Script-based Generation of Dynamic Testbeds
for SOA

Lukasz Juszczyk, Schahram Dustdar
Distributed Systems Group, Vienna University of Technglog
ArgentinierstralRe 8/184-1, A-1040 Vienna, Austria
Email: {juszczyk,dustdgdm@infosys.tuwien.ac.at

Abstract—This paper addresses one of the major problems testing systems which operate in service-based envirotamen
of SOA software development: the lack of support for testing themselves, the engineer is facing the problem of setting
complex service-oriented systems. The research community hasup realistic test scenarios which cover the system’s whole

developed various means for checking individual Web services]c fi litv. Th d ist soluti for testbed geti
but has not come up with satisfactory solutions for testing system 'Unctionality. -tnere do exist solutions for testbed genen

that operate in service-based environments and, therefore, ed but these are restricted to specific domains, e.g., for chgck
realistic testbeds for evaluating their quality. We regard this Service Level Agreements by emulating Quality of Service
as an unnecessary burden for SOA engineers. As a proposed[11]. However, if engineers need generic support for cneati
solution for this issue, we present the Genesis2 testbed generato ¢ stomized testbeds covering various aspects of SOA, no
framework. Genesis2 supports engineers in modeling testbeds . . - .
and programming their behavior. Out of these models it generates SOIUt'On_S e_X'St to our knowledge Wh'Ch_WOUId _rehgve th_em
running instances of Web services, clients, registries, and other from this time-consuming task. We believe, this issue is a
entities in order to emulate realistic SOA environments. By gener- severe drawback for the development of complex SOAs.
ating real testbeds, our approach assists engineers in performin | this paper we present the current state of our work on a
runtime tests of their systems and particular focus has been g tion for this issue. We introduce the Genesis2 framkwor
put on the framework’s extensibility to allow the emulation of . . .
arbitrarily complex environments. Furthermore, by exploiting (Generating SOA Testbed nfrastructurs, in _short, G2) .Wh'Ch
the advantages of the Groovy language, Genesis2 provides an@llows to set up SOA testbeds and to manipulate their streictu
intuitive yet powerful scripting interface for testbed control. and behavior on-the-fly. It comprises a front-end from where
testbeds are specified and a distributed back-end on whéch th
generated testbed is hosted. At the front-end, engineedts wr
In the last years, the principles of Service-oriented AiGroovy scripts to model the entities of the testbed and te pro
chitecture (SOA) have gained high momentum in distributagtam their behavior, while the back-end interprets the rhode
systems research and wide acceptance in software industryd generates real instances out of it. To ensure extdtsibil
The reasons for this trend are SOAs advantages in ter@2 uses composable plugins which augment the testbed’s
of communication interoperability, loose coupling betweefunctionality, making it possible to emulate diverse tapés,
clients and services, reusability and composability ofises, functional and non-functional properties, and behavior.
and many more. Moreover, novel features which are assdciate The rest of the paper presents our work as follows. In
with SOA [1] are adaptivity [2], self-optimization and self Section Il we give an overview of related research. Sectibn |
healing (self-* in general) [3], and autonomic behavior. [4]is the main part of the paper and describes the concepts of
The result of this evolution is that, on the one hand, SOA the G2 framework. Section IV demonstrates the applicatfon o
being increasingly used for building distributed systetng, G2 via a sample scenario. Finally, sections V and VI discuss
on the other hand, is becoming more and more complex itsalpen issues, present our plans for future work, and conclude
As complexity implies error-proneness as well as the need to
understand how and where such complexity emerges, SOA- Il. SOA TESTBEDS
based systems must be tested intensively during the whole&Comparing the state of the art of research on SOA in
development process and, therefore, require realistibeéds. general and the research on testing in/for SOA, an intaigsti
These testbeds must comprise emulated Web services s¢liedivergence becomes evident. SOA itself has had an impeessiv
registries, bus systems, mediators, and other SOA compmneavolution in the last years. At its beginning, Web service-
to simulate real world scenarios. However, due to missing tdbased SOA had been mistaken as yet another implementation
support, the set up of such testbeds has been a major burftendistributed objects and RPC and, therefore, had been
for SOA engineers. In general, the lack of proper testirgpused for direct and tightly-coupled communication [12].
support has been regarded as one of the main problemsAfter clearing up these misconceptions and pointing out its
SOA [5]. Looking at currently available solutions, it becesn benefits derived from decoupling, SOA has been accepted as
evident that the majority aims only at testing of single Wehbn architectural style for realizing flexible documenteatied
services [6], [7], [8] and composite ones [9], [10] whichdistributed computing. Today’s SOAs comprise much more
however, only covers the service provider part of SOA. Fdhan just services, clients and brokers (as depicted in the

I. INTRODUCTION

outdated Web service triangle [13]) but also message medemains such as QoS or workflows.
ators, service buses, monitors, management and governandeor instance, SOABench [20] provides sophisticated sup-
systems, workflow engines, and many more [1]. As a copert for benchmarking of BPEL engines [21] via modeling
sequence, SOA is becoming increasingly powerful but algxperiments and generating service-based testbedsvitipso
increasingly complex, which implies higher error-prorge runtime control on test executions as well as mechanisms for
[14] and, logically, requires thorough testing. But loakintest result evaluation. Regarding its features, SOABeisch i
at available solutions for SOA testing (research protatypéocused on performance evaluation and generates Web servic
as well as commercial products), one might get the feelirggubs that emulate QoS properties, such as response time and
that SOA is still reduced to its find-bind-invoke interactio throughput. Similar to SOABench, the authors of PUPPET
because most approaches deal only with testing of individijal] examine the generation of QoS-enriched testbeds for
Web services, and only few solutions deal to some extent wikrvice compositions. PUPPET does not investigate themperf
complex SOAs. Allin all, it is possible to test whether a $ng mance but verifies the fulfilment of Service Level Agreensent
Web service behaves correctly regarding its functional a(8LA) of composite services. This is done by analyzing
non-functional properties, but testing systems operabinga WSDL [22] and WS-Agreement (WSA) documents [23] and
whole environment of services is currently not supportest. Lemulating the QoS of generated Web services in order to
us take the case of an autonomic workflow engine [15] faheck the SLAs. Both tools, SOABench and Puppet, support
example. The engine must monitor available services, aaalythe generation of Web service-based testbeds, but both are
their status, and decide whether to adapt running workflowsstricted to a specific problem domain (workflows/composi-
To verify the engines’ correct execution it is necessary tions & QoS/SLA). In contrast, G2 provides generic support
perform runtime tests in a real(-istic) service environiném for generating and controlling customized testbeds. Thpug
short, a service testbed. The testbed must comprise runnihdesired, G2 can be also used for emulating QoS.
instances of all participants (in this simple case only Web Further related work has been done on tools for controlling
services), emulate realistic behavior (e.g., Quality o¥ise, tests of distributed systems. Weevil [24], for example pguis
dependencies among services), and serve as an infrastructxperiments of “distributed systems on distributed tedsbey
on which the developed system can be tested. Of course, denerating workload. It automates deployment and exatutio
more complex systems, more complex testbeds are requiredt@xperiments and allows to model the experiment’s belavio
emulate all characteristics of the destination envirorimBat via programs written in common programming languages
how do engineers create such testbeds? Unfortunately, uditied to its workload generation library. We do not see Vileev
now, they had to create them manually, as no proper suppast a direct competitor to G2, but rather as a complementary
had been available. To be precise, some solutions do exwdl. While Weevil covers client-side tests of systems, G2sai
but are too restricted in their functionality and cannotatee at generating testbeds. We believe that a combination &f bot
testbeds of arbitrarily complex structure and behavioiis Thsystems would empower engineers in setting up and running
has been our motivation for doing research on supporting thephisticated tests of complex SOAs and we will investigate
generation of customizable testbeds for SOA. In the foltgyi this in future work.
we give an overview on the current state of the art of researchAnother possible synergy we see in combining G2 with
and discuss the evolution of Genesis since its first version.DDSOS [25]. This framework deals with testing SOAs and
) provides model-and-run support for distributed simulatio

A. Related Research on SOA Testing multi-agent simulation, and an automated scenario code gen

Available solutions have been mostly limited to testing Weérator creating executable tests. Again, this frameworkdo
service implementations regarding their functional and-nobe used to control tests on G2-based testbeds.
functional properties. This includes, for instance, tefsts) .
performance and Quality of Service (QoS) [16], [7], robesw B- Evolution of Genesis
[17], reliability [8], [18], message schema conformanc®][1 Our work on SOA testbeds had first led to the development
but also techniques for testing composed services [9], 0] of Genesis [26] (in short, G1), the predecessor of G2. To our
well as generic and customizable testing tools [6]. In spiteiowledge, G1 was the first available “multi purpose” tedtbe
of their importance, these solutions only support engseeagenerator for SOA and we have published the prototype as
in checking the service providers of a SOA. Which meargpen-source [27]. Similar to G2, it is a Java-based framkwor
that they can be only used for testing the very basic buildirigr specifying properties of SOAP-based Web services [28]
blocks but not the whole integrated system. This makes thes® for generating real instances of these on a distribigeki-b
works out of scope of our current research and, therefore, eed. Via a plug-in facility the service testbed can be enbdnc
do not review them in detail. Unfortunately, the challemginwith complex behavior (e.g., QoS, topology changes) and,
task of testing complex SOAs and their components, suchfasthermore, can be controlled remotely by changing plugin
governance systems which operate and also depend on off@ameters. At the front-end, the framework offers an API
services, has not gained enough attention in the reseanch cavhich can be integrated, for instance, into the Bean Sagpti
munity. Some groups have done research on testbed gemerafimmework (BSF) [29] for a convenient usage. However, G1
but their investigations have been focused only on specifiaffers from various restrictions which limit the framewsr

functionality and usability. First of all, the behavior ofely and communication infrastructure which abstracts ovedtbe
services is specified by aligning plugin invocations in dinp tributed nature of a testbed. The plugins, however, enhtrece
structures (sequential, parallel, try/catch) withoutihgine- model schema by integrating custom model types and intierpre
grained control. This makes it hard to implement, for insggn these to generate deployable testbed elements at the back-
fault injection on a message level [19]. Also, deployedieds end. Taking the provide\ébSer vi ceGener at or plugin
can only be updated by altering one Web service at a tinfer example, it enhances the model schema with the types
which hampers the control of large-scale testbeds. MoreovéébSer vi ce, WeQper at i on, and Dat aType, integrates
G1 is focused on Web services and does not offer the genirem into the model structure on top of the default root eleme
ation of other SOA components, such as clients or registrigdost (see Figure 1), and, eventually, supports the generation
In spite of G1's novel features, we regarded the listeaf Web services at the back-end. Furthermore, the provided
shortcomings as an obstacle for further research and pedfermodel types define customization points (e.g., for serviad-b
to work on a new prototype. By learning from our experiencesg and operation behavior) which provide the grounding for
we determined new requirements for SOA testbed generatqhkigin composition. For instance, th@al | | nt er cept or
« customizable control on structure, composition, and bglugin attaches itself to th&\ébSer vi ce type and allows
havior of testbeds, to program the intercepting behavior, which will be then
. ability to generate not only Web services, but also oth@utomatically deployed with the services.
SOA components,
« ability to create and control large-scale testbeds in an — — -
efficient manner, supporting multicast-like updates, ; ; @ S
« and, furthermore, a more convenient and intuitive way for T §
modeling and programming the testbed. < ptor} 1 [Qos

The appearance of the listed requirements made it necessary
to redesign Genesis and to rethink its concepts. Theseteffor
resulted in our new framework, Genesis2.

[1l. THE GENESI2 TESTBED GENERATOR Fig. 1. Sample model schema

Due to the breadth of G2, it is not feasible to introduce the
whole spectrum of concepts and features in a single pagér. G2's usage methodology, the engineer creates models
Hence, we concentrate on the most relevant novelties afFording to the provided schema at the front-end, spegfyi
present an overall picture of our framework and its apgiicat What shall be generateathere, with which customizations, and
We give an overview on G2's Capab“itiesy exp]ain short|whothe framework takes care of SynChroniZing the model with the
testbeds are generated and how G2 benefits from the Gro§@yresponding back-end hosts on which the testbed elements
language, and introduce the feature of multicast-basedtapd aré generated and deployed. The front-end, moreover, main-
for managing large-scale testbeds. tains a permanent view on the testbed, allowing to manipulat
To avoid ambiguities, we are using the following terminolit on-the-fly by updating its model.
ogy: model schema for the syntax and semantics of a testbed FOr a better understanding of the internal proceduresensid
specificationmodel types for the single elements of a schemaG2. We take a closer look at its architecture. Figure 2 depict
model for the actual testbed specificatiotestbed (instance) the layered components, comprising the base framework, in-
for the whole generated testbed environment consisting $#lled plugins, and, on top of it, the generated testbed:
individual testbed elements, such as services, registries, etc. ¢ At the very bottom, the basic runtime consists of Java,
Groovy, and 3-party libraries.
« At the framework layer, G2 provides itself via an API
G2 comprises a centralized front-end, from where testbeds and a shared runtime environment is established at which
are modeled and controlled, and a distributed back-end at plugins and generated testbed elements can discover
which the models are transformed into real testbed instance each other and interact. Moreover, an active repository
In a nutshell, the front-end maintains a virtual view on the distributes detected plugins among all hosts.
testbed, allows engineers to manipulate it via scripts, ande Based on that grounding, installed plugins register them-
propagates changes to the back-end in order to adapt the selves at the shared runtime and integrate their function-
running testbed. ality into the framework.
The G2 framework follows a modular approach and pro- « The top layer depicts the results of the engineer’s ac-
vides the functional grounding for composable plugins that tivities. At the front-end he/she is operating the cre-

Host WebService WsOperation DataType

Client «uses»

A. Basic Concepts and Architecture

implement generator functionality. The framework itsdfecs
a) generic features for modeling and manipulating testbads
extension points for plugins, c) inter-plugin communioati

among remote instances, and d) a runtime environment shared

across the testbed. All in all, it provides the basic managegm

ated testbed model. The model comprises virtual objects
which act as a view on the real testbed and as proxies
for manipulation commands. While, at the back-end the
actual testbed is generated according to the specified
model.

G2 Front-End G2 Back-End

{Ref@, Testbed Generated
Model Testbed
© Model
8 — — specifiess — W
5 Testbed
2 o
Generated = o @
SOA Testbed £ a
5
n
Call , Call K
Interceptor ‘ ‘ Registry ‘ Interceptor ‘ Registry ‘
G2 Plugins WS }{ W ‘ Cient WS s Client
Generator References Generator ‘ Generator } """ ’{ References ‘ ‘ Generator ‘
_________________ ~) | T T _ - ____—_|
G2 Framework (Plugin Repo I G2 API X Shared Runtime Environment X Plugin Repo I G2 API)
Runtime (Groovy I Java X CXF @j (Groovy I Java I CXF @

Fig. 2. Genesis2 architecture: infrastructure, plugimsl generated elements

However, Figure 2 provides a rather static image of G2, which Tested bOD
does not represent the system’s inherent dynamics. Eaeh lay SOA[Workflow |/ D ~
establishes its own communication structures (see Figure 3
which serve different purposes: Testbed
o On the bottom layer, the G2 framework connects the Instances
front-end to the back-end hosts and automatically dis-
tributes plugins for having a homogeneous infrastructure.
o For the plugins, G2 allows to implement custom com-
munication behavior. For example, plugins can ex-
change data via undirected gossiping or, as done in the
Si mpl eRegi st ry plugin, by directing requests (e.g., G2Plugins
service lookups) to a dedicated instance. e
o The testbed control is strictly centralized around thetfron ' ’
end. Each model object has its pendants in the back-end
and acts as a proxy for accessing them. Front-End Host
o Finally, in the running testbed, G2 does not restrict
the type and topology of interactions but outsources Fig. 3. Interactions within G2 layers
this to the plugins and their application. For instance,
Web services can interact via nested invocations and, in
addition, can integrate registries, workflow engines, @ Extensible Generation of Testbed Instances
even already existing legacy systems into the testbed. .] .]]
The framework’s shared runtime environment deservesdurth Because of its generic nature, which provides a high level
explanation due to its importance. In G2, the SOA engine@F extensibility, the G2 framewo_rk outsources the generatl_
writes Groovy scripts for modeling and programming off te§tbed elements to the plugins. It does also not predefine
testbeds. The capabilities of the system, however, areatefit Strict methodology for how they must be generated, but
by the applied plugins which provide custom extensions. T&ther provides supporting features. This might raise alfef
runtime environment constitutes a binding between these yPression that we are just providing the base framework and

acting as a distributed registry. Every object inside thatbed 1€ave the tricky part to the plugin developers. The truttha t
(e.g., plugin, model type, generated testbed instancetifumi- we kept the framework generic on purpose, in order to have

macro, class, variable) is registered at the environmeat ¥t basic grounding for future research on testbed generation

aliases, in order to make it discoverable and G2 provides/Qich might also include non-SOA domains. For our current

homogeneous runtime infrastructure on each host. Thissoff@€€ds, we have developed some plugins covering basic SOA:
high flexibility, as it ensures that locally declared s@ipt « WebServi ceGener at or creating SOAP Web services
which reference aliases, are also executable on remote.hoste WWebSer vi cel nvoker calling remote SOAP services,

In the following sections we give a more detailed insight both generated and preexisting ones (e.g., 3rd-party .NET-
into selected features of G2 in order to convey its potential based)

Testbed)
Control

g

»--ﬁ: - P
" Back-End

G2 Framework,v""'
Hosts

o Call I nterceptor processing SOAP calls on a mesplugin developers can customize the handling of these, (e.qg.

sage level (e.g., for fault injection [19]) to log everything) and can restrict the model's expandagbili

« Dat aPr opagat or providing automated replication of Internally, model objects are realized as flexible hash maps
data/functions among back-end hosts and entire testbed models are constructed by aggregating

o QOSEmul at or emulating Quality of Service propertiesthese, e.g., by attaching @ Oper ati on instance to the

o Si npl eRegi st ry for global service lookups corresponding list inside &ébServi ce’s map. However,

« CientCGenerator seeding testbeds with standalon@ggregating model objects by hand is rather cumbersome and
clients (e.g., for bootstrapping testbed activities) inefficient, especially for complex testbeds. As a solutioe

Of these, theWebSer vi ceGener at or plays a major role use Groovy’'sBuilder support which helps to create nested
and, therefore, serves as a good example for demonstragngdata structures in an intuitive manner. The following sampl
testbed generation process. We have reused selected par@egionstrates the convenience of builders:

the generation code from G1 [26], however, we were able 10 hash mapbased creation of web service model
simplify it significantly by using Groovy features. Basiyal def sl = webservice.creatéTest Service")

. . . sl.binding ="doc,lit"
the process comprises the following steps: s1.tags +="test”

1) Recursive analysis of théébSer vi ce model to de- def op = wsoperation.creaté $ayHel | 0")

; it ; .paramTypes += [name: String]
termine used customization plugins and message typgg.. fesultType = String

2) Translation of message typeBat aType models) to op. pehavior ={ return "hello $name” } // < closure
Java classes that represent the XSD-based data structaflesoperations += op

(usingxj c, the Java XML Binding Compiler). .
. . . /] usage of model builder

3) Automatic generation of Java/Groovy source code iMref s2 = webservice. buildf

plementing the modeled Web service. TestService (binding :"doc, lit", tags: ['test"]) {
4) Compilation of sources using Groovy’s built-in compiler Sar):aTlfrILo (,,”haeTle; gr]t;;:a? . result: Stringj
5) Generation of customizations by corresponding plugins.
6) Deployment of completed Web service instance at local }

Apache CXF [30] endpoint. }0]

7) Subscription to model changes for automatic adaptati@fy gefault, model types allow to encapsulate executable cod
of deployed Web service instance. (e.g., operation behavior in previous sample) in order to

The whole generation procedure depends completely prbgram the testbed and to implement fine-grained custemiza
the plugins functional purpose. For instance, t@al |- tions. For this purpose, G2 is using Groaslgsures which are
I nter cept or translates intercepting code into Apache CXlexecuted on top of the shared runtime environment (intreduc
Features and binds them to service and client inStanCﬁﬁ,previous section). The environment provides access to
thed i ent Gener at or simply implements a programmableg|| registered entities inside the testbed (plugins, degilo
thread, and th€OSEnul at or does not generate any deployinstances, shared data, etc.) and offers introspectiomuizel
able elements but works in the background. reflection. For example, the next snippet defines a simple

Evidently, in G2, plugins are more than just simple expperation behavior that determines the number of available
tensions but provide essential features for testbed gemera web service models and invokes thegger plugin. During
They define the model schema, implement testbed capalikecution, Groovy would resolve the aliasesbser vi ce

ities, and handle the actual generation of testbed instancgnd| og, and provide access to the referenced instances.

Consequently, they can become quite complex. To support [(;LQ behavior ={
implementation of new plugins, G2 provides a base class thafgef num = webservice. getAll (). size ()
carries out fundamental tasks for installation, deploymand log.write ("Currently $num service nodel s exist.")

communication among remote instances, so that developérs

can focus on the plugin's primary features. As the structures of testbed models can get quite complex, we
C. Exploitation of Groovy Features use GPath expressions to offer simplified access via compact

G2 derives a great deal of its flexibility and extensibilig oo In the following example, the query checks whether

from Groovy [31]. In short, Groovy is a dynamic pro rammin){here exist local services which are tagged witht est '’
Y ' ' vy y Prog %nd which contain an operation naméd SayHel | o’ ’ .

language for the Java _/|rtua|_ Machine, providing moder uch queries are applied to select and manipulate specific pa
features such as dynamic typing, closures, and support n del with inal d
¢f,the model with one single command.

meta programming. Also, it has a compact syntax and can : _
used as an easy-to-read scripting language. localhost.webservice.grep—> "test” in s.tags}.
, . operation.anyo—> o.name =="SayHel | 0"}

G2 uses Groovy's dynamiExpando type as a base class
for model types. This allows to expand the model (ergm all, G2 benefits from its Groovy binding in a twofold man-
the generated testbed) on-the-fly and to observe changes, The dynamic features provide the functional grounding
which facilitates automatic front-end/back-end syncizan for generating extensible testbeds, while the language'atly
tion. Moreover, by intercepting model manipulation redsgs helps to model them by using a clear and compact syntax.

D. Multicast Testbed Control Il reference 10 backend hosts 1
. . 1.upto(10) { n— host.create'(192. 168. 1. $n" ,8080) } 2

A drawback of G1 was that testbed manipulations had
to be done in a point-to-point manner, updating one Web f|0_a$ mesdsage type defig(itions ffdom XSD fTile) 4
: : : : : lef inType=datatype.creaté{(ypes. xsd" ,"i nput Type" 5
service at a time. This was an issue for controlling Iarg%ef outType=datatype . creatdiypes. xsd" " out put Type")| 6
scale testbeds, such as the one used in the VReSCo prpject

[32] consisting of up to 10000 services. To overcome thigrop.randomListitem$ list— //get random item 8

issue, G2 supports multicast-based manipulations. Thisife |, ''St[new Random().nextint(list.size ())] o
is inspired by multicast network communication, where|a
single transmitted packet can reach an arbitrary large eumn lﬁe{ Ser(iEgld)i S{t?WSb/S/ervice - bgild{, Corvice100 12
: : : : : .upto 1—> create ervicel .. ervicel 13
of d_estlngtlpn ho_st_s with the help_ of replicating rputgrs. T ervi cesi” (delay: 0, failureRate: 0.0)f 14
provide similar efficiency, G2 uses filter closures whichcsfye tags =['worker"] 15
the destination of a change request and reduces the number of //Web service operation "Process” 16
request messages. In detail, G2 applies the filter at the loca Pr?ﬁfes;d('gf’euér;(h”;?;e)' response: outTypg) "
testbed model to get the resulting set of designated element if (new Random ().nextDoubleg failureRate) { 19
and checks at which back-end hosts these are deployed. Then throw new Exception(sorry!™) 20
. 21
it wraps the change request, including the filter, an_d sends i return outType .createDummy () 2
to the involved hosts. Eventually, the hosts unwrap it, tum { 1 23
filter locally, and perform the changes on each matchedeedstb }} 24
element. Thlsway, G2 reduces the number of r_eque_st MESSAYES || 116(20) { i—> //create 20 delegator services | 26
to the number of involved back-end hosts, which signifigantl " conposi t eServicesi " () { 27
improves efficiency. The following snippet shows a sample tagSZ['dEI egat%(})""//,"_CQ"POISIi te"] f _ 28
- - - : : processError initially empty function 29
multicast manipulation. It addresses ng_) services magcdirn //Web service operation "Delegate” 20
namespace and performs a set of modifications on them, €.9., Delegate (input: inType, neededResults: hdm{), | 31
appending a new operation and setting model properties. response: arrayOf(outType)X 32
- - def gotResults=0 33
def newOp=operation.creatéifewOperati on") def result=[] 34
)) while (gotResultskneededResults }{ 35
webservice (op:n~eWQp){ s—> //_ filter closure def refs=registry.gef'worker" in it.tags} 36
s.namespace =" /infosys.tuwien.ac.at/ def ref=randomListitem (refs) 37
} { s> /! command closure try { 38
s.operations+=op result+=ref.Process(input).response 39
s.someProperty = soneVal ue" gotResults++ 40
} } catch (e) { processError(e)} 41
42
IV. QOS TESTBED SCENARIO) return result -
In this paper we do not evaluate the performance of G2.}} 45
Instead, we chose to demonstrate G2 in practice in order 4
to give a better understanding of the previously presente@rvicelist.each{ s— //deploy at random hosts 48
concepts and also to give an impression about the intuiis®n y s.deployAt(randomListitem (host. getAll())) 49
50

of G2's script-based control.
Our scenario covers the creation of a rather simple testbedListing 1. 'Generation of Web services for task delegatizareple’

for testing the QoS monitor [16] used in the VReSCo project

[32]. The monitor performs periodical checks for determgni

a Web service's execution time, latency, throughput, avalil

abiltiy, robustness, and other QoS properties. Most of tif&ceptions at the Web operations. However, for demonstra-

monitoring is done in a non-intrusive manner, while for soméon purposes, we have included some additional features,

checks local sensors need to be deployed at the service. $¥gh as nested invocations, dynamic replacement of func-

verifying the monitor's correct functionality, runtime sts tionality, and generation of active clients. For settingthp

must be performed on a testbed of generated Web serviéestbed, we are using the plugébSer vi ceGener at or,

simulating QoS properties. Furthermore, the QoS propertidébSer vi cel nvoker, Cal | I nterceptor, Cient-

must be controllable during test execution and the Web s&ener ator, Si npl eRegi stry, andDat aPr opagat or,

vices must support the application of local sensors. Evdfhich establish the model schema depicted in Figure 1. We

though, the creation of such a testbed is perfectly feasitsievided the scenario into three parts: in the first step we

with G2, we had to restrict its functionality due to spac@enerate the service-based testbed, then we generatés clien

constraints. We omitted testbed features, such as reipsirainvoking the testbed’s services, and, finally, show how the

of generated services at a broker, and replaced the us#gening testbed can be altered at runtime.

of the QoSEnul at or. Instead, we just simulate process- Listing 1 covers the specification of the services. First, a

ing time and failure rate via simple delaying and throwinget of back-end hosts is referenced and the service’s mes-

PO ©O©WO0~NOUAWNLERE

P

=
w

def initClient=client.create () def pi=callinterceptor.create () 1
initClient.run=true //boolean flag ’'run’ pi.hooks=[in"RECElI VE', out :"SEND'] //where to bind| 2
initClient.codeH //client code as closure pi.codeq msg—> gosmon.analyze(msg)} //sensor plugif 3
while (run) {

Thread.sleep (5000)//every 5 seconds webservice (i:pi){ s— "delegator" in s.tagst { s— 5
def refs=registry.gef"del egator” in it.tags} s.interceptors+=i//attach to author services 6
def r=randomlListitem (refs)//pick random s.processError={ e—> 7
def arg=inType.newlnstance () def url="http://sonmehost. conireportError ?WsDL" 8
r.Delegate(arg, 3)//initiate delegation def reportWs=wsreference.create (url) 9
} reportWs. Report(my. webservice .name, e.message|) 10
} } 11
} 12

initClient.deployAt(host.getAll()) //run clients
int cycles=1000 14
Listing 2. ’Generation of clients invoking delegator Welnsees’ while (——cycles>0) { 15
Thread.sleep (2000)// every 2 seconds 16
def workers=webservice.gé¢tworker" in it.tags} 17
def w=randomListitem (workers) 18

. . . w.delay=new Random (). nextInt(281000) //0 — 20sec 19
sage types are imported from an XSD file. In Line 8, the \; taijyrerate new Random (). nextFloat()//0.0 — 1.0 | 20

Dat aPr opagat or plugin is invoked, via its aliapr op, to |} 21
bind a global function/closure to the shared runtime emviro
ment. The testbed itself comprises 100 simple worker sesvic
and, in addition, 20 delegators that dispatch invocatians t Listing 3. 'On-the-fly manipulation/extension of runningstieed’
the workers. In Lines 13 to 24, the worker services are built,

for each we declare variables for controlling the simulatio

of QoS, and add a tag for distinction. For the worker's Wep,« clients are shut down by changing theim flag.

service operatioiPr ocess we specify its /O message types |, this scenario we have tried to cover as many key features
and customlge its behavior with S|mple code'for 3|mqlat|ngf G2 as possible, to demonstrate the simplicity of our scrip
delay and failure rate, controlled via the service's vagab g interface. We have used builders to create nested model
The composite delegator services are created in a similaf M@y ctures (service operation-datatype), designed Web ser-
ner, but contain nested service invocations and a useretefigicas and clients with parameterizable behavior, custethiz
customization [fr ocessEr ror ()). Furthermore, a headeryenayior with closures, applied plugins (e.g., call inégitors
argument is specifiecheededResul t s), which means that 504 service invokers), performed a multicast manipulation
it is declared as part of the SOAP header instead of the bogly,est, and steered the running testbed via parametegs. Th
In Line 36 theSi npl eRegi stry is queried to get a list of generated testbed consists of interconnected Web semfites
references to worker services. Of these random ones arebickctive clients calling them. To facilitate proper testinfgtiee

and invoked (Line 39) in sequence, until the required numb@os monitor [16], it would require to simulate not only pro-
of correct responses has been reached. On faults, the QUSssing time and fault rate, but also scalability, throughand
tomizable error handling routine named ocessError () gther properties which we have skipped for the sake of byevit

is called. Eventually, the delegator service returns adist |, any case, we believe that the presented scenario helps to

responses. At the end of the script, the testbed is genegted,gerstand how G2 is used and gives a good impression about
deploying the modeled Web services on random hosts. g capabilities.

Though, in this state the testbed contains only passive
services awaiting invocations. In order to make it “alive”, V. DISCUSSION ANDFUTURE WORK
by generating activity, Listing 2 specifies and deploysntbe Certain concepts of G2 might be considered with skepticism
which invoke random delegator services in 5 second intervaby readers and, therefore, require to be discussed in thisrpa

Finally, Listing 3 demonstrates how running testbeds cdirst of all, the usage of closures, which encapsulate user-
be altered at runtime. At first, a call interceptor is createdefined code, for customizations of behavior is definitediyi
which can be, for instance, used to place the QoS sensds.we do not check the closures for malicious code, it is, for
We make use of G2's multicast updates and enhance ialtance, possible to assigiByst em exit (0) } to some
delegator services by appending the interceptor to the sesstbed instance at the back-end, to invoke it, and hereby to
vice model. In the same request we replace the (formedfut down the remote G2 instance. This security hole réstric
empty) pr ocessError () routine and instruct the servicesG2 to be used only by trusted engineers. For the current
to report errors to a'$party Web service. At the back-end prototype we accepted this restriction on purpose and kept
theWebSer vi ceGener at or plugins will detect the change closure-based customizations for the vast flexibility itioffier.
request and automatically adapt the addressed services. FuSome readers may also consider the G2 framework as too
thermore, by making use of G2’s immediate synchronization generic, since it does not generate the testbed instandes bu
models with running testbed instances, the simulation db Qalelegates this to the plugins, and may wonder whether it
is altered on the fly by changing the corresponding parametkrserves to be called a “testbed generator framework” at all
variables of worker services in a random manner. In the erid, our opinion this is mainly a question of where to define

initClient.run=false //shut down all clients 23

the boundary between a framework and its extensions. Wej
implemented a number of plugins which generate basic SOé
artifacts, such as services, clients, and registries. |Hagde]
to direct our future research towards non-SOA testbeds, we
will be able to base this work on the G2 framework. [4]
Moreover, in the introduction of this paper we said that
SOA comprises more than just Web services, but also clientfs)
service buses, mediators, workflow engines, etc. But Igpkin
at the list of plugins which we developed (see Section IIJ-B) g,
it becomes evident that we do not cover all these components.
This is partially true, as this paper presents the currexé sif 7]
our work in progress. However, we are continuously extegdin
our plugin repertoire and will make up for the missing ones
soon, e.g., by porting G1's BPEL workflow plugin to G2. [8]
Also, G2 is currently missing sophisticated support for[9]
WS-* standards which are an essential asset for SOAP-based
communication. In the strict sence, it is possible to usé Cﬁo]
interceptors for WS-* processing but the engineer must fgan
the complex processing. We regard it as necessary, to uaurd
him/her by providing plugins for the common standards (e.d!1l
WS-Addressing for asynchronous communication, WS-Policy,
WS-Security) and to support the creation of additional oneg12]
Last but not least, the question might be raised why V¥f3
prefer a script-based approach. The reason is that we de |vé
a lot of flexibility from the Groovy language and see high
potential in the ability to program the testbed’s behavidt4l
compared to, for instance, composing everything in GUlgz,
which provides user convenience at the cost of flexibility.

VI. CONCLUSION [16]

In this paper we have introduced Genesis2, a framework
supporting engineers in generating testbed infrastrastfor [17]
SOA. We have given an overview of the framework’s concepts
and outlined its novel features which offer a high level qfg;
extensibility and customizability. Furthermore, we hawed
a scenario example to demonstrate how engineers can sp(\a)@'g?/
and program testbeds via an intuitive scripting language.
regard Genesis2 as an important contribution for the SOA tef0]
ing community, as it is the first generic testbed generatar th
is not restricted to a specific domain but can be customized to
set up testbeds of diverse components, structure, and ibehay21]
We plan to release the software via our Web site [27] a 92
expect that it will have significant impact on future reséarqpg;
on automated testbed generation. [24]

ACKNOWLEDGMENT

The research leading to these results has received fu%zgl
ing from the European Community Seventh 7th Programme
FP7/2007-2013 under grant agreement 215483 (S-Cube). [26

The authors would also like to thank their collegues Harald
Psaier, Daniel Schall, Florian Skopik, and Martin Treiber f Egg

their valuable feedback and discussions. [29]
[30]
REFERENCES [31]

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leym&eryvice- (32]
oriented computing: a research roadmapt! J. Cooperative Inf. Syst.,
vol. 17, no. 2, pp. 223-255, 2008.

G. Denaro, M. Pezz, D. Tosi, and D. Schilling, “Towards self-adaptive
service-oriented architectures,” TAV-WEB. ACM, 2006, pp. 10-16.
R. B. Halima, K. Drira, and M. Jmaiel, “A qos-oriented redigirable
middleware for self-healing web services,” I@WS. |EEE Computer
Society, 2008, pp. 104-111.

S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. (phet,
“An architectural approach to autonomic computing,”I@AC. |EEE
Computer Society, 2004, pp. 2-9.

G. Canfora and M. D. Penta, “Testing services and servédric
systems: challenges and opportunitie;’Professional, vol. 8, no. 2,
pp. 10-17, 2006.

W.-T. Tsai, R. A. Paul, W. Song, and Z. Cao, “Coyote: An Xpalsed
framework for web services testing,” MASE. IEEE Computer Society,
2002, pp. 173-176.

M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, an&arsmann,
“Web services wind tunnel: On performance testing largdesstateful
web services,” ilDSN. |IEEE Computer Society, 2007, pp. 612—617.
J. Zhang, “A mobile agents-based approach to test thakiéty of web
services,"lJWGS, vol. 2, no. 1, pp. 92-117, 2006.

H. J. A. Holanda, G. C. Barroso, and A. de Barros Serrael@p A
framework for the performance analysis of web services otcdtes
with bpeldws,” inICIW. |IEEE Computer Society, 2009, pp. 363-369.
H. Huang, W.-T. Tsai, R. A. Paul, and Y. Chen, “Automated deio
checking and testing for composite web services, 1$9RC. |EEE
Computer Society, 2005, pp. 300-307.

A. Bertolino, G. D. Angelis, L. Frantzen, and A. PoliriModel-based
generation of testbeds for web services,TastCom/FATES, ser. Lecture
Notes in Computer Science, vol. 5047. Springer, 2008, pp-285.
W. Vogels, “Web services are not distributed object€EE Internet
Computing, vol. 7, no. 6, pp. 59-66, 2003.

A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, andC#istdar,
“Towards recovering the broken soa triangle: a softwareinemsging
perspective,” inW-SOSWE. ACM, 2007, pp. 22-28.

V. R. Basili and B. T. Perricone, “Software errors andnexity: An
empirical investigation,Commun. ACM, vol. 27, no. 1, pp. 42-52, 1984.
K. Verma and A. P. Sheth, “Autonomic web processes,G80C, ser.
Lecture Notes in Computer Science, vol. 3826. Springer, 2005
1-11.

F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrappierformance
and dependability attributes of web services,JGWS. |IEEE Computer
Society, 2006, pp. 205-212.

E. Martin, S. Basu, and T. Xie, “Websob: A tool for robusss testing
of web services,” iIHCSE Companion. IEEE Computer Society, 2007,
pp. 65-66.

J. Zhang and L.-J. Zhang, “Criteria analysis and vaiafa of the
reliability of web services-oriented systems,”l@BWS. |IEEE Computer
Society, 2005, pp. 621-628.

W. Xu, J. Offutt, and J. Luo, “Testing web services by xratfurbation,”
in ISSRE. IEEE Computer Society, 2005, pp. 257—-266.

D. Bianculli, W. Binder, and M. L. Drago, “Automated perfance
assessment for service-oriented middleware,” Faculty afrinétics -
University of Lugano, Tech. Rep. 2009/07, November 2009.lif@h
Available: http://www.inf.usi.ch/researchublication.htm?id=55
“OASIS - Business Process Execution Language for WelviSss,”
http://www.oasis-open.org/committees/wsbpel/.

“Web Services Description Language,” http://www.e@)/ TR/wsdl.
“WS-Agreement,” http://www.ogf.org/documents/GFD710df.

Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolfutomating
experimentation on distributed testbeds,” ASE. ACM, 2005, pp.
164-173.

W.-T. Tsai, Z. Cao, X. Wei, R. A. Paul, Q. Huang, and X. Sun
“Modeling and simulation in service-oriented software depenent,”
Smulation, vol. 83, no. 1, pp. 7-32, 2007.

] L. Juszczyk, H. L. Truong, and S. Dustdar, “Genesis -aanfework for

automatic generation and steering of testbeds of complexesfices,”
in ICECCS. |EEE Computer Society, 2008, pp. 131-140.
“Genesis Web site,” http://www.infosys.tuwien.aépaototype/Genesis/.
“SOAP,” http://www.w3.org/TR/soap/.

“Jakarta Bean Scripting Framework,” http://jakarfzehe.org/bsf/.
“Apache CXF,” http://cxf.apache.org/.

“Groovy Programming Language,” http://groovy.codehiany/.

A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdd&nd-to-
end support for qos-aware service selection, binding andatied in
vresco,”|EEE T. Services Computing, 2010 (forthcoming).

