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Abstract—
In this paper we study fault localization techniques for

identification of incompatible configurations and implementations
in service-based applications. We propose an approach using
pooled decision trees for localization of faulty service parameter
and binding configurations, explicitly addressing temporary and
changing fault conditions.

I. INTRODUCTION

Distributed and mission-critical enterprise applications are
becoming more and more reliant on external services, pro-
vided by suppliers, customers or other members of service
value networks. In many industries, the technical interfaces of
these services are nowadays governed by industry standards,
specified by bodies such as the TM Forum1. Hence, integration
of services provided by different business partners into a single
service-based application (SBA) becomes feasible. Addition-
ally, as oftentimes a multitude of potential partners are provid-
ing implementations of the same standardized interfaces, SBAs
are enabled to dynamically switch providers at runtime, i.e.,
dynamically select the most suitable implementation of a given
standardized interface based on fluid business requirements.

Unfortunately, practice has shown that standardized inter-
faces alone do not guarantee compatibility of services orig-
inating from different partners. Many industry standards are
prone to underspecification, while others simply allow multiple
alternative (and incompatible) implementations to co-exist.
Additionally, and particularly for younger specifications, not
every vendor can be trusted to interpret each standard text in
the same way. Consequently, there are practical cases, where
SBAs, which should work correctly in the abstract, fail to
function because of unexpected incompatibilities of service
implementations chosen at runtime. Note that this does not
necessarily mean that any single one of the chosen service
implementations is faulty in itself – it merely means that
two or more chosen service implementations do not work
in conjunction (even though both may work perfectly in
combination with other services).

In this paper, we present a machine learning driven approach
to identify such incompatibilities of industry standard imple-
mentations. We analyze runtime event logs emitted by the
SBA using decision tree techniques and principal component
analysis, with the goal of suggesting combinations of service

1http://www.tmforum.org/browse.aspx

implementations that should not be used in conjunction. Our
approach takes into account not only the actual service im-
plementations themselves, but also the received input and the
produced output data of implementations.

II. FAULT LOCALIZATION APPROACH

An SBA uses a set of industry standard service interfaces.
For each interface, there is usually a set of implementations
available. Each interface defines the domains of possible
input parameters. Our fault localization technique is based on
execution traces containing the binding context of all used
interfaces, observed input parameter values, as well as an
indicator signifying the success or fault of the request.

To estimate the number of possible traces for a medium
sized application, consider an imaginary SBA using 20 in-
terfaces, 3 candidate implementations per interface, 4 input
parameters per service, and 10 possible data values per pa-
rameter. The theoretical number of possible executions in this
SBA is 320 ∗ (104)20 = 3.48678 ∗ 1089. Efficient localization
of faults in such large problem spaces evidently poses a huge
algorithmic challenge. Even more problematically, the problem
space becomes infinite if the service parameters use non-finite
data domains (e.g., String).

The first step towards feasible fault analysis is to reduce the
problem space to the most relevant information. We propose
a two-step approach to achieve this:

1) The first manual preprocessing step is to decide, based on
domain knowledge about the SBA, which attributes are rele-
vant for fault localization. For instance, unique attributes such
as requestID should not have a direct influence on whether
the execution succeeds or fails. Per default, all attributes are
deemed relevant, but removing part of the attributes from the
execution traces helps to reduce the search space.

2) Partitioning of data domains: Research on software
testing and dependability has shown that program faults often
depend on a range of values with common characteristics [1].
Partition testing strategies hence divide the domain of values
into multiple sub-domains and treat all values within a sub-
domain as equal. If explicit knowledge about suitable partition-
ing is available, input value domains can be partitioned man-
ually as part of the preprocessing. However, efficient methods
have been proposed to automate this procedure (e.g., [2]).

Using the preprocessed trace data, we strive to identify
the attribute values or combinations of attribute values that
are likely responsible for faults in the application. For thisc© 2012 IEEE



purpose, we utilize decision trees [3], a popular technique in
machine learning. Note that decision trees are usually used for
classification, which means to learn rules from a set of training
instances with the aim of predicting the class attribute of a new
instance. However, our purpose is not classification because
in our problem formulation the value of the class attribute
(success or fault) is known for each trace instance; instead,
we are interested in learning a decision tree to obtain the rules
which apply to a particular value of the class attribute (fault).
The decision tree with binary split [3] is used to automatically
derive incompatible attribute values. Basically, the procedure
is to loop over all fault leaf nodes and to create a combination
of attribute assignments along the path from the leaf to the root
node.

In real-life systems which are influenced by various external
factors, we have to deal with temporary and changing faults.
We make use of decision tree algorithms to cope with such
temporary faults, which can be considered as noise in the
training data (e.g., [4]). In cases where the root causes of
failures within an SBA change from time to time, we need a
mechanism to let the machine learning algorithms forget old
traces and train new decision trees based on fresh data. To this
end, we assess the accuracy of an existing classification model
using the well-known measures precision, recall, and F1
measure, which is defined as the harmonic mean of precision
and recall.

Figure 1 illustrates a representative sequence of execution
traces ({t1, t2, t3, . . .}). The top of the figure shows the
trace results (r(tx)), where “S” represents success and “F”
represents fault. As the traces arrive with progressing time
we utilize the C4.5 algorithm [3] to infer decision trees from
the data. At time point 1, the decision tree d1 is initialized.
The learning algorithm has an initial training phase which
is required to collect a sufficient amount of data to generate
rules that pass the required statistical confidence level. After
the initial training phase the quality of the decision tree di
is assessed by classifying new incoming traces x (denoted as
rc(di, x)). In Figure 1 correct classifications are printed in
normal text, while incorrect classifications are printed in bold
underlined font.

Four particularly interesting time points (a, b, c, d) are
marked in Figure 1. In time point a the tree d1 misclassifies
trace ta as a false positive. This misclassification triggers the
parallel training of a new decision tree d2 based on the traces
starting with ta. A false negative by d2 happens in time point
b. However, since this happens during the initial training phase
of d2, we simply regard the trace tb as useful information for
the learner and add it to the training set. No further action
is required. Time point c contains another false positive by
d1. In the meantime, F1(d1) had risen due to some correct
classifications, but now the score is pushed down to 0.7. Again,
as in time point a, the generation of a new tree d3 is triggered.
At time d the changing environment seems to have stabilized
and decision tree d3 reached a state with perfect classification
(F1(d3) = 1). At this point, the remaining decision trees are
rejected. The old trees are stored for reference, but are not
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Fig. 1. Maintaining Multiple Trees to Cope with Changing Faults

trained with further data to save computing power.

III. CONCLUSION

In this paper we describe a fault localization technique
that is able to identify problematic combinations of service
bindings and input data in SBAs. The analysis is based on
log traces, which accumulate during runtime of the SBA. A
decision tree learning algorithm is used to create a pool of
trees from which we extract rules, identifying configurations
and inputs that likely lead to faults.

As future work we plan to extend our approach beyond the
pure fault localization aspects; in particular, we will further
validate our technique with extensive evaluations and aim to
integrate the extracted rules for guiding automated reconfig-
uration using reinforcement learning [5] when faults occur.
Furthermore, we intend to integrate test coverage mechanisms
(e.g., [6]) that help to actively investigate faults. This can be
used for systematic test execution of insightful configurations
and input requests which further narrow down the search space
of possible fault reasons.
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