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Abstract—In software testing, verification of a system’s dynamic prop-
erties such as auto-scaling behavior can be vital for a project’s success.
However, testing such properties can be difficult when parts of the
system are not implemented yet, mocked or simply not available, as
those parts might have a great impact on the system’s runtime behavior.
To address this issue, we introduce FakeLoad, an open-source Java
library capable of producing flexible, on-demand system load within
applications or tests. Our evaluation shows that the library is able to pro-
duce the requested system loads with high accuracy and consistency.

1 INTRODUCTION

In software development, an application’s non-functional
requirements are just as important as its functional require-
ments. Even though there exist many different definitions
on what exactly non-functional requirements are [6], there
is a general consensus that non-functional requirements
describe how a system works as opposed to functional re-
quirements that describe what a system should do [4], [11].
Examples for non-functional requirements are availability,
scalability, performance, reliability, or robustness.

Non-functional requirements play an important role for
a project’s success. Therefore, their early verification is often
vital. For instance, for a distributed system, we might want
to test non-functional aspects like its auto-scaling behavior
or its monitoring infrastructure. However, such dynamic
properties can be hard to test. For instance, any method that
performs a computationally complex or memory-intensive
algorithm, or one that has extensive disk or network usage,
might influence these properties. If these methods are not
implemented yet, be it, because the algorithm has not left
the research department, or the data access model is not
clearly defined yet, testing performance or other dynamic
non-functional requirements is difficult. When testing such
an incomplete system, the developer is forced to make
assumptions about how missing parts would influence the
system, which yield additional risks. A developer might
underestimate the real influence or overlook certain side
effects of system components.

A solution to get a reliable estimate about the system’s
dynamic properties like auto-scaling behavior is to simulate
system load instead of being forced to implement missing
parts before being able to test. Tools like consume.exe, cpus-
tres.exe, HeavyLoad [7], or Diskspd [2] for Windows or stress
for Linux [14] can all be used to generate specific system

load like CPU, memory or disk I/O. However, these tools
are primarily used for stress testing purposes to test how an
application or machine reacts to limited resources, they lack
the possibility to generate load from within applications to
simulate regular application behavior. This calls for a tool
that can do exactly that: generate custom system load from
within applications.

Not only does such a need arise in early-on testing of
non-functional requirements such as auto-scaling behavior,
it could also be required during testing where parts of the
system are being mocked. It is a well-established practice in
software testing to replace certain parts of a system with a
mock [5]. A mock acts like the real component, however, it
does not rely on its complex or complicated dependencies.
Mocking frameworks like Mockito [9] or Easymock [3] can
frequently be found among the most common Java depen-
dencies [8].

However, mocking functionality of a system can some-
times have side effects when the mocked functionality does
not actually reflect the real functionality. A tool that could
generate system load like CPU, memory, disk IO, etc. in a
simple way – on demand – could help create mocks that are
close to the real object’s behavior without inheriting any of
the non-trivial code of the real object.

Last but not least, an on-demand load generating tool
could also come in handy when dealing with algorithms or
data which stand under a non-disclosure agreement (NDA).
The terms of the NDA might prohibit the publication of any
scientific evaluation involving the protected data or algo-
rithm. A possible workaround could be to "simulate" the
behavior of the protected data or algorithm, circumventing
the NDA and thus allowing publication.

To tackle the issues stated above we introduce FakeLoad,
an open-source Java library which lets us produce on-
demand, flexible “fake” system load within our application
or tests.

2 DESIGN

Throughout this section, the main concepts and the general
design goals of the FakeLoad library are introduced.

2.1 Design Goals

FakeLoad is designed as a library that can be used for
generating “fake” system load within applications or tests.
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The main design goals of the library can be summarized as
follows:

• On-demand load generation
• Flexibility
• Accuracy
• Concurrency
• Easy-to-use Application Programming

Interface (API)

2.1.1 On-demand load generation
As addressed in the introduction, common load generating
tools like stress or consume.exe act as a separate entity from
the actual application to generate system load. They lack
the possibility to generate load from within applications.
FakeLoad is designed to let developers generate system load
on demand, i.e, the library offers the possibility to generate
system load whenever needed, and from whichever code it
is required (i.e., the application itself, or test code).

2.1.2 Flexibility
FakeLoad is designed to provide flexible load generating
capabilities. Not only should developers be able to generate
load whenever and wherever needed, they should also be
able to specify exactly what kind of system load should be
generated. To simulate the behavior of specific algorithms
or operations, the library needs to offer the capability of
specifying load patterns. For instance, a load pattern could
look like the following: Simulate a CPU load of 80% and a
memory load of 1024 MB for 5 seconds then simulate a CPU load
of 30% and a memory load of 2048 KB for 10 seconds.

2.1.3 Accuracy
The library should generate system load as requested by the
user as accurately as possible.

2.1.4 Concurrency
We require the library to be capable of concurrent load
simulation. This means that two separate threads each re-
questing load simulation should both be able to do so
without conflicting each other. In more concrete terms, if
one thread is requsted to simulate a CPU load of 50% and
another thread is requested to simulate a CPU load of 30%,
the total load created by the library should be 80%. Not
only should the library support concurrent execution, it
should also clearly define its behavior in edge cases. For
instance, the behavior in case the overall requested load is
close to, or in excess of 100%, should be clearly defined
and documented. Concurrency behavior of the library is
discussed in Section 3.4.

2.1.5 Easy-to-use API
Besides functionality, usability is the most important factor
for the success of an API [10]. If an API does not behave as
documented, it naturally offers no value to the user. How-
ever, if an API is not easy to use, it might remain unused
despite functional completeness. Among FakeLoad’s design
goals is the ease of use of the resulting API. FakeLoad is pri-
marily designed as a support library for testing. Developers
should be able to use FakeLoad effectively and with as little
learning and training as possible. Naturally, an easy-to-use

Fig. 1: FakeLoad tree

library also means providing plentiful and useful material,
such as tutorials or in-code documentation. In the best case,
developers should be able use FakeLoad efficiently in a
“copy and paste” kind of manner by merely reading the
introductory tutorial.

2.2 Core Concepts
The library is designed around two main concepts: A
FakeLoad and a FakeLoadExecutor. As the names suggests, a
FakeLoad represents artificial (requested) system load, and
the FakeLoadExecutor is responsible for actually creating
the requested load.

2.2.1 FakeLoad
FakeLoad is one of the two core classes of the FakeLoad
library. A FakeLoad object contains the instructions needed
for load generation. For instance, for simulating a CPU load
of 50%, we create a FakeLoad object containing CPU load
instructions of 50%. A FakeLoad object can contain three
different kinds of system load:

• CPU
• Memory
• Disk Input/Output

Besides specifying the kinds of system load (CPU, mem-
ory, Disk I/O), users can also define the duration and
repetitions of a FakeLoad object. The duration defines for
how long the specified system load are executed and the
number of repetitions defines how many times the load
defined in a given FakeLoad object will be repeated during
execution.

For a more flexible system load configuration, a
FakeLoad object can contain other FakeLoad objects. These
inner FakeLoad objects can be used to define more elaborate
load patterns. Users can add as many inner FakeLoad
objects as they want and these inner FakeLoad objects
themselves can again contain other FakeLoad objects. This
results in a tree structure, as demonstrated in Figure 1.

A FakeLoad object does not define any formal require-
ments on the order of execution. It is up to the FakeLoad-
Executor to decide in which order the different FakeLoad
object nodes are processed. However, a FakeLoad object
should offer some kind of default order that the executor
can use (see Section 3.2.3).
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2.3 FakeLoadExecutor
The FakeLoadExecutor is the second core class of the
FakeLoad library. While a FakeLoad object is used to specify
the system load a user requires to generate, the FakeLoad-
Executor is primarily concerned with how system load is
actually created. Users therefore execute FakeLoad objects
using a FakeLoadExecutor. The executor is responsible for
generating system load as specified by the FakeLoad object
submitted by the user. The executor is also responsible for
parsing the tree of a FakeLoad object as seen in Figure 1. By
construction, the executor defines the order in which nodes
are processed.

Why a separate executor?
In first library designs, the two concepts FakeLoad and FakeLoad-
Executor were united in a single entity. Clients would use a
FakeLoad object to specify the system load instructions as well
as actually executing those instructions. The rationale was to
keep client concerns to a minimum by making the interface as
simple as possible. By uniting the concepts of the FakeLoad
and the FakeLoadExecutor, the main client interface consisted
only of a single class. However, multiple reasons led to the
separation into FakeLoad and FakeLoadExecutor: First, having
one component for load specification (FakeLoad) and one for
execution (FakeLoadExecutor) ensures a clear separation of
concerns, which is usually desirable in software design as it
improves testability and maintainability. Secondly, the split al-
lowed us to define the FakeLoad as immutable value object which
came with several advantages. The split increases the flexibility
in terms of FakeLoad execution. Instead of simulation behavior
being hard-coded into the FakeLoad component, clients are
able to simulate the same FakeLoad obejcts using different
types of FakeLoadExecutors. Furthermore, this enables users
to create executors tailored specifically for their needs. For
example, a user might need to simulate numerous kinds of
system load types in which case a complex multi-threaded
executor is needed. In another case, a user might only want to
simulate memory usage, in which case a simple single threaded
executor that would only allocate some memory is sufficient.

3 IMPLEMENTATION

In this section, the main API and important implementation
details of the FakeLoad library are addressed. Note that
throughout this section, to emphasize when we are referring
to concrete types of the library we will use monospaced type-
setting. For example, FakeLoad refers to the concrete library
class whereas when the standard font is used, FakeLoad
refers to the general concept.

3.1 The Main API
As described in Section 2, the library consists of two main
classes: FakeLoad and FakeLoadExecutor. A FakeLoad object
contains load instructions, and a FakeLoadExecutor executes
those instructions. The main API of the library reflects these
two concepts pretty well. For example, Listing 1 below
shows how to create and execute a FakeLoad that will simu-
late a CPU load of 80% and a memory load of 300 megabytes
for ten seconds:

As we can see, the user first creates a FakeLoad and fills
it with different system load instructions. Then, the user
executes the FakeLoad object by creating a FakeLoadExecutor
and calling its execute() method passing the newly created
FakeLoad object as a parameter. With only these two con-
cepts, any combination of system load can be created.

// Creat ion
FakeLoad fakeload = FakeLoads . c r e a t e ( )

. l a s t i n g ( 1 0 , TimeUnit .SECONDS)

. withCpu ( 8 0 )

. withMemory ( 3 0 0 , MemoryUnit .MB) ;

// Execution
FakeLoadExecutor executor =

FakeLoadExecutors . newDefaultExecutor ( ) ;
executor . execute ( fakeload ) ;

Listing 1: FakeLoad creation and execution

3.2 FakeLoad

Section 2.2.1 introduced FakeLoad as one of the two main
classes of the library. In the library, a FakeLoad object is
represented by interface FakeLoad. Within a FakeLoad object,
users can specify which kinds of system load they want to
simulate and for how long they will be simulated. FakeLoad
objects can be created either using a factory or a builder.

3.2.1 FakeLoad Creation

We already got a glimpse of how users can create FakeLoad
instances in Listing 2. We see that FakeLoad creation follows
a fluent interface. After creation, different load instructions
like CPU, memory, disk I/O or other FakeLoad objects can
be added by chaining the corresponding methods. For ex-
ample, Listing 2 shows how the FakeLoad tree from Figure 1
could be created.

Users can not directly call a constructor to create
FakeLoad instances. Instead, the factory class FakeLoads is
used. This way, implementation details remain hidden as
potential users do not need to know how exactly a FakeLoad
object is implemented behind the covers. The use of a
factory has another advantage as it leaves the option of
being able to offer different ways of FakeLoad creation in
the future versions of the library. For example, it could be
convenient to store FakeLoad definitions as JSON strings.
In this case, another method could be added to the factory,
which would create FakeLoad instances from JSON strings.

// Complex FakeLoad c r e a t i o n
FakeLoad fakeload = FakeLoads . c r e a t e ( )

. l a s t i n g ( 2 0 0 , TimeUnit . MILLISECONDS)

. withCpu ( 8 0 )

. withMemory ( 2 0 0 , MemoryUnit .MB)

. addLoad ( FakeLoads . c r e a t e ( )
. l a s t i n g ( 5 , TimeUnit .SECONDS)
. withCpu ( 2 0 )
. addLoad ( FakeLoads . c r e a t e ( )

. l a s t i n g ( 2 , TimeUnit .SECONDS)

. withCpu ( 4 0 ) )
. addLoad ( FakeLoads . c r e a t e ( )

l a s t i n g ( 4 0 0 , TimeUnit . MILLISECONDS)
. withCpu ( 1 0 )
. withMemory ( 5 0 0 , MemoryUnit . KB) ) )

. addLoad ( FakeLoads . c r e a t e ( )
l a s t i n g ( 5 0 0 , TimeUnit . MILLISECONDS)
. withCPU ( 7 5 )
. withMemory ( 1 0 2 4 , MemoryUnit .MB)
. addLoad ( FakeLoads . c r e a t e ( )

l a s t i n g ( 4 , TimeUnit .SECONDS)
. withCpu ( 6 5 )
. withDiskOutput ( 3 0 , MemoryUnit . KB) ) ) ;

Listing 2: Complex FakeLoad creation
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Besides the factory, users can also use the builder
pattern to create FakeLoad instances. A builder class
FakeLoadBuilder is provided for less expensive FakeLoad
creation which could come in handy when very complex
FakeLoad objects are created. This is due to the immutability
of the FakeLoad class. Listing 3 shows a simple example of
how FakeLoad objects are created using the builder class.

MemoryUnit: As we have shown in Listing 2 and 3,
load instructions are mostly specified as numerical val-
ues [13]. However, we note that for specifying memory
and disk I/O, we also pass an instance of MemoryUnit
enum to the corresponding methods. The MemoryUnit enum
eases the creation of memory-related system load. It entails
the most common memory representations bytes, kilobytes
(kB), megabytes (MB), and gigabytes (GB).

The orders of magnitude between bytes, kilobytes,
megabytes, and gigabytes are represented aligned to powers
of two, i.e., one kilobyte are 1024, one megabyte are 10242

and one gigabyte are 10243 bytes. These representations are
sometimes also known as kibibytes (kiB), mebibytes (MiB)
and gibibytes (GiB).

Immutable vs. Mutable
All classes implementing the FakeLoad interface are immutable.
Immutability implies that an object cannot be modified after
it has been created. The only way to work with an existing
object is to create a new one based on the old one with updated
values. Immutable objects are usually preferred when dealing
with so-called value objects. Value objects are used for objects
representing exactly one value, such as location, money, or
time. A FakeLoad object can be considered a value object
because it represents exactly one kind of load configuration.
Also, FakeLoad objects containing exactly the same load con-
figuration are considered equal. Making the FakeLoad classes
immutable yields a couple of advantages with comparable few
disadvantages for the overall architecture of the library.
The primary advantage of making FakeLoad classes immutable
is the built-in thread safety. Immutable objects are inherently
thread-safe, as there is no state which requires cross-thread
synchronisation. This mitigates the problem of inconsistent
state. Another advantage is that no checks for recursiveness
is required, i.e., whether a FakeLoad object is about to add
itself to its children nodes. Adding a FakeLoad object to itself
would cause a StackOverflowError if the object were mutable.
This is not possible with immutable objects as the adding of
a FakeLoad to itself would cause a new FakeLoad object to be
created containing the added object.
The only real disadvantage is slightly higher cost at object cre-
ation. The fluent interface of an immutable FakeLoad requires
the creation of a new FakeLoad object whenever a load instruc-
tion is added or modified. However, this disadvantage could
be overcome by either using the builder pattern (which comes
at a slight cost of readability) or using an internal mutable
object. Furthermore, because of the create-and-execute nature
of a FakeLoad object, it can be assumed that an existing object
will not be modified repeatedly. Therefore, the performance
impact is negligible for most scenarios. However, just in case
huge FakeLoad objects are required, the library provides the
builder class FakeLoadBuilder.

3.2.2 Class Hierarchy

The interactions with FakeLoad objects are defined in the
FakeLoad interface. The interface is backed by two concrete
implementing classes. The factory and builder classes return
one of the two implementing classes depending on the
parameters passed during object creation. The UML class
diagram of the FakeLoad classes is shown in Figure 2.

Fig. 2: UML class diagram of FakeLoad classes

3.2.2.1 SimpleFakeLoad: The SimpleFakeLoad class,
as the name suggests, is responsible for simple load in-
structions. This means that a SimpleFakeLoad object contains
fields which specify different types of system load, the dura-
tion as well as the number of repetitions. A SimpleFakeLoad
does not contain inner FakeLoad objects.

3.2.2.2 CompositeFakeLoad: On the other hand, the
CompositeFakeLoad class is a composite of a SimpleFakeLoad
object specifying its own load instructions and multiple
inner FakeLoad objects. When dealing with load patterns
involving multiple inner FakeLoad objects, the underlying
class is always CompositeFakeLoad.

// FakeLoad c r e a t i o n using the Bui lder pat tern
FakeLoad fakeload = new FakeLoadBuilder ( 2 0 ,

TimeUnit .SECONDS)
. withCpu ( 2 0 ) . withMemory ( 1 0 0 , MemoryUnit . KB)
. addLoad (new FakeLoadBuilder ( 2 0 ,

TimeUnit .SECONDS)
. withCpu ( 4 0 ) . withMemory ( 2 0 0 ,

MemoryUnit . KB) . bui ld ( ) )
. addLoad (new FakeLoadBuilder ( 2 0 ,

TimeUnit .SECONDS)
. withCpu ( 6 0 ) . withMemory ( 3 0 0 ,

MemoryUnit . KB) . bui ld ( ) )
. bui ld ( ) ;

Listing 3: FakeLoad creation using a builder

3.2.3 Default Execution Order (Iterator)
The FakeLoad interface extends the Iterable interface, each
concrete class therefore implements the iterator() method.
The returned iterator plays an important role for the ex-
ecution of a FakeLoad object. In Section 2.2.1, we state
that a FakeLoad object should offer a default order for
executing the tree of its FakeLoad child nodes. The re-
turned iterator serves this purpose by iterating over all
the nodes of the tree, thus defining a default execution
order of a FakeLoad object. The iterator is implemented in
the following fashion: The iterator for the SimpleFakeLoad
class returns only the SimpleFakeLoad object itself. The iter-
ator for the CompositeFakeLoad class first returns its own
SimpleFakeLoad object, and then calls the iterators of its
children FakeLoads in the order in which they were added
to the parent.
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Serializable
The FakeLoad interface also extends the Serializable interface.
This is done to allow sending or receiving FakeLoad objects
over the network, or writing or reading them to or from a file.
However, the SimpleFakeLoad and CompositeFakeLoad classes
do not use the default serialization process of Java, but rather
make use of the Serialization Proxy Pattern which was first
defined in the book Effective Java by Joshua Bloch (2nd edi-
tion: item 78) [1]. The serialization proxy is useful as it hides
implementation details of the classes. Further, it is also useful
for keeping class invariants intact, because objects are recreated
after deserialization by using the public API of the library.

3.3 FakeLoadExecutor

As described in Section 2.3 the FakeLoadExecutor is the
second core concept of the FakeLoad library and is re-
sponsible for executing FakeLoads. In the library, this
concept is represented by the FakeLoadExecutor interface.
Similar to the process for creating FakeLoad objects, a
factory class FakeLoadExecutors is available for creating
FakeLoadExecutor instances. In Listing 4, we show how a
client obtains a FakeLoadExecutor instance using the fac-
tory.

FakeLoadExecutor executor =
FakeLoadExecutors . newDefaultExecutor ( ) ;
executor . execute ( fakeload ) ;

Listing 4: Creation of the default FakeLoadExecutor

This method returns a DefaultFakeLoadExecutor in-
stance which, in the current version, is the only
FakeLoadExecutor implementation available. Other kinds of
executors can be implemented in future versions of the li-
brary or by users of the library themselves. When executing
FakeLoads concurrently, clients are advised to always create
FakeLoadExecutor instances using the factory method.

3.3.1 DefaultFakeLoadExecutor

The default executor is the preferred way for executing
FakeLoad objects, as it already provides the capability nec-
essary for simulating CPU, memory, and disk I/O. The
default executor is capable of executing multiple FakeLoad
objects concurrently, i.e. if one thread executes a CPU
load of 30% and another thread executes a CPU load of
40%, the total CPU load simulated will be 70%. When the
executor’s execute(FakeLoad) method is called, it blocks
until the execution of the passed FakeLoad object finished
successfully or throws an exception. Figure 3 shows the
general process when executing FakeLoad objects with the
DefaultFakeLoadExecutor. Once a client submits a FakeLoad
object via the executor’s execute(FakeLoad) method, the
object is propagated to a FakeLoadScheduler instance. The
scheduler is responsible for scheduling increases/decreases
of system load at the correct time. Increases and de-
creases of system load are propagated to a specialized
simulation infrastructure represented by an instance of the
SimulationInfrastructure class. The infrastructure is re-
sponsible for the actual system load enactment, i.e., produc-
ing the desired system load like CPU percentage, amount
of memory, or bytes/kilobytes/megabytes/gigabytes per
second of disk I/O.

Fig. 3: General Process of FakeLoad execution

Fig. 4: UML class diagram of DefaultFakeLoadExecutor

As described above, in order to achieve correct
concurrent load simulation behavior, especially when
FakeLoads are executed from multiple threads, it
is recommended to always create FakeLoadExecutor
instances using the factory methods. All FakeLoadExecutor
instances returned by the factory use the same
SimulationInfrastructure internally. However, to allow
customization by the client, clients can also manually
create instances of the DefaultFakeLoadExecutor class
using the constructor and injecting FakeLoadScheduler and
SimulationInfrastructure instances. Prior to manually
wiring up DefaultFakeLoadExecutor instances, clients
should be aware of the inner workings of the class, in
order to not cause incorrect concurrent behavior. Clients
manually wiring up instances should also consider always
passing the same SimulationInfrastructure instance. The
UML class diagram of DefaultFakeLoadExecutor and its
dependencies can be seen in Figure 4. More details on
FakeLoadExecutor and corresponding classes can be found
in the javadocs [13].

3.3.2 FakeLoadScheduler

The DefaultFakeLoadExecutor class depends on a
FakeLoadScheduler instance for scheduling the execution
of FakeLoads. The scheduling happens through a call
to the schedule(FakeLoad) method of the scheduler.
This method schedules the instructions contained in the
FakeLoad object and passes them on to the simulation
infrastructure at the right time and in the right order. The
default FakeLoadScheduler implementation, realized in
the DefaultFakeLoadScheduler class, uses the FakeLoad
iterator to retrieve the next FakeLoad object in the chain
of execution. For each FakeLoad object returned by the
iterator, two tasks are executed. One task increases the
system load, another task first pauses the current thread
for the duration specified in the corresponding FakeLoad
object and then decreases the system load. Both tasks are
run asynchronously on one CompletableFuture [?] object,
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effectively creating a chain of alternating increase and
decrease tasks. If one of the tasks encounters an exception,
execution of all remaining tasks is cancelled and the
simulation of system load is interrupted. The exception is
then propagated to the DefaultFakeLoadExecutor. More
details on the DefaultFakeLoadScheduler can be found in
the javadocs [13].

3.3.3 SimulationInfrastructure
The actual execution of system loads happens
on a so-called simulation infrastructure. The
simulation infrastructure is represented by the
SimulationInfrastructure interface and its default
implementation DefaultSimulationInfrastructure. The
default implementation consists of multiple threads each
responsible for simulating some specific system load,
multiple threads for CPU simulation, one for memory
simulation, and so on.

The DefaultSimulationInfrastructure class is responsi-
ble for starting and stopping these threads as well as manag-
ing the currently executed system load. The class contains
the logic for aggregating all load instructions taken from
FakeLoad objects passed to the infrastructure. Therefore,
FakeLoad objects which are executed from different threads
are aggregated in this class. In consequence, when using
the DefaultSimulationInfrastructure class as infrastructure
for simulating system load, only one instance should exist
throughout the application to achieve correct concurrent
behavior.

All threads are run as daemon threads in the background
using a fixed thread pool. The use of daemon threads has
the advantage that clients do not have to explicitly shut
down the simulation infrastructure when the client program
finishes, instead, all daemon threads are shut down when
the Java Virtual Machine (JVM) exits. The following threads
are part of the default infrastructure:

3.3.3.1 CpuSimulator: As the name suggests, the
CpuSimulator class is responsible for generating CPU load
during FakeLoad execution. CPU simulation is achieved
through dividing a 100 ms time window between calcula-
tion and sleeping time. For instance, if the client requests
a CPU load of 30%, the thread will perform calculations
for 30 ms and then sleep for the remaining 70 ms. In the
simulation infrastructure, there are as many CpuSimulator
threads as the number of CPU cores which are available to
the JVM.

3.3.3.2 MemorySimulator: The MemorySimulator
class is responsible for utilizing memory during FakeLoad
execution. Memory is utilized by creating byte arrays the
size of the requested memory. Memory can be utilized
in bytes/kilobytes/megabytes/gigabytes. Once byte arrays
are created, the MemorySimulator thread waits until new
instructions are available. When memory load is decreased
again, the allocated byte arrays are cleared and replaced
with a null reference to be made available for garbage
collection.

3.3.3.3 DiskInputSimulator: The
DiskInputSimulator is responsible for enacting disk
input. Disk input can be defined as bytes/kilo-
bytes/megabytes/gigabytes per second. Disk input is
realized by dividing a time window of one second between

reading the desired amount of data from a file on the hard
drive and sleeping for the remainder of the second, thus
achieving a disk input of about the desired amount per
second. Naturally, the speed cannot exceed the maximum
writing speed of the system.

In its current implementation, the DiskInputSimulator
requires the file it uses for reading to be called input.tmp
and be placed in the temporary directory as indicated by
Java system property "java.io.tmpdir". The property can be
set using the parameter -Djava.io.tmpdir=/tmp.

To prevent the computer from caching read data, the file
used for reading should be at least twice the size as the RAM
available.

3.3.3.4 DiskOutputSimulator: The
DiskOutputSimulator is responsible for enacting disk
output. Disk output can be defined as bytes/kilo-
bytes/megabytes/gigabytes per second. Disk output is
realized by splitting up the time window of one second
between writing data to a file on the hard drive and
sleeping for the remainder of the second. Thus, the average
disk output will be about the desired amount per seconds.
Again, the speed cannot exceed the maximum writing
speed of the system.

Similar to the DiskInputSimulator, the
DiskOutputSimulator writes to a file called output.tmp
which will be placed in the temporary directory as
indicated by Java system property java.io.tmpdir.

3.3.3.5 LoadControl: The LoadControl thread is re-
sponsible for controlling the system loads produced by
other threads. For example, CPU simulation might not be
accurate by solely splitting up 100 ms between operating
and sleeping time, as other processes might be running that
consume CPU. The LoadControl thread checks in regular in-
tervals whether the generated system load is in proximity to
the requested load and adjusts load generation if necessary.
The default control interval is two seconds and the allowed
margin for load generation is 1% off of the desired amount.

3.4 Concurrent Behavior

One of the design requirements of the FakeLoad library
is to support concurrent FakeLoad execution. Concurrent
behavior of the FakeLoad Library is defined as follows:
When FakeLoads are executed concurrently from different
threads, the load instructions of both FakeLoad objects get
aggregated. That means, if one thread submits a CPU load
of 20% and another thrad submits a CPU load of 30%, the
total CPU load simulated by the API must be 50%.

When the total load accumulated by all requests exceeds
the limit of the system, a runtime exception is thrown to
notify the client. For instance, a CPU load of more than 100%
is not possible. Therefore, when a client submits a FakeLoad
object for execution which will cause a CPU load of more
than 100%, the execute method of the FakeLoadExecutor will
throw a runtime exception.

Exceeding of the memory limit is handled in a slightly
different way: Even though the simulator thread responsible
for simulating memory can check if enough memory is
available for simulation, when actually allocating memory,
the thread might still encounter an OutOfMemoryError.
As the corresponding thread will die in such a case, the
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Fig. 5: Increasing CPU load

executor starts a new thread and the requested memory
is not executed. However, no runtime exception is thrown,
the failure of memory simulation is only visible in the logs,
other loads requested by the client are executed as usual. It is
currently not possible to also exit execution with a runtime
exception in case of an OutOfMemoryError, as communi-
cation between executor and simulation infrastructure is
currently unidirectional, and reporting from infrastructure
to executor is not supported.

Alternative Strategies
Besides aggregation of FakeLoad objects, other concurrent
strategies could be useful. These alternatives are shortly ad-
dressed here and might be supported and configurable in
future versions of the library.
Alternative 1: Last Come, First Served
The FakeLoad that is executed last gets prioritization. That
means if one thread issues a CPU load of 20% before another
thread issues a CPU load of 50%, the API simulates the 20%
until the second request arrives, after which the library will
produce 50% CPU.
Alternative 2: One at a Time Only one load request at a time
is possible. That means if the library is currently executing
a load request from one thread, any load requests issued by
other threads will fail. This solution would virtually prevent
the library’s concurrent execution capabilities.

4 EVALUATION

4.1 CPU
To evaluate the accuracy of the generated CPU load, we
execute a FakeLoad object with a CPU load of 20%, 40%,
80% and 100%, each for a duration of 60 seconds, as well
as a FakeLoad object with a constant CPU load of 50% for
a duration of ten minutes. The actual CPU usage of the
process was recorded with JConsole [12].

As we show in Figure 5, the FakeLoad library is able
to produce a constant CPU load fairly close to the desired
load levels. After a small adjustment period, every time
a load change happens, the library adopts the load fairly
quickly to be constantly within 1% of the desired load level.
Especially for load levels under 80%, the library produces a
very constant CPU load with hardly any fluctuations apart
from the small adjustment periods in the beginning of each
new load level. For CPU load levels of 80% and more, we
see some more fluctuation. This fluctuation can be explained
with other processes which are also competing for CPU
time. At low load levels, other processes don’t affect each

Fig. 6: Constant CPU load

Fig. 7: Concurrent CPU simulation in two processes

other’s CPU usage as much, as there is enough CPU power
available. Logically, the library cannot reach an actual CPU
usage of 100% because certain CPU power is required for
kernel and system processes.

To show that the library is also able to produce a con-
stant CPU load over longer periods of time we execute a
FakeLoad object with 50% CPU load for ten minutes. As we
show in Figure 6, the FakeLoad library produces a CPU load
which is very close (within 1%) to the desired 50% and stays
constant over the entire simulation period of ten minutes.

Next, we execute two FakeLoad objects concurrently in
different processes to establish how two different processes
executing FakeLoad objects are influencing each other. Both
FakeLoad objects are executed with rising CPU loads of
10%, 20%, 30%, ..., 100%, each executed for a minute. Both
processes are started within a very short time of each other.
The combined CPU measurements of both processes are
shown in Figure 7. The graphs show clearly that both pro-
cesses produce constant CPU loads of 10, 20, and 30%. The
40% loads are also produced by both processes even though
we see some disturbances. Once both processes ought to
simulate loads of 50% and more, they are no longer able to
maintain the requested load. Both graphs show a trembling
curve as the two processes compete with each other for
CPU time. We also observe that no process seems to get
prioritized, and both processes remain at around 47-48% of
CPU usage.

We have shown that the library is able to produce accu-
rate and consistent CPU loads. One thing to note when look-
ing at these graphs, however, is that the loads represented
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Fig. 8: CPU simulation with 4 second periods

Fig. 9: Memory Usage

in the graphs are simulated for longer periods of time,
where the library has enough time to adjust the actual load
level according to the desired load level. When executing
FakeLoad objects for only a couple of seconds or even just
in the range of milliseconds, the CPU load produced will
not be as accurate (see Figure 8).

4.2 Memory

The FakeLoad library simulates RAM usage by allocating
the requested amount of bytes. To demonstrate the behavior
of the library, we execute a FakeLoad object repeatingly
allocating 500 MB of memory every 20 seconds. In Figure 9,
we show the memory footprint of said execution. As we
can see, every 20 seconds, 500 MB of memory are allocated.
One might expect the memory graph to remain constant,
however, the resulting graph is characterized by steps of
500 MB. In any case, we see that once the memory reaches
a threshold, garbage collection kicks in and cleans up the
unused memory leaving only about 500 MB.

4.3 Disk Input

Users specify disk input in FakeLoad objects in bytes per
second. The library then simulates disk input by reading
the requested amount of bytes from a file every second. To
demonstrate disk input behavior of the library, we measure
the execution of a FakeLoad object with increasing amounts
of disk input. Disk input is measured with the iotop utility
using a sampling rate of 1 second. The first FakeLoad object
executed contains disk input loads of 10, 20, 30, 40, 50,

Fig. 10: Small increasing disk input loads

Fig. 11: Big increasing disk input loads

60, 70, and 80 MB/s, each executed for a duration of 30
seconds. The second FakeLoad object contains loads of 50,
100, 150, 200, 250, 300, 350, and 400 MB/s, also executed for
30 seconds each. As we can see in Figure 10, the library is
able to produce the smaller loads in a consistent matter with
a low number of outliers visible. However, in Figure 11, we
observe that as loads become bigger, execution becomes less
consistent, as the overall read limit of the system is reached.

To show that the library is also capable of producing
consistent loads over longer periods of time, we execute
a FakeLoad object with a disk input load of 50 MB/s
for 10 minutes. In Figure 12 we show the results of the
corresponding measurement.

Fig. 12: Constant disk input load of 50 MB/s
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Fig. 13: Small increasing disk output

Fig. 14: Big Increasing Disk Output

4.4 Disk Output
In the same way as for disk input, disk output is specified in
bytes per second by users of the FakeLoad library. The disk
output is then enacted by writing the requested amounts of
bytes every second to a file. Disk output was also evaluated
by measuring the execution of different FakeLoad objects
containing different disk output loads. Yet again, we used
iotop with a sampling rate of 1 second as the monitoring
tool. In Figure 13 and 14, we see the behavior of the library
during small and big increasing disk output loads. We
observe that smaller loads are handled in a precise and
consistent manner. Bigger loads, on the other hand, are only
reliably simulated up to limit of 200 MB/s, which suggests
that the system’s overall writing speed limit lies within that
region.

To demonstrate that the library is able to produce con-
stant disk output over longer periods of time, we also
execute a FakeLoad containing 50 MB/s disk output load
for 10 minutes. The results of the measurement is shown in
Figure 15.

Some of the disturbance in the graphs is caused by the
sampling rate of iotop. For example, while simulating a disk
output of 50 MB/s, one sample might record a load 40 MB/s
while the next sample records a load of 60 MB/s. This causes
a disturbance in the graphs, however, averaging the values
reveals an actual load of 50 MB/s.

5 CONCLUSION

This report introduced and discussed FakeLoad, a Java
library for producing system loads within applications or

Fig. 15: Constant disk output load of 50 MB/s

tests. We showed that the library is able to generate constant,
accurate and flexible system loads of CPU, memory, and
disk I/O, even when generating system loads from multiple
processes concurrently. However, possible future extensions
exists, as especially for shorter simulation periods, the li-
brary is not able to produce loads as accurately as for longer
simulation periods, due to the granularity for CPU and
disk I/O load generation of 100 millisecond and 1 second,
respectively.
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