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Abstract. The modularity of Service-oriented Architectures (SOA) al-
lows to establish complex distributed systems comprising e.g., services,
clients, brokers, and workflow engines. A growing complexity, however,
automatically increases the number of potential fault sources which have
effects on the whole SOA. Fault handling mechanisms must be applied
in order to achieve a certain level of robustness. In this paper we do not
deal with fault-tolerance itself but regard the problem from a different
perspective: how can fault-tolerance be evaluated? We argue that this
can be best done by testing the system at runtime and observing its
reaction on occuring faults. Though, engineers are facing the problem of
how to perform such tests in a realistic manner in order to get mean-
ingful results. As our contribution to this issue we present an approach
for generating fault injection testbeds for SOA. Our framework allows
to model testbeds and program their behavior, to generate running in-
stances out of it, and to inject diverse types of faults. The strength of
our approach lies in the customizability of the testbeds and the ability
to program the fault-injecting mechanisms in a convenient manner.

1 Introduction

The principles of SOA propagate building distributed systems based on modular
and loosely-coupled components. The spectrum of these components ranges from
stand-alone and composite Web services, clients, brokers and registries, workflow
engines, monitors, governance systems, message dispatchers, service buses, etc.
Considering the dependencies within a complex SOA, it becomes evident that
each component is a potential fault source and has an impact on the whole
system. Moreover, faults can happen at different levels, e.g., at the network
layer, at the interaction level, or as errors in the exchanged messages. As a
consequence, sophisticated fault handling mechanisms are required in order to
mitigate the effects of faults, to prevent failures, and to guarantee a certain
level of robustness. This problem has already been addressed in several works
[1–4] and is out of the scope of this paper. Instead, we are facing it from a
different perspective: how can engineers evaluate fault handling mechanisms of
a SOA? How can they verify that their systems will behave as expected once
deployed in their destination environment? These issues cannot be solved by
simply performing simulations but require thorough tests at runtime. But how



can engineers perform such tests prior to final deployment, without having access
to a real(istic) environment which would serve as a testbed? In this paper we
address this question and present our contribution.

In our previous work [5] we have introduced the Genesis2 framework which
supports engineers in setting up testbeds for SOA. Genesis2 allows to model
testbeds consisting of various types of components, to program their behavior,
and to generate real instances of these on a distributed back-end. In the current
paper we extend this approach in order to generate multi-level fault injection
testbeds. We empower engineers to generate emulated SOA environments and
to program fault injection behavior on diverse levels: at the network layer, at the

service execution level, and at the message layer.
Our paper is structured as follows: in the next Section we present the motiva-

tion for our research. In Section 2 we present Genesis2 and explain in Section 3
how we generate fault-injection testbeds. Section 4 covers the implementation
the practical application of our approach. In Section 5 we review related work
and outline our contribution. Finally, Section 6 concludes this paper.

1.1 Motivation

Today’s SOAs comprise large numbers and varieties of components. This is not
only limited to services, clients, and brokers (as conveyed in the famous Web
service triangle [6]), but includes also more sophisticated components, such as
governance systems and monitoring registries [7], which are performing complex
tasks on the service-based environment. In general, we can divide SOA compo-
nents into three groups: a) stand-alone components which are independent, b)
complex services/components which have dependencies and, therefore, are af-
fected by others, and c) clients which are simply consuming the offered services.
Each of the components is prone to errors, but the complex ones are affected in
a twofold manner as they have also to deal with remote faults of the components
they depend on. As outlined correctly in [8] and [9], faults do happen on multiple
levels, to be precise, on each layer of the communication stack. This includes low-
level faults on the network layer (e.g., packet loss/delay), faults on the transport
layer (e.g., middleware failures), on the interaction layer (quality of service), as
well as directly at the exchanged messages which can get corrupted. Depending
on the structure and configuration of the SOA, each of these faults can cause
a chain of effects (also referred to as error propagation), ranging from simple
execution delays to total denial of service. These challenges can only be met if
engineers perform intense tests during the development phase, execute scenarios
in erroneous SOA environments, and check their system’s behavior on faults.
However, the main problem remains how to set up such scenarios, in particular,
the question how engineers can be provided with proper testbeds which emulate
SOA infrastructures in a realistic way. We argue that engineers must be given a
possibility to configure testbeds according to their requirements. Depending on
the developed system, this includes the ability to customize the topology and
composition of the testbed, to specify the behavior of all involved components,
and to program individual fault injection models for each of these. In Section 5



we will show that research on fault injection for SOA has been already done by
several groups, yet that these works mostly aim testing only individual Web ser-
vices, for instance, by perturbing their communication channels. The problem of
testing complex components which are operating on a whole SOA environment
still remained unsolved. This has been our motivation for doing research on a
solution which allows to generate large-scale fault-injection testbeds, provides
high customizability, and offers an intuitive usage for engineers.

2 Genesis2 Testbed Generator Framework

The Genesis2 framework (Generating Service-oriented testbed InfrastructureS,
in short G2) [5] assists engineers in creating testbed infrastructures for SOA.
It comprises a centralized front-end, from where testbeds are modeled and con-
trolled, and a distributed back-end at which the models are transformed into
real testbed instances. In a nutshell, the front-end provides a virtual view on the
testbed, allowing engineers to manipulate it via scripts, and propagates changes
to the back-end in order to adapt the running testbed. To ensure extensibil-
ity, the G2 framework follows a modular approach and provides the functional
grounding for composable plugins that implement testbed generator features.
The framework itself offers a) generic features for modeling and manipulating
testbeds, b) extension points for plugins, c) inter-plugin communication among
remote instances, and d) a runtime environment shared across the testbed. All in
all, it provides the basic management and communication infrastructure which
abstracts over the distributed nature of a testbed. The plugins, however, en-
hance the model schema by integrating custom model types and interpret these
to generate deployable testbed instances at the back-end.

For a better understanding of the internal procedures inside G2, let us take
a closer look at its architecture. Figure 1 depicts the layered components, com-
prising the framework, installed plugins, and, on top of it, the generated testbed:

– At the very bottom, the basic runtime consists of Java, Groovy, and 3rd-party
libraries, such as Apache CXF [10].

– At the framework layer, G2 provides itself via an API and a shared runtime
environment is established at which plugins and generated testbed elements
can discover each other and interact. Moreover, an active repository dis-
tributes detected plugins among all hosts.

– Based on that grounding, installed plugins register themselves at the shared
runtime and integrate their functionality into the framework.

– The top layer depicts the results of the engineer’s activities. At the front-end
he/she is operating the created testbed model. The model comprises virtual
objects which act as a view on the real testbed and as proxies for manip-
ulation commands. While at the back-end the actual testbed is generated
according to the specified model.

In G2, the engineer creates models according to the provided schema at the
front-end, specifying what shall be generated where, with which customizations,
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Fig. 1. Genesis2 architecture: infrastructure, plugins, and generated elements

and the framework takes care of synchronizing the model with the corresponding
back-end hosts on which the testbed elements are generated and deployed. The
front-end, moreover, maintains a permanent view on the testbed, allowing to
manipulate it on-the-fly by updating its model. Figure 2 illustrates the model
schema used in this paper. By default, G2 provides model types for specifying
Web services (which includes also Web service operations and used data types),
clients, registries, and other basic SOA components. In this paper, we are ex-
tending this schema with models for specifying faulty behavior (marked gray),
which are explained in more detail in the next section.
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Fig. 2. Testbed model schema for fault injection

Listing 1.1 contains a sample specification for demonstrating how testbeds are
modeled based on the applied model schema. Basically, G2 is controlled via



Groovy scripts [11] that are executed on top of the shared runtime environment

(SRE, see Figure 1). Each applied plugin extends the SRE by registering itself,
its provided model types, additional macros and other artifacts via aliases. The
engineer references these in his/her scripts in order to make use of the provided
features and to integrate them into his/her testbeds. Moreover, he/she is free to
customize the testbed’s behavior via Groovy code blocks.

The sample script starts with referencing remote back-end hosts and import-
ing a data type definition from an XSD file. This is done via instantiating the cor-
responding types from the model schema via their aliases (host and datatype).
In Lines 5 to 10 a simple Web service is created, which comprises only a single
operation (named SayHi) and which uses the imported data type in its request
message. By using the Builder feature [12] of Groovy, which simplifies the cre-
ation of nested datatypes, we are automatically binding the webservice to its
wsperation and the used datatype’s. In Line 12 the service is being deployed at
two back-end hosts. In this step G2 serializes the service’s model and propagates
it to the remote back-ends where real Web service instances, which implement
the modeled behavior, are being generated and deployed. Next, a simple client
is started (Lines 14 to 21), which uses the registry plugin to discover a desired
Web service and, eventually, invokes it. The main purpose of clients is to boot-
strap activity into the testbed which would otherwise be purely passive and wait
for invocations. Finally, in Lines 24 to 27 a callinterceptor is created and
attached on-the-fly to the running Web service instances. Call interceptors step
in to Web service invocations and allow, for instance, to extract the SOAP mes-
sage (as done in the sample for logging) and to manipulate it. We have used this
feature for implementing message perturbation in our fault injection testbeds.

1 de f beHost1 = host . c r e a t e ( " 192.168.1.11:8080 " ) // import BE host r e f s
2 de f beHost2 = host . c r e a t e ( " 192.168.1.12:8080 " )
3 de f vCard = datatype . c r e a t e ( "/ path / types . xsd " , " vCard " ) // import XSD type

5 de f s e r v i c e = webserv ice . bu i ld { //model Web s e r v i c e v ia Groovy bu i l d e r
6 // c r ea t e model o f Tes tSe rv i c e with one operat i on
7 Tes tSe rv i c e ( binding : " doc , lit " , tags : [ " test " ] ) {
8 SayHi ( card : vCard , r e s u l t : S t r ing ) { return " Hi ${ card . name }" }
9 }

10 } [ 0 ]

12 s e r v i c e . deployAt ( beHost1 , beHost2 ) //deployment at two back−end host s

14 de f c l = c l i e n t . c r e a t e ( ) //model s imple c l i e n t which c a l l s Tes tSe rv i c e
15 c l . code = {
16 de f r e f L i s t=r e g i s t r y . get { s−> s . name==" TestService "} // query
17 de f r e f=r e f L i s t [ 0 ] // take f i r s t from r e s u l t l i s t
18 p r i n t l n r e f . SayHi ( vCard . newInstance ( ) ) //WS invoca t i on
19 }

21 c l . deployAt ( beHost2 ) //deployment at back−end

23 // attach c a l l i n t e r c e p t o r
24 de f p i=c a l l i n t e r c e p t o r . c r e a t e ( )
25 p i . code={ ctx−> l o gg e r . logToDB( ctx . soapMsg ) } // c a l l i n g l ogge r p lug in

27 s e r v i c e . i n t e r c e p t o r s+=pi // on−the−f l y attachement o f i n t e r c e p t o r

Listing 1.1. ’Sample script specifying a service, a client, and a call interceptor’



All in all, G2 supports engineers in customizing testbeds, programming their
behavior, and implementing extensions via plugins. Though, due to space con-
straints it is impossible to provide a closer introduction to G2 and, therefore, we
direct interested readers to [5] which explains more details of our base framework.

3 Programmable Multi-level Fault Injection Testbeds

Taking into consideration the complexity of a typical SOA, which comprises di-
verse components being deployed on heterogeneous platforms and interacting
with each others, it becomes evident that each host, each component, each com-
munication channel, and each exchanged message is a potential source of faults,
erroneous behavior, and service failures [13]. Basically, faults can occur at every
level/layer of the communication stack and, therefore, if testbeds are supposed
to emulate realistic scenarios they must be also able to emulate a wide range of
fault types. Based on the G2 framework we have developed an approach for gen-
erating SOA testbeds and injecting programmable faults. Due to G2’s generic
nature and its extensibility it is possible to emulate a wide variety of faults by
writing plugins which augment the testbed’s components and impair their exe-
cution. However, in the current state of our work we have concentrated on the
following:

1. Faults at the message layer, in terms of message data corruption.
2. Faults at the service execution, affecting Quality of Service (QoS).
3. Faults at the network layer, hampering the packet flow between hosts.

Each type of fault is affecting a different part of the overall SOA and, therefore,
we have split their emulation into three independent plugins. Each plugin extends
the model schema and offers possibilities to customize and program the fault in-
jection behavior. Figure 2 depicts the provided model types and their position
within the schema. Since network faults affect the whole communication between
hosts, their model does directly extend the Host type. Service execution faults
can be caused by the whole service (e.g., low availability) or only by individual
operations (e.g., erroneous implementation), therefore their model is bound to
both. Finally, for message faults we have extended the CallInterceptor which
provides access to the request and response messages for perturbation purposes.
In the following sections we are explaining the individual fault injection mecha-
nisms in more detail.

3.1 Message Faults

SOAP Web services are using WSDL documents [14] to describe their interfaces.
Consequently, the service can define the expected syntax of the request messages
and the client is aware of the response message’s syntax. However, malicious
components can produce corrupted messages which either contain meaningless
content (message errors on a semantical level), which violate the message’s XML



schema definition [15] (high-level syntax errors), or which even do not represent a
correct XML document at all (low-level syntax errors). Depending on the degree
of corruption, fault handling mechanisms can be applied to allow the integration
of faulty components into a SOA. To test such mechanisms we have developed
a plugin which allows to intercept exchanged SOAP messages and to perturb
them on each of the mentioned levels. Engineers can program the perturbation
via the MsgPerturber model and the plugin attaches the faulty behavior to
Web services and clients, by using Apache CXF’s interceptors [16]. We have
built the perturbation mechanism upon the visitor pattern [17]. Perturbation
code, wrapped in visitor objects, is propagated recursively along the XML tree
and/or the unmarshalled objects and has full read/write access for performing
manipulations.

For pure semantic perturbation the engineer can overwrite the message’s
values, but cannot violate the XML structure. The plugin unmarshalls the SOAP
body arguments, as well as the headers, into Java objects and applies the visitor
code on them. The first sample block in Listing 1.2 shows an interceptor that is
programmed to assign random values to all integer fields named sum. Moreover,
it deletes all postcodes for matching addresses.

For high-level syntax manipulation, the engineer can alternate both, the con-
tent and the structure of the XML document. In this case the visitor is applied
on the DOM tree of the message. In the second sample block, the visitor is
looking for nodes which have children named country and appends a new child
which violates the message’s XSD definition. However, the result is still a well-
formated XML document. For low-level corruption, the message must be altered
directly at the byte level, as demonstrated in the last snippet which corrupts
XML closing tags. Finally, in Line 23, the interceptors get deployed at a Web
service and start injecting faults into its request and response messages.

1 de f va luePert = msgperturber . c r e a t e ( " args " ) // pert . data va lues
2 va luePert . code = { i t −>

3 i f ( i t . name==" sum " && i t . type==int ) { // get by name and type
4 i t . va lue∗=new Random ( ) . next Int ( )
5 } else i f ( i t . name==" Address " && i t . va lue . country==" AT " ) { //by value
6 i t . va lue . postcode=null

7 }
8 }

10 de f xmlPert = msgperturber . c r e a t e ( " dom " ) // pert . XML s t ru c tu r e
11 xmlPert . code = { node −>

12 i f ( node . ch i l d r en . any { c−> c . name==" country " }) {
13 Node newChild = node . appendNode ( " NotInXSD " )
14 newChild . a t t r i b u t e s . someAtt=" 123 "
15 }
16 }

18 de f bytePert = msgperturber . c r e a t e ( " bytes " ) // pert . msg bytes
19 bytePert . code = { s t r −>

20 s t r . r e p l a c eF i r s t ( " </" , " <" ) // remove c l o s i n g tag from XML doc
21 }

23 s e r v i c e . i n t e r c e p t o r s+=[bytePert , xmlPert , va luePert ] // attach to s e r v i c e

Listing 1.2. ’Programming message perturbation’



3.2 Service Execution Faults

Service execution faults usually result in degraded Quality of Service (QoS) [18].
Examples are slower processing times which delay the SOA’s execution, scala-
bility problems regarding the number of incoming requests, availability failures
which render parts of the SOA inaccessible, etc. Especially in the context of
Web services, QoS covers a wide spectrum of properties, including also security,
discoverability, and also costs. However, in our work we only deal with those
concerning service execution, as defined in [19], comprising response time, scal-
ability, throughput, and accuracy of Web service operations and the availability
of the whole service. For emulating these, we developed the QoSEmulator plugin,
which has access to the generated Web service instances in on the back-end and
intercepts their invocations in order to simulate QoS. To model a service’s QoS,
engineers can either assign fixed values to the individual properties (e.g., pro-
cessing time = 10 seconds) or define more sophisticated fault models via Groovy
code closures [20], resulting in programmable QoS. The main advantage of clo-
sures consists in the ability to incorporate diverse factors into the fault models.
For example, engineers can set the availability rate depending on the number
of incoming requests or to define the processing time according to a statistical
distribution function, supported via the Java Distribution Functions library [21].

Listing 1.3 contains a sample specification of two QoS models, one for defin-
ing the availability of a Web service and one for controlling the execution of
its operations. The availability is defined according to the daytime in order to
simulate a less overloaded service during the night (Lines 1 to 7). For the service
operation, the response time is derived from a beta distribution (alias dist)
while throughput and error rate (accuracy) are assigned with constant values.
At the end, the models are bound to the service and its operations.

1 de f svcQos = qos . c r e a t e ( )
2 svcQos . a v a i l a b i l i t y = {
3 i f (new Date ( ) . getHours () <8) { // from 0 to 7 AM
4 return 99/100 // s e t high a v a i l a b i l i t y o f 99%
5 }
6 return 90/100 // otherwise , s e t lower a v a i l a b i l i t y ra t e
7 }

9 de f opQos = qos . c r e a t e ( )
10 opQos . responseTime = { d i s t . beta . random (5000 ,1 , null ) } // beta d i s t r i b .
11 opQos . throughput = 10/60 // r e s t r i c t to 10 invoca t i on s per minute
12 opQos . e r rorRate = 15/100 //15% of i nvoca t i on s w i l l f a i l with except i ons

14 s e r v i c e . qos=svcQos // attach QoS model to s e r v i c e d e f i n i t i o n

16 s e r v i c e . ope ra t i on s . grep { o−> o . returnType !=null } . each {
17 o . qos=opQoS //and to a l l 2−way ope ra t i on s
18 }

Listing 1.3. ’Programming QoS emulation’

3.3 Low-level Network Faults

Network faults, such as loss and corruption of IP packets, play a minor role
in SOA fault handling, mainly because they are already handled well by the



TCP/IP protocol which underlays most of the service-oriented communication.
But they can cause delays and timeouts, and this way slow down the whole data
flow. Apart from that, there exist Web service protocols which are built upon
UDP, such as SOAP over UDP [22] and Web Service Dynamic Discovery [23],
which are, therefore, more vulnerable to network faults. Creating testbeds which
emulate low-level faults requires a much deeper intrusion into the operating sys-
tem, compared to the other plugins. It is necessary to intercept the packet flow,
to perform dropping, duplication, reordering, slowing down, etc. This can hardly
be done on top of the Java Virtual Machine which hosts the G2 framework. To
by-pass this issue, we have developed our NetworkFaultEmulator plugin based
on the Linux tool Traffic Control (tc) [24] (with netem module [25]) which allows
to steer packet manipulation at the kernel level. Unfortunately, this deprives G2
of its platform independence but, on the other hand, allows to reuse tc’s rich set
of features. We have presented a first version of this approach in [26]. Similar to
the previously presented plugins, engineers create fault models but, in this case,
attach them directly to the back-end hosts. There the fault models are locally
translated into tc commands for manipulating the host’s packet flow.

Listings 1.4 and 1.5 comprise a sample for illustrating the mapping from
the model to the resulting tc commands. The model is created by assigning
self-explanatory parameters and is finally being attached to the hosts. At the
back-end, the plugin first sets up a virtual network interface which hosts all
generated instances, such as Web services, registries, etc. This step is necessary
for limiting the effect of the fault emulation only on the testbed instances, instead
of slowing down the whole physical system. Eventually, the modelled faults are
translated into tc commands applied on the virtual IP.

1 de f nf = network fau l t s . c r e a t e ( )
2 nf . l o s s = 2/100 //2% packet l o s s
3 nf . dup l i c a t e = 1/100 //1% packet dup l i c a t i on
4 nf . de lay . va lue = 100 //100ms
5 nf . de lay . v a r i a t i on = 20 //20ms o f v a r i a t i o n
6 nf . de lay . d i s t r i b u t i o n = " normal " //normal d i s t r i b u t i o n

8 nf . deployAt ( beHost1 , beHost2 ) // attach to BE host s

Listing 1.4. ’Programming network faults’

1 i f c o n f i g l o : 0 add 192 . 168 . 100 . 1 #se t up v i r t u a l IP addr . f o r BE in s t anc e s

3 tc qd i s c change dev l o : 0 root netem l o s s 2.0%
4 tc qd i s c change dev l o : 0 root netem dup l i c a t e 1.0%
5 tc qd i s c change dev l o : 0 root netem delay 100ms 20ms d i s t r i b u t i o n normal

Listing 1.5. ’Network fault model translated to Traffic Control commands’

4 Implementation and Practical Application

4.1 Implementation and Extensibility of Genesis2 Prototype

The G2 framework has been developed in Java SE 6 [27] and Groovy [11]. The
critical parts, which handle the framework’s internal logic and the communica-
tion between front-end and back-end, are written in Java. Groovy, however, has



been exploited for having a flexible scripting language for modelling the testbeds
and for programming customizations via Groovy closures [20].

G2 provides a generic framework which outsources the generation of testbed
instances to the corresponding plugins, supporting the procedure via its API.
Based on that grounding, plugins define their extensions to the model schema
and interpret their provided extensions for generating deployable testbed com-
ponents. For instance, the WebServiceGenerator plugin analyzes webservice

models and translates them into deployable Apache CXF-based [10] Web service
instances. All plugins provide access to their generated components but offer
also interfaces for customization, so that other plugins can intervene and/or ex-
tend their functionality. The fault injection plugins presented in this paper make
intense use of this feature. Though, of course they do not cover all possible error
sources in a SOA but only represent the current state of our work. For testing
complex SOAs it would be also necessary to emulate, for example, middleware
faults, fault in the execution of WS-* protocols, or misbehavior of human pro-
vided services [28] integrated into workflows. Depending on the next steps in our
research, and which fault injection mechanisms will be required for evaluating
our prototypes, we will develop further plugins in the future.

4.2 Practical Application in Testing of SOA Prototypes

The question how G2 should be used to generate fault injection testbeds depends
strongly on the type of the tested SOA, its composition, purpose, as well as its in-
ternal fault handling mechanisms. In the end, engineers have to generate testbeds
which emulate the SOA’s final deployment environment as realistically as pos-
sible. While Groovy scripts are G2’s primary interface for modeling testbeds,
we are currently investigating techniques for importing external specifications
of SOAs and their components into G2 models (e.g., from BPEL process def-
initions [29] and WSDL documents [14]). Independent on how the testbed got
specified, whether from scratch or via imports, the engineer is always operating
on a set of models describing SOA components which have their pendant gener-
ated instances located in the back-end. For providing a better conception of how
a testbed is actually structured Figure 3 illustrates its layered topology. At the
two bottom layers G2 connects the front-end to the distributed back-end and
the plugins establish their own communication structures. Most important are
the two top layers which comprise the results of the engineer’s activities. Based
on the provided model schema, he/she creates models of SOA components which
are then being generated and deployed at the back-end hosts. At the very top
layer the testbed instances are running and behave/interact according to the
engineer’s specification, which includes also fault injection behavior. The aggre-
gation of these instances constitutes the actual testbed infrastructure on which
the developed SOA can be evaluated.

Of course, the evaluation of a software system also comprises the monitoring
of the test cases as well as the analysis of collected data. These data are, for in-
stance, log files, performance statistics, captured messages, and other resources,
depending on the tested SOA and the fault-handling mechanisms to be verified.
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These data must be also gathered from both, the tested SOA, to analyze internal
procedures and reactions on faults, as well as from the testbed itself, to know
which faults have been injected at which time. By correlating both, it is possible
to narrow down errors in the SOA and to detect causes of misbehavior. G2 pro-
vides means for gathering relevant information about the execution inside the
testbed, such as an eventing mechanism that allows to track and log all changes
within the testbed configuration or call interceptors for logging of interactions.
However, regarding the gathering of log data from the tested SOA system, we
do not provide any tool support yet. Also, for the analysis of test results and
the narrowing down of errors/bugs inside the SOA we have not come up yet
with any novel contribution but regarded this problem as out of scope of the
current paper which just describes how we generate the testbeds. But we intend
to address these problems in future research.

4.3 Managing Large-scale Testbeds

In [5] we have shown how G2 facilitates convenient generation of large-scale
testbeds as well as manipulation of these in an efficient multicast-like manner.
We are exploiting the multicast feature for adapting larger testbed on-the-fly,
e.g., for injecting faults. Listing 1.6 demonstrates its usage for updating hosts
and Web services. The command expects the type of the instances which shall be
altered (in the sample: webservice and host) and two closure code blocks. The
first closure specifies the filter which determines the designated instances, while
the second one contains the manipulation commands. In the presented sample,
fault models are attached to all Web services matching their namespace and
annotation tags. Moreover, all hosts within a defined subnet are being enhanced



with network fault emulation. As a result, multicast updates help to manage
large-scale testbeds in a clear and compact manner.

1 webserv ice { ws−> // f i l t e r
2 " faulty " in ws . tags && ws . namespace =˜ /www. i n f o s y s . tuwien . ac . at /
3 } { ws−> //command
4 ws . qos = qosModel
5 ws . i n t e r c e p t o r s += [ xmlPertModel ]
6 }

8 host { h−> // f i l t e r
9 h . l o c a t i o n =˜ /192 . 168 . 1 . /

10 } { h−> //command
11 netFaultModel . attachTo (h)
12 }

Listing 1.6. ’Injecting faults to hosts and Web services’

Regarding the performance of the framework and our fault injection mechanisms,
we have omitted putting a detailed study into this paper, mainly due to space
constraints and because we believe that it would not emphasize the message of
our paper, which is the presentation of the concepts. Due to the fact that G2 is a
programmable framework, the actual performance and system load also depend
heavily on how it is applied and what kind of a testbed is being generated,
with which components and functionality. Therefore, we believe that presenting
a performance evaluation would be only of limited use for the readers.

4.4 Open-source Prototype

As we did before with G2’s predecessor, the first Genesis framework [30], we will
also publish the current prototype as open-source via its homepage [31].

5 Related Research

Fault injection has been a well-established testing technique since decades. Nu-
merous tools have been developed and applied for evaluating quality of soft-
ware/systems. Due to the vast number of available tools, as well as due to their
diversity, we do not present a survey on them but refer readers to [32] and [33],
which provide a good introduction and overview of available solutions. In general,
research on fault injection has produced a lot of results, covering sophisticated
techniques for generating meaningful faults as well as for the analysis of their
effects on the tested software.

In the domain of Web services and SOA, several works deal with fault injec-
tion. Xu et al. have presented an approach for perturbing the XML/SOAP-based
messages exchanged by Web services in order to evaluate how well the tested sys-
tems can handle message corruption [34]. Moreover, Nik Looker has investigated
fault injection techniques in his dissertation [35] and has developed the WS-FIT
framework [9, 36]. WS-FIT intercepts SOAP messages at the middleware level
and supports a rich set of features for manipulating these. This includes dis-
carding of messages, reordering of them in the interaction flows, perturbing the



XML content, and other features. In general, works like those of Xu and Looker
assume the presence of already existing Web services and inject faults for testing
their runtime behavior and/or fault-handling mechanisms. However, we do not
regard these works as direct competitors, since we have not developed any novel
techniques for fault injection in the strict sense. Instead we empower engineers
to generate SOA testbeds from scratch and to extend these with programmable
faulty behavior. And this we regard as our most distinct contribution. Due to the
novelty of our work, we have not identified many related works, but have only
found SOABench, PUPPET, and ML-FIT to be relevant for testbed generation.

SOABench [37] provides sophisticated support for benchmarking of BPEL
engines [29] via modeling experiments and generating service-based testbeds. It
provides runtime control on test executions as well as mechanisms for test result
evaluation. Regarding its features, SOABench is focused on performance eval-
uation and generates Web service stubs that emulate QoS properties, such as
response time and throughput. Similar to SOABench, the authors of PUPPET
[38, 39] examine the generation of QoS-enriched testbeds for service composi-
tions. PUPPET does not investigate the performance but verifies the fulfillment
of Service Level Agreements (SLA) of composite services. This is done by ana-
lyzing WSDL [14] and WS-Agreement documents [40] and emulating the QoS
of generated Web services in order to check the SLAs. Both tools, SOABench
and Puppet, support the generation of Web service-based testbeds, but both are
focused on evaluating workflows/compositions and do not support fault injection
beyond emulating QoS.

Only the Multi-Level Fault-Injection Testbed (ML-FIT) [8] has a similar
focus to our work. It also aims at emulating SOA faults at different levels, builds
upon existing fault injection mechanisms, and the authors intend to use collected
field data for creating realistic fault models. However, ML-FIT is still under
development and, therefore, not much has been published about it yet. It is
unclear how testbeds will be generated, which types of SOA components will
be supported, and how faults will be modelled and injected. Without knowing
these details it is difficult for us to compare our approach to ML-FIT.

6 Conclusion

In this paper we have presented our approach for generating programmable fault
injection testbeds for SOA. Based on the Genesis2 framework, which allows engi-
neers to model testbeds and to generate real instances of these, we have developed
techniques for specifying faults and injecting them into running testbeds. Due
to the extensibility of Genesis2, our approach supports the emulation of diverse
types of faults. In the current state of our work, we have developed mechanisms
for emulating network faults, service execution faults, and for corrupting ex-
changed messages. In a nutshell, our main contribution consists of the ability to
generate SOA testbeds via scripts and the programmability of the injected faults.
As a result, engineers can customize the fault behavior to their requirements, in
order to have realistic testbeds for evaluating SOA systems.



For future plans, we will be working on further fault injection mechanisms to
extend the spectrum of supported fault types and we will publish the prototype
implementation as open-source.
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18. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6) (2002)

72–75
19. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-

ability attributes of web services. In: ICWS, IEEE Computer Society (2006) 205–
212

20. Groovy Closure Guide: http://groovy.codehaus.org/Closures.
21. Java Distribution Functions library: http://statdistlib.sourceforge.net.
22. SOAP Over UDP: http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/

wsdd-soapoverudp-1.1-spec-os.html.
23. Web Services Dynamic Discovery: http://docs.oasis-open.org/ws-dd/

discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf.
24. Linux Advanced Routing & Traffic Control: http://lartc.org.
25. netem - Network Emulator: http://www.linuxfoundation.org/en/Net:Netem.
26. Juszczyk, L., Dustdar, S.: Testbeds for emulating dependability issues of mobile

web services. In: EMSOS, IEEE Computer Society (2010) (forthcoming)
27. Java 6 Standard Edition: http://java.sun.com/javase/6/.
28. Schall, D., Truong, H.L., Dustdar, S.: The human-provided services framework.

In: CEC/EEE, IEEE Computer Society (2008) 149–156
29. Business Process Execution Language for Web Services: http://www.oasis-open.

org/committees/wsbpel/.
30. Juszczyk, L., Truong, H.L., Dustdar, S.: Genesis - a framework for automatic

generation and steering of testbeds of complex web services. In: ICECCS, IEEE
Computer Society (2008) 131–140

31. Genesis Web site: http://www.infosys.tuwien.ac.at/prototype/Genesis/.
32. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. IEEE

Computer 30(4) (1997) 75–82
33. Wikipedia on Fault Injection (accessed on Jun 13, 2010): http://en.wikipedia.

org/wiki/Fault_injection.
34. Xu, W., Offutt, J., Luo, J.: Testing web services by xml perturbation. In: ISSRE,

IEEE Computer Society (2005) 257–266
35. Looker, N.: Dependability Assessment of Web Services. PhD dissertation, Durham

University (2006)
36. Looker, N., Munro, M., Xu, J.: Ws-fit: A tool for dependability analysis of web

services. In: COMPSAC Workshops, IEEE Computer Society (2004) 120–123
37. Bianculli, D., Binder, W., Drago, M.L.: Automated performance assessment for

service-oriented middleware: a case study on bpel engines. In: WWW, ACM (2010)
141–150

38. Bertolino, A., Angelis, G.D., Polini, A.: A qos test-bed generator for web services.
In: ICWE. Volume 4607 of LNCS., Springer (2007) 17–31

39. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: Model-based generation of
testbeds for web services. In: TestCom/FATES. Volume 5047 of LNCS., Springer
(2008) 266–282

40. WS-Agreement: http://www.ogf.org/documents/GFD.107.pdf.


