
Magisterarbeit

Replication and
Synchronization
of Web Services

in Ad-hoc Networks

Ausgeführt am

Institut für Informationssysteme
der Technischen Universität Wien

unter der Anleitung von

Univ.Prof.Mag.rer.soc.oec.Dr.rer.soc.oec. Schahram Dustdar

durch

Lukasz Juszczyk, Bakk.techn.
Schweglerstraße 47-49/16, A-1150 Wien

Matr.Nr. 9925140

Vienna, 09. May 2005

To my parents

ii

Abstract

Due to their main advantage of offering standardized, extensible, and inter-

operable machine-to-machine interaction the popularity and importance of

Web services is increasing. As a consequence Web services have became par-

ticularly interesting within mobile ad-hoc networks which can be used for

building spontaneously an infrastructure for providing desired functionality

or applying various business workflows. However, taking the dynamic be-

havior of ad-hoc networks into consideration, it becomes obvious that this

infrastructure will be unreliable since hosts can easily relocate in the network

and disappear completely making also their deployed Web services unavail-

able. In the course of writing this master thesis a system has been developed

by means of which replication and synchronization of stateful Web services

is performed within a highly dynamic network environment, able to handle

all difficulties which unpredictable network topologies can raise.

Zusammenfassung

Web Services ermöglichen eine standardisierte, erweiterbare und vollständig

kompatible Interaktion zwischen Maschinen. Diese Interoperabilität hat maß-

geblich zur steigenden Akzeptanz von Web Services als Kommunikationsstan-

dard im Internet beigetragen. Besonders dienlich wurden Web Services in

mobilen Ad-hoc Netzwerken, die spontan gebildete und höchst dynamische

Netzwerk- und Kommunikationsinfrastrukturen ermöglichen. Doch diese dy-

namischen Netzwerktopologien erschweren das Anbieten von hochverfügbaren

Web Service-basierten Architekturen. Im Zuge dieser Diplomarbeit wurde

ein System entwickelt, das Verfügbarkeit und Zuverlässigkeit von Web Ser-

vices mit Hilfe von Replikation und Synchronisation signifikant erhöht und

fähig ist, mit der Dynamik und Unberechenbarkeit von Ad-hoc Netzwerken

umzugehen.

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 4

1.3 Organization of this Thesis . 6

2 State of the Art Review 7

2.1 Web Services . 7

2.1.1 XML & XSD . 9

2.1.2 SOAP . 11

2.1.3 WSDL . 13

2.2 Ad-hoc Networks . 15

2.3 Web Services in Ad-hoc Networks 17

2.4 Related Work . 19

3 Concept of Solution 21

3.1 Requirements, Restrictions, and Assumptions 21

3.1.1 Classification of Failures 21

3.1.2 Application in Various Network Environments 21

3.1.3 Combination of Various Web Service Platforms 22

3.1.4 Control of Replica Placement 24

3.1.5 Transfer of Data Sources 24

3.1.6 Synchronization . 25

3.1.7 Security . 27

3.2 Architecture of the Replicator System 27

3.3 Simple Replicator Protocol . 29

4 Description of Replication 33

4.1 Replicable Web Services . 33

4.1.1 Web Service Archives 33

4.1.2 Hibernation of Web Services 34

iv

4.1.3 Deployment Hooks . 35

4.2 Host Properties and Service Requirements 36

4.3 Replicator Web Service . 37

4.4 Monitoring . 39

4.4.1 Active Monitoring . 41

4.4.2 Passive Monitoring . 42

4.5 Replica Placement Mechanism 43

4.5.1 Leader Election . 44

4.5.2 Replication Logic . 45

5 Description of Synchronization 49

5.1 Synchronizable Web Services 50

5.2 State Objects . 52

5.3 Propagation of Updates . 53

5.4 Consistency Problems in Ad-hoc Networks 56

5.5 Invocation of Web Services . 57

6 Evaluation 60

6.1 Practical Application of the Replicator System 60

6.2 Case Study . 62

6.3 Further Work . 66

7 Summary 67

7.1 Conclusion . 68

A Sample Web Service Implementation 71

B Simulation of Transient Host Lifetimes 73

v

List of Figures

1 Ad-hoc Network Scenario with a Critical Structure 3

2 Typical Lifecycle of a Web Service 8

3 Wireless Connections . 16

4 Host Structures in Ad-hoc Networks 16

5 Network Topology with three Star Structures 18

6 Multiple Nested Invocations with Active Replication 26

7 Architecture of the Replicator System 28

8 Host-Service Relation in the Data Base 28

9 Modules for Replication of Web Services 33

10 Deployment States of Web Services 35

11 Web Service Container Stack 38

12 Distributed Monitoring of Network State 40

13 Execution Sequence of Replicator 44

14 Synchronization of Web Services using Primary-Copy 54

15 Sequence Diagram for Retrieving WSDL File of Primary Copy 58

List of Tables

1 Case Study Results . 65

1

1 Introduction

During the last few years there has been a trend towards creating architec-

tures for business processes based on distributed and independent services

instead of building single applications which control the entire business logic.

This new modularity offers a lot of benefits, including higher flexibility of

applications as well as reduced costs of development due to reuse of services.

Even though these Service Oriented Architectures (SOAs) can be built using

various technologies, such as CORBA or Enterprise JavaBeans (EJB) Web

services have become the most popular technology used for their realization.

Reasons for this tendency are advantages of Web services such as the appli-

cation of open standards or interoperability facilitating machine-to-machine

communication within heterogeneous environments.

These very qualities are especially desired within mobile ad-hoc networks,

which make it possible to build up network infrastructures spontaneously

and quickly by using wireless communication and without the need of any

preexisting devices or physical structure, such as access points, routers, or

cables. Even if this technology not yet used widely nowadays it is expected

to gain a wide field of application in the near future. This has been indicated

by rising investments in companies and research.

If one regards the characteristics and advantages of these two technologies,

it becomes obvious that Web services in ad-hoc networks offer a lot of new

possibilities, such as infrastructures for communication and cooperation for

groups of engineers, the needs of action forces in emergency situations, spon-

taneously built business processes, etc. However the dynamic behavior of

ad-hoc networks raises the problem of transient service lifetimes and thus un-

acceptable reliability of whole workflows and processes. They can be brought

to a halt if essential services cease to be available due to disconnections or

relocations.

1.1 Motivation 2

This problem can only be solved by replicating Web services and synchroniz-

ing stateful ones. Thus a number of backup services are kept to compensate

failures and synchronization is used to keep a consistent state between all

replicas in order to enable a smooth changeover to a backup service. Al-

though there exist many solutions proposing static replication of services to

gain a higher availability, this is not the case with regard to networks with

transient topologies.

Consequently the goal of this thesis was to develop a solution for replicating

Web services in highly dynamic ad-hoc networks to ensure their constant

availability. The implemented solution is based on Apache Axis and per-

forms replication by monitoring the state of the network and by adapting

the placement of replicas to it.

1.1 Motivation

So far mobile ad-hoc networks have not yet been used widely but are gaining

popularity. A topical example is the 100$ Laptop, which is developed by

the One Laptop Per Child (OLPC) organization created by members of the

MIT Media Lab. This project’s intention is to provide cheap computers for

child-education in least developed countries and one of the features provided

by these laptops is the ability of building mobile ad-hoc networks via wireless

communication. Another indication for a growing popularity and acceptance

are a great number of companies which invest in research on new technologies

based on ad-hoc networks.

Since ad-hoc networks are most often established in heterogeneous environ-

ments, communication within them requires a high level of interoperability

and therefore calls for Web services: a communication standard which was

designed for almost unlimited interoperability and extensibility.

1.1 Motivation 3

The flexibility but also unreliability of Web services in ad-hoc networks can

be well explained by using a scenario of an emergency situation (e.g. af-

ter an earthquake) where numerous action forces arrive and require a quick

and highly available infrastructure for communication and for coordination

of their squads. It can be easily achieved to setup such an infrastructure by

providing Web services which offer the needed functionality for coordinating

the activities of the squads, informing about the current situation, request-

ing reinforcements, etc. Figure 1 illustrates a simple scenario with host H1

providing one of these Web services which must constantly be available to

all clients. The availability of this service is mainly endangered by a dis-

connection of host H6, which is critical for the coherence of the network, or

by a failure of host H1, which is providing the Web service. The only way

to ensure the availability of the Web service is to distribute replicas within

the network which function as backups and are ready to take over the ser-

vice’s work after a failure. This requires a mechanism which reacts quickly to

changes in the network and synchronizes the internal states of Web services

continuously.

Figure 1: Ad-hoc Network Scenario with a Critical Structure. H6 is a critical
spot splitting the network in case of a failure. (Links between hosts indicate
direct connections)

1.2 Problem Definition 4

1.2 Problem Definition

Replication and synchronization within as highly dynamic environments as

mobile ad-hoc networks is far away from being trivial. In fact it is the most

tricky environment one could image due to its unpredictable behavior. In the

worst case hosts are connecting and disconnecting from the network often

without leaving a chance of putting any structure into it. Unfortunately,

there is no satisfactory solution which guarantees service availability in such

a situation. However as such a worst case scenario happens extremely rarely,

it still makes sense to work on a solution for the usual scenarios, which,

anyway, has to deal with the following fault situations:

• Unavailable hosts:

– Hardware/operating system crash

– Shutdown

– Empty battery

– Unstable network connection

– Moving out of wireless network range

• Delays:

– High load on host/Web services

– High load on network link

– Unstable network connection

• Changing network topology:

– Relocating hosts and routers

– Splitting ad-hoc networks caused by router movements

1.2 Problem Definition 5

Nonetheless if every host is up and running and the network works perfectly,

the availability of Web services may be hampered due to configuration errors

or software failures:

• Unavailable Web services:

– Crash/shutdown of Web service container

– Crash/undeployment of individual Web services

– Firewalls blocking requests/responses

To overcome these obstacles for providing highly available Web services, it

is unavoidable to use the approach of replication. Nevertheless the majority

of replication techniques described in scientific papers or used in various

software products are either focusing on performance and load balancing

(e.g. Grids) or actually aim at increasing availability (e.g. HA-Clusters), but

at the same time they use static and centralized resources such as controllers

or request dispatchers. These systems are well-functioning in their domains,

but considering the following requirements for ad-hoc networks a completely

new solution is needed.

• Avoiding centralization

• Monitoring changes in availability & reacting to them

• Monitoring health of hosts & considering this while replicating

• Keeping bandwidth usage low

• Synchronizing service states quickly

• Making invocation of Web services convenient for the clients

To have a solution capable of meeting all the challenges mobile ad-hoc net-

works pose to replication, means to have a solution flexible enough to meet

the challenges of any other network environment as well. This is exactly one

of the main goals of this thesis and will be explained in more detail below.

1.3 Organization of this Thesis 6

1.3 Organization of this Thesis

The current chapter contains the introduction to the thesis, the motivation,

and the problem description, which explains some basic requirements this

thesis had to meet.

Chapter 2 provides an overview of used technologies and some concise reviews

of technical papers which had a strong influence on this thesis’ concept.

In Chapter 3 the concept of the implemented system is explained, including

a more detailed description of some basic requirements and an overview of

the system’s architecture.

Chapter 4 contains the documentation of the replication mechanism with its

monitoring, leader elections and the whole replica placement mechanism.

In Chapter 5 it is explained how synchronization of stateful services is per-

formed.

In Chapter 6 the evaluation of the system is documented, including ideas for

future work.

Finally, in Chapter 7 a conclusion and a summary of this thesis can be found.

7

2 State of the Art Review

In order to be able to understand the problem of using Web services within

ad-hoc networks, it is necessary to take a look at both technologies and the

difficulties their combination raises. In a nutshell the challenge lies in apply-

ing a technology which relies on static and centralized locations of registries

and services to a network environment which cannot accept centralized solu-

tions due to its highly dynamic structure.

2.1 Web Services

The implementation of Service Oriented Architectures is not bound exclu-

sively to Web services, although they represent the most favored choice. It

is perfectly possible to run an SOA while using Sun’s EJB [25], Microsoft’s

Distributed COM [22], CORBA [13], and many others. Important for SOAs

is the concept of using loosely-coupled and independent resources provided

as application services by nodes on a network. This implies a certain interop-

erability. Mainly for this reason Web services have become the most popular

standard, offering numerous additional benefits.

• Web services are based on open standards, such as XML [28], XSD [29],

SOAP [24], WSDL [27], UDDI [26]. No license fees have to be paid for

proprietary protocols.

• SOAP-based communication provides almost unlimited interoperability

within heterogeneous environments.

• Code libraries for almost all programming languages and operating sys-

tems make development of Web services convenient.

• SOAP-messages and RPC-calls can be transported via any possible

transport protocol. For instance the usage of HTTP [15] makes it easy

to traverse firewalls.

2.1 Web Services 8

In contrast to all the benefits, Web services have the handicap of poor per-

formance compared to the other technologies. This includes a sometimes

extensive communication overhead as well as a slower processing time, which

is due to the costly parsing of XML & SOAP while various middleware plat-

forms use binary transmission.

The usual lifecycle of a Web service can be described as follows:

1. service provider registers WSDL description at UDDI registry

2. service requester queries UDDI registry for desired Web service, re-

trieves WSDL data, extracts information, and adapts client routines

3. service requester invokes Web service

Figure 2: Typical Lifecycle of a Web Service. (Figure modified from [30]
c© H. Voormann, 25 March 2005)

Furthermore, the World Wide Web Consortium (W3C) and the Organiza-

tion for the Advancement of Structured Information Standards (OASIS) have

certified a number of open standards for extending Web service based com-

munication. The most popular examples include:

2.1 Web Services 9

• WS-ReliableMessaging for reliable delivery of SOAP messages

• WS-Security & WS-Trust offering cryptographic security

• WS-AtomicTransaction & WS-BusinessActivity for transactions, etc.

• and many more . . .

2.1.1 XML & XSD

The Extensible Markup Language (XML) [28] is a standardized meta lan-

guage, recommended by the World Wide Web Consortium (W3C) and used

for defining machine- and human-readable documents. As a meta language,

XML only specifies rules for creating valid documents while their content,

such as structure and payload, is not subject to any restrictions. This im-

plies unlimited extendability but every software processing an XML docu-

ment must be aware of its composition. Furthermore, XML does not restrict

the preferred way of representation in contrast to HTML [14].

As Listing 1 demonstrates, XML documents consist of a tree structure built

of a root element with optional subelements and attributes. This makes it

possible to describe almost every kind of data within XML.

Listing 1: ”XML Sample Document”

<?xml version="1.0" encoding="UTF -8"?>

<order>

<customer id =12345 >

<name>John Jackson </name>

<address >Foo -Avenue 5, Testcity </address >

</customer >

<ordereditems >

<item amount =1 id="123-ab -90">

<name>DVD recorder <name>

<description > ... </description >

</item>

2.1 Web Services 10

<item amount =5 id="456-xy -78">

...

</item>

</ordereditems >

</order>

Often XML documents contain elements from various modules serving dif-

ferent purposes, such as system-specific and user-defined information. To

distinguish them, XML namespaces have been introduced which add a lot

of flexibility for parsing and understanding the documents. This extension

also allows to have elements with identical names, which are nevertheless

distinguishable by the URIs of their namespaces:

Listing 2: ”XML Sample Document with Namespaces”

<?xml version="1.0" encoding="UTF -8"?>

<somedocument

xmlns="http://www.anywhere.org/path"

xmlns:ns1="http://www.abc.de/path"

xmlns:ns2="http://www.url.com/path">

<item attrib="value"/> <!-- in default namespace -->

<ns1:item attrib="value"/>

<ns2:item attrib="value"/>

</somedocument >

Before an XML document is processed to extract its data, the document’s

validity has to be verified first. Validity of an XML document does not only

mean that it is syntactically well-formed (e.g. all tags closed, attributes cor-

rectly set, etc.) but also implies correct content and structure. There are

numerous possibilities to describe valid XML structures, with XML Schema

Definition (XSD) [29] and the already out-dated Document Type Definition

(DTD) representing the most popular ones.

Listing 3 contains an XSD example, defining a data structure named“person”,

with the two mandatory fields “name” and “student”, and the optional field

2.1 Web Services 11

“birthdate”. Listing 4 shows a valid document for this schema definition.

Listing 3: ”XML Schema Sample Document”

<?xml version="1.0" encoding="UTF -8"?>

<xsd:schema xmlns:xsd="http://www.w3.org /2001/ XMLSchema">

<xsd:element name="person" type="personType"/>

<xsd:complexType name="personType">

<xsd:sequence >

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="birthdate" type="xsd:date"

minOccurs="0"/>

<xsd:element name="student" type="xsd:boolean"/>

</xsd:sequence >

</xsd:complexType >

Listing 4: ”Valid Document for XML Schema Definition in Listing 3”

<?xml version="1.0" encoding="UTF -8"?>

<person >

<name>John Jackson </name>

<birthdate >1985 -05 -21</birthdate >

<student >true<student >

</person >

Web services use XML Schema mainly within the Web Service Description

Language (WSDL) to define and check exchanged messages and data types.

2.1.2 SOAP

For encoding and exchanging messages and RPC-calls via Web services an

XML-based protocol named SOAP [24] is used. In version 1.1 SOAP was an

abbreviation for Simple Object Access Protocol, but due to that its evolution

had moved away from being simple and towards offering more functionality

than just accessing objects, the name was changed to simply SOAP in ver-

sion 1.2.

2.1 Web Services 12

SOAP mainly defines an optional header and a mandatory message body.

The header contains meta information such as digital signatures, routing in-

formation, or authorization data while the actual serialized message payload

is located within the body or its MIME attachments.

Listing 5 contains a short SOAP example, in which the data from Listing 3

is sent with a simple digital signature in the header.

Listing 5: ”SOAP Message Example”

<?xml version="1.0" encoding="UTF -8"?>

<env:Envelope

xmlns:env="http://www.w3.org /2003/05/ soap -envelope">

<env:Header >

<s:digitalsignature

xmlns:s="http://www.url.com/crypto">

<![CDATA [12AD5 ...9C]]>

</s:digitalsignature >

</env:Header >

<env:Body >

<b:person xmlns:b="http://www.url.com/path">

<b:name >John Jackson </b:name >

<b:birthdate >1985 -05 -21</b:birthdate >

<b:student >true<b:student >

</b:person >

</env:Body >

</env:Envelope >

For transporting SOAP messages HTTP was established as the most conve-

nient method, because of its ability to work well with firewalls. Alternatively,

SOAP can be sent via an unlimited pool of protocols, including SMTP, FTP,

proprietary protocols, etc. An advantage of using SMTP is that requests

may be processed whenever the service provider is ready to fetch it, which

results in an asynchronous message-based communication.

2.1 Web Services 13

2.1.3 WSDL

For describing the characteristics and provided functionality of Web services,

the Web Service Description Language (WSDL) [27] was introduced, which is

again an XML-based meta language. WSDL files are usually retrieved from

UDDI [26] registries to find out details about operations, data types, trans-

port methods, location, etc. for building invocation stubs which are used to

access the Web service.

Listing 6 contains an example WSDL file, automatically generated by Apache

Axis [9] for its VersionService with only one operation named “getVersion”.

If one considers this example, the big amount of XML data to describe even

simple Web services becomes apparent, since the following details have to be

defined:

• Lines 4-8: type declarations for input/output messages, which can

be either empty, primitive types, such (e.g. integer, boolean, string) or

XML Schema Definitions for complex types.

• Lines 9-16: port declaration linking input/output messages to the

operation “getVersion”.

• Lines 17-32: service binding, defining HTTP as the transport method

and “getVersion” as the only operation:

– Lines 21-30: operation declaration, with “getVersionRequest”

and“getVersionResponse”as input/output types, defining also the

encoding styles for the messages.

• Lines 33-37: service description, including name, binding and loca-

tion.

In a nutshell, this example describes a Web service named “VersionSer-

vice”, located at http://somehost:8080/axis/services/Version and in-

2.1 Web Services 14

voked via HTTP. It provides one operation named “getVersion”, accepts no

arguments and returns a string.

Listing 6: ”WSDL Data for Axis VersionService. (Declarations of namespaces

and encoding styles were omitted for clarity)”

1 <?xml version="1.0" encoding="UTF -8"?>

2 <w:definitions targetNamespace="..."

3 xmlns:w="http:// schemas.xmlsoap.org/wsdl/" ... >

4 <w:message name="getVersionResponse">

5 <w:part name="getVersionReturn"

6 type="soapenc:string"/>

7 </w:message >

8 <w:message name="getVersionRequest"></w:message >

9 <w:portType name="Version">

10 <w:operation name="getVersion">

11 <w:input message="impl:getVersionRequest"

12 name="getVersionRequest"/>

13 <w:output message="impl:getVersionResponse"

14 name="getVersionResponse"/>

15 </w:operation >

16 </w:portType >

17 <w:binding name="VersionSoapBinding"

18 type="impl:Version">

19 <ws:binding style="rpc" transport=

20 "http:// schemas.xmlsoap.org/soap/http"/>

21 <w:operation name="getVersion">

22 <ws:operation soapAction=""/>

23 <w:input name="getVersionRequest">

24 <ws:body encodingStyle="..."

25 namespace="..." use="encoded"/>

26 </w:input >

27 <w:output name="getVersionResponse">

28 <ws:body encodingStyle="..."

29 namespace="..." use="encoded"/>

30 </w:output >

31 </w:operation >

2.2 Ad-hoc Networks 15

32 </w:binding >

33 <w:service name="VersionService">

34 <w:port binding="impl:VersionSoapBinding"

35 name="Version">

36 <ws:address location=

37 "http:// somehost:8080/axis/services/Version"/>

38 </w:port >

39 </w:service >

40 </w:definitions >

2.2 Ad-hoc Networks

In 1997 the IEEE 802.11 Working Group [18] specified the first standard for

connecting hosts via wireless links (Wireless Local Area Network, WLAN),

which has numerously been modified since then - primarily for increasing the

speed. This new network technology was designed to be used either in a

managed mode, using access points, or in an ad-hoc mode, where a number

of hosts can set up a network structure spontaneously without requiring any

preexisting infrastructure.

Even though both modes are highly flexible and open up completely new

fields of application, this thesis concentrates on ad-hoc networks and the

problems they bear. By virtue of the much more dynamic topology of ad-

hoc networks they pose a higher challenge to the flexibility of the replication

mechanism. If a solution is able to handle ad-hoc networks, it is also able to

handle the difficulties of managed networks, resulting in an almost univer-

sally applicable replication mechanism.

The most important feature of ad-hoc networks is the ability of each host

to act also as a router to facilitate a coherent network. This is quite a hard

job for the routing protocols, since they have to react quickly to changes in

the network in order to ensure that every node is reachable from every other

2.2 Ad-hoc Networks 16

connected device. Due to the fact that the nodes have limited knowledge not

only about the currently existing but also the future topology, all these pro-

tocols rely on broadcasts informing about changes, which have to be taken

into consideration in the local routing tables.

The reason for the dynamics of ad-hoc networks is mainly the fact that

hosts move around in the network and thus change its structure, or depart

beyond the range of the wireless network, which results in a disconnection (see

Figure 3). Furthermore the feature of routers connecting hosts to networks

may result in a networks splitting to subnetworks, due to a disconnection of

a router (see Figure 4). This can be often avoided by using redundant routes.

(a) (b)

Figure 3: Wireless Connections. (a) Connected hosts within wireless range.
(b) Hosts beyond wireless range.

(a) (b)

Figure 4: Host Structures in Ad-hoc Networks. (a) Coherent network struc-
ture. (b) Split networks due to disappearing of connecting router.

2.3 Web Services in Ad-hoc Networks 17

2.3 Web Services in Ad-hoc Networks

As explained in Chapter 2.1, Service Oriented Architectures based on Web

services partly rely on static resources, such as UDDI registries or the actual

locations of the services, retrieved from WSDL files. However if one looks at

the dynamics and unpredictability of ad-hoc networks, explained in Chapters

1.2 and 2.2, one possibly gets a (false) impression namely that is is impossible

to combine the two technologies. The main difficulties are on the one hand to

discover Web services in the network and on the other hand to ensure their

availability.

To meet this challenge was the aim of this thesis and Jaroslaw Lazowski’s

master thesis entitled“Web Service Discovery in Ad-hoc Netzwerken”[8]. The

combination of both systems makes it possible to apply SOAs in a dynamic

network environment by:

• providing a discovery technique which registers Web services at dis-

tributed UDDI registries, updating them automatically after changes

in the network were detected. This is done by J. Lazowski’s system

• replicating Web services for high availability is the task of this thesis

J. Lazowski explains in his thesis how discovery and registration of Web

services is done. This includes the following steps:

1. Nodes are classified as either common nodes or master hosts. Master

hosts have sufficing resources for running a light-weight UDDI registry

plus for monitoring other nodes.

2. The network is arranged in star structures, as illustrated in Figure 5,

with master hosts running UDDI registries and controlling groups of

common nodes. Furthermore all master hosts are aware of each other

and this way are able to retrieve a complete view of the network at any

time.

2.3 Web Services in Ad-hoc Networks 18

Figure 5: Network Topology with three Star Structures. (Figure modified
from [8], c©J. Lazowski, 27 March 2005)

3. Hosts are monitored and their services registered and unregistered if a

host connects to a group or disconnects from it. New hosts find their

master hosts via JXTA-messages [20], publish their Web services, and

confirm their continuous availability by sending periodical heartbeat

messages.

4. Deployments and undeployments of Web services are detected via an

extension to Apache Axis, which updates the UDDI registries.

As a consequence the network is populated with several UDDI registries at

well-known locations, containing up-to-date WSDL data for all discovered

services. Without relying on static centralized registries, this solution fulfills

the requirement of Service Oriented Architectures to have the possibility of

finding Web services easily.

A more detailed description of the discovery system and its cooperation with

the replication mechanism can be found in J. Lazowski’s thesis [8] as well as

2.4 Related Work 19

in the technical paper [7].

2.4 Related Work

As a matter of course the method of using replication to achieve higher avail-

ability and fault tolerance is not a new idea. In fact replication in computer

science has been used for a very long time and in various forms, for instance

by employing redundant devices in early space flight missions. Today the

following areas of application belong to the most important and best known

ones:

• HA-Clusters achieving high availability due to redundant nodes

• Mirroring RAIDs masking hard disk crashes by replicating disks

• Replicated databases benefiting performance and fault tolerance by em-

ploying distributed copies

• Replicated file systems, such as CODA, distributing redundant data on

multiple hosts

• DNS servers on the Internet, using replication of records to backup

servers

Furthermore the scientific problem of high availability, replication, and syn-

chronization is addressed in numerous technical papers, reports, books, etc.

Although most of them do not focus on dynamic networks, they often contain

a lot of good ideas which can partially be adapted to ad-hoc networks. In

the following, three selected papers are presented which has a great impact

on the development of the system.

In the paper entitled “Adding High Availability and Autonomic Behavior to

Web Services” [2] K. Birman et al claim that Web services miss some compo-

nents which have become unavoidable within other highly available systems

2.4 Related Work 20

and, at the same time, are expected to be self-configuring and reliable. They

propose several extensions to Web services for self-diagnosis and self-repairing

as a solution to this problem. They distinguish between monitoring of single

components on the one hand and aggregated properties of the system on the

other hand. The second method is able to detect failures noticed only by

a group of clients. Moreover they introduce event notification for informing

other components about own failures, giving them them opportunity to roll

over to backup resources. Another important feature is the consistent and

reliable group communication, viz talking transparently to a replicated group

of components, using virtual synchrony.

Although E. Dekel et al in“Easy: Engineering High Availability QoS in wSer-

vices” [5] do not focus on Web services (even if “wServices” might suggest

this) they address performance-aware high availability by using replication.

Thus their paper contains a lot of useful information for this thesis. “Easy”

presents a solution, for making development of distributed applications faster

and cheaper by decoupling it from platform and QoS specifics. Furthermore

it provides a quite detailed list of service aspects which have to be taken into

account while replicating.

R. Friedman describes in “Caching web services in mobile ad-hoc networks:

opportunities and challenges” [6] how to place caching proxy-services within

an ad-hoc network in an optimal way, taking into consideration its structure,

quality of connections, load of hosts, etc. The component-based separa-

tion of program-code and the data it operates on is turned to account for

partial caching of service modules, which helps to create a flexible cache re-

placement mechanism. Furthermore Friedman uses experiences described in

“Consistency Conditions for a CORBA Caching Service” [4] to allow choosing

multiple consistency guarantees for service-states at run-time.

21

3 Concept of Solution

3.1 Requirements, Restrictions, and Assumptions

For designing the concept of the solution it was necessary to take a close

look at the challenges and problems that will be met. Within dynamic net-

works in particular, replication and synchronization are far more difficult and

complicated than they seem at first sight. In the following chapters, some

important requirements and restrictions are listed, which had a great impact

on the system’s design.

3.1.1 Classification of Failures

As the list of possible failures in Chapter 1.2 demonstrates, Web services can

become unavailable due to many reasons. Particularly in ad-hoc networks,

where the quality of connection heavily depends on the distance to the next

wireless link, services can disappear very quickly. However, since it is most

often neither possible to find out the causes for unavailability nor reasonable

to distinguish them, all hosts and services have to be classified as available

or unavailable, without paying further attention to the details.

3.1.2 Application in Various Network Environments

Great importance was attached to the ability of running the implemented

system, not only within pure ad-hoc networks, but also to enable its applica-

tion within any network where increased availability is required. For instance

one would like to deploy constantly available Web services within a virtual

network, belonging to a community spread over the whole planet where hosts

are known to be shutdown sometimes. The only strict requirement to the

environment at the destination is the usage of TCP/IP and the mandatory

ability of unhampered communication between all hosts, excluding firewalls

blocking connections from a part of the network. Such a behavior would com-

3.1 Requirements, Restrictions, and Assumptions 22

plicate the monitoring of hosts and services for availability, since the results

would be only valid for a certain subset of the network. If this restriction is

followed, it is also possible to connect different types of networks to a large

one, which shares replicated services.

For this reason, instead of using a hard-coded host discovery, the replicator

provides a plug-in interface, and accepts lists of addresses of known hosts

in the network, which will be considered while monitoring and placing the

replicas.

However, since environments can vary from highly dynamic to more static

and as well differ in speed and stability of communication, it is not reasonable

to perform the same techniques for monitoring and replica placement in each

of them. Instead the parameters of monitoring are tunable and a further plug-

in interface is opened for applying custom replica placement mechanisms.

3.1.3 Combination of Various Web Service Platforms

Since the specification of Web services prescribes only SOAP-based commu-

nication and sets no restrictions to the implementation there exist numerous

middleware platforms for deploying Web services. Examples include Apache

Axis [9, 10], the out-dated Apache SOAP [11], IBM WebSphere [17] and

Colombo [16], Microsoft .NET [23], and many more. Most of these middle-

ware platforms use Java as the programming language, even though C++ or

C# provide a better performance. Nevertheless it might be regarded as a

useful feature of the replicator that it makes it possible to move Web services

from one platform to another, assuming they support the same programming

languages. However, this would mean that one has to deal with the following

issues, which depend on the platform.

• Method of deployment: does the server use deployment descriptors or

does it just need an archive file in a repository directory?

3.1 Requirements, Restrictions, and Assumptions 23

• Structure of deployment descriptor: this includes not only the XML

structure but also some individual commands for the platform for de-

ployment.

• External libraries: where shall they be replaced and how are they reg-

istered to be used by the service? What about version conflicts?

• Security policies: what platforms support them?

• Platform-specific functionality: does the destination host provide the

same environment?

In short all these issues can be summarized by the questions, how compatible

the different platforms are and if moving services is possible at all. For some

combinations it is not possible, due to insurmountable differences although

for some, such as Apache Axis & Apache SOAP, it is theoretically feasible.

However, this would imply that the replicator mechanism is able to trans-

late the deployment descriptor to the destination format. Unfortunately the

Web service would be also forced to discard the application of sophisticated

platform-specific functionality, as it is the case with the pluggable request

handlers in Apache Axis.

The result would be a Web service deployable on multiple platforms. How-

ever, it would only use common functionality provided by all of them. More-

over the replicator would not only have to be aware of all details for deploy-

ment on each platform but would also have to able to translate the deploy-

ment descriptors. If one considers the advantages and disadvantages of this

idea, it becomes quite obvious that the disadvantages outbalance the benefits

and so it does not pay off.

As a result the implemented solution only supports Web services based on

Apache Axis [9, 10], which was chosen because of its open source license,

speed, useful functionality, and clearly arranged architecture.

3.1 Requirements, Restrictions, and Assumptions 24

3.1.4 Control of Replica Placement

For applying an effective replication strategy numerous details have to be

taken into consideration, including the current number of running replicas,

health and performance properties of hosts, preferences and requirements

of Web services, the character of the network environment, etc. All these

circumstantialities may have an influence on the decision whether to move

replicas and if so, to what location. This raises the question if the Web

services should have the opportunity to perform these decisions based on

their own logic, or if the whole placement mechanism should be controlled

by the replicator system, limiting the service’s influence. Allowing only the

replicator system to manage it, results in a better control of the network,

while letting the Web services decide on their own replicas would enhance

flexibility but also enable malicious behavior.

To keep the design simple and clearly structured, the Web service’s influence

on the replication logic was limited to setting only the performance require-

ments and the minimum and maximum desired number of replicas within a

network. All decisions about moving replicas are performed by the replication

logic, which is free to follow or to ignore the Web service’s preferences.

3.1.5 Transfer of Data Sources

Web services can operate on all possible data sources, including local vari-

ables and objects, files, local and remote databases, socket-based connections

to remote resources, other Web services, etc. While moving the working di-

rectory of a service with all its files does not pose a problem, moving local

databases is almost impossible. First of all the destination host would have

to run the same database server. It would have to allow the creation of

the database with all involved users and access rights and then the database

dump would have to be populated in the new environment. This would result

in a huge effort for checking all destination hosts for the necessary infrastruc-

3.1 Requirements, Restrictions, and Assumptions 25

ture, let alone the unacceptable usage of network bandwidth for transfer and

synchronization. Particularly in situations where hosts appear and disap-

pear, transfer of Web services has to be quick and simple.

As a consequence, movable Web services have to be able to do without local

persistence such as files or databases and to save data only in local variables

which can be transferred and synchronized easily.

3.1.6 Synchronization

Web services can be either stateless or stateful. Examples for stateless ser-

vices are proxies invoking other services, processors for translating data from

one format to another, and some business processes relying on other services

persisting the state. However, most of the Web services used today have an

internal state, which is desired to be synchronized within all replicas. To

ensure this synchrony one can either use the approach of Primary-Copy [3]

(also known as Primary-Backup) or Active Replication (also called State

Machine):

Primary-Copy: In this approach one of the replicas is selected to be the

primary one and all others are declared as backups. All clients must

direct their invocations to the primary-copy which is responsible for

propagating the changes to the backups. After a failure of the primary-

copy one of the backups becomes the new leader.

Active Replication: Another way how to use replicated services is to send

invocations to all of them, waiting for all responses and computing the

correct response. This way the states of all replicas are modified the

same way and thus kept in a consistent state, assuming the developers

avoided using functions with a random behavior. However, the invoca-

tion of all replicas has the issue of a necessary suppression of multiple

nested invocations, as illustrated in Figure 6.

3.1 Requirements, Restrictions, and Assumptions 26

Figure 6: Multiple Nested Invocations with Active Replication. Client in-
vokes all service replicas simultaneously, with each one of them implying
another nested invocation of a service. This results in a triple-invocation if
no suppression mechanism is applied.

This comparison makes clear that Primary-Copy is the simpler approach,

and, therefore, it was chosen for this thesis.

However, the dynamics of ad-hoc networks raise a lot of new problems for

synchronization such as splitting and merging networks, as it is illustrated in

Figure 4 in Chapter 2.2. This can cause scenarios where replicas of the same

service exist in separate networks, leading to multiple divergent service states

which cannot be easily combined if the networks merge again. Often this is

completely impossible and poses a serious problem for certain Web services

which rely on perfect consistency (e.g. ticket distribution). This leads to an

unavoidable trade-off in cases where the usage of Web services with strict

requirements to consistency is, although possible, simply not reasonable and

should be then avoided.

3.2 Architecture of the Replicator System 27

3.1.7 Security

Security is a very important issue for systems where some external code,

which is Web services in this case, has to be accepted and executed on the

local machine. Since these Web services may contain malicious code, it is ab-

solutely necessary to prevent them from harming the system. Neither Apache

Axis nor other platforms provide an adequate solution for this because, usu-

ally the administrator of the server is expected to know what he is deploying

and tightening the permissions of Web services is hard and often impossible.

A reasonable solution to provide a high level of security is to use a public key

infrastructure, signing all Web services which were checked and are regarded

as secure and to disallow deployment of unsigned services. In the replicator

system this is possible by plugging in a new ServiceContentChecker for in-

specting the signatures and rejecting unknown services.

The same approach of signing and encrypting data should also be used for

securing the communication between the replicator systems. This is espe-

cially important since static firewall rules are completely useless in dynamic

networks. Therefore it is hard to achieve, to exclude individual hosts from

accessing the system. Due to the prototype character of this thesis, these

security mechanisms were not implemented.

3.2 Architecture of the Replicator System

In order to increase flexibility and maintainability of the code, the replicator

system was designed with high modularity in mind. Figure 7 illustrates the

system’s architecture, with the individual modules operating on the internal

data base of hosts and services:

Internal Data Base: The whole replicator system operates on a data base

containing all known hosts and their services (see simplified relation

in Figure 8). This data base stores its records in simple but indexed

3.2 Architecture of the Replicator System 28

Figure 7: Architecture of the Replicator System

Java-HashMaps. Therefore it is not comparable with sophisticated per-

sistent data bases, such as Oracle, DB2, etc. All other modules of the

system perform their manipulations on this data base, which includes

retrieval of information, update of host and service properties, deletion

of inactive ones, etc.

Figure 8: Host-Service Relation in the Data Base

Hostfinder Plug-in: This plug-in interface is used for retrieving lists of

known hosts in the network, since hard-coded discovery methods were

avoided. New hosts are automatically registered in the data base.

3.3 Simple Replicator Protocol 29

Monitor: To become aware of changes in the availability of hosts and ser-

vices, it is necessary to monitor them in intervals. As soon as changes

have been detected the data base is updated.

Replicator Web service: Sending and receiving of Web service replicas is

done via a Web service too. Furthermore it provides information about

the local host and its services, which is retrieved periodically by the

monitors. This Web service is the passive part of the system, waiting

for commands without invoking anything independently.

Replica Placement Mechanism: This module contains the whole replica-

tion logic. Viz the decision whether a service has to be sent or removed

anywhere in the network are made in this module. It accepts custom

replication logics as plug-ins if a different behavior than the default one

is desired.

Synchronization Server: Web services declare their state objects at the

synchronizer, which is responsible for propagating the changes to all

service backups.

Detailed documentation of the functionality can be found in the subsequent

chapters. Chapter 4 explains the replication of Web services, which con-

sists of the Replicator Web service, the monitor and the replica placement

mechanism. The synchronization of stateful Web services is documented in

Chapter 5.

3.3 Simple Replicator Protocol

All communication with the outside world is done via the Replicator Web

service or a small server using a simple TCP-based protocol. The advantage

of the Web service is the convenience of an easy serialization and transfer

of even complex data. Therefore it is used for providing information about

3.3 Simple Replicator Protocol 30

the local services, host properties, etc. as well as more sophisticated func-

tionality for cooperation of multiple monitoring hosts. However, the main

disadvantage of Web services is their inferior speed. Thus they are useless

for communication which has to be fast and with as little overhead as possi-

ble. Considering the synchronization of services as example, where data has

to be exchanged frequently and quickly, Web services are not an adequate

technique.

To fulfill this need for fast communication, a small server is provided, bound

to a fixed port and communicating via the light-weight TCP-based Simple

Replicator Protocol. This protocol works in a command-response manner

(see Listing 7) with the client sending commands with optional arguments

and the server responding with a status code, an optional response payload,

and a single dot marking the end of the response.

Listing 7: ”Command and Response Protocol Sample. (“>” prefixes client-

to-server communication. “<” prefixes server-to-client communication.)”

> command arg1 arg2

< 100 OK

< response line 1

< response line 2

< more response lines ...

< response line n

< .

Since a command may be malformed or cause other errors, various status re-

sponses were specified to provide additional information explaining the error,

as shown in Listing 8.

Listing 8: ”Possible Responses from the Server”

100 OK

200 Connection closed

210 Too many connections

300 Client error

3.3 Simple Replicator Protocol 31

400 Unknown command

400 Illegal arguments

500 Internal server error

1xx Success.

2xx Closing the connection. This can be caused by too many simultaneous

connections or simply by exiting the session.

3xx Client errors. These errors are thrown if the command would cause

inconsistencies, an invalid state, or other errors.

4xx Command errors. Either an unknown command was called or the ar-

guments were invalid (e.g. wrong number, malformed).

5xx Server errors. Indicating a corrupted configuration of the server.

Every module in the replicator system is free to attach additional function-

ality to the server as a plug-in. For instance, the synchronization server

provides commands for setting and retrieving the internal state of a service.

Listing 9 shows a sample communication using these commands:

• Lines 1-5: list all state objects of service “testService”. The response

contains the names of the objects, including additional information.

• Lines 6-9: retrieve the serialized form of object “o1”.

• Lines 10-13: retrieve the serialized form of object “o315”. This causes

an error since “o315” does not exist.

• Lines 14-16: close the connection.

3.3 Simple Replicator Protocol 32

Listing 9: ”Sample Communication Reading Service State Object.”

1 > LISTSTATE testService

2 < 100 OK

3 < o1 8 3056

4 < o2 19 18273

5 < .

6 > GETITEMS testService o1

7 < 100 OK

8 < <43| object1 |0| java.lang.String|rO0ABXQAAmEx >

9 < .

10 > GETITEMS testService o315

11 < 300 Client error

12 < Error (java.lang.IllegalArgumentException): Unknown ID(s).

13 < .

14 > QUIT

15 < 200 Connection closed

16 < .

33

4 Description of Replication

Performing an effective replication mechanism is a complex task. Since it

has to be clearly structured, it is unavoidable to split the whole functionality

into more or less independent modules. Figure 9 shows the three modules of

the system responsible for replication of Web services, which are explained

in-depth in this chapter.

Figure 9: Modules for Replication of Web Services

The system is composed of (a) the Replicator Web service, (b) the monitor,

updating the current view of the network periodically, and (c) the the replica

placement mechanism, electing leaders for control of replication and finally

managing all controlled Web service replicas.

4.1 Replicable Web Services

4.1.1 Web Service Archives

The structure of the Web service’s archive file is strictly predefined (see sam-

ple in Listing 10) with all important files at fixed locations. The replicator

does only accept Jar files containing a directory named“webservice”with the

deployment descriptors and an additional file named “info”, specifying the

preferences for replication. Furthermore the archive is checked whether it

contains the Web service’s class file, specified in the deployment descriptor.

4.1 Replicable Web Services 34

After a successful validation the archive file is registered as a Java library at

the class loader of Apache Axis.

Listing 10: ”Sample Structure of Service Archive”

/webservice/info

/webservice/deployment.wsdd

/webservice/undeployment.wsdd

/packagepath/SomeService.class

/... additional files ...

4.1.2 Hibernation of Web Services

Depending on the size of a Web service’s archive its transfer from one host

to another can be very costly. Especially in ad-hoc networks where replicas

have to be moved quite often this can cause a high usage of network band-

width and slow down the whole replica placement mechanism. This happens

mainly when a Web service requires a fixed number of replicas deployed in

the network and when hosts are disconnecting and reconnecting to the net-

work frequently. To keep this number, surplus replicas have to be deleted

and if too few exist: new ones have to be deployed, implying the transfer of

the whole archive file. To cushion these dynamics, Web services are free to

specify their desired number of replicas as a range instead of a fixed value,

decreasing the number of transfers this way. A more significant decrease can

be achieved by following the approach which is used by operating systems to

quickly recover the machine after a shutdown. That is hibernation.

The idea of hibernating Web services which are currently not needed, is

to keep them installed on the host but in an undeployed state. When the

number of replicas in the network sinks below the minimum value, the replica

placement mechanism can check for hibernated services and wake them up,

which requires only a simple command to be sent instead of the whole archive.

The state diagram in Figure 10 illustrates the possible deployment states of

4.1 Replicable Web Services 35

Figure 10: Deployment States of Web Services

a Web service, which can be deployed, hibernated, or not installed at all

marked as the starting and ending state.

4.1.3 Deployment Hooks

As Figure 10 demonstrates, the deployment state of a Web service can change

infinite times. Often it is useful for Web services to be informed about these

state transitions. This is possible by overwriting the hook methods “onIn-

stall()”, “onHibernate()”, “onWakeup()”, and “onUninstall()” of the abstract

class “Service” which is the mandatory base class of every replicable Web

service (see Listing 11). The replicator does not set any restrictions to the

functionality of the hooks and by throwing an Exception the whole state

transition is abandoned, and the service returns to the former state. For this

reason all hooks are executed before the state transition is put into effect,

except for “onInstall()” because of necessary registrations which have to be

performed before the hook. But also in this hook an Exception revokes the

transition, deleting the whole Web service again.

Listing 11: ”Abstract Java Class “Service””

public abstract class Service {

public Service () {

4.2 Host Properties and Service Requirements 36

super ();

}

// executed after installation

public void onInstall () throws Exception {}

// executed before hibernation

public void onHibernate () throws Exception {}

// executed before waking up

public void onWakeup () throws Exception {}

// executed before uninstallation

public void onUninstall () throws Exception {}

public abstract String getServiceID ();

}

4.2 Host Properties and Service Requirements

Web services can differ heavily in generating load on the system depend-

ing on their implementation and frequency of invocations. To optimize the

placement of their replicas they are allowed to specify their requirements,

including the desired amount of free memory, CPU power, network band-

width, and disk space. These data are compared to the system properties

of all hosts in the network while choosing a new destination for deploying a

new replica.

To calculate a host’s system properties is not a difficult task, although not

completely possible within pure Java code. Instead, these values can be re-

trieved for example from Linux/Unix utilities, such as“vmstat”, “df”, etc. and

propagated periodically to the replicator via an extension to the Simple Repli-

cator Protocol. However, it is far more complicated to calculate the actual

4.3 Replicator Web Service 37

requirements of a Web service. In fact, it is only possible by using sophisti-

cated Web service monitoring techniques, which would go beyond the scope

of this thesis. Instead the Web services declare estimated values which can

often deviate from the actual requirements. Nevertheless they are adequate

for improving the placement of replicas. Important for distributing replicas

in a network is also the estimated battery usage. Hosts with a low battery

will most likely disappear in the near future and, therefore, it is wise to move

their deployed replicas to other destinations.

The matching of service requirements to host properties is an important fea-

ture of the whole system, aiming at balancing the load and preventing bottle

necks. Modules such as the monitor or the replica placement mechanism use

it for sorting potential destination hosts to optimize the usage of resources

in the network.

4.3 Replicator Web Service

The Replicator Web service is a special case of a module. It works com-

pletely in passive mode and is invoked mainly by other hosts to manipulate

the deployment state of Web service replicas, to retrieve health properties,

or to exchange the currently monitored view of a network. Deployed within

the Apache Axis SOAP container [9] it operates in the same environment as

all replicas. This makes it possible for other hosts to find out about the des-

tination environment for placing new replicas. For example it is necessary to

know whether all required code libraries (Jar files) and classes are available

or have to be installed first before deploying a replica.

A very important feature of the Replicator Web service is the ability to

perform hot deployment of Web service replicas, viz installing them without

restarting the containers illustrated in Figure 11. Usually, Web services are

deployed by first copying the archive file and all necessary libraries into the

4.3 Replicator Web Service 38

designated library directory of one of the containers. Then the containers

are restarted in order to reread all libraries. To allow on-the-fly installing

and uninstalling of Web services, it is necessary to extend the class loader

of Apache Axis by plugging in a new loader which is able to register and

unregister libraries at run time. This way hot deployment becomes possible.

Figure 11: Web Service Container Stack

The Replicator Web service provides the following functionality:

Manipulation of Web service replicas: This primarily includes hot de-

ployment, undeployment, hibernation and waking-up of Web service

replicas. Furthermore, it is possible to retrieve lists of classes and li-

braries available in the Web service environment and to install and

register new libraries if this is necessary.

Information about the local host and its Web services: The Replica-

tor Web service returns also serialized instances of the classes “Host-

Data”and“ServiceData”describing the local host and its Web services.

These classes contain all necessary information about the state, such as

lists of hibernated and deployed Web services, system health properties,

service requirements and preferences, etc.

Exchange of network state information: The internal data base (see Fig-

ure 8 in Chapter 3.2) contains the current view of the network, which

4.4 Monitoring 39

is updated periodically by querying monitors. The Replicator Web ser-

vice offers to the possibility to retrieve the content of the data base and

to update it, which is especially important for monitors dividing the

network into groups, observing the own group and propagating changes

in the state to all other monitors.

Manipulating the state of replicas and content of the internal data base raises

the problem of possible misuse or missing security. This can be solved by

using the WS-Security and WS-Trust extensions to sign and encrypt Web

service based communication and to build a trustworthy infrastructure.

4.4 Monitoring

Most of the computations, such as leader elections or the entire replica place-

ment mechanism, are based on a global view of the network. And since the

nodes cannot be expected to send notifications about their failures, it is nec-

essary to actively monitor the state of the whole network in intervals to have

always a quite up-to-date view of it. This task can be performed by every

node itself, by checking the availability of the others, causing a high usage of

network bandwidth acceptable only for very small networks. However, the

bigger the network gets, the more scalability becomes important. To reduce

the load caused by monitoring, it is advantageous to elect a few hosts, re-

sponsible for checking the availability of nodes and services and to let all

other hosts query them to retrieve the view of the network. Especially if

the monitors divide the network into groups as shown in Listing 12, and each

group is checked by only one monitor, the scalability is improved significantly.

The monitoring module of the replicator system is capable of both being an

active monitor and passively retrieving the actualized state of the network

from other monitors. Regarding the current global view of the network,

each host can determine whether it is expected to perform active or passive

4.4 Monitoring 40

Figure 12: Distributed Monitoring of Network State. Each group is checked
by a monitor exchanging the information about its group with other monitors
to have a complete view of the network.

monitoring in the current cycle by applying the following algorithm:

Listing 12: ”Election of Monitoring Hosts (Pseudocode)”

monitoring () {

// bootstrap: list of hosts exists , but no information about

// their states or Web services is available -> retrieve it

retrieve complete view from random host

// main loop , intervals depend on size of the network

loop in intervals {

sort hosts by free bandwidth

// election: number of monitors depends on size of network

monitors = list of fastest hosts

// is localhost one of the fastest hosts => monitor ?

if (monitors contain localhost) {

active_monitoring(monitors)

} else {

// fetch a monitor , try to reuse it in the next cycle

// retrieve the view of the network from it

mon = random monitor

passive_monitoring(mon)

4.4 Monitoring 41

}

send event notification to leader elector

}

}

This algorithm uses the most recently retrieved view of the network to find

out whether it is expected to monitor a part of the network actively. Hence

it accepts inconsistencies which happen due to quick changes in the network

and which occurred after the last monitoring cycle. It tries to swing again

into a consistent state within the next round. Such a behavior is necessary

since the dynamics of mobile ad-hoc networks make it impossible to rely on

perfect consistency and, therefore, each host has to perform its computations

to the best of his current knowledge of the network.

4.4.1 Active Monitoring

The main functionality of the active monitoring procedure is to find out which

hosts have to be monitored, to check them, and then to send their states to the

other monitoring hosts, which are in turn responsible for their own groups and

propagate their states as well. The invocation of“active monitoring(monitors)”

in Listing 12 passes as argument a list of hosts which are believed to be the

current monitors. Of course this list may deviate sometimes from the actual

state in the network but, again, this is an unavoidable trade-off in ad-hoc

networks. In theory this inconsistency can result in an unbalanced monitor-

ing of the network, with some hosts being monitored more often and others

not checked at all since the segmentation of the network into groups is based

on this list. However, in practice this scenario is most improbable and dis-

appears completely in less dynamic network environments.

Listing 13: ”Active Monitoring (Pseudocode)”

// expects the list of all monitors of the network as argument

active_monitoring(monitors) {

pos = position of localhost within sorted monitors

4.4 Monitoring 42

num = number of monitors

// current group of hosts to monitor

mygroup = initialize empty list of hosts

loop for all hosts in network {

// ID of host decides whether it is member of this group

if (host.id%num == pos) {

add host to mygroup

}

}

// do the actual monitoring

loop for all host in mygroup {

check host

check services

}

// exchange data with other monitors

loop for all hosts in monitors {

// send only changes since last exchange to save bandwidth

send changed state of mygroup to host

// all monitors must see the same nodes in the network

send list of new node addresses to host

}

}

The segmentation of the network into groups is done by comparing the ID

number of the hosts to the position of the local host within the monitors.

This is a critical part of the algorithm since it relies heavily on the accuracy

of the passed list of monitors. This accuracy is improved continuously by

exchanging monitored states and addresses of all known hosts between the

monitors.

4.4.2 Passive Monitoring

If a host was not elected to perform active monitoring, it has to retrieve the

global view of the network from a monitor. The functionality of the passive

procedure is much more simple than the active monitoring. The algorithm

4.5 Replica Placement Mechanism 43

tries to retrieve the view only from one monitor in an incremental manner.

This means that the first request returns the whole view and all subsequent

ones retrieve only the changes, saving bandwidth this way.

Listing 14: ”Passive Monitoring (Pseudocode)”

// retrieves the current view of the network from monitor

passive_monitoring(monitor) {

if (monitor was used in the last loop) {

// save bandwidth

retrieve changed data

} else {

// get the whole view of the network

retrieve all data

}

// inform monitor of new nodes

send list of new node addresses to monitor

}

4.5 Replica Placement Mechanism

To have the current view of the network and the Replicator Web service

running on the hosts, means to have already an infrastructure for managing

the placement of Web service replicas. In the replicator system this placement

mechanism is split into the modules of leader election and replication logic.

Figure 13 shows the sequential alignment of execution of both modules and

the monitor. Instead of running as independent threads, these modules wait

until the predecessor has finished, look at the new state and decide whether

further modifications are necessary. This sequence is more effective since the

leader elector waits for the monitor and operates on the updated view of

the network. Furthermore the replicator logic needs to know whether some

replicas are controlled by the local host.

4.5 Replica Placement Mechanism 44

Figure 13: Execution Sequence of Replicator

4.5.1 Leader Election

In order to keep the strategies for placing replicas simple, it is essential to

allow only one host to control the movements of a particular service. This

leader is unique in the network and every host running this service has to

apply the algorithm shown in Listing 15 to find out whether it is expected

to control it.

Listing 15: ”Election of Replication Leader (Pseudocode)”

// run after monitor has finished

loop for each deployed web service {

// list all replicas , including the local one

replicas = list of its replicas in the network

if (only one replica exists) {

// only one means only on localhost

localhost is leader

} else {

// more than one requires election

leaders = collect declared leaders of each replica

// the most popular one will be accepted

sort leaders by popularity

// do more than 2 leaders share the first place ?

if (more than one most popular leader exists) {

// try to put leaders on monitors to be earlier

// informed about state changes

sort hosts by bandwidth and monitoring status

4.5 Replica Placement Mechanism 45

accept the fastest one

} else {

accept the most popular leader

}

}

}

send event notification to replication logic

The effect of this algorithm is that the host on which the service was initially

deployed stays the leader as long as it is available. Since all potential lead-

ers execute this algorithm after every monitoring cycle, a new leader can be

elected quickly in case a failure or disconnection of the old one has been de-

tected. Another important feature is the merging of multiple running leaders

within one calculation cycle. This becomes necessary if an ad-hoc network

was split into sub-nets, these independent sub-nets elected their leaders and

after a time the networks merged again. In this case the algorithm accepts

the most popular leader to minimize the necessary change-overs.

4.5.2 Replication Logic

Having determined which replicas are controlled by the local host, the leader

elector notifies the replication logic which is responsible for managing them.

This includes checking whether the proper number of replicas is deployed,

installing/waking up of replicas in case too few exist, and deleting/hiber-

nating surplus ones. Furthermore, the logic is expected to pay attention to

the system properties of hosts and preferences of services while performing

modifications. For instance, it makes sense to move replicas away from hosts

which only have little time left due to low batteries.

As explained in Chapter 3.1.2, network environments may vary extremely and

therefore may have different requirements to the replicator system. Hence it

is not reasonable to prescribe defined replication strategies but to permit the

application of customized ones as plug-ins. For instance, one would like to

4.5 Replica Placement Mechanism 46

adapt the P-Grid [1] peer-to-peer platform with its sophisticated and flexible

management system to distribute Web services. Such a plug-in must be

specified in the configuration file and it has to extend the abstract Java class

“AbstractReplicationLogic” from the following Listing:

Listing 16: ”Java Class “AbstractReplicationLogic””

1 public abstract class AbstractReplicationLogic {

2
3 private List <Command > commandList;

4 private Set <InetSocketAddress > lockedHosts;

5
6 void sendService(String serviceName , HostData host) {

7 Command cmd=new SendCommand(serviceName ,host);

8 // ignore redundant commands and locked hosts

9 if (! commandList.contains(cmd) &&

10 !lockedHosts.contains(host)) {

11 commandList.add(cmd);

12 lockedHosts.add(host);

13 }

14 }

15
16 void deleteService(String serviceName , HostData host) {

17 // similar to sendService () ...

18 }

19
20 void hibernateService(String serviceName , HostData host)..

21
22 void wakeupService(String serviceName , HostData host)...

23
24 // observer function , notified by leader elector

25 public void update(Observable o, Object arg) {

26 if (o instanceof LeaderElector) {

27 WorkerThread thread=new WorkerThread(commandList);

28 commandList.clear ();

29 thread.start ();

30 }

4.5 Replica Placement Mechanism 47

31 }

32
33 private class WorkerThread extends Thread {

34 public void run() {

35 // execute commands sequentially and unlock hosts

36 }

37 }

38
39 // more declarations ...

40 }

This abstract class provides the basic functionality to perform convenient

replica placement without taking care of details such as SOAP communica-

tion or packing Web services into archive files. Unfortunately this module

is not safe from inconsistencies in dynamic networks either. Again, split-

ting and merging networks pose a problem since they can cause a service to

be controlled by more than one host simultaneously for a short time. Al-

though the leader elector is able to correct it within the next calculation

cycle, a situation may be caused where coexisting leaders want to perform

some modifications concurrently. Consequences could be collisions or another

inconsistent state. To avoid this, commands are postponed to the next cycle

after then being executed immediately. This opens the opportunity to check

in the next cycle whether the local host is still the leader and the command

can be executed or whether the leader elector has already corrected this in-

consistency and the command has to be canceled. Although this makes the

whole placement mechanism more lazy, since modifications have to wait un-

til one cycle has been performed, this approach is worth to be used due to

the prevented inconsistencies. The abstract class in Listing 16 implements

this approach by queuing the commands (lines 7-13) and starting a thread

responsible for executing them in the next cycle (lines 27-29). The actual

modifications are implemented within the individual “Command” classes.

4.5 Replica Placement Mechanism 48

In case no custom plug-in has been specified a built-in replication strategy

called “SimpleReplicationLogic” is used. As Listing 17 shows, its behavior is

very simple but adequate for the usual needs.

Listing 17: ”Simple Replication Logic (Pseudocode)”

// run after leader elector has finished

loop for each controlled web service {

// which hosts are better suited to this service?

sort hosts regarding service preferences

// need more running replicas ?

if (number of replicas too low) {

if (services are somewhere hibernated) {

wake up on fastest hosts

} else {

send new replicas to fastest hosts

}

synchronize new replicas

}

// too many replicas? -> delete ...

if (number of replicas way to high) {

delete surplus replicas on slowest hosts

}

// ... and hibernate

if (number of replicas slightly to high) {

hibernate replicas on slowest hosts

}

// avoid hosts with only little time left

if (replicas exists on transient hosts) {

move services to other/fastest hosts

synchronize new replicas

}

}

49

5 Description of Synchronization

If one considers a replicated Web service for distributing tickets as exam-

ple, where each invocation increments the internal counter and therefore also

changes the subsequent responses, the necessity for synchronization of this

counter between all replicas becomes obvious. Without synchronization a

change-over to a backup service would result in using an old state and thus

in distributing tickets which have maybe already been handed out before. To

solve this problem in a convenient way for the Web service developers, the

replicator system extends all stateful services with functionality to declare

their internal state and to distribute changes to all other replicas.

Usually Web services keep their internal state saved in local variables, files,

data bases, resources on remote hosts, etc. Whereas synchronizing variables

is comparatively simple, synchronizing the changes in files and data bases is

much more complex, particularly in cases when a source gets out of sync for

some time and needs to be completely resynchronized. However, as explained

in Chapter 3.1.5, the replicator system does not support the use and transfer

of any data source except for local variables. Hence this restriction affects

the storage of the internal state too.

Even though synchronization of replicated Web services is absolutely neces-

sary, it sometimes causes the problem of a high usage of network bandwidth.

The actually produced traffic depends on the frequency of invocations, the

number of running replicas, and the size of the state. While mobile ad-hoc

networks are not suited for synchronization of services with large amounts

of data, this problem disappears on faster networks. Therefore the synchro-

nization server does not set any constraints on the exchanged data. However,

the Web services should be chosen wisely, depending on the network envi-

ronment.

5.1 Synchronizable Web Services 50

5.1 Synchronizable Web Services

The synchronization mechanism is based on Web services declaring their state

objects and notifying the synchronization server to distribute the changes to

the other replicas. To be able to use this synchronization functionality every

service must extend the abstract base class “SynchronizedService” which in

turn is an extension to the mandatory base class “Service” (see Listing 11 in

Chapter 4.1.3).

Listing 18: ”Abstract Java Class “SynchronizedService””

1 public abstract class SynchronizedService extends Service {

2
3 // synchronization server

4 protected static Synchronizer synchronizer=null;

5
6 public SynchronizedService () {

7 super ();

8 }

9
10 // hook , executed after installation

11 public void onInstall () throws Exception {

12 super.onInstall ();

13 registerAtSynchronizer ();

14 }

15
16 public void registerAtSynchronizer () throws Exception {

17 initializeStateObjects ();

18 synchronizer=Synchronizer.getLocalSynchronizer ();

19 synchronizer.registerService(this);

20 }

21
22 // hook , executed before uninstallation

23 public void onUninstall () throws Exception {

24 super.onUninstall ();

25 synchronizer.unregisterService(this);

26 }

5.1 Synchronizable Web Services 51

27
28 // called by service operations after state has changed

29 protected final void synchronizeStateObjects ()

30 throws IOException , Exception {

31 synchronizer.synchronize(this);

32 }

33
34 protected abstract void initializeStateObjects ();

35
36 public abstract HashMap <String ,IStateObject >

37 getStateObjects ();

38 }

Extending this base class has the effect of an enforced registration at the

synchronization server to access its functionality:

• Lines 11-26: The Web service is automatically registered and un-

registered at the local instance of the synchronization server. This is

realized via the hook methods “onInstall()” and “onUninstall()” which

are triggered during the deployment and undeployment of the service.

• Lines 29-32: It is the task of the Web service to notify the synchro-

nization server about a changed internal state, which will be propagated

to all other replicas of this service. This is done by simply calling “syn-

chronizeStateObjects()”, which is a non-blocking method. This means

it performs the propagation in the background, without delaying the

service’s response.

• Lines 36-37: Furthermore the service has to declare a map containing

all its state objects in order to give the synchronization server access

to its state at any time. This is especially important while propagating

a state or receiving updates from other replicas.

In Appendix A a sample implementation of a synchronized Web service can

be found.

5.2 State Objects 52

5.2 State Objects

A state object can contain its information in any possible form including vari-

ables of primitive or complex types, data composed of other objects (e.g. lists

and maps), etc. The main requirement it has to fulfill is to be serializable and

deserializable. Otherwise it cannot be transferred to other hosts. Listing 19

contains the Java interface “IStateObject”. It defines the most important

functions, including the serializer/deserializer methods, and a function to

check whether the state object has changed and should be synchronized.

The manner of accessing and manipulating the data of the state objects is

up to the individual implementations, which must extend this interface.

Listing 19: ”Java Interface “IStateObject””

public interface IStateObject {

public String serialize () throws Exception;

public void assign(String serializedData) throws Exception;

public boolean hasStateChanged ();

// more method definitions ...

}

The replicator system provides two default implementations of this inter-

face, called “FieldSetterStateObject” and “MethodSetterStateObject”, which

access the actual state data either by manipulating it directly or via get-

ter/setter methods. Both classes accept optional serializer and deserializer

methods to transform the objects into strings and vice versa. If a declaration

of these methods is omitted the transformation is done by using Base64-

encoded Java-ObjectStreams. The following listing contains a short code

snippet which serializes a String by using a “FieldSetterStateObject” with-

out a custom serializer:

5.3 Propagation of Updates 53

Listing 20: ”Serialization Example”

// global declaration of string object

public static String s=new String("abc");

// declaration of state object and serialization

FieldSetterStateObject testobject=

new FieldSetterStateObject(this.getClass (). getField("s"));

System.out.println(testobject.serialize ());

This code returns the following string as output:

<42|s|0|java.lang.String|rO0ABXQAA2FiYw==>

The first field specifies the length of the string to make it easier to parse se-

quences of serialized objects. After that comes the name of the state object,

followed by an integer telling how often this object has already been changed.

This is particularly important for adjusting the states of different replicas.

The last two fields are the Java class name and the actual serialized object,

encoded in Base64.

Serialization and deserialization of state objects is usually performed by the

synchronization server only. Web services just have to declare a list of state

objects, such as “testobject” in the last listing, and to notify the synchroniza-

tion server about relevant changes which have to be propagated to the other

replicas.

5.3 Propagation of Updates

In Chapter 3.1.6 the approaches of Active Replication and Primary-Copy

are compared, and it becomes obvious that Primary-Copy is the simpler

approach and therefore better suited to be applied in dynamic networks.

This technique is based on a primary copy of the replicas which serves all

requests and synchronizes all backup copies, as illustrated in Figure 14. An

5.3 Propagation of Updates 54

implementation of this technique within the replicator system implies that

for all replicas of a particular service, a primary one has to be elected. It

accepts all invocations solely and is responsible for propagating changes of

the internal state to the backups. Fortunately, this election is already done

in the replica placement mechanism while unique leaders for the control of

each particular group of replicas are elected.

Figure 14: Synchronization of Web Services using Primary-Copy

Once a Web service has finished processing a request which changed its in-

ternal state, it is necessary to synchronize these changes with the other repli-

cas, by calling the method “synchronizeStateObjects()” from the base class

“SynchronizedService”. This method notifies the synchronization server to

contact all replicas, to compare the states, and to check if synchronization is

necessary. Obviously this communication is performed very often and should

therefore be light-weight and fast, disqualifying SOAP this way and calling

for the TCP-based Simple Replicator Protocol introduced in Chapter 3.3.

The synchronization server extends the functionality of the protocol by the

following commands:

• LISTSTATE <servicename> lists all state objects of a service, includ-

ing the serial stamp number and the hash sum for each object. The

5.3 Propagation of Updates 55

serial stamp is incremented each time the state object is changed, thus

allowing to compare the activity of the objects to each other. The

hash sum is used to find out whether objects are equal or need to be

synchronized.

• GETITEMS <servicename> <itemname ...> returns a sequence of se-

rialized items, defining the state objects.

• ASSIGNITEMS <servicename> <serializeditems> accepts a sequence

of serialized items which will be assigned to the corresponding state ob-

jects.

Listing 21 contains a sample communication using these commands. First

of all a list of state objects of a service named “syncTest” is retrieved. It

contains the objects “i” and “s”, their serial stamps, and hash sums. After

that the state object “s” is retrieved in a serialized form and, finally, a new

value is assigned to object “i” incrementing automatically its serial stamp

number to 4.

Listing 21: ”Sample Communication for State Manipulation”

1 > LISTSTATE syncTest

2 < 100 OK

3 < i 2 123

4 < s 4 96354

5 < .

6 > GETITEMS syncTest s

7 < 100 OK

8 < <94|s|4| java.lang.String|rO0ABXQAK2FiYy4uLi4uLi4uL ...4 uLi4=>

9 < .

10 > ASSIGNITEMS syncTest <136|i|4| java.lang.Integer|rO0AAB9 >

11 < 100 OK

12 < .

5.4 Consistency Problems in Ad-hoc Networks 56

5.4 Consistency Problems in Ad-hoc Networks

Propagation of a changed internal state is usually done by comparing the re-

mote list of state objects with the local one and refreshing all objects which

are out of date. This simple behavior is fine for networks where exactly one

replica is always the primary one and therefore always has the most current

state. However, the state synchronization task has to deal with the same

consistency problems as the replica placement mechanism, since ad-hoc net-

works are highly dynamic and the primary copy of a group of replicas is

elected by the replica placement mechanism. These problems include scenar-

ios where the primary copy disappears and a new one is not elected until the

next calculation cycle or situations where more than one primary copy exist

concurrently. Although both types of inconsistency are corrected in the next

cycle, the question raises how clients have to deal with such situations and

how this affects the consistency of states.

Especially the scenario with multiple primary copies poses an almost in-

solvable problem if perfect consistency is desired. This becomes clear in the

following example, where a Web service for distribution of tickets is deployed.

1. The replica placement mechanism spawns new replicas which are per-

fectly synchronized.

2. A laptop which establishes this network by acting as a single router

between two subnetworks is suddenly shut down. As a consequence

two autonomous networks exist, which have absolutely no information

about each other any more. However, both are running replicas of the

ticket service.

3. Both networks act completely individually and manage their replicas,

which are synchronized among themselves but not with the ones from

the other network. Moreover, clients are changing the states of the

services continuously by requesting new tickets.

5.5 Invocation of Web Services 57

4. The connecting router appears again and merges the subnetworks.

5. Until the next election cycle the newly merged network contains two

primary copies with two states that have to be merged. Furthermore

clients which have received the same tickets exist in the same network

at the same time.

In this scenario the internal states of the ticket services can be adjusted ad-

equately by accepting the higher ticket counter as dominant and replacing

the other. However, clients which received their tickets while the networks

were split and hence have other clients with the same tickets in the network

pose a serious problem. The tickets they got could have been used for other

calculations and, therefore, it is neither reasonable nor possible to revoke

them in order to establish consistency again.

This example demonstrates the dilemma of using replicated Web services

which require strict consistency within ad-hoc networks. Unfortunately, their

application in dynamic networks is not reasonable at all since perfect syn-

chrony of states cannot be guaranteed. The synchronization server rather

solves such conflicts by comparing the states, electing the one which was

modified more often as dominant, and replacing all others with it. This elec-

tion is done by summing up all serial stamp numbers of all state objects and

declaring the service with the highest sum as the dominant one. The idea of

this method is to keep the state which was used to serve most of the requests

with a high probability.

5.5 Invocation of Web Services

When a client wants to invoke a replicated Web service, it has to find its

primary copy first. Unless it has its own replicator system running, and

thus also the internal data base with the updated view of the network, it is

necessary to retrieve the location from another source. An ideal source is one

5.5 Invocation of Web Services 58

of the hosts running a replica of the desired Web service, since it actively

elects the primary copy. Hence its information is more up-to-date than the

one from any other hosts, which are notified about it via monitoring. However

the client can be confronted with situations where either the primary copy is

not available anymore or too many exist concurrently because two networks

have merged and a common leader has not been elected yet. To disburden

the application developer of handling these difficulties, the replicator system

provides a simple tool which takes care of finding the primary copy and

returns the corresponding WSDL file. Hence, an invocation of a replicated

and synchronized Web service is done by performing the following steps,

illustrated in the sequence diagram in Figure 15:

Figure 15: Sequence Diagram for Retrieving WSDL File of Primary Copy

5.5 Invocation of Web Services 59

1. The tool accepts either the name of the Web service replica plus the

location of a host running it or the service’s complete WSDL file re-

trieved from a UDDI registry [8] as argument. It is not the task of the

tool to query the registry. This has to be done by the client.

2. The tool’s functionality is to provide a WSDL file pointing to the pri-

mary copy. This includes:

(a) contact the replica host and get the locations of the other replicas.

Moreover, it has to collect the location of the primary copy from all

replicas, choosing the most popular one to cushion inconsistencies.

This communication is done via the Simple Replicator Protocol

and is therefore fast and light-weight. Furthermore, the locations

of all replicas are cached and updated during each run. This way

it is possible to follow the movements of a replicated Web service

without querying the UDDI registry continuously.

(b) contact the primary copy host and retrieve the automatically gen-

erated WSDL file from the Apache Axis SOAP Container.

3. The client can pass this WSDL file as an argument to the Apache Web

Service Invocation Framework [12] and invoke the proper Web service

replica.

60

6 Evaluation

6.1 Practical Application of the Replicator System

The replicator system needs a predefined structure of its working directories

with full read and write access in order to work properly. Listing 22 shows

the most important directories. The configuration files are located in “conf”;

“lib” is the destination directory for all additional libraries needed by the Web

services. They are in turn unpacked to the “repository”directory. All logging

output is saved in the “logs” directory; “work” contains the working directory

of the Jetty HTTP Servlet Server [19] and the Apache Axis Servlet [9].

Listing 22: ”Directory Structure of Replicator System”

./conf/

./lib/

./logs

./ repository/

./work/jetty

./work/webapps/axis

The path to a directory, which contains all these subdirectories, has to be

passed to the replicator system. This is done during the invocation via the

mandatory Java system property “wsreplication.workingdirectory”:

java -cp $CLASSPATH -jar replicator.jar \

-Dwsreplication.workingdirectory=/repldir

The first task of the bootstrapping module is to read in and process the

main configuration file located at “conf/main.conf” (see Listing 23). This file

contains the most important options, which can be specified by the user. For

instance it is possible to set the maximum number of concurrent connections,

to specify the plug-ins for the replication logic and the security checker, to

set the port of the HTTP server, etc.

6.1 Practical Application of the Replicator System 61

Listing 23: ”Main Configuration File of Replicator System”

wsreplication.replicationlogic.plugin =

wsreplication.server.maxcon = 256

wsreplication.service.checkerclass =

wsreplication.syncro.sticky = true

jetty.port = 8070

Once the configuration has been approved as valid and the replicator system

continues with the bootstrapping, it logs the most important configuration

and system properties to the screen, as shown in Listing 24.

Listing 24: ”Logs of Replicator System During Bootstrap”

16:22:35 ,359: Configuration directory : /repldir/conf

16:22:35 ,394: Reading from ’main.config ’.

16:22:35 ,394: Repository directory : /repldir/repository

16:22:35 ,394: Working directory : /repldir/work

16:22:35 ,395: Library directory : /repldir/lib

16:22:35 ,395: Server port : 8071

16:22:35 ,395: Jetty port : 8070

16:22:35 ,397: Jetty home directory : /repldir/

16:22:35 ,397: Jetty work directory : /repldir/work/jetty

16:22:35 ,397: Server connection limit : 256

16:22:35 ,398: Sticky services : true

16:22:35 ,398: Service checker class : (none)

...

16:22:37 ,900: Jetty started.

16:22:37 ,912: Control Server started.

16:22:37 ,913: Startup complete.

The logging mechanism is based on Log4j [21]. This makes it possible for

the user to choose different levels of logging. In the default level (INFO) the

logging is limited to messages about leader election, replica placement (see

Listing 25), and possible errors. If this level is raised to DEBUG or TRACE,

everything is logged with more detail, such as the monitoring process, in

order to be able to trace the system’s behavior.

6.2 Case Study 62

Listing 25: ”Logs of Leader Election and Successful Sending of a Web Service

Replica”

16:34:29 ,672: Controlling service ’ticket ’."

...

16:34:33 ,289: Executing SendCommand(ticket ,desthost :8080).

16:34:34 ,831: Success.

...

16:48:37 ,291: Service ’ticket ’ now controlled by somewhere :80.

6.2 Case Study

In Chapter 4 the theory of the replication of Web services is explained in-

depth. In order to make it besser comprehensible its functionality will be

pointed out by discussing a pratical example. In this case study, which is

based on a small ad-hoc network consisting of five hosts, the management of

replicas is demonstrated. The dynamic topology of the network is simulated

by using loopback network interfaces, which can be deactivated at any time.

Each one of them has a class-C IP address assigned and runs an instance of

the replicator system:

Host 0 -> lo:0 -> replicator system @ 192.168.2.100:8000

Host 1 -> lo:1 -> replicator system @ 192.168.2.101:8010

Host 2 -> lo:2 -> replicator system @ 192.168.2.102:8020

Host 3 -> lo:3 -> replicator system @ 192.168.2.103:8030

Host 4 -> lo:4 -> replicator system @ 192.168.2.104:8040

The detailed setup of the network, including the shell script for modifying

its topology in a random manner, can be found in Appendix B.

This case study acts on the following assumptions:

• The hosts are sorted by their slightly different performance properties,

with Host 0 acting as the fastest node and Host 5 as the slowest one.

6.2 Case Study 63

• A disconnection of a host is comparable to departing too far away from

the range of the wireless network. This implies that even though it has

lost its connection to the rest of the network, it is, nevertheless, up and

running. Thus it acts as a single node in an individual network.

• Only one Web service is deployed. This service desires to have at least

two and at the most three replicas running concurrently.

Table 1 on page 65 illustrates the scenario, showing all hosts and the states

of their Web service replicas. In the beginning all five hosts are connected

and the network topology starts changing as soon as the Web service has

been deployed on the first host.

1. Initiation:

Initially the Web service replica is deployed only on Host 1, implying

that this host becomes automatically its leader. However, the minimum

number of replicas is set to two, which means that it must additionally

be deployed somewhere in the network. Due to its superior performance

properties, Host 1 is chosen as the destination.

2. Host 1 disconnects:

As Host 1 is not available anymore, a new replica must be spawned to

meet the minimum required number. This time Host 2 poses the fastest

destination, and therefore the replica is deployed on it. Meanwhile

Host 1 does not see other hosts anymore, and elects itself as the leader

of its service.

3. Host 0 disconnects:

With the disconnection of Host 0, the leader of the service becomes

unavailable and Host 2 has to take over. Again too few replicas are

deployed in the network, which results in sending the Web service to

Host 3.

6.2 Case Study 64

4. Host 3 disconnects:

Host 3 disconnects and the leader sends a new replica to Host 4. This

scenario is similar to Part 2.

5. Host 0 reconnects:

Due to the fact that Host 0 regarded itself as the leader after it has lost

the connection, two leaders exist as it reenters the network. This poses

an inconsistency which has to be corrected. During the election in the

next cycle, Host 2 stays the leader because it has already been accepted

by the other hosts running the replica. As a consequence three replicas

exist in the network.

6. Host 1 reconnects:

Also in this situation two leaders exist concurrently for a short time,

and again the majority of hosts elects Host 2 as the leader. Now four

replicas exist, which means that one has to be eliminated. Since Host 4

is the slowest of them, the replica on it is hibernated and therefore

undeployed.

7. Host 3 reconnects:

This scenario is similar to Part 6, but in this case the replica is hiber-

nated right after it has reconnected to the network, due to its inferior

performance.

As a matter of course, this case study does not describe all possible failures,

such as the interrupted sending of a Web service replica, hosts disappearing

and reappearing frequently, hosts relocating, etc. Moreover, the synchro-

nization of stateful replicas has been omitted for clarity. The purpose of

this scenario is to demonstrate intelligibly how the replicator system handles

simple dynamics of ad-hoc networks, such as disconnections, reconnections,

multiple leaders, etc.

6.2 Case Study 65

Activity Host 0 Host 1 Host 2 Host 3 Host 4
1 Host 0 receives the service
1.a deployment D

1.b leader election L
-> Host 0 sends service to Host 1

1.c deployment L D

2 Host 1 disconnects
2.a disconnection L D

2.b leader election L L
-> Host 0 sends service to Host 2

2.c deployment L L D

3 Host 0 disconnects
3.a disconnection L L D

3.b leader election L L L
-> Host 2 sends service to Host 3

3.c deployment L L L D

4 Host 3 disconnects
4.a disconnection L L L D

4.b leader election L L L L
-> Host 2 sends service to Host 4

4.c deployment L L L L D

5 Host 0 reconnects
5.a reconnection L L L L D

5.b leader election D L L L D

6 Host 1 reconnects
6.a reconnection D L L L D

6.b leader election D D L L D
-> Host 2 hibernates service on Host 4

6.c hibernation D D L L H

7 Host 3 reconnects
7.a reconnection D D L L H

7.b leader election D D L D H
-> Host 2 hibernates service on Host 3

7.c hibernation D D L H H

Table 1: Case Study Results. (D = deployed service, L = leading service,
H = hibernated service, red marked = disconnected host, yellow marked =
currently changing state)

6.3 Further Work 66

6.3 Further Work

During the coding of the replicator system, the implementation was always

regarded more as a prototype and proof of concept, than as a complete soft-

ware product. This means that it lacks some essential functionality necessary

on systems which are used in companies, organizations, etc. This includes,

for instance, security mechanisms. In particular it is necessary to sign, and

sometimes also to encrypt, the communication between the individual repli-

cator systems, in order to use this software in a real environment without

opening huge security holes. Even though it is possible to tighten the security

of the replicator system by various plug-ins, they have not been written yet.

Another important challenge for the near future is the tuning of monitoring

parameters. Almost all calculations of the replicator system are based on

a global view of the network, which is retrieved periodically by the moni-

tors. Therefore the monitoring intervals have a strong impact on the systems

flexibility to react on changes. Frequent monitoring allows to inform earlier

about changes in the network, but can cause too much traffic. Infrequent

monitoring solves the problem of consuming too much bandwidth, but slows

down the placement of replicas. Furthermore it is often necessary to adjust

the frequency to the size and dynamics of a network. Thus ideal trade-offs

for various kinds of networks have to be found. They will be determined in

numerous tests, by using sophisticated simulations of networks consisting of

more than 200 hosts.

67

7 Summary

The goal of this thesis was to develop a solution for ensuring high availability

of Web services in ad-hoc network environments, which have an unpredictable

topology and therefore hamper the provision of dependable Service Oriented

Architectures. In order to grant availability, the approach of replication and

synchronization was adapted to the dynamics of ad-hoc networks. Although

numerous solutions exist for how to replicate resources in static environments,

the adaptation to a completely decentralized and unpredictable environment

calls for a new and highly flexible solution. As specified in Chapter 1.2, such

a solution has to fulfill several mandatory requirements, which were followed

during the design process of the replicator system.

• Avoiding centralization

Although the management of a group of Web service replicas is always

controlled by a single host, centralization is only temporary and does

not pose a single point of failure. In cases where the leader becomes

unavailable, a new one is quickly elected.

• Monitoring changes in availability & reacting to them

Distributed monitoring is performed to provide a complete and global

view of the network’s hosts and services. Inconsistencies, such as invalid

numbers of replicas or unavailable leaders, are corrected immediately

after they have been detected.

• Monitoring health of hosts & considering this while replicating

The performance properties of hosts are monitored and compared to

the preferences of Web services during the placement of new replicas.

This way the load in a network is kept balanced.

• Keeping bandwidth usage low

The network traffic is kept low by using the light-weight Simple Replica-

7.1 Conclusion 68

tor Protocol for communication purposes and by performing the mon-

itoring of the network in a distributed and incremental manner.

• Synchronizing service states quickly

The individual Web services are free to notify the server about neces-

sary state synchronizations, which are then performed via the Simple

Replicator Protocol.

• Making invocation of Web services convenient for the clients

A WSDL-finder utility disburdens the application developers from han-

dling ad-hoc specific difficulties and looking up the proper replica in-

stances.

7.1 Conclusion

The contribution of this thesis is an enhancement to Service Oriented Archi-

tectures to enable their application within typically unreliable networks. The

developed replicator system provides the necessary flexibility to handle such

environments. Nevertheless, it is not bound to ad-hoc networks exclusively,

but can be used in any other environment where high availability of Web

services is desired. This makes it a powerful all-round solution for providing

dependability to Service Oriented Architectures.

REFERENCES 69

References

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,

M. Punceva, and R. Schmidt. P-Grid: a self-organizing structured P2P

system. SIGMOD Record, 32(3):29–33, 2003.

[2] K. P. Birman, R. van Renesse, and W. Vogels. Adding High Availability

and Autonomic Behavior to Web Services. In ICSE, pages 17–26. IEEE

Computer Society, 2004.

[3] N. Budhiraja and K. Marzullo. Highly-Available Services Using the

Primary-Backup Approach. In Workshop on the Management of Repli-

cated Data, pages 47–50, 1992.

[4] G. Chockler, R. Friedman, and R. Vitenberg. Consistency Conditions

for a CORBA Caching Service. In M. Herlihy, editor, DISC, volume

1914 of Lecture Notes in Computer Science, pages 374–388. Springer,

2000.

[5] E. Dekel, O. Frenkel, G. Goft, and Y. Moatti. Easy: Engineering High

Availability QoS in wServices. In SRDS, pages 157–166. IEEE Computer

Society, 2003.

[6] R. Friedman. Caching web services in mobile ad-hoc networks: oppor-

tunities and challenges. In POMC, pages 90–96. ACM, 2002.

[7] L. Juszczyk, J. Lazowski, and S. Dustdar. Web Service Discovery, Repli-

cation, and Synchronization in Ad-Hoc Networks. In ARES, pages 847–

854. IEEE Computer Society, 2006.

[8] J. Lazowski. Web Service Discovery in Ad-Hoc Netzwerken. Master’s

thesis, University of Technology Vienna, May 2006.

[9] Apache Axis SOAP Container. http://ws.apache.org/axis.

[10] Apache Axis2 SOAP Container. http://ws.apache.org/axis2.

[11] Apache SOAP Implementation. http://ws.apache.org/soap.

REFERENCES 70

[12] Apache Web Service Invocation Framework. http://ws.apache.org/

wsif/.

[13] CORBA 3. http://www.omg.org/technology/documents/formal/

corba_2.htm.

[14] HyperText Markup Language. http://www.w3.org/MarkUp/.

[15] HyperText Transfer Protocol. http://www.w3.org/Protocols/.

[16] IBM Colombo Middleware for Web Services. http://www.research.

ibm.com/journal/sj/444/curbera.html.

[17] IBM WebSphere. http://www.ibm.com/websphere.

[18] IEEE 802.11 Working Group. http://www.ieee802.org/11/.

[19] Jetty HTTP Servlet Server. http://jetty.mortbay.org.

[20] JXTA Peer-to-Peer Protocols. http://www.jxta.org.

[21] Log4j. http://logging.apache.org/log4j/.

[22] Microsoft Distributed COM. http://www.microsoft.com/com/.

[23] Microsoft .NET. http://www.microsoft.com/net/.

[24] SOAP. www.w3.org/TR/soap/.

[25] Sun Enterprise JavaBeans. http://java.sun.com/products/ejb/.

[26] Universal Description, Discovery and Integration. http://www.uddi.

org.

[27] Web Service Definition Language. www.w3.org/TR/wsdl.

[28] Extensible Markup Language. www.w3.org/XML/.

[29] XML Schema Definition. www.w3.org/XML/Schema.

[30] Wikipedia: Web service. http://en.wikipedia.org/wiki/Web_

service.

71

A Sample Web Service Implementation

The following listing contains the source code of a simple but stateful Web

service, distributing random integer tickets via its function “newTicket()”.

Furthermore, it keeps the date of the last request saved. This date and the

ticket counter pose the service’s internal state and are synchronized during

every invocation.

Listing 26: ”Sample Implementation of a Synchronized Web Service”

1 // web service class

2 public class SampleService extends SynchronizedService {

3
4 // contructor

5 public SampleService () {

6 super ();

7 }

8
9 // state variables

10 public static Integer counter =0;

11 public static Date lastRequest=new Date ();

12
13 // state objects

14 private static FieldSetterStateObject counterObject=null;

15 private static FieldSetterStateObject dateObject=null;

16
17 // service name

18 @Override

19 public String getServiceID () {

20 return "sampleservice";

21 }

22
23 // state object initializer

24 @Override

25 protected void initializeStateObjects () throws Exception {

26 if (counterObject ==null) {

27 counterObject=new FieldSetterStateObject(

72

28 SampleService.class.getField("counter"));

29 }

30 if (dateObject ==null) {

31 dateObject=new FieldSetterStateObject(

32 SampleService.class.getField("lastRequest"));

33 }

34 }

35
36 // map of state objects

37 @Override

38 public HashMap <String ,IStateObject > getStateObjects () {

39 HashMap <String ,IStateObject > result=

40 new HashMap <String ,IStateObject >();

41 result.put(counterObject.getID(), counterObject);

42 result.put(dateObject.getID(), dateObject);

43 return result;

44 }

45
46 // web service function , returns a new integer ticket

47 public int newTicket () {

48 counter=new Random (). nextInt ();

49 lastRequest=new Date ();

50
51 try {

52 // synchronize the state

53 synchronizeStateObjects ();

54 } catch (Exception e) {

55 // ignore errors now

56 }

57
58 return counter;

59 }

60 }

• Lines 10-11: The variables for the internal state are declared.

• Lines 14-15: The state objects are declared but not yet initialized.

73

• Lines 19-21: “getServiceID()” returns the string-ID of the service.

• Lines 25-34: “initializeStateObjects()” binds the state objects to the

corresponding variables.

• Lines 38-44: “getStateObjects()” returns a HashMap containing all

the service’s state objects.

• Lines 47-59: “newTicket()” is the only operation of the service. After

the new ticket and the date have been calculated, this method initiates

the synchronization, ignoring all possible exceptions.

B Simulation of Transient Host Lifetimes

The simulation of transient lifetimes of hosts in a network is done by setting

up multiple loopback network interfaces, which are bound to class-C IP ad-

dresses and turned on and off in a random manner. Listing 27 contains the

interface declarations from a Debian Linux configuration. The bash script

simulating the random behavior can be found in Listing 28.

Listing 27: ”Interface-to-IP Mapping”

iface lo:0 inet static

address 192.168.2.100

netmask 255.255.255.255

iface lo:1 inet static

address 192.168.2.101

netmask 255.255.255.255

iface lo:2 inet static

address 192.168.2.102

netmask 255.255.255.255

... more interface declarations ...

74

Listing 28: ”Bash Script for Manipulation of Interfaces”

#!/bin/bash

NUMBER_OF_INTERFACES =5

random intervals , but not longer than 5 seconds

while sleep ‘expr $RANDOM % 5‘

do

0 means down , 1 means up

UP=‘expr $RANDOM % 2‘

number of the interface

INTERFACE=‘expr $RANDOM % $NUMBER_OF_INTERFACES ‘

check if the interface is already in this state ...

... or has to be changed

if [x‘printenv IF$INTERFACE ‘ != x$UP]

then

print the date

echo -n "‘date +\"%H:%M:%S:%N \"‘ "

if [$UP == 1]

then

bring the interface up

echo "interface if:$INTERFACE is brought up"

ifup lo:$INTERFACE

else

bring the interface down

echo "interface if:$INTERFACE is brought down"

ifdown lo:$INTERFACE

fi

save the current state of the interface

export IF$INTERFACE=$UP

fi

done

