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Abstract—Internet of Things (IoT) devices are usually con-
sidered as external dependencies that only provide data, or
process and execute simple instructions. Recently, IoT devices
with embedded execution environments emerged that allow prac-
titioners to deploy and execute custom application logic on the
device. This approach fundamentally changes the overall process
of designing, developing, deploying, and managing IoT systems.
However, these devices exhibit significant differences in available
execution environments, processing, and storage capabilities. To
accommodate this diversity, a structured approach is needed
to uniformly and transparently deploy application components
onto a large number of heterogeneous devices. This is especially
important in the context of current large-scale IoT systems,
such as in the smart city domain. In this paper, we present
LEONORE, a service oriented infrastructure that provides elastic
provisioning of application components on resource-constrained
and heterogeneous edge devices in large-scale IoT deployments.
LEONORE supports push-based as well as pull-based deploy-
ments and we show that our solution is able to elastically provision
large numbers of devices using a testbed based on a real-world
industry scenario.

I. INTRODUCTION

Current Internet of Things application design and devel-
opment approaches model IoT solutions as layered architec-
tures [1] with a bottom layer consisting of deployed IoT
devices and their communication facilities, a middleware layer
to expose the underlying hardware in a unified manner, and
a top-level application layer to execute business logic and
visualize processed sensor data [2]. This layered architecture
implies that business logic is only executed in the application
layer, and IoT devices are assumed to be deployed with
appropriate software and readily available [3]. However, in
practice this is not the case. Apart from the most basic sensors,
IoT devices provide constrained execution environments with
limited processing, storage, and memory resources to execute
device firmware, which can further be used to offload parts of
application business logic onto these devices. In the context of
our work, we refer to these devices as IoT gateways.

In large-scale IoT systems, such as in the smart city
domain, leveraging the processing capabilities of gateways is
especially important, as their currently untapped processing ca-
pabilities can be used to significantly improve IoT applications
by moving parts of the application logic towards the edge of
the infrastructure. Making edge devices first-class execution
environments in the design of IoT applications enables new
types of solutions that are able to dynamically adapt to
inevitable changes such as new requirements or adjustments
in regulations, by modifying their component deployment
topology and edge processing logic. System integrators can

avoid infrastructure silos and vendor lock-in by implementing
custom business logic to be executed on gateways, and even
purchase and sell these application components in an IoT
application market [4]. However, the heterogeneous nature of
current IoT gateways poses challenges for application delivery,
due to significant differences in device capabilities in terms of
available storage and processing resources, as well as deployed
and deployable software components. Furthermore, the large
number of devices in typical IoT systems calls for a scalable
and elastic provisioning solution that is specifically tailored to
their resource-constrained nature.

In this paper, we present LEONORE, a service oriented
infrastructure and toolset for provisioning application com-
ponents on edge devices in large-scale IoT deployments. To
accommodate the resource constraints of IoT gateways, instal-
lable application packages are fully prepared on the provision-
ing server and specifically catered to the device platform to be
provisioned. Our solution allows for both, push- and pull-based
provisioning of devices. Pull-based provisioning, a common
approach in contemporary configuration management systems,
allows devices to independently schedule provisioning runs
to off-peak times, whereas push-based provisioning allows
for greater control over the deployed application landscape
by immediately initiating critical software updates or security
fixes. We illustrate the feasibility of our solution using a testbed
based on a real-world IoT deployment from one of our indus-
try partners and show that LEONORE is able to elastically
provision large numbers of IoT gateways in reasonable time.

The remainder of this paper is structured as follows: In
Section II we present the motivation and outline the specific
problem as well as requirements. In Section III we introduce
the LEONORE infrastructure and tool set to address the
identified problems in deploying large-scale IoT systems. We
provide a detailed evaluation in Section IV, discuss relevant
related research in Section V, followed by a conclusion and
an outlook on future research in Section VI.

II. MOTIVATION

Large-scale IoT systems in the smart city domain face
the challenges of connecting and managing millions of het-
erogeneous IoT devices. Due to the fast paced development
of these devices and changing requirements in the smart city
domain itself, this is not only a matter of handling large-
scale deployments, but also about supporting the necessary
evolution to manage this change. One area where this is
specifically demanding is large-scale Building Operations and
Management (BMO). Providers of such BMOs not only need
to be able to stage large amounts of new devices, due to the
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rapid urbanization, they also need to reflect the ever changing
requirements to their existing infrastructure. Current solutions
to address this situation are mostly manual or only deal with
parts of a BMO providers infrastructure. These solutions are
not only unable to deal with the vast amount of devices and
changing requirements in an efficient manner, they are also
tedious and due to the high personal effort, very cost intensive.

A. Scenario

In general, Building Management and Operations that work
with large-scale IoT systems need to deal with two distinct
states. The initial deployment and staging of devices on the
one hand, and updates with varying frequency and priorities on
the other hand. Consider the case of a BMO provider residing
in a large city operating and managing several hundreds of
buildings with a broad variety of tenants. These buildings
are equipped with a plethora of different IoT enabled devices
ranging from sensors to detect smoke and heat, to elevator
and door controls, to complex cooling and heating systems.
They rely on gateways [5], [6], [7], which provide constrained
execution environments with limited processing, storage, and
memory resources to execute the device firmware and simple
routines. Gateways enable the basic bundling and management
of a wide variety of connected entities. Due to the current
market situation and the existing lack of standards in this novel
field, there exists a huge heterogeneity in terms of software
environments when it comes to these gateways. Initially all
these devices need to be staged with the necessary capabilities
to enable their basic functionality. The connected sensors need
to be supported, the latest firmware needs to be installed and
they need to be integrated into a specific deployment structure.
This is followed by long term evolution in terms of general
maintenance, changing deployments, shifting capabilities as
well as updating the software environment or firmware. The
second sort of updates is caused by security updates and hot
fixes that need to be deployed very fast in order to ensure that
the whole infrastructure stays operational. These updates are
time critical since delays can cause severe security problems
in the whole infrastructure. The more devices are connected
the more devices are vulnerable in terms of hacks and exploits
and in the IoT domain, where these devices are connected to
the real world, this poses a specific threat.

We, therefore, outline the following distinct requirements
in the context of this scenario:

• Gateways participating in an IoT infrastructure are
resource-constrained in terms of their processing, mem-
ory, and storage capabilities.

• Our scenario deals with large-scale deployments compris-
ing thousands of gateways with a wide variety of different
supported execution environments.

• Requirements of these gateways change over time, which
makes updates necessary. These updates can either be
non-time-critical or time-critical, like security updates.

• In order to sustain operations all updates need to be
efficient and fast, and, therefore, have to be performed
at runtime.

III. APPROACH

In order to address the previously defined requirements, we
present LEONORE, an infrastructure to provision application

components on gateways in large-scale IoT deployments. The
overall architecture of our approach is depicted in Figure 1 and
consists of the following components: (i) Application Pack-
ages, (ii) IoT gateways, and (iii) LEONORE, the provisioning
framework. In the following, we discuss these components in
more detail.

A. Application Packages

Usually an application in the IoT domain consists of
different application components and supporting files (e.g.,
libraries and binaries). To enable automatic provisioning of
these so called artifacts, LEONORE builds gateway-specific
Application Packages that have the following structure. First,
each package has an id, which uniquely identifies the package.
Second, each package contains a binary folder, to store
required artifacts. Furthermore, it also contains the resolved
application dependencies to avoid expensive dependency res-
olution on the gateway. Finally, in the control folder all
instructions for installing, uninstalling, starting and stopping
this package are included. Additionally, a path file defines
the installation paths and the order of installing/uninstalling
artifacts. With this packaging approach the heavy lifting is
done by the framework, and gateways only have to unpack
the package and execute the provided installation instructions,
which usually just copy artifacts in place without any addi-
tional processing.

B. IoT Gateway

To efficiently provision edge devices in our approach,
we first need a general and generic representation of such
devices. Therefore, we analyzed the capabilities of several
gateways that are commonly applied by our industry partner
in the domain of Building Management Systems. Our findings
show that in general such gateways have limited hardware
components and use some rudimentary, tailored operating
system (e.g., a BusyBox1 user land on a stripped down Linux
distribution). Installing or updating software components is a
tedious manual task, since there are no supporting packaging
or updating tools in place, as known from operating systems
used on PCs (e.g., apt2 for Unix-like computer systems).
Furthermore, due to limited resources in terms of disk space,
adding new capabilities usually requires the removal of already
installed components. Taking all these limitations into account,
we derived the final representation of a gateway for our
approach as depicted on the right-hand side in Figure 1. The
IoT gateway has the following components: (i) a container,
hosting application packages, (ii) a profiler, monitoring the
current status of the gateway, (iii) an agent, communicating
with the provisioning framework, and (iv) a connectivity layer,
supporting different communication protocols and provisioning
strategies.

1) Profiler: As already mentioned, gateways in our ap-
proach are usually resource-constrained, which means that
they only provide limited disk space, memory and processing
power. Therefore, keeping track of these resources is of utmost
importance. In order to do that the profiler uses pre-defined
interfaces to constantly monitor the underlying system (e.g.,

1http://www.busybox.net
2https://packages.qa.debian.org/a/apt.html
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Fig. 1: LEONORE Infrastructure – Overview

static information like id, mac-address, instruction set, or
dynamic information like disk- and memory-consumption).
The profiler sends the collected information either periodically
or on request to the provisioning framework.

2) Application Package and Container: All packages that
are not pre-installed on the IoT gateway have to be provisioned
by the framework at runtime. Therefore, the IoT gateway uses
a runtime container to store and run application packages. By
using a separate container it is guaranteed that installing or
removing packages does not interfere with the underlying sys-
tem and, therefore, avoids expensive rebooting or configuration
procedures.

3) Provisioning Agent: An essential part for the overall
provisioning framework is the provisioning agent. The pre-
installed agent is running on each IoT gateway and manages
application packages that are locally hosted and stored. The
management tasks of the agent comprise installing, unin-
stalling, starting, and stopping packages. Furthermore, the
agent is responsible for handling requests from the framework
and triggers the respective actions on the IoT gateways (e.g.,
gather latest information via the profiler or trigger the provi-
sioning of an application package).

4) Connectivity Layer: Since gateways usually use dif-
ferent software communication protocols in large real world
deployments (e.g., oBIX3 or CoAP4), our approach provides
a pluggable connectivity layer. This layer can either reuse the
deployed software communication protocols or extend services
provided by the underlying operating system. Additionally, the
layer provides extensible strategies to provision the gateway. In
the current implementation, the layer provides two strategies:
(i) a pull-based approach where the provisioning agent queries
the framework for provisioning tasks, and (ii) a push-based
approach where the framework pushes new updates to the
gateway and the agent triggers the local provisioning.

3http://www.obix.org
4http://coap.technology

C. LEONORE – Provisioning Framework

The enabling framework to provision edge devices in large-
scale deployments is depicted on the left-hand side in Figure 1.
LEONORE is a cloud-based framework and the overall de-
sign follows the micro service architecture5 approach. This
approach enables building scalable, flexible, and evolvable
applications. Especially the flexible management and scaling
of components is important for LEONORE when dealing with
large-scale deployments. In the following, we will introduce
the main components of LEONORE and discuss the balancer-
based scaling approach.

1) Repositories:

• Artifact repository Usually, an application consists of
multiple artifacts that get linked together for specific
requirements. To handle these artifacts and also make
them reusable, a repository is used. The repository man-
ages artifacts by storing source code, pre-built binaries,
dependencies, possible configurations, and further nec-
essary information that is required for the application
building process. Furthermore, the repository provides a
mechanism to store different versions of an artifact.

• IoT gateway repository This repository stores the gate-
way specific information that is needed for creating
the deployable application package. This Information
includes: hardware configuration (e.g., disk space, mem-
ory, processor, etc.), software (kernel version, installed
components/tools, etc.), as well as supported provisioning
strategies and communication protocols. Additionally, for
each IoT gateway the repository stores the provisioned ap-
plication packages, which is important in case a different
version of an installed package needs to be provisioned,
since this might require the removal of an already installed
version.

• Package repository Application packages specifically
built for a set of IoT gateways are stored in the package
repository. This approach guarantees that packages are

5http://martinfowler.com/articles/microservices.html
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only built once, and all gateways get provisioned with
the same package. Furthermore, by storing the packages
in a repository it is easier to scale the framework, since no
data is stored in memory and therefore components can
be easily replicated. After IoT gateways are successfully
provisioned, the package is removed after some time to
avoid storing unnecessary data.

2) Package Management: To provision artifacts with
LEONORE, users have to add these artifacts via the package
management component. The package management is respon-
sible for retrieving all necessary information (e.g., name and
version), required binaries, available source files, configura-
tions, policies, and dependencies on other artifacts, from the
user. After the user has provided this information along with
the artifacts, the package management stores them in the re-
spective repository. The structure of the repository follows the
layout of conventional software package management systems
(e.g., Maven6).

3) Dependency Management: Since many applications de-
pend on libraries or other applications, LEONORE needs a
mechanism to resolve these application dependencies. There-
fore, according to the desired artifact, the dependency man-
agement finds a list of suitable artifacts and provides a plan
that can be used to build the actual application package. The
plan includes a dependency tree and all needed artifacts. The
dependencies are represented as a directional graph, with nodes
representing artifacts like applications, libraries, operating sys-
tem tools, and hardware components, whereas edges represent
dependencies between nodes.

4) Package Builder: To create the actual application pack-
age that can be provisioned, the package builder is used. In
order to build an application package, the builder performs
the following steps: (i) retrieve gateway-specific information
from the IoT gateway management, (ii) use the dependency
management to gather a list of suitable plans, (iii) based on
the plan, build an application package, (iv) if the build was
successful, notify the provisioning handler to trigger the actual
provisioning, (v) if the build failed try next plan in list.

5) IoT Gateway Management and IoT Gateway Handler:
In order to deal with the bootstrapping problem, i.e., to know
which IoT gateways are available for provisioning, LEONORE
follows the following approach. When an IoT gateway starts
for the first time, the local provisioning agent registers the
gateway with the framework by providing its unique identifier
(e.g., name, id, and mac-address) and the gathered profile.
Based on this information the manager creates an entry in
the IoT gateway repository and stores the provided informa-
tion. The registration process is finalized by negotiating the
supported provisioning strategy and communication protocol.
This can be done, since each IoT gateway is pre-configured and
provides some already installed communication protocols and
provisioning strategies. Next, a suitable IoT gateway handler
is assigned for this gateway. IoT gateways that use the same
communication protocol and provisioning strategy are grouped
together and managed by a designated IoT gateway manager.
This assures more flexibility and avoids mediating between
protocols. Once the registration process is successful, the IoT
gateway can be provisioned by the framework.

6http://maven.apache.org
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Fig. 2: LEONORE Infrastructure – Balancer

6) Provisioning Handler: To provision application pack-
ages, the provisioning handler first chooses the suitable pro-
visioning strategy according to the information provided by
the IoT gateway management. Then the handler triggers the
building of gateway-specific application packages by invoking
the package builder. Once the builder creates the packages, the
provisioning handler executes the provisioning strategy. This
means that the IoT gateway can either query the framework for
application packages or the handler delegates the provisioning
request to the respective IoT gateway handler, which pushes
the update to the gateway and triggers the provisioning.

7) Balancer: Since LEONORE needs to provision large-
scale deployments of IoT gateways, scalability is essential.
Therefore, LEONORE provides several strategies to deal with
the immense workload. First, the framework’s design follows
the micro service architecture principle. Thus, optimizing
single components is relatively easy by moving them from
one host to a more powerful host. Additionally it is possible to
scale components by replicating them and therefore distribut-
ing the workload across multiple computing resources. Follow-
ing this approach, components of LEONORE are classified in
scalable and not scalable. Components that should be scaleable
are grouped together in so-called LEONORE nodes. These
nodes comprise all components that are required to handle
and provision IoT gateways. The classification in scalable and
not scalable is flexible and can be adapted depending on the
requirements. Now that LEONORE provides the ability to
replicate components via the notion of nodes, we further need
a component that is responsible for creating and destroying
these nodes, as well as distributing incoming requests to them.
To this end, we introduce a balancer. In general, a balancer
aims to optimize resource usage, to minimize the response

http://maven.apache.org
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time and to maximize the throughput. Figure 2 depicts how
LEONORE scales up with growing number of deployments by
using the balancer. In Figure 2 we see that the balancer receives
incoming requests from IoT gateways deployed in different
areas. Based on a pluggable strategy the balancer gathers a
suitable node from the pool of available LEONORE nodes and
assigns the gateway to this node. The node is then responsible
for handling any further interaction with the respective IoT
gateway. In case all available nodes are fully loaded, the
balancer spins up a new node and queues incoming requests.
Once the node is up and running, it registers at the balancer and
the balancer assigns the queued up requests to this new node.
Currently, LEONORE provides a load-based scaling strategy
that scales nodes based on the number of provisioned IoT
gateways. In the future, we will provide additional strategies,
such as a location-aware strategy that aims at deploying nodes
close to affected IoT gateways to reduce network overhead.

D. Provisioning of Application Packages

In order to better illustrate the overall provisioning process,
Figure 3 depicts the involved LEONORE components and their
interactions for a specific request. Whenever the provisioning
of an artifact is requested for a certain deployment, LEONORE
performs the following steps: (i) check if the requested artifact
is available; (ii) resolve the given deployment to retrieve the
set of IoT gateways that have to provisioned; (iii) find the
responsible LEONORE nodes, group the gateways accord-
ing to their node assignment and delegate the provisioning
task; (iv) on each node: analyze if the requested artifact is
compatible with every IoT gateway and group gateways that
require the same application package (e.g. equal hardware
or installed packages); (v) on each node: for each group
of IoT gateways resolve dependencies and create application
package; (vi) on each node: execute required provisioning
strategy for each IoT gateway; (vii) on each node: wait until
IoT gateways successfully provisioned the package to complete
the provisioning task; (viii) check if all nodes have completed
their provisioning task to finalize the overall provisioning.

IV. EVALUATION

To evaluate our provisioning framework we created a test
setup in the cloud by using CoreOS to virtualize devices as
Docker containers. IoT gateways in our experiments use two
types of provisioning strategies – a pull and a push based
approach.

When an IoT gateway uses the pulling approach, the
gateway’s agent pulls the provisioning framework for new
tasks in a configurable interval (e.g. every second). The
framework only provides new provisioning tasks for the IoT
gateway, which collects and executes these tasks. With short
polling intervals, this approach generates increased load on
the framework, consumes more bandwidth, and uses more re-
sources on the IoT gateways, but is more fault-tolerant in case
of connectivity problems due to inherently frequent retries.
For the push-based approach, the IoT gateway’s agent only
registers the gateway once at the framework and then remains
idle until the framework pushes an update. When the agent
gets pushed by the framework, it collects the provisioning
task, executes it and returns to the idle state. In general,
the push-based approach generates less load on both the IoT
gateway and framework, but is more vulnerable to connectivity
problems and operators need to take care to not inadvertently
disrupt gateway operations by placing additional load on it.

To simulate real-world provisioning directives, we use
the following two application packages. The first package
is the Sedona Virtual Machine7 (SVM). SVM is written in
ANSI C and is highly portable due by design. It allows
to execute applications written in the Sedona programming
language and is optimized to run on platforms with less than
100KB of memory. For our experiments we developed a small
sample application and used SVM Version 1.2.28. The final
application package created by LEONORE has approximately
120 KB – including the application code (.sab, .sax, .scode
and Kits-file) and the required SVM binary.

As second package we use Java 8 for ARM8(JVM). In
general, using Java on an embedded device is a challenging
task, since the JVM binary is quite big and often does not fit
due to limited disk space. However, for our experiments we
created a compact9 Java version specifically for our gateway.
Additionally, we developed a small sample application that
pushes temperature readings to a web server. In total, the JVM
application package created by LEONORE has approximately
12MB – including the application code (compiled .class files)
and the JVM binary.

In the remainder of this section we give an overview of
the used cloud setup, present two scenarios and analyze the
gathered results.

A. Setup

To see how LEONORE deals with large-scale deployments,
we created an IoT testbed in our private OpenStack10 cloud.

7http://www.sedonadev.org
8http://www.oracle.com/technetwork/java/javase/downloads/

jdk8-arm-downloads-2187472.html
9http://docs.oracle.com/javase/8/embedded/develop-apps-platforms/

jrecreate.htm
10http://www.openstack.org
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In order to simulate large-scale deployments, we first created
a snapshot of a real world gateway that is used by our industry
partner. Based on this snapshot, we created an image that can
be run in Docker11. The running image (Docker container), is
then used to virtualize and mimic the physical gateway in our
cloud.

Since for our evaluation we want to use several thou-
sand virtualized gateways, we employed CoreOS12 clusters.
In general, CoreOS is a light-weight Linux distribution and
designed for security, consistency, and reliability. Instead of
installing packages via a package management system like
apt, CoreOS uses Docker to manage services at a higher
level of abstraction. The service code and all dependencies are
packaged within a container that can be run on one or many
CoreOS machines. Containers provide benefits similar to full-
blown virtual machines, but focus on applications instead of
entire virtualized hosts. Since containers use the Linux kernel
of the host, they have very little performance overhead, which
allows for fewer machines to operate and a lower number of
compute resources. CoreOS also provides fleet13, a distributed
init system that allows to treat a CoreOS cluster as if it is
a single shared init system. We used fleet’s notion of service
units to dynamically generate according fleet unit files and use
fleet for the automated deployment of virtualized gateways.

For our experiments we used the setup depicted in Figure 4:
a CoreOS cluster of 8-16 virtual machines (depending on the
scenario), where each VM is based on CoreOS 444.4.0 and
uses the m1.medium flavor (3750MB RAM, 2 VCPUs and
40GB Disk space). Our gateway-specific framework compo-
nents are pre-installed in the containers.

The LEONORE framework is initially distributed over
2 VMs using Ubuntu 14.04. The first VM hosts the balancer
and uses the m1.medium flavor (3750MB RAM, 2 VCPUs
and 40GB Disk space). In order to represent a LEONORE
node we created a reusable snapshot of a VM hosting all
necessary LEONORE framework components and repositories.

11https://www.docker.com
12https://coreos.com
13https://github.com/coreos/fleet

For the initial deployment of LEONORE one instance of this
snapshot is started at the beginning of the experiment. During
the experiments LEONORE, more precisely the balancer, spins
up another instance of a LEONORE node to distribute the load
created by the gateways. The VMs hosting the LEONORE
nodes use the m2.medium flavor (5760MB Ram, 3 VCPUs
and 40GB Disk space).

B. Scenario 1: 100 - 1000 IoT Gateways

For the first experiments we picked a scenario with 1000
virtual gateways. The scale of this scenario corresponds to a
medium building management system, containing several big
buildings (each with more than 10 floors). The 1000 virtual
gateways are distributed among a CoreOS cluster consisting
of 8 machines, where each machine hosts 125 containers. To
demonstrate the scalability of our framework we show how our
approach behaves with increasing load (number of gateways).

Figure 5 shows the overall execution time of the provi-
sioning process for different deployments by using the pull-
based (gateways poll the framework every second) approach.
In Figure 5a we show the execution time for provisioning
the SVM application package. We see that the execution time
increases almost linear until reaching 300 IoT gateways and
then has a sharp increase up to 500. When reaching 500,
the balancer spins up another LEONORE node and evenly
schedules requests to both nodes. Therefore, provisioning time
slightly decreases and at approximately 600 becomes constant.
When reaching 900 IoT gateways, the provisioning time starts
to rise again, which means that at this point both LEONORE
node are fully loaded. In order to investigate possible outliers
during the evaluation, we created a scatter plot, which is
depicted in Figure 5b. Since the SVM application is quite small
and the pulling interval of one second has a strong impact on
the overall execution time, we executed each experiment 30
times. In Figure 5b we notice that at 600 IoT gateways we have
some executions that finished more slowly, which is caused by
the high network load and small polling interval. In general,
the deviation of provisioning times is small. This shows that
provisioning using the pulling strategy is stable and provides
reliable results.

Figure 5c shows the execution time when provisioning
the JVM application package. We clearly see that due to the
increased size of the package the provisioning takes noticeably
longer than for the SVM package. When the deployment
reaches 500 IoT gateways, the balancer kicks in, which leads
to a slight increase. In general, we notice that the provisioning
of the JVM package scales linear and produces almost no
outliers, as one can see in Figure 5d. Since this application
package is quite big and therefore the provisioning time also
increases significantly the overhead of the pulling approach is
not noticeable.

Figure 6 shows the overall execution time of the pro-
visioning process for different deployments using the push-
based (framework pushes provisioning tasks to IoT gateways)
approach. In Figure 6a we see the overall execution time
for provisioning the SVM application package. We notice
a sharp increase up to 500 IoT gateways, which is due to
the framework pushing requests to all gateways at once and
therefore leads to a high load on both the IoT gateways and
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the framework. Once the balancer spins up another LEONORE
node, the execution time is almost constant, because the load
is evenly distributed. When the deployment size reaches 900
IoT gateways, the execution time starts to rise again, which
indicates that at this scale both nodes are fully loaded. The
corresponding scatter plot is depicted in Figure 6b, which
reveals that there is only a very small deviation among the
data points.

Figure 6c depicts the provisioning time when using the
JVM application package. Taking the results of the pulling
approach into account, we notice that the initial execution
times are identical. However, at 300 IoT gateways we see that
the initial overhead of the pushing approach is compensated
and therefore the execution time decreases a little bit. From 400
to 500 IoT gateways, the node reaches maximal load. After the
deployment size reaches 500, the balancer schedules the load
evenly on two LEONORE nodes. The corresponding scatter
plot, depicted in Figure 6d, unveils that the deviation of data
points is very small and the execution time increases linearly.

After comparing both approaches, we see that our frame-
work scales almost linearly and that for smaller application
packages the pull-based approach is faster. For bigger packages
both approaches put the framework under heavy load, but
produced similar results.

C. Scenario 2: 500 - 4000 IoT Gateways

For the second experiment we used a scenario with 4000
virtual gateways, which corresponds to a large building man-
agement system containing dozens of big buildings (each with
more than 10 floors). The 4000 virtual gateways are distributed
among two CoreOS clusters, each consisting of 8 machines,
where each machine hosts 250 containers. With this scenario
we want to see how our framework scales when dealing with
a large-scale deployment.

Figure 7 shows the overall execution time of the provision-
ing process for different deployments by using the push-based
approach and the SVM application package. In Figure 7a we
notice that due to the deployment scale the overall execution
time got slower compared to the first scenario. This is obvious
since for this scenario we doubled the amount of CoreOS hosts
and deployed twice as many containers on each CoreOS ma-
chine. This increase in both the hosts and containers, generates
a lot of traffic for the underlying network infrastructure of
our cloud, which causes slower response times and therefore
the overall provisioning takes longer. Furthermore, for this
scenario we changed the balancer to allow 2500 IoT gateways
per LEONORE node. We clearly see that up to 2500 IoT
gateways, the execution time increases almost linearly. At
2500 the balancer schedules the requests evenly to both nodes,
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which causes a constant execution time. When reaching 3000
deployments, the execution time rises again, but once more
starts to flatten at 4000. When looking at the scatter plot
depicted in Figure 7b we see that at the beginning of the
experiments the deviation among data points is very small
and gets bigger with increasing number of IoT gateways.
Nevertheless, we clearly see that our framework deals well
with this rather large scenario and provides almost linear scale.

V. RELATED WORK

Recently, applications in the Internet of Things are receiv-
ing a lot of attention. More specifically, we notice that the
scale of IoT applications can vary from embedded services
to enterprise applications. Therefore it is necessary to think
of different ways of how to design, develop, deploy and
manage such applications not only in the cloud, but also in the
underlying IoT infrastructure. Oriwoh et al. [8] presents initial
guiding principles (commandments) that stakeholders should
follow when developing and deploying IoT enabled devices.
Significant work has been conducted to present challenges
and key findings when developing a city-scale framework for
IoT [9], [10], [11]. Among others an important challenge
discussed by the authors is a solution that provides fine-grained
provisioning and management of resources. To address some

of the aforementioned challenges, [12], [13] define abstract
IoT reference architectures and evolutionary approaches to
standardize the Internet of Things. Since current IoT solutions
often build upon or rely on resource constrained devices,
[14] addresses the general problems of managing these re-
source constrained devices. The authors investigate whether the
management of these devices can be accomplished by adopting
existing network management protocols.

In addition to general challenges and reference architec-
tures, platforms dealing with the deployment and provisioning
of IoT applications emerged. INOX [15] is a robust and
adaptable Platform for IoT that provides enhanced application
and service deployment capabilities by integrating ideas from
Autonomic Network Management. The approach creates a
resource overlay to virtualize the underlying IoT infrastructure.
The Sensing and Actuating as a Service (SAaaS) paradigm is
presented in [16] for pervasively available and geographically
distributed IoT infrastructure, to deploy custom functionality.
The authors propose a hypervisor as the lowest block of SAaaS
to virtualize IoT devices. In contrast to the aforementioned
papers, our approach avoids adding another layer of abstraction
and allows the direct provisioning of IoT enabled devices,
which provides more control and better utilization. The IoT.est
project [17] proposes a framework for service creation and
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testing in IoT environments. The authors concentrate on the
provisioning of services within the boundaries of the frame-
work since underlying resources are abstracted via resource
emulators. Adding an abstraction layer on top of the IoT
infrastructure gets frequently adopted in the literature (e.g.
[18], [19], [20], [21], [22], [23]). All these approaches have
in common that the underlying infrastructure stays untouched
when provisioning or deploying an IoT solution, in contrast
to our approach that also considers IoT devices as first-class
execution environments. The Smart-M3 platform is proposed
in [24] and aims to create a M3 space by deploying agents
on IoT devices. The agents interact based on a space-based
communication and synchronization model. Although the au-
thors mention the provisioning of IoT devices, they solely
focus on the actual application design. Gemini, a deployment
scheme for IoT, is presented in [25] and introduces a system
framework for general IoT deployment. Unfortunately, deploy-
ment in this context means placement of network elements in
an IoT infrastructure, which in our scenario is not feasible
as we are dealing with fixed physical deployments that can
not be changed easily. Chen et al. [26] introduces over the
air provisioning of IoT devices using Self Certified ECDH
authentication technology. Although this approach shares the
same general idea, the authors explicitly focus on one specific
device and do not provide a general and scalable approach.
A solution for automatic configuration of IoT infrastructures
based on interpretable configuration suggestions is presented
in [27]. In contrast to our approach, here the authors use
application components that are already pre-installed on the
IoT devices and only focus on provisioning application-specific
configurations. Li et al. [20] presents an automatic approach
to deploy applications on IoT devices by facilitating TOSCA.
Since changing applications at runtime is not addressed, our
approach can be considered an extension to this work.

Another important area of interest are configuration man-
agement (CM) solutions, with the most prominent represen-
tatives being Chef14 and Puppet15. While CM addresses a
similar overall problem, current tools come with the following

14http://chef.io
15http://puppetlabs.com

limitations that make them unsuitable for the IoT domain. First,
they are inherently pull based approaches with clients running
on the respective machines, making push based hot fixes (e.g.
important security updates) impossible. Second, dependency
resolution is usually handed off to a distribution package
manager, which is not suitable for the strongly resource-
constrained environments we are dealing with.

VI. CONCLUSION

IoT application development models usually consider IoT
devices as external dependencies that only act as data sources
or endpoints to send commands to. This leads to a layered
architecture with a bottom layer comprising deployed IoT
devices and their communication facilities, a middleware layer
to expose the underlying hardware in a unified manner, and
a top-level application layer to execute business logic. Such a
layered architecture implies that business logic is only executed
in the application layer, and IoT devices are assumed to
be already deployed with appropriate software and readily
available. In practice, however, this is not the case. The
proliferation of IoT devices with embedded execution environ-
ments that are able to execute custom application logic allows
practitioners to fundamentally change the way IoT systems are
designed, developed, deployed, and managed. However, these
devices exhibit significant differences in available execution
environments, processing, and storage capabilities. This calls
for a structured way to uniformly and transparently deploy
application components onto a large number of heterogeneous
devices, especially in the context of current large-scale IoT
systems, such as in the smart city domain. In this paper, we
introduced LEONORE, a service oriented infrastructure for
elastically provisioning of application packages on resource-
constrained and heterogeneous edge devices in large-scale IoT
deployments. Our tool supports push-based as well as pull-
based deployments and we showed that our solution is able to
elastically provision large numbers of devices using a testbed
based on a real-world industry scenario.

In our ongoing work, we plan to further extend LEONORE
to address further challenges. For example, we want to de-
velop new balancing strategies to investigate how different

http://chef.io
http://puppetlabs.com


approaches can improve the overall scalability of the frame-
work and reduce the provisioning time. A possible balancing
extension would not only consider the size of deployments, but
also group devices according to their location. Additionally,
we also want to develop advanced provisioning approaches,
that can be migrated or moved closer to the deployment
infrastructure to reduce for example the overall network traffic
or address scenarios where deployments only have limited con-
nectivity. We also see the necessity to improve our IoT gateway
representation to better utilize the underlying device-specific
capabilities and develop techniques to allow the creation and
deployment of more flexible IoT applications. Furthermore,
we plan to integrate and align LEONORE with our work on
software-defined IoT systems, where it will serve as an integral
part of IoT infrastructure management. Moreover, we will
explore how existing application development methodologies
(e.g., [28]) can and need to be extended in order to efficiently
and effectively support application design, deployment, and
composition considering large numbers of IoT gateways to
perform certain parts of application business logic.
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