Testbeds for Emulating Dependabillity Issues of
Mobile Web Services

Lukasz Juszczyk, Schahram Dustdar
Distributed Systems Group, Vienna University of Technglog
ArgentinierstralRe 8/184-1, A-1040 Vienna, Austria
Email: {juszczyk,dustdgdm@infosys.tuwien.ac.at

Abstract—Today’s ubiquitous internet access has opened new Especially for long-running workflow systems, it is necegsa
opportunities for mobile workers. By using portable devices, the to test these in terms of performance, stability, scalgbili
workers are not only able to access their company’s data and/or 5 o check the adaptation mechanisms in realistic sanari
services from everywhere, but are also offering their own service Evidently, this calls for testbed infrastructures whichutate
for being accessible on-demand. The result is on the one hand a y: ) : )
higher flexibility, in terms of coordination, but on the other hand ~ Such scenarios and allow to verify the workflow's execution
poses various challenges to the company’s internal workflows due before deployment.
to the dynamic nature of mobility. Consequently, the workflows | this paper we present a solution which allows to set up
must be tested at runtime in realistic scenarios in order to get such testbeds in a convenient yet flexible manner. Our work

evidence about their correct execution. In this paper we present . . .
an approach for emulating mobile workers in order to test the is based on the Genesis2 framework [6] (in short, G2) and

effects of unreliable dependability on workflows. By using the Supports the creation of running testbeds out of scripethas
Genesis2 framework we generate testbeds consisting of real Webspecifications. In a nutshell, engineers are free to spedy

services and simulate their QoS as well as mobility issues such asstrycture and behavior of the testbed, consisting for imsta
pack_et loss, delay, qnd an unreliable availability. By ggnerat_ing a of Web services, clients, registries, and to generate ngnni
running testbed environment, our approach allows to investigate . Do
a workflow's execution at to detect runtime faults. mstgnces of these at a d|str|buteq .ba.ck—end. We haye edend
G2 in order to emulate dependability issues of mobile warker
|. INTRODUCTION AND MOTIVATION and to control these via the Groovy [7] scripting language.

In the last years, mobile (or portable) devices, such as net\We present our approach as follows. In the current section
books, personal digital assistants (PDAs), and smart ghonee outlined a short motivation for our research. Section II,
have reached a performance level which allows to apply the main part of the paper, and describes our contribution
them for more sophisticated purposes, compared to the @klbenefits, and limitations. Finally, in Sections Il and we
days when they served mainly as messengers or calendamsnpare our approach to related work and conclude this paper
Today, they cover a wide spectrum of applications, from
those for pure entertainment and/or simple tasks (as eviden
in the increasingly popular smart-phone applications) @p t The aim of our tool-based solution is to support engineers
critical systems, e.g., for disaster response using malle in generating testbeds which emulate an environment of mo-
hoc networks [1]. This trend has also had a high impact drile workers, including the inherent dynamics which pose
the domain of mobile workers which perform their tasks oa challenge to workflow systems. These dynamics include
the move, being equipped with portable devices [2]. Ifitial volatile availability, network delays, packet losses, gudlity
their devices served mainly as clients for accessing theif service (QoS) in general. Our approach combines the G2
company’s data and/or services [3], but has evolved towarlamework, which handles the generation of SOA testbeds,
workers also providing their own Web services [4] whiclwith the Linux tooltraffic control in order to inject commu-
can be called on-demand and integrated into a companyisation faults for simulating dependability issues.
internal workflows [5]. For realizing such systems it makes )
sense to apply service-oriented computing (SOC) whichreffe- Genesis2 Testbed Generator
a high level of flexibility due to the decoupling of clientscan In the last years we realized a gap between the progress
services. This flexibility is of high importance, since mebi of research on service-oriented computing (SOC) in general
workers are not available 24/7, as it is the case with stadod on testing solutions for SOC. So far, work has been
software services, but rather provide a volatile avaiilgbiind, mainly done on testing single Web services, but it has been
in addition, suffer from unreliable connections. In order tneglected to work on solutions for testing large systemswhi
handle these dynamics, the workflows must be able to adaperate on service-based environments themselves, such as
to unforeseen events in order to guarantee a correct egacutactive registries, governance systems, or workflow engines
However, we are not dealing with adaptation mechanisms Runtime-based tests for these systems require testbed envi
this paper, but we regard a related problem. How can sugnments, consisting of Web services, clients, servicequs
workflows be tested with respect to their runtime behavioriediators, etc. However, the set up of such testbeds has

II. OUR APPROACH GENESI & TRAFFIC CONTROL



Tested QOD queries, etc. All in all, the testbed’'s behavior is fully
SOAWorkflow {; D customizable and not restricted by the G2 framework.
S « Eventually, on top of this emulated environment, the

workflow or service-oriented architecture (SOA) can be

tested.

In summary, the engineer specifies the testbed at the front-
end, definingwhat shall be generatedvhere with which
customizationsand the framework takes care of synchronizing
the model with the corresponding back-end hosts on which
the testbed elements are generated and deployed. Listing 1
contains a sample script for modeling a Web service, pro-

Testbed
Instances

Testbed
Control

G2 Plugi N S ) ; ; .
o gramming it's behavior (in this case just returning a String
value), and deploying it at a back-end host. After deploytnen
G2Framework iy BackEnd it is possible to perform adaptations on-the-fly by changing
Hosts . . .. .
the Web service’s model which is immediately propagated to
Front-End Host the generated instance at the back-end.

Fig. 1. Layers of interaction within a Genesis2-based tbth

def dt=datatype.creaté(schenmas/types.xsd" ,"vCard")

def service = webservice.build

been a cumbersome and time consuming task due to the Jack. ¢'éate model of TestService with one operation
TestService (binding:"doc,lit", tags: ['test"]) {

of proper tool support. In order to close this gap, we have SayHello(card: vCard, result: String]
developed the G2 framework which aims at providing means def name = card.name
for engineers to specify testbeds, program their behasiud, return “hello $nane”
generate automatically running instances of these. Dug to
space constraints it is not possible to present all detdilg p0]
G2. Instead, we refer interested readers to [6] and summariﬁ im
. . port back-end host reference

the most relevant features in this paper. def beHostl = host.creaté{92. 168. 1. 11: 8080" )

G2 comprises a centralized front-end, from where testbeds
are modeled and controlled (via Groovy scripts), and a di§€"vice - deployAt(beHostl)// deployment at backend
tributed back-end at which the models are transformed intQrvice . operations += ...// on-the fly adaptations
real testbed instances. The front-end maintains a virtieal v
on the testbed, allows engineers to manipulate it on-the-fly
via scripts, and propagates changes to the back-end in twrder
adapt the running testbed. For the sake of extensibilityi&3  For the purpose of emulating mobile worker’s Web services,
composable plugins which augment the testbed’s functignal we are using the G2 framework for generating the basic
making it possible to emulate diverse topologies, funetiontestbed. Furthermore, we apply plugins for simulating QoS
and non-functional properties, and behavior. Figure 1depiand dependability issues of mobile workers.

a simplified view on the different layers of a G2-based tastbe . _ '
and the interactions within them. B. Emulating Mobile Web Services

« At the lowest level, G2 maintains connections between Web services on portable devices suffer from two kinds
the front-end and the back-end hosts in order to synchraF problems: unreliable connectivity, caused by the nature
nize the testbed model and to propagate plugins. of wireless communication, and an unsteady availability of

o On top of this, the individual plugins are deployedthe human worker. If such services need to be incorporated
which are free to implement their own communicatiointo a company’s workflow or service-oriented architecture
strategies, e.g., for data exchange via gossiping. these systems must be able to handle the dynamics inherent in

« Based on the G2 framework and the functionality pranobile computing and must be tested in simulated scenarios.
vided by the plugins, engineers create models of thellonsequently, they require a testbed which emulates mobile
testbeds and deploy these on the back-end where ®@rkers and their dependability problems.
takes care of generating real instances. At the front-In our approach we make use of the distributed nature of a
end, the models comprise virtual objects which represe@® testbed and assign each worker a separate back-end host
the generated instances and act as proxies for on-thedlyd deploy a customizable set of services which represent th
manipulations. workers’ repertoires. The emulation of connectivity pevhk

o The generated testbed consists of the elements modeded of QoS takes place on two different levels. While con-
by the engineer and behaves according to its specificgaectivity problems usually affect whole devices, incluglihe
tion, e.g., by having nested service invocations, registaccess to all deployed services, QoS properties are local to

Listing 1. ’Specification and deployment of a Web service’



individual services, or to be more precise, to their operati by assigning randomized values. This behavior does oblyious
To achieve an effective emulation of these, we have extendsat emulate a realistic scenario, which would rather requir
G2 with two additional plugins: aetwork emulatgrfor low more sophisticated strategies for distribution of workansl
level fault injection, and &oS plugin for emulating QoS simulation of their behavior. However, for demonstratiam-p
properties such as processing time, throughput, and slitglab poses it shows how the testbed can be steered.

1) Network Emulator Pluginfor emulating network faults  The script starts with referencing 20 back-end hosts at
we are using the Linux todtaffic control (t ¢) [8] in combi- virtual IPs and importing message type definitions from XSD
nation with thenetemmodule [9]. Basically, for each back-endfiles. In Lines 7-23 a basic set of worker's Web services
host, which represents a worker’s device, the plugin ceeateis defined which are then all deployed on every single host
virtual IP address which can be then controlled via (Lines 25-29). Finally, in Lines 31-43 a background thread i
ifconfig 10:0 add 192.168.1.11 started for each host, which controls the emulation of nekwo
connectivity and QoS by changing the corresponding vaegabl
In order to control the fault behavior via the front-end, the

plugin defines extensions to the model of back-end hosts| B0. upto (30) { n— host.create'(192. 168. 1. $n: 8080") } | 1
that the testbed used can steer a host's properties viae;irn[[j)l L .
iabl . ts: ef stat=datatype.creaté/ny/types.xsd" ,"typeNane") | 3
variable assignments: def task= ... // import message data types from XSO 4
Host1l { // ipulate host ti
be thtIo{ss - rgaonzlgtjla peaCkoest lgrg(;per es def serviceSet=webservice.build 6
tc:delay = 1500 // packet delay /1 define required Web services & operations 7
tc.corrupt = 0.001// packet corruption Stgteut\slvsoilr(\gr%etzgtbulg?:ggbérﬁ)gégnsct;t{){ g
' return ... // current worker status 10
. . . 11
G2 intercepts these manipulation request and propagates th} } 12
changes to the corresponding back-end hosts at which teey ar
translated intd ¢ commands: TaskManagerService (} _ 14
AssignTask(t : task, response: String{ 15
tc qdisc change dev lo:0 root netem loss 2.5% /I ... program operation behavior 16
tc gdisc change dev 10:0 root netem delay 1500ms } 17
tc qdisc change dev lo:0 root netem corrupt 0.1% StopTask(tasklD: String, responsehboolean) { 18
/I ... program operation behavior 19
As a result, the network emulator plugin makes it possible/to  } 20
deploy back-end hosts on virtual IP addresses and to contro 2l
their emulated communication properties from remote. // more services 23
2) QoS Emulator Plugin:For emulating quality of service, } 24
we have ported th&@oSPluginof the first version of Gen- host. getAll (). each{ h —> // on each host o6
esis [10] to G2. In contrast to the network emulator which serviceSet.each{ s — // deploy all services 27
augments the hosts, tl@oSPluginattaches itself to the Web s.deployAt(h) 28
services and their operations in order to make them behe&vé’ gg
according to specified non-functional attributes. Cuiyerie
spectrum of supported QoS attributes includes procesisivgg t| host. getAll () .each{ h — 32
invocation throughput, scalability on parallel invocaiso ser- Thvrvehei‘lde' S(trﬁrr]tn{mg) ( 1/ boolean flag 2431
vice availability, and accuracy [11]. Again, the plugin isitg Thread.delay (5000)// in 5sec intervals 35
controlled via variables and simulates QoS by delayingisery /I set randomized attributes 36
invocations, throwing exceptions, and altering the sersic '/1/'t?O'r'Oes:Cg”sgvpfzoay”ggms(g;\;‘i‘z’;t':'oat() o
deployment status: h.webservice.getAll () .each s — 39
- s.gos.availability= ...// random attribs 40
service { } a1
/I manipulate whole service’'s properties } 1
gos.processingtime = 60/ 1 minute ) 43
gos.throughput = 5/60// 5 tasks per hour } a4
gos.availability = 0.98// 98% availability
/I manipulate QoS of single WS operation Listing 2. ’Simplified specification of testbed emulating mehilorkers
SayHello.qos.throughput = 10/60
' For the sake of brevity, we have restricted the demonstrated
) testbed to only emulating mobile Web services. In reality,
C. lllustrating Example depending on the requirements of the tested system, a proper

In the following we are using a sample specification scripestbed would also incorporate registries, client funmcliy
for demonstrating the practical application of our apphoacfor invoking services, message interceptors, etc. Detafisut
Due to the limited space in this paper, the script manipalatbow such a testbed can be specified and generated, are
the attributes for emulation of network failures and QoSyonkxplained in our previous work [6].



D. Limitations a volatile dependability on a service-oriented architectat

Of course, our approach is not capable of emulating &{ntime. By using the Genesis2 framework, we are able to
aspects of mobile computing. All it does is generating Weg£nerate testbed environments which we augment with gugin
services and, if desired, also other SOA components, aieg simulating mobility issues, such as network failures as
binding them to hosts which are controllable remotely. ept Well as quality of service attributes. The strengths of our
words, it emulates a dynamic environment (= creates a mo@RProach are the high degree of customizability, whichvedlo
up) for testing of a workflow or SOA operating on top of© generate testbeds of arbitrary structure and behawiaf, a
that environment. Our approach does not aim at emulating ¢ convenience of using a compact scripting language for
runtime of mobile devices in order to test software on thes@odeling the testbeds.
qu this, engineers shquld use device emulators, e.g., from ACKNOWLEDGMENT
Microsoft [12] or Sun Microsystems [13].

Furthermore, currently we are only able to simulate simple The research leading to thes_e results has received fund-
ng from the European Community Seventh Framework Pro-

QoS of workers, which do not provide a high level of realisn.
We regard it necessary to emulate the workers’ behavior al rUtr)T;;ne FP7/2007-2013 under grant agreement 215483 (S-
Jbe).

regarding working times, variable working speed, and oth
relevant attributes of human work. This will be addressed in REFERENCES

future work. [1] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Sateae, G. Vet-

ere, S. Dustdar, L. Juszczyk, A. Manzoor, and H. L. TruongrBsive
IIl. RELATED WORK software environments for supporting disaster responfeBFE Internet
In the domain of testbed generation, the projects/protstyp _ Computing vol. 12, no. 1, pp. 26-37, 2008.

. . .. [2] M. Perry, K. O'Hara, A. Sellen, B. A. T. Brown, and R. H. Rakper,
of SOABench [14] and PUPPET [15] prowde a functionality “Dealing with mobility: understanding access anytime, angveti ACM

similar to that of G2. SOABench aims at benchmarking BPEL  Trans. Comput.-Hum. Interactvol. 8, no. 4, pp. 323-347, 2001.

workflow engines [16] via modeling experiments and generats] M. Chen, D. Zhang, and L. Zhou, “Providing web servicesmobile
users: the architecture design of an m-service portayIiC, vol. 3,

ing service-based testbeds. It provides runtime contrdesh no. 1, pp. 1-18, 2005.
executions as well as mechanisms for test result evaluatiop] D. Schall, R. Gombotz, C. Dorn, and S. Dustdar, “Human &téons in

Regarding its features, SOABench is focused on performance dynamic environments through mobile web services IGWS IEEE
. . Computer Society, 2007, pp. 912-919.
evaluation and generates Web service stubs that emulate Q@,ﬁD. Schall, H. L. Truong, and S. Dustdar, “The human-preddervices

properties, such as response time and throughput. Similar framework,” in CEC/EEE IEEE, 2008, pp. 149-156.

to SOABench, PUPPET generates QoS-enriched testbeds {8 - Juszczyk and S. Dustdar, "Script-based generationdphamic
e . - ) testbeds for soa,” iICWS |IEEE Computer Society, 2010.
verifying service compositions, but is more focused on the;; «Groovy Programming Language,” http://groovy.codehats.

verification of Service Level Agreement (SLA) fulfillmentsrf  [8] “Linux Advanced Routing & Traffic Control,” http://lactorg.

composite services. Similar to G2, these two approaches sefl9] “netem - Network Emulator,” http://www.linuxfoundatioorg/en/Net:
etem

their purposes by generating service-based testbeds Whm L. Jusiczyk, H. L. Truong, and S. Dustdar, “Genesis -aarework for
emulate QoS. Yet, G2 is not restricted to a specific domain but automatic generation and steering of testbeds of complexasmiices,’

is highly customizable via plugins which introduce aspedts N ICECCS IEEE Computer Society, 2008, pp. 131-140.

lated . h K | h'%fll] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrappierformance
_er_nu ate enV'rO_nm_entS' such as our network emulator whi and dependability attributes of web services,J@&ws |IEEE Computer
injects communication faults. Moreover, G2 allows to pesgr Society, 2006, pp. 205-212. _ _ _
the behavior of generated Web services in order to customizél “Microsoft Device Emulator, hitp://go.microsoft.cofmink/?Linkld=
it to the testing purpose. [13] “Java ME Emulator Toolkits," http://java.sun.com/jave/sdk/.

For the emulation of communication faults, we are using@4] D. Bianculli, W. Binder, and M. L. Drago, “Automated perfnance

traffic control [8] and netem[9] which provide all necessar assessment for service-oriented middleware,” Faculty adrinétics -
f . i [ ] . faul [ ] . Ip h Related his y University of Lugano, Tech. Rep. 2009/07, November 2009.lif@h
unctionality to inject faults on a single host. Relate t Available: http://www.inf.usi.ch/researchublication.htm?id=55

we could have also used network emulators such as ns2 [liB] A. Bertolino, G. D. Angelis, and A. Polini, “A qos tesed generator

or GloMoSim [18], which provide even more sophisticated for web service_s," inNlCWE, ser. Lecture Notes in Computer Science,
. . e . . . vol. 4607. Springer, 2007, pp. 17-31.
functionality thannetembut at the cost of sacrificing simplic- 1] “0AsIS - Business Process Execution Language for WelviGes,”

ity. Furthermore, emulators for mobile ad-hoc networkghsu http://www.oasis-open.org/committees/wsbpell.
as Octopus [19]' MobiNet [20], or MobiEmu [21] do exist,[17] “The Network Simulator - ns2,” http://www.isi.edu/rem/ns/.

. . 18] “Global Mobile Information System Simulator,” http:#jpcs.ucla.edu/
of which each has different strengths and weaknesses. Alsd) projects/glon;osim/. on =y m pifpes. !

this case, it would be possible to integrate our approach wit9] F. D'Aprano, M. de Leoni, and M. Mecella, “Emulating mabikd-
one of these emulators. All in all, the purpose of our work has hoc networks of hand-held devices: the octopus virtualrenviient,” in
. . MobiEval ACM, 2007, pp. 35-40.
never been to compete with these tools but to integrate th% P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdatobiet: a
with G2 for emulating mobile Web service-based computing. scalable emulation infrastructure for ad hoc and wirelessvorgs,”
Mobile Computing and Communications Reviewal. 10, no. 2, pp. 26—
IV. CONCLUSION 37, 2006.

. [21] Y. Zhang and W. Li, “An integrated environment for tegfimobile ad-
In this paper we have presented our approach for emulating’ hoc networks,” inMobiHoc ~ ACM, 2002, pp. 104-111.

mobile workers’ Web services in order to test the effects of



