases it could be necessary.
We decided to leave the decision, if the whole element should be deleted or only the
reference to the element in the architecture specification, up to the user.

70

4.8 Implementation

In the following we will discuss the installation and usage of our ArchStudio 4 extension. For
this explanation we assume that the reader has a basic knowledge of the functionality of Eclipse
and a basic knowledge of the standard ArchStudio 4 usage. The interested reader can find
detailed information about the usage of ArchStudio 4 on the project homepage [20] and in the
paper [11].

4.8.1 Installation

To compile and execute ArchStudio 4, including our messaging system generation extension,
a working ArchStudio 4 is required. In the following we will only discuss the installation and
execution of our extension, an installation manual for the standard ArchStudio 4 can be found on
the project website [20]. For our work and this explanation we used an Eclipse Classic version
4.2.2 and the ArchStudio 4 plugin version 4.1.50 5.

After ArchStudio 4 is installed the source code of our extension can be imported by using the
standard import wizard from Eclipse. The source code of our extension is available at http:
//goo.gl/eSsbUF. The downloadable code contains a full ArchStudio 4 version, including
our extension composed of the following sub-projects:

• at.ac.tuwien.infosys.msa.archstudio4.comp.msglauncher: Contains all classes for the MSG
Launcher view. Discussed in Section 4.2.2.

• at.ac.tuwien.infosys.msa.archstudio4.comp.msacc: Contains the consistency check classes.
Discussed in Section 4.5.

• at.ac.tuwien.infosys.msa.archstudio4.comp.msgenerator: Contains the classes for the
Architecture-to-Configuration Transformation. Discussed in Section 4.6.

• at.ac.tuwien.infosys.msa.xadl: Contains the extended xADL schema documents, from
Section 4.4.

• at.ac.tuwien.infosys.msa.example: Contains the ongoing example, which was used for
several explanations above. Presented in Section 3.3.

• at.ac.tuwien.infosys.msa.evaluation: Contains the architecture files that we used for the
evaluation of the system. Presented in Chapter 5.

After the source code is imported the compilation can be started by launching it as an Eclipse
application or by using the included Eclipse launch script that can be found in the project
edu.uci.isr.archstudio4 in the directory res/eclipse. This will start a new Eclipse instance with
the ArchStudio 4 plugin including our extension installed.

5http://www.isr.uci.edu/projects/archstudio-4/updatesite-4.2/

71

http://goo.gl/eSsbUF
http://goo.gl/eSsbUF

4.8.2 Usage

After the new ArchStudio 4 instance is running the standard functionality including our exten-
sion can be used. In the following we will discuss the usage of our extension. The basic usage
of ArchStudio can be studied at the project homepage [20]. To discuss the usage of our system,
we will use the ongoing example, which was presented in Section 3.3. The example can also be
found in the source code of our extension in the sub-project at.ac.tuwien.infosys.msa.example.

First of all, the example has to be imported as a project into the current workspace. This can
be done by using the Eclipse import system.
The imported project contains two files:

options.xml is the current configuration file that contains the paths and the IDs for the output
files (the content of the file is also depicted in the example box 15).

thesis_example.xml is the xADL 2.0 file for the ongoing example.

The architecture can now be shown and altered with the standard ArchStudio tools Archipelago,
ArchEdit and Type Wrangler. Note that the standard functionality of ArchEdit is now extended
with our schema extension described in Section 4.4. To transform the architecture into the Mule
ESB and ActiveMQ configuration files the xADL file has to be opened with our extension named
MSG Launcher. Figure 4.12 depicts the view of the MSG Launcher with the information of the
options.xml file. The view is divided into four parts (depicted by four red rectangles in the
figure):

1. The topmost part loads and saves the configuration file. By using the Load Config button
a new configuration file can be loaded and by using the Save Config button the current
output file definition can be saved to a configuration file. For the figure we loaded the
option.xml file.

2. The second part presents the IDs and file paths for the Mule ESB output files. By using
the Add Entry button a new entry can be created. If a new entry is created the system adds
a new entry to the table left of the button and sets an unique ID. This ID can be altered by
selecting the table cell. Furthermore the file path can be changed by selecting the desired
cell and using the button that appears at the end of the cell. To delete an entry the button
Delete Entry can be used. By using the button the current selected row will be deleted.

3. The third part presents the IDs and file paths for the ActiveMQ output files. The usage is
the same as before.

4. The bottommost part contains the button that starts the consistency checks and the trans-
formation process.

After the configuration file is loaded the use of the Generation button starts the consistency check
discussed in Section 4.5. As discussed before if the consistency of the architecture is violated
a warning is shown and the user can decide whether the transformation shall be continued or
canceled for soft consistency violations. For hard consistency violations an error is shown and
the transformation is canceled. After all consistency checks are done, the transformation process
will start.

72

Figure 4.12: MSG Launcher view

73

CHAPTER 5
Evaluation

This chapter presents the evaluation of the approach and prototype implementation of this thesis.
We will evaluate each part of our work separately, starting with the Architecture-level Editor
followed by Consistency Checking and the Architecture-to-Configuration transformation. At the
end we will evaluate the Change propagation mechanism. As evaluation scenario we will use
the real world problem “Parking Management System”, which was presented in Section 1.2.1.

5.1 Objectives
The overall purpose of the evaluation is to prove that the approach (Chapter 3) and our suggested
implementation (Chapter 4) can support a development team that has to deal with the challenges
that arise during the development of a service-centric system, as discussed in the introduction
of this thesis (Section 1.1). To do this, we will prove that the approach fulfils the defined goals
in Section 1.3. The goals of the work can be split into the following segments: (1) offering a
method to model the high-level architecture of service-centric system by the use of components
and connectors, (2) offering a method to enrich the model with specific configuration informa-
tion for the MOM and the service endpoints, (3) check the consistency of the described architec-
ture, (4) use architecture-to-configuration transformation to generate the messaging skeleton and
MOM configuration, and (5) propagate changes in the architecture to the transformed system.
The following sections will focus on these segments and discuss the advantage of our approach
and the implemented prototype.

First of all, we will use our prototype to model and configure the evaluation scenario. This
step can’t be evaluated directly. However, we will use this modelled architecture as a basis
for the other evaluations and thereby we can prove that our xADL extensions are enough to
model and configure a real world problem. Furthermore we can prove that the resulting xADL
document has enough information to perform consistency checks, architecture-to-configuration
transformation and change propagation on it.

Second, we validate the automatic Consistency Checker which helps the development team
to detect inconsistencies in the architecture, as well as, in the configuration. To validate, it we

75

first analyze the checks, defined in the approach (Section 3.4), and compare the results with the
effort that has to be done by a development team to do the same checks without the automatic
support. After proving the approach we will validate our implementation by proving that all
defined checks are covered by the implementation and prove if they and the extended checks
(Mule ESB and ActiveMQ specific checks) are implemented correctly.

Third, we will validate the architecture-to-configuration transformation. The transformation
is evaluated by first creating a checklist that includes all elements and their attributes that have to
be included in the output-files. After completing the checklist we will use our tool to transform
the architecture to Mule ESB and ActiveMQ configuration files and finally we will check these
output-files with the predefined checklist.

Last of all, the change propagation mechanism will be validated. We will evaluate this
mechanism by changing the evaluation scenario in a way that all cases (defined in Section 4.7)
are executed, one after another. By using this method we can prove that all changes will be
propagated in the anticipated way.

As evaluation scenario we will use the real world scenario Parking Management System,
presented in Section 1.2.1. The scenario reflects a real world project that was developed during
an internship. For this thesis we reduced (by removing the business logic of the services) and
generalised the real world system to the one we represented in the Section 1.2.1. However, the
problem and general structure of our scenario is the same and can be easily transferred back to
the original one. We included the xADL file of the Parking Management System scenario and
all evaluation tests in the downloadable source code of the project. The source code is available
at http://goo.gl/eSsbUF.

5.2 Evaluation Scenario and Preparation

This part of the evaluation focuses on the modelling and configuration utility of our approach.
Our approach, respectively the implemented tool, uses xADL as the underlying architecture
description language and ArchStudio 4 as tool support to generate and edit the architecture
document.

Figure 5.1 depicts the architecture of the Parking Management System evaluation scenario,
planned with Archipelago.

The example contains a Filter Service, an Aggregator Service, a POS Service, each of them a
composition of different components, and five message queues/topics. Note that in a real world
usage of the scenario there would be more services than one of each kind, but for our evaluation
one of each is enough. The Filter Service is composed of two components. The first component,
called Process Dynamic Change Events, is responsible for processing dynamic change events
from parking sites (e.g. amount of free parking slots) and the second, called Process Structural
Events, is responsible for processing structural events (e.g. amount of overall parking slots). An
Aggregator Service is a composition of three components. The first, called Subscribe and Ag-
gregate Structural Data, aggregates structural data from the Filter Service. The second, called
Check Structural Changes and Publish Updates, verifies received structural data for changes
and if changes occurred, it will provide the new information to the POS Services. The third
component, called Provide Initial Data, is responsible for providing initial data (e.g. Structural

76

http://goo.gl/eSsbUF

Figure 5.1: “Parking Management System” evaluation scenario modeled in Archipelago. Service com-
ponents depicted in blue and message broker connectors in beige.

information of a car park) to new POS Services. A POS Service is composed of three compo-
nents. One, called Get Initial Data, to request the structural data from the Aggregator Service.
One, called Process Structural Data Changes, to subscribe the topic where the Aggregator Ser-
vice provides updates of the structural data and one, called Process Dynamic Data Changes, to
receive and process the dynamic data provided by the Filter Services. Each of these components
will end up as a separated Mule ESB workflow. The actual business logic of each workflow is
irrelevant at this architectural level and for our approach and therefore also for the evaluation.

For the evaluation we only used one message broker, consequently all message queues and
topics got the same xADL ConnectorType. For the components we used three different xADL
ComponentTypes, one type with one out-interface, one type with one in-interface and one type
with one in and one out-interface. Additionally for each Interface and Signature we used the
same InterfaceType, called MessageType. Furthermore each xADL Component had the imple-
mentation MuleImplementation and all xADL Interfaces the implementation EndpointImple-
mentation.
In the following the configuration of the Component, the surrounded Interfaces, the Connec-
torType and Connectors is listed.

Output-File definition
Mule ESB:

Filter_Services
Aggregator_Service
POS_Service

Message Broker:
Jms_broker

Component: Process Dynamic Change Events
MuleImplementation: file_id=Filter_Services

77

Component: Process Structural Events
MuleImplementation: file_id=Filter_Services

Component: Subscribe and Aggregate Structural Data
MuleImplementation: file_id=Aggregator_Service
In-Endpoint: EndpointImplementation

Durable_Name: name=content_static_data
Component: Check Structural Changes and Publish Updates

MuleImplementation: file_id=Aggregator_Service
Component: Provide Initial Data

MuleImplementation: file_id=Aggregator_Service
In-Endpoint: EndpointImplementation

Reply_To_Queue: reference to Out-Endpoint
Out-Endpoint: EndpointImplementation

Connection_To_Request_Endpoint: reference to In-Endpoint
Component: Get Initial Data

MuleImplementation: file_id=POS_Service
In-Endpoint: EndpointImplementation

Connection_To_Request_Endpoint: reference to Out-Endpoint
Out-Endpoint: EndpointImplementation

Reply_To_Queue: reference to In-Endpoint
Component: Process Dynamic Data Changes

MuleImplementation: file_id=POS_Service
Durable_Name: name=pos_dynamic_data

Component: Process Structural Data Changes
MuleImplementation: file_id=POS_Service

Durable_Name: name=content_static_data_changes
ConnectorType: JMS Connector Type

Persistence_Configuration: adapter=kahaDB
directory=connect/kahadb

Transport_Configuration: transportConnector=tcp://127.0.0.1:61616
Connector: Dynamic Change Topic

Topic_Configuration: name=dynamic.change.topic
Connector: Structural Change Topic

Topic_Configuration: name=structural.change.topic
Connector: Structural Data Topic

Topic_Configuration: name=structural.data.topic
Connector: Reply Initial Data Queue

Queue_Configuration: name=reply.initial.data.queue
Connector: Request Initial Data Queue

Queue_Configuration: name=request.initial.data.queue

78

5.3 Consistency Check Evaluation
The automatic Consistency Checks help the development team by detecting inconsistencies as
soon as possible. Even in a smaller architecture like our evaluation scenario, several consistency
checks were done (recall Section 3.4 and 4.5).

5.3.1 Evaluation Method

This evaluation was divided into two parts: first, we evaluated if our approach can detect the
general inconsistencies defined in Section 3.4 and we analyzed what effort an architect would
have to make to do the same checks manually. In the second part we proved that our imple-
mentation includes all the consistency checks defined in the approach and that these and the
additional checks defined in Section 4.5 were implemented correctly.

Therefore we analyzed the following inconsistencies for the first part:

1. Two different channels have the same channel name.

2. Two interfaces, that are connected over a message channel, have the same direction.

3. A messaging service endpoint isn’t connected to a channel.

4. Misspelling in the channel name of a messaging service endpoint.

5. A publish-subscriber channel is used for publishing messages within the scope of a request-
reply pattern.

6. Several services are listening to a point-to-point connection.

7. Two endpoints, connected to the same channel, are configured for different channel types.

8. The connection configuration of the interfaces is inconsistent.

9. The request-reply service endpoints are not defined correctly.

For the second part we evaluated the implemented consistency checks. For each check we used
the Parking Management System as a base and changed the system in a way that it had the
current inconsistency. The following list shows the consistency checks defined in Section 4.5
and in Table B.1 and B.2:

10. Is there a link between two connectors or two components?

11. Are the interfaces, used for a request-reply group, defined correctly?

12. Do two interfaces, that are connected by a link, have the same direction?

13. Can the interfaces, on a component, be arranged automatically?

14. Does the component have more than one in or one out-interface that is not part of a request-
reply group?

79

15. Is the channel name and the channel type (publish-subscriber or point-to-point) set?

16. Is the link set correctly?

17. Do two different connectors, with the same connector type, have the same channel name?

18. Is an inout-interface connected to a publish-subscriber channel?

19. Does an out-interface of a queue have several connected links?

20. Does a component have more than one link at an in or out-interface?

21. Is a publish-subscriber channel used for publishing a message within the scope of a
request-reply pattern?

22. Do all used connectors and components have an implementation?

5.3.2 Result & Discussion

The following list discusses the consistency checks defined in the approach. As described above
we analyzed what effort an architect would have to make, to search manually for inconsistencies
in the Parking Management System scenario. The list refers to the inconsistencies defined before
and specifies which implemented consistency check searches for those kind of inconsistencies
and how much effort is required for the manual checking.

1. Check: Two different channels have the same channel name.
Implemented by check no.: 17.
Effort for manual checking: Due to the fact that the channel names are declared in the
endpoints of the Mule workflow and not predefined in the ActiveMQ configuration, an
architect has to traverse all Mule workflow configuration files and identify the message
endpoints. Subsequently he has to pairwise compare those information across all work-
flows. Specifically, the architect has to do n⇤(n�1)/2 checks, i.e. he has to do 45 checks
for the 10 interfaces in our example.

2. Check: Two interfaces, that are connected over a message channel, have the same direc-
tion.
Implemented by check no.: 12.
Effort for manual checking: Again the architect has to traverse all Mule workflows and
identify the message endpoints and finally he has to pairwise compare them, i.e. he must
again do 45 checks.

3. Check: A messaging service endpoint isn’t connected to a channel.
Implemented by check no.: This check is part of future work where we will use the
ArchStudio 4 tool Archlight to implement several separate checks.
Effort for manual checking: For this check the architect has to traverse all Mule work-
flows and check the message endpoints. Therefore he has to check 10 endpoints.

80

4. Check: Misspelling in the channel name of a messaging service endpoint.
Implemented by check no.: Can’t happen because of the transformation.
Effort for manual checking: Needs the same effort as defined in check 1 and 2. Specifi-
cally, it requires the architect to perform 45 checks.

5. Check: A publish-subscriber channel is used for publishing messages within the scope of
a request-reply pattern.
Implemented by check no.: 21.
Effort for manual checking: This check requires the architect to verify all requesting
endpoints and check if the configured channel is not a topic. In our scenario an architect
would only need to check one interface.

6. Check: Several services are listening to a point-to-point connection.
Implemented by check no.: 19., 20.
Effort for manual checking: To validate this an architect has to traverse all Mule work-
flows and identify the message endpoints that are listening to a queue. Subsequently he
has to check if each queue name can only be found once. Our scenario uses primarily
topics and has only 2 queues. Therefore the architect has to check 2 message endpoints.

7. Check: Two endpoints, connected to the same channel, are configured for different chan-
nel types.
Implemented by check no.: Can’t happen because of the transformation.
Effort for manual checking: This validation requires, as in the first consistency check,
to traverse all Mule workflows and identify the message endpoints. This information can
then be used to find the endpoints that are connected to the same channel. Those channels,
then have to be checked if they are connected to the same connector element, or at least
to connector elements with the same configuration. This again, leads to 45 checks for our
scenario.

8. Check: The connection configuration of the interfaces is inconsistent.
Implemented by check no.: Can’t happen because of the transformation.
Effort for manual checking: This requires an architect to identify all message endpoints
in the Mule workflows. Then he has to check the referred message broker connector
element and the configuration attributes of it. For our scenario he has to check at least 10
endpoints including their connectors. Due to the fact that our scenario has three different
Mule workflow files and three different connectors, an architect has to check those three
connectors and the 10 connected interfaces, i.e. he has to do 13 checks.

9. Check: The request-reply service endpoints are not defined correctly.
Implemented by check no.: 11., 18.
Effort for manual checking: This check requires to first identify all request-reply end-
points and validate their configuration. In our scenario at least 4 endpoints have to be
checked.

As can be seen, manual consistency checking takes a lot of time and requires a deep knowl-
edge of the used technology and is therefore highly error-prone. In fact if the architect performs

81

one check after another he has to do at least 210 checks to make sure the Parking Management
System is free of inconsistencies. Note that the amount of checks can be reduced if some checks
are done in parallel, or information of previous checks are saved and used for new checks. Yet
the amount of checks will still be high, take a lot of time and is error-prone. The list also
shows that all inconsistencies are checked by our implemented consistency checking algorithm
or prevented by using the automatic architecture-to-configuration transformation, which will be
evaluated in Section 5.4.

The second part of the evaluation was concerned with the implemented consistency checks.
We evaluated the checks listed above by changing the Parking Management System in a way that
it exhibits the inconsistencies, one after another. Note that after each check the altered scenario
was reset to the original base. Table 5.1 presents the result of the evaluation and if each defined
consistency check is implemented.

No. Result

10. X
11. X
12. X
13. X
14. X
15. X
16. X

No. Result

17. X
18. X
19. X
20. X
21. X
22. X

Table 5.1: Evaluation of the implemented Consistency Checks. A checkmark sign that the Consistency
Check is implemented and the tool detected the corresponding inconsistency.

It can be said conclusively that the defined Consistency Checks of our approach can support
the planning and development of a message-based system by offering an algorithm that can de-
tect inconsistencies at an early stage. Additionally, we proved that our implemented Consistency
Checks fulfill the checks that we defined in the approach and even extend them.

5.4 Architecture-to-Configuration Transformation Evaluation

In the following the Architecture-to-Configuration transformation will be evaluated. We used
our tool to transform the Parking Management System into Mule ESB workflows and to generate
the corresponding configuration for Apache ActiveMQ. This scenario needs the complete range
of functions of our approach/implementation, including Queues, Topics, a request-reply com-
bination and data persistence configurations. Thus we can safely draw the conclusion that our
solution is capable of supporting development teams in real world architecture-to-configuration
transformation.

82

5.4.1 Evaluation Method

As said above, we used our tool to transform the “Parking Management System” into several
Mule ESB workflows and to generate the corresponding Apache ActiveMQ message broker
configuration. The transformation generated three separate Mule ESB workflow files (one for
the Filter Services, one for the Aggregator Services and one for the POS Services) and one
Apache ActiveMQ configuration file.

Furthermore, we evaluated the endpoint order algorithm specifically. Unfortunately in the
Parking Management System scenario the components have a at most two endpoints, but to test
the algorithm we needed three or more endpoints. Therefore, we had to change some com-
ponents for this test. Specifically, we added two inout-endpoints to the Provide Initial Data
Component and one in-endpoint and one out-endpoint to the Get Initial Data Component. Ad-
ditionally, we added a new Connector with two inout-interfaces. This new Connector is required
so that the two inout-endpoints of the Provide Initial Data Component can be connected to them.
The new in-endpoint of the Component Get Initial Data was connected to the Structural Change
Topic Connector and the out-endpoint to the Dynamic Change Topic Connector. These endpoints
should be ordered as follows: (1) in-endpoint, (2) the original endpoints, which are combined by
a request-reply pattern and (3) the out-endpoint. With these additional endpoints, the altered Get
Initial Data Component had an endpoint combination which the algorithm should be capable to
order and the altered Provide Initial Data Component had a combination where the algorithm
reached its limit, because it can’t know which inout-endpoint should be the first one. Thus we
had two components which exhausted the ordering algorithm. But due to the fact that before the
changes are propagated the consistency check is executed and during these checks also the inter-
face combination is tested, an error message should be shown and the transformation canceled.
Note that we did these extensions only to test the algorithm, with regards to the behavior of the
system, and that they don’t have any usage for the original scenario.

In the first part, of the evaluation, we analyzed the structure of the XML-based output files
and in the second part we checked if the transformation includes all the required information. To
validate this we first defined a check-list which we then used to check the transformed output-
files. In the end, we loaded the workflow files into Mule ESB, compiled it there and started the
message broker ActiveMQ with the generated configuration file, to test if the files are runnable.
For the evaluation we used MuleStudio version 3.5 and Apache ActiveMQ version 5.9.

5.4.2 Result & Discussion

Figures 5.2a to 5.2d depict the structure and important attributes of the output files. For a clearer
representation we only included the required attributes, i.e. the attributes that are mandatory for
a working messaging system, and the xADL ids, that are needed to map an output element back
to the xADL element.

The following depicts the check-list, which was created before the evaluation and which
holds all information that should be included in the output-files. A checkmark, at the end of
a line, marks that the element or attribute is included in the output-file, an X marks that the
element isn’t included or it was transformed incorrectly.

Workflow: Process Dynamic Change Events

83

Workflow is in the output-file Filter_Service.xml X
Workflow has the name Process_Dynamic_Change_Events X
Has a XML-child with the xADL id of the xADL Component X
Has an out-endpoint X
out-endpoint:

Is connected to topic dynamic.change.topic X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Process Structural Events
Workflow is in the output-file Filter_Service.xml X
Workflow has the name Process_Structural_Events X
Has a XML-child with the xADL id of the xADL Component X
Has an out-endpoint X
out-endpoint:

Is connected to topic structural.data.topic X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Subscribe and Aggregate Structural Data
Workflow is in the output-file Aggregator_Service.xml X
Workflow has the name Subscribe_and_Aggregate_Structural_Data X
Has a XML-child with the xADL id of the xADL Component X
Has an in-endpoint X
in-endpoint:

Is connected to topic structural.data.topic X
Has the durable name content_static_data X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Check Structural Changes and Publish Updates
Workflow is in the output-file Aggregator_Service.xml X
Workflow has the name Check_Structural_Changes_and_Publish_Updates X
Has a XML-child with the xADL id of the xADL Component X
Has an out-endpoint X
out-endpoint:

Is connected to topic structural.change.topic X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Provide Initial Data
Workflow is in the output-file Aggregator_Service.xml X
Workflow has the name Provide_Initial_Data X

84

Has a XML-child with the xADL id of the xADL Component X
Has an in-endpoint X
in-endpoint:

Is connected to queue request.initial.data.queue X
Has the exchange pattern request-response X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Get Initial Data
Workflow is in the output-file POS_Service.xml X
Workflow has the name Get_Initial_Data X
Has a XML-child with the xADL id of the xADL Component X
Add the message property MULE_REPLYTO with value Xjms://reply.initial.data.queue before the request-reply element
Has an request-reply element with embedded in-endpoint and out-Interface X
In request-reply element: out-Interface before in-endpoint X
out-endpoint:

Is connected to queue request.initial.data.queue X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

in-endpoint:
Is connected to queue reply.initial.data.queue X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Process Dynamic Data Changes
Workflow is in the output-file POS_Service.xml X
Workflow has the name Process_Dynamic_Data_Changes X
Has a XML-child with the xADL id of the xADL Component X
Has an in-endpoint X
in-endpoint:

Is connected to topic dynamic.change.topic X
Has the durable name pos_dynamic_data X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Workflow: Process Structural Data Changes
Workflow is in the output-file POS_Service.xml X
Workflow has the name Process_Structural_Data_Changes X
Has a XML-child with the xADL id of the xADL Component X
Has an in-endpoint X
in-endpoint:

Is connected to topic structural.change.topic X

85

Has the durable name content_static_data_changes X
Has a reference to the activemq-connector X
Has a XML-child with the xADL id of the xADL Interface X

Message Broker Configuration
persistenceAdapter element is included X
persistenceAdapter element includes kahaDB element X
kahaDB element:

Has the attribute directory=“connect/kahadb” X
Has a XML-child with the xADL id of the xADL ConnectorType X

transportConnectors element is included X
transportConnectors element includes transportConnector element X
transportConnector element:

Has the attribute uri=“tcp://127.0.0.1:61616” X
Has a XML-child with the xADL id of the xADL ConnectorType X

Configuration usableness
File Filter_Service.xml can be compiled, without errors, by Mule ESB X
File Aggregator_Service.xml can be compiled, without errors, by Mule ESB X
File POS_Service.xml can be compiled, without errors, by Mule ESB X
Apache ActiveMQ can be started with the configuration file activemq.xml X

Endpoint Ordering Algorithm
Get Initial Data endpoints order:

First endpoint: New in-endpoint (Structural Change Topic) X
Second endpoint: Request-Reply combination X
Third endpoint: New out-endpoint (Dynamic Change Topic) X

Provide Initial Data endpoints order:
First endpoint: Request-Reply combination 5
Second endpoint: New inout-endpoint (publisher) 5
Third endpoint: New inout-endpoint (subscriber) 5
Show error message that the interface could not be ordered automatically. X

Provide Initial Data endpoints order with Endpoint_Position_No:
First endpoint: Request-Reply combination X
Second endpoint: New inout-endpoint (publisher) X
Third endpoint: New inout-endpoint (subscriber) X

As can be seen in the check-list, all architecture elements, including our xADL extensions
which are holding the configuration, have been transformed correctly. The only problem that
we encountered was the automatic ordering of the extended Provide Initial Data Component.
In this scenario the Consistency Check algorithm showed an error with the information that the
interfaces can not be ordered automatically. But we expected that, because the algorithm didn’t
have enough information to order them correctly. After we gave the algorithm the required

86

beans

broker

persistenceAdapter

kahaDB: directory=connect/kahadb

connector0a000002-669594a6-f9d95c45-25e405a9

transportConnectors

transportConnector: uri=tcp://127.0.0.1:61616

connector0a000002-669594a6-f9d95c45-25e405a9

(a) Apache ActiveMQ message broker
configuration structure

mule

activemq-connector: brokerURL=tcp://127.0.0.1:61616
durable=true persistentDelivery=true

connector0a000002-669594a6-f9d95c45-25e405a9

flow: name=Process_Dynamic_Change_Events

component0a000002-66910707-30ce2d93-25e40134

outbound-endpoint: topic=dynamic.change.topic

0a000002-669f7d6c-a1b91c47-25e409f6

flow: name=Process_Structural_Events

component0a000002-66911cc6-0facd768-25e40159

outbound-endpoint: topic=structural.data.topic

0a000002-66a0c117-838041a4-25e409f9

(b) Mule ESB Filter Service structure

mule

activemq-connector: brokerURL=tcp://127.0.0.1:61616
durable=true persistentDelivery=true

connector0a000002-669594a6-f9d95c45-25e405a9

flow: name=Subscribe_and_Aggregate_Structural_Data

component0a000002-669129f3-761b6cc2-25e4016d

inbound-endpoint: durableName=content_static_data
topic=structural.data.topic

0a000002-66a35e78-94908c28-25e40a04

flow: name=Check_Structural_Changes_and_Publish_Updates

component0a000002-669130f3-9d76c7ab-25e40177

outbound-endpoint: topic=structural.change.topic

0a000002-669e06d9-9dda19b6-25e409f1

flow: name=Provide_Initial_Data

component0a000002-66913855-f02184fa-25e40181

inbound-endpoint: exchange-pattern=request-response
queue=request.initial.data.queue

0a000002-66a10c04-8a4f395b-25e409fb

(c) Mule ESB Aggregator Service struc-
ture

mule

activemq-connector: brokerURL=tcp://127.0.0.1:61616
durable=true persistentDelivery=true

connector0a000002-669594a6-f9d95c45-25e405a9

flow: name=Get_Initial_Data

component0a000002-66913fbd-a2a51480-25e4018b

message-properties-transformer

add-message-property: key=MULE_REPLYTO
value=jms://reply.initial.data.queue

request-reply

outbound-endpoint: queue=request.initial.data.queue

0a000002-669f12ff-088170cb-25e409f4

inbound-endpoint: queue=reply.initial.data.queue

0a000002-669f1945-00e6eda9-25e409f5

flow: name=Process_Dynamic_Data_Changes

component0a000002-6691489b-da9fcbd1-25e40196

inbound-endpoint: durableName=pos_dynamic_data
topic=dynamic.change.topic

0a000002-669fe679-eed918d5-25e409f7

flow: name=Process_Structural_Data_Changes

component0a000002-669198aa-e1a3175f-25e4024f

inbound-endpoint: durableName=content_static_data_changes
topic=structural.change.topic

0a000002-66a03404-39572d71-25e409f8

(d) Mule ESB POS Service structure

Figure 5.2: XML-tree structure of the Mule ESB workflows.

ordering information, by using the additional Endpoint_Position_No attribute, it ordered the
endpoints correctly. Furthermore the evaluation shows that the transformed output-files can be
used in Mule ESB and as a message broker configuration for Apache ActiveMQ. Due to the
XML-format (see Figure 5.2 for the XML tree structure) and the sequential processing of the
workflows, those files can now be easily extended with additional business logic which finally
completes each service. This also proves that our approach and implementation support the
separation of responsibilities. A developer, who is responsible for the business logic, doesn’t
have to take care of the messaging relevant parts and an architect, who is responsible for the
messaging system, doesn’t have to take care of the business logic of each service.

87

5.5 Change Propagation Evaluation
In the following the change propagation of our approach and implementation will be evaluated.

5.5.1 Evaluation Method

To evaluate this aspect we performed several changes to the already transformed Parking Man-
agement System from Section 5.4. To get a clear result we tested all changes discussed in Sec-
tion 4.7, by (1) performing the change in the xADL document, (2) then restarting the transfor-
mation on top of the already generated output-files and finally (3) checking if the changes have
been propagated. The xADL basis for each test was the original Parking Management System
scenario architecture document.

The following list defines the executed tests:

1. Test: Add new Component, Interface, Connector, ConnectorType.
Procedure: This test adds a new Component, called “NewComponent”, with one in-
interface and a new Connector, called “NewConnector”, which is a queue with the queue
name “new.queue”. For the Connector a new ConnectorType is generated, with the ad-
dress “tcp://127.0.0.2:61616”. Furthermore the Component Process Dynamic Data Changes
gets an additional out-interface which is connected to the write interface of the new queue.
The read interface of the queue is connected to the in-interface of the new Component. The
new Component should be saved in the “POS_Service.xml” file and the configuration for
the new ConnectorType in a new message broker configuration file.
Expected Result: The new workflow and a new activemq-connecter should be generated
in the “POS_Service.xml” file. The workflow should have an in-endpoint that is connected
to the new queue and this endpoint should have a reference to the new activemq-connector.
Furthermore the Component Process Dynamic Data Changes should have a new inter-
face and a new message broker configuration file with the address “tcp://127.0.0.2:61616”
should be generated.

2. Test: Change a channel name.
Procedure: Change the name of the Dynamic Change Topic channel from
“dynamic.change.topic” to “dynamic.change.topic.changed”.
Expected Result: The new channel name should be “dynamic.change.topic.changed”.
This should be changed in the Components Process Dynamic Change Events and Process
Dynamic Data Changes.

3. Test: Reconnect an Interface.
Procedure: Reconnect the in-interface of Component Process Dynamic Data Changes
from the Topic Dynamic Data Change to Structural Change Topic.
Expected Result: The in-endpoint of the workflow Process Dynamic Data Changes
should be connected to the Structural Change Topic topic.

4. Test: Change order of the Interfaces.
Procedure: This test is divided into two subparts. (1) Redo the steps of Test 1 (this

88

is necessary because we need a Component with two Interfaces which are not part of a
request-reply pattern) and then (2) change the order of the Interfaces (from first in, second
out to first out and second in) of Component ProcessDynamic Data Changes by using the
extension Endpoint_Position_No.
Expected Result: The first endpoint of the workflow Process Dynamic Data Changes
should be an out-endpoint, which is connected to the channel “new.queue”, and the second
one an in-endpoint, which is connected to the channel Dynamic Change Topic.

5. Test: Delete the reference (xADL id) to a xADL Component.
Procedure: This test should check the behaviour of the system if a component is deleted.
This test will only delete the reference between the architecture document and the trans-
formed system, i.e. delete the xADL id reference in the corresponding workflow. To do
this, the Component Process Dynamic Data Changes will be deleted. The system should
then ask if we want to delete the whole corresponding workflow or only the reference. For
this test only the reference will be deleted.
Expected Result: The comment that holds the xADL id and that is a XML-child of the
workflow should be deleted.

6. Test: Delete a Component.
Procedure: In contrast to the previous test, this test will delete the whole workflow and
not only the reference to the architectural component. Therefore, the Component Process
Dynamic Data Changes will be deleted. The system should then ask if we want to delete
the whole corresponding workflow or only the reference. For this test the whole workflow
will be deleted.
Expected Result: The whole workflow should be deleted.

7. Test: Delete a Connector.
Procedure: Same procedure as in the test before expect that during this test the Connector
Dynamic Data Topic is deleted.
Expected Result: The tool should ask if we want to delete the Process Dynamic Change
Events and Process Dynamic Data Changes Components, because they are no longer part
of the messaging system.

Besides that we checked the results of the tests, we loaded the resulting output-files into Mule
ESB and ActiveMQ to test if they are still runnable.

5.5.2 Result & Discussion

The following list presents the results of our tests:

1. Test: Add new Component, Interface, Connector, ConnectorType.
Result: The new workflow with the name “NewComponent” was added at the end of
the POS_Service.xml Mule ESB output-file, including the in-endpoint connected to the
queue “new.queue” and with a reference to the new activemq-connector, including the
new address, which was also added to the POS_Service.xml file. The Component Process

89

Dynamic Data Changes got an additional out-endpoint as last child of the corresponding
flow element. Furthermore the additional ActiveMQ configuration file was created and the
new transport connector with the address tcp://127.0.0.2:61616 was defined.

2. Test: Change a channel name.
Result: All connected endpoints, i.e. the out-endpoint of Component Process Dynamic
Change Events and the in-endpoint of Component Process Dynamic Data Changes, were
changed to the new topic name “dynamic.change.topic.changed”.

3. Test: Reconnect an Interface.
Result: The in-endpoint of Component Process Dynamic Data Changes was changed to
the new topic Structural Change Topic.

4. Test: Change order of the Interface.
Result: The order of the endpoints of Component Process Dynamic Data Changes were
changed to first out and second in.

5. Test: Delete the reference (xADL id) to a xADL Component.
Result: Our tool asked if we want to delete the reference or the element. We chose to
delete the reference, which resulted in the question if the endpoint, which is not needed
anymore, should also be removed or only the reference to it. We also chose to delete
only the reference. The tool then removed the xADL id stored in the workflow for the
Component Process Dynamic Data Changes and the xADL id stored in the endpoint of
the workflow.

6. Test: Delete a Component.
Result: Our tool asked if we want to delete the reference or the element. We chose to
delete the element. The tool then removed the whole Process Dynamic Data Changes
workflow.

7. Test: Delete a Connector.
Result: By deleting the Connector Dynamic Data Topic the connected Components Pro-
cess Dynamic Change Events and Process Dynamic Data Changes were no longer re-
quired. Therefore our tool asked if we want to delete them or to remove only the reference
to them, which resulted in the same behaviour as in test 5 and 6.

Finally all runnable tests, in which we loaded the output-files into Mule ESB and ActiveMQ,
were positive.

In conclusion, we were able to prove that our approach and the suggested implementation
is able to propagate all common changes to already available transformed systems. The change
propagation, including the consistency checks which are performed before a change is propa-
gated, makes our approach and the suggested implementation a good supporting tool for incre-
mental development of message-based systems.

Nevertheless, the change propagation algorithm has one restriction that appears if user-
defined code, in the already transformed workflow, exists. For example, if the transformed
workflow has one interface and an user-defined code after that interface and during the change

90

a new interface should be added somewhere in the user-defined code. Due to the fact that the
correct position in the user-defined code can’t be specified in our approach, our algorithm will
place the new interface directly after the already existing interface. In other words, our algo-
rithm can only guarantee the right order of the interfaces but not the correct place in a workflow
with user-defined code. But of course, the responsible developer can move the interface in the
user-defined code to the correct position. Note that the update of an already transformed inter-
face doesn’t change the position in the user-defined code, as long as the update doesn’t include
a reordering of the interfaces.

5.6 Summary

As can be seen in the presented results, our approach and the corresponding implementation
is able to handle the given evaluation scenarios. First of all, it can be used to plan and con-
figure a message-based system with the help of xADL and ArchStudio 4, specifically the tools
Archipelago and ArchEdit. The planning and configuration, per se, is hard to evaluate, because
it depends on the experience that an architect has with the ArchStudio 4 tool support. But in the
end, we were able to show that the planned xADL extensions were integrated in the implemen-
tation and that they are sufficient enough to model and configure a message-based system, due
to the fact that we used the designed system from Section 5.2 for the consistency check evalu-
ation (Section 5.3), transformation evaluation (Section 5.4) and change propagation evaluation
(Section 5.5).

During the evaluation of the consistency checking, we first proved that the checks, defined in
our approach, are able to find different common inconsistencies. This saves the architect a huge
amount of time and takes over a tedious and error-prone task, especially for large systems and for
changes at an advanced stage of the development process. But it has to be said that our defined
consistency checks only take the architectural structure and the configuration into account and
ignore the business logic of the services. This stands in contrast to other checking systems,
which we discussed in the related work Section 2.2, which in fact require more information
about the business logic, but therefore also offer a more fine-grained checking. But as proved,
for our purpose, the provided consistency checks are enough and are an enormous benefit for
the architecture team. At the end of this evaluation, we evaluated the implemented consistency
checks. Due to the fact that the original “Parking Management System” scenario didn’t contain
any inconsistencies we had to change, for each implemented check, a part of the architecture to
trick the system into this inconsistency.

In the second part, we evaluated the architecture-to-configuration transformation. With this
evaluation we proved that the information that is given by the xADL, i.e. the structural infor-
mation and the information that is given by our xADL extensions, are enough to transform the
architecture to the Mule ESB workflow configuration files and the Apache ActiveMQ configu-
ration file. At the current stage of the implementation the system is only capable of generating
Mule ESB and ActiveMQ configuration files. However, the implementation can be easily ex-
tended to support other tools and output-file formats. The overall approach of the system remains
valid also for other service messaging frameworks and tools. Even the basic consistency checks
stay the same, only the output-file specific consistency checks have to be altered or extended. In

91

the end, we were able to prove that our solution offers a way for a clear separation of responsi-
bilities. In a similar way as Zheng and Taylor did in their work [63], the usage of XML-based
workflow configuration files promotes the separation of architecture-prescribed code from user-
defined code and offers an elegant way for change propagation.

At the end, the evaluation of the change propagation aspect completed the analysis. During
this evaluation we proved by adding, altering and removing different architecture-level elements
that the propagation of changes from the architecture to an already transformed system is func-
tional in our implemented prototype. Furthermore we proved that the xADL ids are enough for
the mapping between the architecture elements and the transformed elements. But at the end,
we also highlighted that our change propagation system has a limitation in the ordering of the
interfaces. Specifically, if user-defined code is already included in the workflows, our algorithm
can’t guarantee that a new interface is placed at the right position in this user-defined code. The
algorithm only guarantees that the order of the interfaces is correct. If this situation occurs, a
developer has to move the interface to the correct position in the user-defined code after the
transformation. Zheng and Taylor had a similar problem in their research [63]. They solved it
by including a notification system which informs the developer, that he has to perform changes
in the user-defined code to support the new included architecture-prescribed code. Such a notifi-
cation system could be a worthwhile additional feature to our system and is considered as future
work (Section 6.1).

92

CHAPTER 6
Conclusion and Future Work

In the course of this thesis, we investigated how architecture-centric systems can be used for
the development of complex, message-based service systems. Our work focused on the spec-
ification and generation of message-driven, highly decoupled composite service systems with
an uncertain number of fluctuating instances and without the need for a central controlling unit.
The work was separated into two parts: (1) we first defined an approach which is able to model
and configure such systems and perform consistency checking on a specified system, and (2)
second we implemented a prototype for this approach.

For our approach we first investigated which inconsistencies can occur during the planning
of such message-centric systems and how a system can detect those inconsistencies as early
as possible. In the following we defined several consistency checks which issue warnings and
errors to inform the architects. Furthermore we explored how the highly expendable archi-
tecture description language xADL can be extended to provide a basis for the specification of
message-based systems. Specifically, our approach added several extensions to define Services,
Communication Channels and MOM configuration parameters. This led to the question of how
the planned architecture can be transformed to a working message routing skeleton and how the
mapping between the transformed message system elements and the architecture-level elements
can be achieved. Finally, we dealt with the task of change propagation. Specifically, we inves-
tigated how changes, done in the architecture, can be propagated to already transformed code,
without altering user-defined code.

In the second part we implemented a prototype of our defined approach. For the underlying
tool support we chose to use ArchStudio 4 to read and modify the xADL 2.0 documents and
to generate configuration files for Mule ESB and the message broker Apache ActiveMQ. The
first part was concerned with the ArchStudio extensions that we implemented, followed by the
analysis of the data models of a Mule ESB workflow configuration file, an Apache ActiveMQ
configuration file and the xADL data model. During these steps we also defined the mandatory
information that is required by those tools. Afterwards, we implemented the xADL extensions,
which finally added the ability to plan and configure a message-based system, which uses Mule
ESB and Apache ActiveMQ as the underlying tools, to ArchStudio 4. Consequently, we were

93

able to implement the consistency checks, including the checks defined in the approach and
specific checks for Mule ESB and Apache ActiveMQ. Finally we completed the implementation
by the architecture-to-configuration transformation and the change propagation system.

Finally, we evaluated our approach and the implemented prototype by using it to develop the
Parking Management System Scenario, discussed during the introduction.

6.1 Future Work

Our work, in the current state, is a fully functional prototype, but the development isn’t con-
sidered as finished. The approach and implementation can be used as basis for future projects,
theses or dissertations.

Our future work, on the theoretical part of the project, will focus on the following aspects:

• It is worthwhile evaluating how the EAI patterns, which are currently modelled in Mule
ESB, can be supported. For example it can be considered to extend xADL in a way that it
is possible to plan the EAI patterns or use some predefined patterns, that can be used and
transformed into the ESB workflow.

• At the current stage the approach only propagates changes from the architecture to the
output-files. This can be extended to propagating changes the other way around. There-
fore, the system has to check if an element in the output-files doesn’t have a xADL id.
If this is the case, the configuration attributes of the element can be transformed into the
xADL architecture document.

• Furthermore, the consistency analysis methods of the approach can be extended to include
more consistency checks and architecture optimising algorithms. It is valuable to evaluate
how an algorithm can be used to optimise the allocation of the channels, across different
message-broker instances, to get the optimal usage.

• In the 1.x-way mapping [63] Zheng uses a notification system to inform the developers that
changes which were propagated from the architecture to the code, also require changes in
the user-defined code. Such a notification system would be an assisting support in our
approach. For example, it can be used to notify the developers if the order of interfaces
has changed and therefore also the user-defined code may have to be repositioned.

On the practical side, we will focus on the following aspects:

• First of all the implementation can be extended with the discussed approach extensions
from above.

• At the current stage the implementation only supports Mule ESB and ActiveMQ. Due to
the fact that our approach doesn’t rely on those tools, the implementation can be extended
to support other tools and protocols without changing the underlying approach. Even the
basic consistency checks stay the same, only the output-file specific consistency checks

94

have to be altered or extended. For example an extension to support the advanced message
queue protocol AMQP or another ESB system like Fuse ESB can be considered.

• Another supporting feature, that is worthwhile to be included, would be the ability to add
comments to the architectural components, connectors and interfaces. These comments
could be included in the transformation and therefore they would end up in the messag-
ing system skeleton and the message broker configuration. By using such a feature the
architect could specify some useful comments/information for the development team.

• xADL has the ability to define versions of the system and to specify architecture elements
as optional. This allows the definition of several different system versions with different
abilities. At the current state this functionality isn’t included in our implementation, but it
could be an efficient feature and is therefore worthwhile to be included.

• In addition to the introduced tools, Archipelago, ArchEdit and TypeWrangler, ArchStudio
4 offers the separate analyzing tool Archlight, which can be used to run selfcontained
tests on the architecture of a system. By rewriting the introduced consistency checks
into Archlight test cases, this tool can be used to perform consistency checks independent
from the Architecture-to-Configuration transformation process, which we introduced in
this work. This will be part of an upcoming project and will then be included in the
project files of this thesis.

95

APPENDIX A
xADL Extensions

Listing A.1: XML-Schema of the Channel Implementation extension
1 <xsd:schema xmlns="at.ac.tuwien.

infosys/arch/xArch/channelimplementation.xsd" x m l n s : x s d ="
http://www.w3.org/2001/XMLSchema" x m l n s : a r c h t y p e s ="http://www.ics.
uci.edu/pub/arch/xArch/types.xsd" x m l n s : a r c h i m p l ="http://www.ics.
uci.edu/pub/arch/xArch/implementation.xsd" t a r g e t N a m e s p a c e ="at.ac.
tuwien.infosys/arch/xArch/channelimplementation.xsd"
e l e m e n t F o r m D e f a u l t ="qualified" a t t r i b u t e F o r m D e f a u l t ="qualified">

2
3 < xsd: import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.

xsd" schemaLoca t ion ="http://www.isr.uci.
edu/projects/xarchuci/ext/types.xsd" / >

4 < xsd: import namespace="http://www.ics.uci.
edu/pub/arch/xArch/implementation.xsd" schemaLoca t ion ="
http://www.isr.uci.edu/projects/xarchuci/ext/implementation.xsd"
/ >

5
6 < !�� TYPE: Connec to r Imp l ��>
7 <xsd:complexType name="ConnectorImpl">
8 <xsd:complexContent >
9 < x s d : e x t e n s i o n base ="archtypes:Connector">

10 < xsd: sequence >
11 < xsd :e l ement name="implementation" t y p e ="

archimpl:Implementation" minOccurs="0" maxOccurs="
unbounded" / >

12 < / x s d : s e q u e n c e >
13 < / x s d : e x t e n s i o n >
14 < / x sd:complexContent >
15 < /xsd:complexType >
16
17 < !�� TYPE: C h a n n e l I m p l e m e n t a t i o n ��>

97

18 <xsd:complexType name="ChannelImplementation">
19 <xsd:complexContent >
20 < x s d : e x t e n s i o n base ="archimpl:Implementation">
21 < xsd: sequence >
22 < x s d : c h o i c e >
23 < xsd :e l ement name="Queue_Configuration" t y p e ="QueueConfig" /

>
24 < xsd :e l ement name="Topic_Configuration" t y p e ="TopicConfig" /

>
25 < / x s d : c h o i c e >
26 < / x s d : s e q u e n c e >
27 < / x s d : e x t e n s i o n >
28 < / x sd:complexContent >
29 < /xsd:complexType >
30
31 <xsd:complexType name="QueueConfig">
32 < x s d : a t t r i b u t e name="name" t y p e ="xsd:string" / >
33 < /xsd:complexType >
34
35 <xsd:complexType name="TopicConfig">
36 < x s d : a t t r i b u t e name="name" t y p e ="xsd:string" / >
37 < /xsd:complexType >
38 < /xsd:schema >

Listing A.2: XML-Schema of the Endpoint Implementation extension
1 <xsd:schema xmlns="at.ac.tuwien.

infosys/arch/xArch/endpointimplementation.xsd" x m l n s : x s d ="
http://www.w3.org/2001/XMLSchema" x m l n s : a r c h i n s t a n c e ="http://www.
ics.uci.edu/pub/arch/xArch/instance.xsd" x m l n s : a r c h t y p e s ="
http://www.ics.uci.edu/pub/arch/xArch/types.xsd" x m l n s : a r c h i m p l ="
http://www.ics.uci.edu/pub/arch/xArch/implementation.xsd"
t a r g e t N a m e s p a c e ="at.ac.tuwien.
infosys/arch/xArch/endpointimplementation.xsd" e l e m e n t F o r m D e f a u l t =
"qualified" a t t r i b u t e F o r m D e f a u l t ="qualified">

2
3 < xsd: import namespace="http://www.ics.uci.

edu/pub/arch/xArch/instance.xsd" schemaLoca t ion ="http://www.isr.
uci.edu/projects/xarchuci/core/instance.xsd" / >

4 < xsd: import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.
xsd" schemaLoca t ion ="http://www.isr.uci.
edu/projects/xarchuci/ext/types.xsd" / >

5 < xsd: import namespace="http://www.ics.uci.
edu/pub/arch/xArch/implementation.xsd" schemaLoca t ion ="
http://www.isr.uci.edu/projects/xarchuci/ext/implementation.xsd"
/ >

6
7 < !�� TYPE: I n t e r f a c e I m p l ��>
8 <xsd:complexType name="InterfaceImpl">
9 <xsd:complexContent >

98

10 < x s d : e x t e n s i o n base ="archtypes:Interface">
11 < xsd: sequence >
12 < xsd :e l ement name="implementation" t y p e ="

archimpl:Implementation" minOccurs="0" maxOccurs="
unbounded" / >

13 < / x s d : s e q u e n c e >
14 < / x s d : e x t e n s i o n >
15 < / x sd:complexContent >
16 < /xsd:complexType >
17
18 < !�� TYPE: E n d p o i n t I m p l e m e n t a t i o n ��>
19 <xsd:complexType name="EndpointImplementation">
20 <xsd:complexContent >
21 < x s d : e x t e n s i o n base ="archimpl:Implementation">
22 < xsd: sequence >
23 < xsd :e l ement name="Reply_To_Queue" t y p e ="

archinstance:XMLLink" minOccurs="0" maxOccurs="1" / >
24 < xsd :e l ement name="Endpoint_Position_No" t y p e ="

EndpointPositionNoType" minOccurs="0" maxOccurs="1" / >
25 < xsd :e l ement name="Duralbe_Name" t y p e ="DurableName"

minOccurs="0" maxOccurs="1" / >
26 < xsd :e l ement name="Connection_To_Request_Endpoint" t y p e ="

archinstance:XMLLink" minOccurs="0" maxOccurs="1" / >
27 < / x s d : s e q u e n c e >
28 < / x s d : e x t e n s i o n >
29 < / x sd:complexContent >
30 < /xsd:complexType >
31
32 <xsd:complexType name="DurableName">
33 < x s d : a t t r i b u t e name="name" t y p e ="xsd:string" / >
34 < /xsd:complexType >
35
36 <xsd:complexType name="EndpointPositionNoType">
37 < x s d : a t t r i b u t e name="value" t y p e ="xsd:string" / >
38 < /xsd:complexType >
39 < /xsd:schema >

Listing A.3: XML-Schema of the JMS Implementation extension
1 <xsd:schema xmlns="at.ac.tuwien.infosys/arch/xArch/jmsimplementation.

xsd" x m l n s : x s d ="http://www.w3.org/2001/XMLSchema" x m l n s : a r c h i m p l ="
http://www.ics.uci.edu/pub/arch/xArch/implementation.xsd"
t a r g e t N a m e s p a c e ="at.ac.tuwien.infosys/arch/xArch/jmsimplementation
.xsd" e l e m e n t F o r m D e f a u l t ="qualified" a t t r i b u t e F o r m D e f a u l t ="
qualified">

2
3 < xsd: import namespace="http://www.ics.uci.

edu/pub/arch/xArch/implementation.xsd" schemaLoca t ion ="
http://www.isr.uci.edu/projects/xarchuci/ext/implementation.xsd"
/ >

99

4
5 < !�� TYPE: J m s I m p l e m e n t a t i o n ��>
6 <xsd:complexType name="JmsImplementation">
7 <xsd:complexContent >
8 < x s d : e x t e n s i o n base ="archimpl:Implementation">
9 < x s d : a t t r i b u t e name="file_id" t y p e ="xsd:string" / >

10 < xsd: sequence >
11 < xsd :e l ement name="Transport_Configuration" t y p e ="

TransportConfig" minOccurs="1" maxOccurs="unbounded" / >
12 < xsd :e l ement name="Persistence_Configuration" t y p e ="

PersistenceConfig" minOccurs="0" maxOccurs="1" / >
13 < xsd :e l ement name="Jms_Specification_Version" t y p e ="

JmsSpecificationType" minOccurs="0" maxOccurs="1" / >
14 < / x s d : s e q u e n c e >
15 < / x s d : e x t e n s i o n >
16 < / x sd:complexContent >
17 < /xsd:complexType >
18
19 <xsd:complexType name="TransportConfig">
20 < x s d : a t t r i b u t e name="transportConnector" t y p e ="xsd:string" / >
21 < /xsd:complexType >
22
23 <xsd:complexType name="JmsSpecificationType">
24 < x s d : a t t r i b u t e name="value" t y p e ="xsd:string" d e f a u l t ="1.1" / >
25 < /xsd:complexType >
26
27 <xsd:complexType name="PersistenceConfig">
28 < x s d : a t t r i b u t e name="adapter" t y p e ="xsd:string" d e f a u l t ="kahaDB" /

>
29 < x s d : a t t r i b u t e name="directory" t y p e ="xsd:string" / >
30 < /xsd:complexType >
31 < /xsd:schema >

Listing A.4: XML-Schema of the Mule Implementation extension
1 <xsd:schema xmlns="at.ac.tuwien.infosys/arch/xArch/muleimplementation

.xsd" x m l n s : x s d ="http://www.w3.org/2001/XMLSchema" x m l n s : a r c h t y p e s
="http://www.ics.uci.edu/pub/arch/xArch/types.xsd" x m l n s : a r c h i m p l =
"http://www.ics.uci.edu/pub/arch/xArch/implementation.xsd"
t a r g e t N a m e s p a c e ="at.ac.tuwien.
infosys/arch/xArch/muleimplementation.xsd" e l e m e n t F o r m D e f a u l t ="
qualified" a t t r i b u t e F o r m D e f a u l t ="qualified">

2
3 < xsd: import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.

xsd" schemaLoca t ion ="http://www.isr.uci.
edu/projects/xarchuci/ext/types.xsd" / >

4 < xsd: import namespace="http://www.ics.uci.
edu/pub/arch/xArch/implementation.xsd" schemaLoca t ion ="
http://www.isr.uci.edu/projects/xarchuci/ext/implementation.xsd"
/ >

100

5
6 < !�� TYPE: ComponentImpl ��>
7 <xsd:complexType name="ComponentImpl">
8 <xsd:complexContent >
9 < x s d : e x t e n s i o n base ="archtypes:Component">

10 < xsd: sequence >
11 < xsd :e l ement name="implementation" t y p e ="

archimpl:Implementation" minOccurs="0" maxOccurs="
unbounded" / >

12 < / x s d : s e q u e n c e >
13 < / x s d : e x t e n s i o n >
14 < / x sd:complexContent >
15 < /xsd:complexType >
16
17 < !�� TYPE: M u l e I m p l e m e n t a t i o n ��>
18 <xsd:complexType name="MuleImplementation">
19 <xsd:complexContent >
20 < x s d : e x t e n s i o n base ="archimpl:Implementation">
21 < x s d : a t t r i b u t e name="file_id" t y p e ="xsd:string" / >
22 < xsd: sequence >
23 < xsd :e l ement name="Additional_Configuration" t y p e ="

AdditionalConfig" minOccurs="0" maxOccurs="unbounded" / >
24 < / x s d : s e q u e n c e >
25 < / x s d : e x t e n s i o n >
26 < / x sd:complexContent >
27 < /xsd:complexType >
28
29 <xsd:complexType name="AdditionalConfig">
30 < x s d : a t t r i b u t e name="name" t y p e ="xsd:string" / >
31 < x s d : a t t r i b u t e name="value" t y p e ="xsd:string" / >
32 < /xsd:complexType >
33 < /xsd:schema >

101

APPENDIX B
Consistency Checks

Level Validation Description Recommendation

Architecture Is an inout-interface
connected to a publish-
subscriber channel?

This could lead to
unwanted behavior
in some Mule ESB
versions and could
again lead to an un-
clear architecture if
the system is more
complex.

A better and clearer
way is to use an out-
interface for publishing
to a publish-subscriber
channel and an extra
receiving queue for the
reply.

Does an out-interface
of a queue contain sev-
eral connected links?

A queue is a point-to-
point connection and
doesn’t support differ-
ent receivers. The mes-
sage will be sent once
and only to one re-
ceiver. If there are sev-
eral links on the out-
interface it is undefined
which one will receive
the message.

Use several differ-
ent queues, for each
receiver one, or a
publish-subscriber
channel.

103

Level Validation Description Recommendation

Is a publish-subscriber
channel used for
publishing a message
within the scope of a
request-reply pattern?

This could lead to
several response mes-
sages, because each
subscriber could reply
to the request. This
could be desired but
then the receiving
service have to handle
these multiple replies.

Use a point-to-point
connection to send the
requesting message.

Component
Connection

Do all used connectors
and components have
an implementation?

It could be desired that
a component or con-
nection doesn’t have
an implementation
(e.g. the component
will be implemented
in a later development
phase), but it could
also be a fault.

Add an implementa-
tion to the connector or
component.

Table B.1: Soft consistency checks at architecture level.

Level Validation Description Recommendation

Architecture Do two different
connectors, with the
same connector type,
have the same channel
name?

This wouldn’t be a
problem on the final
system, but it isn’t
recommended to use
two different connec-
tors with the same
channel name, because
this could lead to an
unclear architecture.

Use different channel
names or use only one
Connector.

104

Level Validation Description Recommendation

Is there a link between
two connectors or two
components?

Two components could
only be connected over
a connector. This has
to be done because the
channel name of the
connection is needed
for the messaging sys-
tem. Two connected
connectors are not al-
lowed.

The connection be-
tween two components
has to be done over
a connector and two
connected connectors
have to be combined
in one connector.

Are the interfaces,
used for a request-
reply group, defined
correctly?

For the request-reply
pattern the component
needs at least two
interfaces, one with
the direction in and
one with direction out.
The requesting inter-
face (interface with
direction out) must
refer to the receiving
interface (interface
with direction in) on
the same component.

Use an in-interface and
an out-interface and set
the corresponding ref-
erences.

Do two interfaces, that
are connected by a
link, have the same di-
rections?

If two interfaces are
connected together and
don’t have the direc-
tion inout, they must
have different direc-
tions, in to out or out to
in.

If they have the same
direction, change the
direction of one inter-
face or set both inter-
face directions to in-
out.

Does a component
have more than one
link at an in- or
out-interface?

An interface can only
be linked to one chan-
nel.

Use one interface for
each channel.

105

Level Validation Description Recommendation

Component Can the interfaces, on
one component, be ar-
ranged automatically?

If the component has
more than one bidi-
rectional interface or
more than one request-
reply interface combi-
nation the interfaces
can’t be arranged auto-
matically.

Arrange the interfaces
manually by adding
the ordering configura-
tion value.

Does the component
have more than one
in- or one out-interface
that are not part of a
request-reply group?

Our system only al-
lows one in- and out-
interface at a compo-
nent.

Connector Is the channel name
and the channel type
(publish-subscriber or
point-to-point) set?

In the connector type it
has to be defined if it is
a publish-subscriber or
point-to-point connec-
tion. Additional to the
type a channel name
has to be set.

Set the channel type
and name.

Link Is the link set cor-
rectly?

Each endpoint of a link
has to be connected to
a valid interface.

Table B.2: Hard consistency checks at component level.

106

Bibliography

[1] Organization for the Advancement of Structured Information Standards (OASIS): Web Ser-
vices Business Process Execution Language (WS-BPEL) Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, Accessed: Octo-
ber 2014.

[2] Robert J Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon
School of Computer Science, 1997.

[3] Apache. Apache ActiveMQ. http://activemq.apache.org, Accessed: July 2014.

[4] Apache. Openjms. http://openjms.sourceforge.net, Accessed: October
2014.

[5] Luciano Baresi, Carlo Ghezzi, and Luca Mottola. On Accurate Automatic Verification of
Publish-Subscribe Architectures. In 29th International Conference on Software Engineer-
ing (ICSE’07), pages 199–208. IEEE, May 2007.

[6] Adam Barker, Christopher D. Walton, and David Robertson. Choreographing Web Ser-
vices. IEEE Transactions on Services Computing, 2(2):152–166, April 2009.

[7] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-
Wesley, 2012.

[8] Mauro Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification of
middleware-based software architecture descriptions. In Proceedings. 26th International
Conference on Software Engineering, pages 221–230. IEEE Comput. Soc, 2004.

[9] David Chappell. Enterprise service bus. O’Reilly Media, 2004.

[10] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, and Judith Stafford. Documenting Software Architectures: Views
and Beyond, Second Edition. Addison-Wesley Professional, 2nd edition, 2010.

[11] Eric M. Dashofy, Hazel Asuncion, Scott Hendrickson, Girish Suryanarayana, John Geor-
gas, and Richard Taylor. ArchStudio 4: An Architecture-Based Meta-Modeling Environ-
ment. In 29th International Conference on Software Engineering (ICSE’07 Companion),
pages 67–68. IEEE, May 2007.

107

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://activemq.apache.org
http://openjms.sourceforge.net

[12] Eric M. Dashofy, A. van der Hoek, and R.N. Taylor. A highly-extensible, XML-based
architecture description language. In Proceedings Working IEEE/IFIP Conference on Soft-
ware Architecture, pages 103–112. IEEE Comput. Soc.

[13] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. An infrastructure for the
rapid development of XML-based architecture description languages. In Proceedings of
the 24th international conference on Software engineering - ICSE ’02, pages 266–276,
New York, New York, USA, 2002. IEEE.

[14] Eric M. Dashofy, André van der Hoek, and Richard N Taylor. A comprehensive approach
for the development of modular software architecture description languages. In ACM
Transactions on Software Engineering and Methodology (TOSEM), volume 14, pages 199–
245, 2005.

[15] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. BPEL4Chor: Extending
BPEL for Modeling Choreographies. In IEEE International Conference on Web Services
(ICWS 2007), pages 296–303. IEEE, July 2007.

[16] Christoph Dorn, Philipp Waibel, and Schahram Dustdar. Architecture-Centric Design of
Complex Message-Based Service Systems. In Service-Oriented Computing - 12th Interna-
tional Conference, ICSOC 2014, Paris, France, November 3-6, 2014. Proceedings, pages
184–198, 2014.

[17] Schahram Dustdar and BJ Krämer. Introduction to special issue on service oriented com-
puting (SOC). ACM Transactions on the Web, 2(2):1–2, April 2008.

[18] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. Inter-
national Journal of Web and Grid Services, 1(1):1–30, 2005.

[19] Patrick Th. Eugster, Pascal a. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[20] Institute for Software Research at the University of California Irvine. Archstudio 4.
http://isr.uci.edu/projects/archstudio-4/www/archstudio/, Ac-
cessed: July 2014.

[21] Institute for Software Research at the University of California Irvine. xadl 2.0. http:
//isr.uci.edu/projects/archstudio-4/www/xarchuci/, Accessed: July
2014.

[22] Institute for Software Research at the University of California Irvine. xadl 2.0 ex-
tensions overview. http://isr.uci.edu/projects/archstudio-4/www/
xarchuci/ext-overview.html, Accessed: July 2014.

[23] The Apache Software Foundation. Apache activemq documentation. http://
activemq.apache.org/using-activemq-5.html, Accessed: July 2014.

108

http://isr.uci.edu/projects/archstudio-4/www/archstudio/
http://isr.uci.edu/projects/archstudio-4/www/xarchuci/
http://isr.uci.edu/projects/archstudio-4/www/xarchuci/
http://isr.uci.edu/projects/archstudio-4/www/xarchuci/ext-overview.html
http://isr.uci.edu/projects/archstudio-4/www/xarchuci/ext-overview.html
http://activemq.apache.org/using-activemq-5.html
http://activemq.apache.org/using-activemq-5.html

[24] The Apache Software Foundation. Kahadb. http://activemq.apache.org/
kahadb.html, Accessed: July 2014.

[25] Joshua Garcia, Daniel Popescu, Gholamreza Safi, William G. J. Halfond, and Nenad Med-
vidovic. Identifying message flow in distributed event-based systems. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013,
page 367, New York, New York, USA, 2013. ACM Press.

[26] F.J. Garcia-Jimenez, M.a. Martinez-Carreras, and A.F. Gomez-Skarmeta. Evaluating Open
Source Enterprise Service Bus. In 2010 IEEE 7th International Conference on E-Business
Engineering, pages 284–291. IEEE, November 2010.

[27] David Garlan. Software architecture: a Roadmap. In Proceedings of the conference on
The future of Software engineering - ICSE ’00, pages 91–101, New York, New York, USA,
2000. ACM Press.

[28] David Garlan, Serge Khersonsky, and Jung Soo Kim. Model Checking Publish-Subscribe
Systems. Model Checking Software, pages 166—-180, 2003.

[29] David Garlan, Robert T. Monroe, and David Wile. ACME : An Architecture Description
Interchange Language. In In Proceedings of CASCON’97, pages 169—-183, 1997.

[30] Red Hat. Hornetq. http://hornetq.jboss.org, Accessed: October 2014.

[31] Red Hat. Jboss fuse. http://fusesource.com/products/
enterprise-servicemix/, Accessed: July 2014.

[32] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004.

[33] Michael N. Huhns and Munindar P. Singh. Service-oriented computing: key concepts and
principles. IEEE Internet Computing, 9(1):75–81, January 2005.

[34] Nicolai M. Josuttis. SOA in Practice The Art of Distributed System Design. O’Reilly
Media, Inc., 2007.

[35] Tobias Kruessmann, Arne Koschel, Martin Murphy, Adrian Trenaman, and Irina Astrova.
High availability: Evaluating open source enterprise service buses. In Proceedings of the
ITI 2009 31st International Conference on Information Technology Interfaces, pages 615–
620. IEEE, June 2009.

[36] Rikard Land and Ivica Crnkovic. Existing approaches to software integration – and a
challenge for the future. integration, 40:58—-104, 2004.

[37] Fredlund Lars-Ake. Implementing WS-CDL. Proceedings of the second Spanish workshop
on Web Technologies (JSWEB 2006), 2006.

109

http://activemq.apache.org/kahadb.html
http://activemq.apache.org/kahadb.html
http://hornetq.jboss.org
http://fusesource.com/products/enterprise-servicemix/
http://fusesource.com/products/enterprise-servicemix/

[38] Youn Kyu Lee, Jae young Bang, Joshua Garcia, and Nenad Medvidovic. ViVA: a visual-
ization and analysis tool for distributed event-based systems. In Companion Proceedings
of the 36th International Conference on Software Engineering - ICSE Companion 2014,
pages 580–583, New York, New York, USA, 2014. ACM Press.

[39] David S Linthicum. Enterprise application integration. Addison-Wesley Professional,
1999.

[40] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and
Walter Mann. Specification and Analysis of System Architecture Using Rapide. IEEE
Transactions on Software Engineering, 21(4):336–355, 1995.

[41] J Magee, N Dulay, S Eisenbach, and J Kramer. Specifying Distributed Software Architec-
tures. In Wilhelm Schäfer and Pere Botella, editors, Proceedings of the 5th European Soft-
ware Engineering Conference, volume 989 of Lecture Notes in Computer Science, pages
137–153. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[42] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins. Mod-
eling software architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology, 11(1):2–57, January 2002.

[43] Nenad Medvidovic and RN Taylor. A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[44] Falko Menge. Enterprise Service Bus. Free and open source software conference, 2:1–6,
2007.

[45] OpenESB Community Formerly Sun Microsystems. Openesb. http://www.
open-esb.net, Accessed: July 2014.

[46] Nikola Milanovic and Miroslaw Malek. Current solutions for Web service composition.
IEEE Internet Computing, 8(6):51–59, November 2004.

[47] MuleSoft. Understanding Enterprise Application Integration - The Bene-
fits of ESB for EAI. http://www.mulesoft.com/resources/esb/
enterprise-application-integration-eai-and-esb, Accessed: July
2013.

[48] MuleSoft. Mule ESB. http://www.mulesoft.org/, Accessed: July 2014.

[49] MuleSoft. Mule ESB Documentation. http://www.mulesoft.org/
documentation/display/current/Home, Accessed: July 2014.

[50] Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing Execution of
Composite Web Services. ACM SIGPLAN Notices, 39(10):170, October 2004.

110

http://www.open-esb.net
http://www.open-esb.net
http://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-and-esb
http://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-and-esb
http://www.mulesoft.org/
http://www.mulesoft.org/documentation/display/current/Home
http://www.mulesoft.org/documentation/display/current/Home

[51] Deakin Nigel, Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout.
Java Message Service. Number December. 2012.

[52] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
Oriented Computing: A Research Roadmap. International Journal of Cooperative Infor-
mation Systems, 17:223–255, November 2008.

[53] M.P. Papazoglou. Service-oriented computing: concepts, characteristics and directions.
In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, volume 46, pages 3–12. IEEE Comput. Soc, 2003.

[54] Cesare Pautasso, Thomas Heinis, and Gustavo Alonso. JOpera: Autonomic Service Or-
chestration. IEEE Data Engineering Bulletin, 29(3):1–8, 2006.

[55] C. Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–52, Octo-
ber 2003.

[56] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and highly-modular
software model checking framework. In Proceedings of the 9th European software en-
gineering conference held jointly with 10th ACM SIGSOFT international symposium on
Foundations of software engineering - ESEC/FSE ’03, page 267, New York, New York,
USA, 2003. ACM Press.

[57] Stephen Ross-Talbot. Orchestration and Choreography: Standards, Tools and Technologies
for Distributed Workflows. In NETTAB Workshop-Workflows management: new abilities
for the biological information overflow, Naples, Italy, 2005.

[58] Thorsten Scheibler and Frank Leymann. A framework for executable enterprise application
integration patterns. Enterprise Interoperability III, pages 485–497, 2008.

[59] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing, 2009.

[60] Wil MP Van der Aalst and Arthur HM Ter Hofstede. YAWL: yet another workflow lan-
guage. Information Systems, 30(4):245–275, June 2005.

[61] Ustun Yildiz and Claude Godart. Information Flow Control with Decentralized Service
Compositions. In IEEE International Conference on Web Services (ICWS 2007), number
Icws, pages 9–17. IEEE, July 2007.

[62] Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hofstede. Let’s
Dance: A Language for Service Behavior Modeling. On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, 4275:145–162, 2006.

[63] Yongjie Zheng and Richard N. Taylor. Enhancing architecture-implementation confor-
mance with change management and support for behavioral mapping. Proceedings of the
34th International Conference on Software Engineering, pages 628–638, 2012.

111

[64] Yongjie Zheng and Richard N. Taylor. A classification and rationalization of model-based
software development. Software & Systems Modeling, 12(4):669–678, June 2013.

112

	Introduction
	Problem Statement
	Motivating Scenario
	Parking Management System

	Aim of the Work
	Methodological Approach
	Organization

	Related Work
	Design of Distributed Service-Centric Systems
	Service Composition
	Enterprise Application Integration
	Message Exchange Pattern
	Tool Support

	Architecture-Centric Software Development
	Architecture Description Languages
	Architecture-Implementation Mapping
	Message-System Consistency Analysis
	Tool Support

	Approach
	Design Principles
	Overview
	Ongoing Example
	Message-Based Service System Consistency
	Architectural Level Inconsistencies
	Component Level Inconsistencies
	Discussion: Message-Based Service System Consistency Checking

	Allocation of Message System Aspects to ADL Elements
	Message-Centric ADL Extension

	Association of Message System Aspects and ADL Elements
	Change Propagation
	Change Management Strategy

	Realization
	Big Picture
	Architecture-Level Editors
	xADL 2.0 Editors
	MSG Launcher

	Basic Data Model
	Mule ESB Data Model
	Apache ActiveMQ Data Model
	xADL Data Model

	Message-Centric xADL Extension
	Consistency Check
	Consistency Check Definition
	Consistency Check Class Structure

	Architecture-to-Configuration Transformation
	Transformation Models
	xADL 2.0 to Internal Transformation Model
	Transformation Model to Output Files

	Change Propagation
	Implementation
	Installation
	Usage

	Evaluation
	Objectives
	Evaluation Scenario and Preparation
	Consistency Check Evaluation
	Evaluation Method
	Result & Discussion

	Architecture-to-Configuration Transformation Evaluation
	Evaluation Method
	Result & Discussion

	Change Propagation Evaluation
	Evaluation Method
	Result & Discussion

	Summary

	Conclusion and Future Work
	Future Work

	xADL Extensions
	Consistency Checks
	Bibliography

