
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2014; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.2254

Generic Event-Based Monitoring and Adaptation Methodology
for Heterogeneous Distributed Systems

Christian Inzinger∗1, Waldemar Hummer1, Benjamin Satzger2, Philipp Leitner3, and

Schahram Dustdar1

1Distributed Systems Group, Vienna University of Technology, Austria
2Microsoft Corporation, Redmond, WA, USA

3University of Zurich, Switzerland

SUMMARY

The Cloud computing paradigm provides the basis for a class of platforms and applications that face novel
challenges related to multi-tenancy, adaptivity, and elasticity. To account for service delivery guarantees in
the face of ever increasing levels of heterogeneity, scale and dynamism, service provisioning in the Cloud
has raised the demand for systematic and flexible approaches to monitoring and adaptation of applications.
In this paper, we tackle this issue and present a framework for efficient runtime management of Cloud
environments, and distributed heterogeneous systems in general. A novel domain-specific language (DSL)
termed MONINA is introduced that allows to define integrated monitoring and adaptation functionality
for controlling such systems. We propose a mechanism for optimal deployment of the defined control
operators onto available computing resources. Deployment is based on solving a quadratic programming
problem, which aims at achieving minimized reaction times, low overhead, as well as scalable monitoring
and adaptation. The monitoring infrastructure is based on a distributed messaging middleware, providing
high level of decoupling and allowing new monitoring nodes to join the system dynamically. We provide a
detailed formalization of the problem domain, discuss architectural details, highlight the implementation of
the developed prototype, and put our work into perspective with existing work in the field.
Copyright c© 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Monitoring; Adaptation; Complex Systems;Domain-Specific Language; Deployment;
Operator Placement

1. INTRODUCTION

Efficient monitoring and adaptation of large-scale heterogeneous systems is challenging, as they
integrate a multitude of components, often from different vendors. Huge amounts of monitoring
data and sophisticated adaptation mechanisms in complex systems render centralized processing of
control logic impractical, as the significant network overhead could interfere with production traffic,
requiring the use of intricate monitoring strategies selecting only necessary status information in
order to minimize communication overhead. Moreover, complex interactions and interdependencies
of system components call for advanced adaptation mechanisms, allowing for simple and clear
specification of overall system behavior goals, as well as fine-grained control over individual
components. In distributed systems it is desirable to keep relevant monitoring and adaptation
functionality as local as possible, to reduce traffic and allow for timely reaction to changes.

∗Correspondence to: inzinger@dsg.tuwien.ac.at

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

In this paper we propose an architecture and methodology for managing complex heterogeneous
systems using a combination of Complex Event Processing (CEP) [1, 2] techniques to manage and
enrich monitoring data, and production rule systems for defining system and component behavior
goals to perform necessary adaptations. Furthermore, we introduce a domain-specific language
(DSL) to easily and succinctly specify system components and their monitoring and adaptation
relevant behavior. It allows to define integrated monitoring and adaptation functionality to realize
applications on top of heterogeneous, distributed components. Using the introduced DSL we then
outline the process of deploying the integration infrastructure, focussing on the efficient placement
of monitoring and adaptation functionality onto available resources. The presented approach
is especially suited for deployments in cloud computing environments, as efficient deployment
strategies are suitable to reduce infrastructure costs and increase application performance.

A preliminary version of our approach has been presented in [3] where we introduce an outline of
the basic concepts and the language constructs of the MONINA language. In this extended work, we
deliver a more comprehensive picture of the approach, provide a detailed discussion of our prototype
implementation, and put our approach into perspective with related work in greater detail.

The remainder of this paper is structured as follows: In Section 2 we outline a motivating scenario
for the following discussion of our contribution. We present an architecture for managing complex
heterogeneous distributed systems in Section 3. Section 4 introduces a DSL for concise definition
of complex service-oriented systems along with their monitoring and adaptation goals, followed by
a discussion of the necessary deployment procedure in Section 5. Relevant previous research is put
into perspective with our approach in Section 7. We conclude the paper in Section 8 and provide an
outlook for future research directions.

2. SCENARIO

In this section we introduce a motivating scenario based on the problems tackled in the Indenica†

FP7 EU project. The project aims at providing methods and tools for describing, deploying and
managing disparate platforms based on the concept of virtual service platforms (VSPs), which
integrate and unify their services.

Complex service-based business applications consist of a multitude of components, both
developed in-house, as well as from third parties. Often, multiple alternative products from different
vendors exist that offer similar functionalities but exhibit significant fragmentation regarding
technology, cost, or quality. A flight booking service from vendor A might, for instance, be
implemented to offer SOAP [4] web service endpoints for communication, charge for every request
to the system, and offer flights at competitive rates. A competing service from vendor B on the other
hand might provide an AMQP interface [5], charge only for booked flights, and offer comparatively
expensive flight rates. Depending on the application to be created, either of the offers may be
more suitable, and even a combination of multiple services might be appropriate. The problem of
deciding on suitable components gets exacerbated when implementing complex applications, as a
large number of similar alternatives by different vendors will be available to use, each with different
properties regarding dimensions such as technology, cost, or quality. It is therefore increasingly
important to design applications to allow for easy and controlled migration of functionality between
different components and providers.

Due to different fragmentation aspects, coordination and control of involved services must adapt
to changes introduced by switching providers. Service access must be mediated to accommodate for
technology differences, whereas coordination and control must be designed to easily compensate for
fragmentation of aspects such as cost or quality, i.e., differences in provided functionality as well as
different control policies.

Furthermore, deployment mechanisms for complex applications and their control infrastructure
must be able to account for available processing capacity on involved hosts, as well as network

†http://indenica.eu

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

http://indenica.eu

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 3

connection properties such as cost and capacity. This is especially important for cloud applications,
as efficient deployment of components results in minimized infrastructure costs and maximized
application performance.

In the following, we present an architecture and framework to ease the creation, deployment, and
management of applications as described above.

3. ARCHITECTURE

In this section, we present an architecture for VSPs to tackle the problems outlined in the
scenario above, allowing for integration of heterogenous service platforms, unified management
of orchestrated behavior, as well as the addition of domain-specific functionality to be consumed by
client applications.

• • •Service
Platform 1

Service
Platform 2

Service
Platform m

Client Application

component interaction

VSP
Control Interface

Messaging Infrastructure

MQ 1 MQ 2 MQ 3 MQ n• • •

Service
Platform 3

Unified Service Interface
Deployment &

Integration
Monitoring: CEP

Engines
Adaptation: Rule

Engines

Figure 1. VSP Runtime Architecture

The VSP runtime architecture is presented in Figure 1. A VSP provides a unified view on
the functionality of the integrated service platforms that are connected by control interfaces.
Monitoring and adaptation are performed by complex event processing (CEP) engines and
production rule engines, respectively. Communication within the VSP is based on a distributed
messaging infrastructure.

The control interface allows for integration of external services using a wire format transformation
layer to accommodate various technologies, such as SOAP, REST, RMI or messaging based
solutions such as JMS or AMQP. Furthermore, this interface allows for the specification of emitted
monitoring events, as well as supported adaptation actions of connected service platforms.

Monitoring events emitted by integrated services are used within the monitoring infrastructure
to derive composite events by aggregating and enriching data emitted by multiple sources (such
as the integrated platforms and VSP components) using CEP techniques. The monitoring engines
allow for the specification of monitoring queries to derive complex events in order to model the
system state in domain-specific terms relevant to stakeholders, abstracting from low-level metrics
and system details.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

4 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

The modeled system state is then used in the adaptation infrastructure by transforming state
change events to so-called facts in the adaptation knowledge base. The adaptation infrastructure
utilizes production rule systems to enable sophisticated reasoning on the modeled application state
to control VSP behavior. It allows for the specification of adaptation rules that can influence the
integrated systems using actions specified in the corresponding control interface.

This clear separation of monitoring and adaptation concerns allows for independent evolution
of data derived from the system state and control logic to facilitate the creation of monitoring
and adaptation hierarchies. Business rule experts can specify high-level goals for the modeled
application’s behavior that are evaluated based on domain-specific system state indicators derived
from composite monitoring events specified by system experts. The architecture is furthermore
designed to allow operators to focus on specifying control logic and let the framework handle
decisions about where and how the specified control infrastructure is physically deployed.

Communication between components is realized using a distributed messaging fabric that enables
to minimize unnecessary network traffic (compared to a centralized message bus deployment) and
further allows components to move freely within the network without changing connection bindings
or losing connectivity to the system. The execution of monitoring and adaptation on top of multiple
engines further allows for scalable control using distributed resources.

To enable the simplified specification of an application based on the presented architecture
we introduce a new DSL called MONINA, which allows the user to specify service platform
capabilities, monitoring queries, and adaptation rules. The MONINA language is presented in
Section 4. While the presented architecture allows for simple distributed deployment of complex
runtime environments, efficient and effective distributed deployment based on optimized component
placement poses several challenges. In a deployed system, operating cost and network overhead
should be minimal, but the provisioned compute resources must be able to handle the processing
load of all deployed components. When external services are integrated, involved components
should furthermore be placed “close to” their communication peers to reduce network latency and
possibly transmission cost. Strategies to tackle the presented problems and deploy the specified
functionality onto available resources will be discussed in Section 5. The prototype implementation
based on the presented concepts is discussed in Section 6.

4. MONINA LANGUAGE

In this section we introduce MONINA (Monitoring, Integration, Adaptation) – a DSL allowing for
concise, easy, and reusable specification of platforms integrated into a VSP, along with monitoring
and adaptation rules governing their behavior.

The language is developed using the Xtext [6] language development framework, allowing for
tight integration in the Eclipse platform. The plugin offers syntax highlighting, as well as several
automated sanity checks to ease system specification. The language plugin is furthermore integrated
into the overall Indenica tool suite, allowing for the usage of existing system models stored in the
infrastructure repository. Future versions of the plugin will offer a graphical abstraction in addition
to the textual DSL for increased simplicity and ease of use.

Listing 1 shows a simple definition for a service platform to be integrated into a VSP. The
‘ApplicationServer’ component emits ‘RequestFinished’ events after processing requests and
supports a ‘DecreaseQuality’ action, which can be triggered by adaptation rules. Emitted events
are processed by the ‘AggregateResponseTime’ query, which aggregates them over five minutes,
creating an ‘AverageProcessingTime’ event. This event is converted to a fact, which might trigger the
‘DecreaseQualityWhenSlow’ adaptation rule. The physical infrastructure consists of hosts ‘vm1’
and ‘vm2’. Runtime elements without defined costs are assigned default values, which are refined
at runtime. In the following we discuss and illustrate the most important language constructs of
MONINA in more detail.

event Monitoring events are described by attributes that are contained in emitted messages. Events
are then used in component definitions, monitoring query declarations, as well as facts.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 5

event R e q u e s t F i n i s h e d {
r e q u e s t i d : I n t e g e r
process ing t ime ms : I n t e g e r

}

event A v e r ag e P r o c es s i n g T i me {
process ing t ime ms : I n t e g e r

}

action D e c r e a s e Q u a l i t y {
amount : Double

}

component A p p l i c a t i o n S e r v e r {
endpoint {

at ” / a p p s e r v e r ”
emit R e q u e s t F i n i s h e d
action A d j u s t Q u a l i t y

}
host vm1
cost 32

}

host vm1 { capacity 128 }
host vm2 { capacity 256 }

query Aggrega teResponseTimes {
from A p p l i c a t i o n S e r v e r
event R e q u e s t F i n i s h e d as e
emit A v e ra g e P r o c es s i n g T i me (

avg (e . process ing t ime ms))
window 5 m i n u t e s

}

fact {
from A v e r ag e P r o c es s i n g T i me

}

rule DecreaseQual i tyWhenSlow {
from A v e r ag e P r o c es s i n g T i me as f
when f . p rocess ing t ime ms > 2000
execute A p p l i c a t i o n S e r v e r

. D e c r e a s e Q u a l i t y (5)
}

Listing 1: Sample System Definition

fact Facts constitute the knowledge base for adaptation actions. Fact definitions reference an event
type and a partition key.

action Similar to events, adaptation actions list all their valid parameters. Actions are used in
component definitions as well as adaptation rules.

component A component definition references all monitoring events the platform can emit
(including their frequency), all adaptation actions that can be performed, as well as its
processing requirements. Furthermore, it is correlated with a concrete instance of the
component in question at deployment.

query Monitoring queries are used to define the aggregation, filtering and enrichment of emitted
monitoring data in a CEP fashion. Monitoring rules will either emit complex aggregated
events to be consumed by other monitoring rules, directly issue adaptation actions, or emit
facts to be used in adaptation rules.

rule Adaptation rules allow for the usage of complex business management rules to govern system
behavior. Monitoring rules emit facts to be used for reasoning over the current system state.
Adaptation rules can either publish new facts or issue adaptation actions.

host Hosts represent possible deployment locations for components, monitoring queries and
adaptation rules. A host description contains its processing capacity.

4.1. Event

In our work, we follow the event-based interaction paradigm [7]. Events are emitted by components
to signal important information. Furthermore, events can be emitted by monitoring queries as a
result of the aggregation or enrichment of one or more source events.

Figure 2 shows a simplified grammar of the event construct in Extended Backus-Naur Form
(EBNF). Event declarations start with the event keyword and an event type identifier. As shown in
the figure, an event can contain multiple attributes, defined by specifying name and type separated
by a colon. Currently, supported event types are a variety of Java types such as String, Integer,
Decimal, and Map<?,?>.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

6 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

〈event〉 ::= ‘event’ 〈ID〉 ‘{’ 〈attr〉* ‘}’

〈attr〉 ::= 〈attr-name〉 ‘:’ 〈type〉

〈attr-name〉 ::= 〈ID〉

Figure 2. Simplified Event Grammar in EBNF

Since listing all available event types for every application would be a tedious and error-prone
task, we automatically gather emitted event types from known components to improve reusability
and ease of use. This procedure is described in more detail in Section 4.4.

More formally, we assume thatE is the set of all event types, T is the set of all data types, and each
event type E′ ∈ E is composed of event attribute types E′ = (α1, . . . , αk), αi ∈ T ∀i ∈ {1, . . . , k}.
IE denotes the set of monitoring event instances (or simply events), and each event e ∈ IE has an
event type, denoted t(e) ∈ E. The attribute values contained in event e are represented as a tuple
e = (πα1(e), . . . , παk

(e)), where παx(e) is the projection operator (from relational algebra), which
extracts the value of some attribute αx from the tuple e.

4.2. Action

Complementary to monitoring events described above, adaptation actions are another basic language
element of MONINA. Adaptation actions are invoked by adaptation rules and executed by
corresponding components to modify their behavior. Figure 3 shows a simplified grammar of the
action construct in EBNF. Action declarations start with the action keyword followed by the action
type identifier. Furthermore, actions can take parameters, modeled analogously to event attributes
shown in Figure 2.

〈action〉 ::= ‘action’ 〈ID〉 ‘{’ 〈attr〉* ‘}’

Figure 3. Simplified Action Grammar in EBNF

Similar to events, adaptation actions offered by known components do not need to be specified
manually, but are automatically derived from component specifications, as discussed in Section 4.4.

The symbol A denotes the set of all types of adaptation actions, and each type A′ ∈ A contains
attribute types: A′ = (α1, . . . , αk), αi ∈ T ∀i ∈ {1, . . . , k}. The set IA stores all action instances
(or simply actions) that are issued in the system. The values of an action a ∈ IA are evaluated using
the projection operator: a = (πα1(a), . . . , παk

(a)).

4.3. Fact

Facts constitute the knowledge base for adaptation rules and are derived from monitoring events.
A fact incorporates all attributes of the specified source event for use by adaptation rules. Figure 4
shows a simplified grammar of the fact construct in EBNF. Fact declarations start with the fact
keyword and an optional fact name. A fact must specify a source event type that is used to derive
the fact from. Furthermore, an optional partition key can be supplied. If the fact name is omitted,
the fact will be named after its source event.

〈fact〉 ::= ‘fact’ 〈ID〉? ‘{’ 〈ID〉 〈partition-key〉? ‘}’

〈partition-key〉 ::= ‘by’ 〈ID〉

Figure 4. Simplified Fact Grammar in EBNF

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 7

The partition key construct is used to enable the creation of facts depending on certain event
attributes, allowing for the concise declaration of multiple similar facts for different system aspects.
For instance, a fact declaration for the event type ProcessingTimeEvent that is partitioned by
the component id attribute will create appropriate facts for all encountered components, such
as ProcessingTime(Component1), . . . , ProcessingTime(ComponentN). In contrast,
a fact declaration for the MeanProcessingTimeEvent without partition key will result in the
creation of a single fact representing the system state according to the attribute values of incoming
events.

Formally, a fact f ∈ F is represented as a tuple f = (κ, e), for event type e ∈ E and partition
key κ. The optional partition key κ allows for the simplified creation of facts concerning specified
attributes, to model facts relating to single system components, using πκ(e), the projection of
attribute κ from event e. Alternatively, the type of event e itself acts as the partition key, aggregating
all events of the same type to a single fact.

4.4. Component

A component declaration incorporates all information necessary to integrate third-party system into
the Indenica infrastructure. Figure 5 shows a simplified grammar of the component construct in
EBNF. Component declarations start with the component keyword and a component identifier.
A component specifies all monitoring events it will emit with an optional occurrence frequency,
supported adaptation actions, as well as a reference to the host on which the component is deployed.

〈component〉 ::= ‘component’ 〈ID〉 ‘{’ 〈metadata〉? 〈c-elements〉* 〈host-ref 〉 ‘}’

〈metadata〉 ::= (‘vendor’ 〈STRING〉)? (‘version’ 〈STRING〉)? . . .

〈c-elements〉 ::= 〈endpoint〉 | 〈refs〉

〈refs〉 ::= 〈event-ref 〉 | 〈action-ref 〉

〈action-ref 〉 ::= ‘action’ 〈ID〉

〈event-ref 〉 ::= ‘event’ 〈ID〉 〈frequency〉?

〈endpoint〉 ::= ‘endpoint’ 〈ID〉? ‘{’ 〈e-addr〉 〈refs〉* ‘}’

〈frequency〉 ::= ‘every’ 〈Decimal〉 ‘seconds’ | 〈Decimal〉 ‘Hz’

〈host-ref 〉 ::= ‘host’ 〈ID〉

Figure 5. Simplified Component Grammar in EBNF

For brevity, further elements such as endpoint addresses, are omitted in the presented grammar
snippet but are included in the implementation.

As mentioned before, it is usually not necessary to manually specify component, action, and
event declarations. The Indenica infrastructure provides for means to automatically gather relevant
information from known components through the control interface shown in Figure 1.

Formally, components C are represented with the signature function‡

sig : C → P(A)× P({(ej , νj)|ej ∈ E, νj ∈ R+
0 })×R+

0 ×H

and the signature for a component ci ∈ C is

sig : ci 7→ (IAi ,Ω
E
i , ψi, hi)

‡For clarity, we use the same symbol sig for signatures of components (Section 4.4), monitoring queries (Section 4.5),
adaptation rules (4.6), and hosts (Section 4.7).

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

8 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

The signature function sig extracts relevant information from the according language construct
for later use by the deployment infrastructure. Monitoring events emitted by the component are
represented by ΩEi , and for each emitted event type ej an according frequency of occurrence νj is
supplied. Adaptation actions supported by the component are denoted by IAi , its processing cost is
represented by ψi, and hi identifies the host on which the component is deployed.

4.5. Monitoring Query

Monitoring queries allow for the analysis, processing, aggregation and enrichment of monitoring
events using CEP techniques. In the context of the Indenica project we provide a simple query
language tailored to the needs of the specific solution.

A simplified EBNF grammar of the monitoring query construct is shown in Figure 6. A query
declaration starts with the query keyword and a query identifier. Afterwards, an arbitrary number
of event sources for the query is specified using the from and event keywords to specify source
components and event types. A query then specifies any number of event emission declarations,
denoted by the emit keyword followed by the event type and a list of expressions evaluating the
attribute assignments of the event to be emitted. For brevity we omit the specification of 〈cond-
expression〉 clause that represents a SQL-style conditional expression. Queries can be furthermore
designed to operate on event stream windows using the window keyword, specifying either a
number of events to create a batch window or a time span to create a time window. Conditions
expressed using the where keyword are used to limit query processing to events satisfying
certain conditions, using the conditional expression construct mentioned above. Finally, queries
can optionally indicate the rate of incoming vs. emitted events, as well as an indication of required
processing power. These values are user-defined estimations in the initial setup, and are adjusted
continuously during runtime to accommodate changes in the environment.

〈query〉 ::= ‘query’ 〈ID〉 ‘{’ (〈sources〉 | 〈emits〉)*
〈window〉? 〈condition〉? 〈io-ratio〉? 〈cost〉? ‘}’

〈sources〉 ::= ‘source’ 〈ID〉 (‘,’ 〈ID〉)*
‘event’ 〈ID〉 (‘,’ 〈ID〉)*

〈emits〉 ::= ‘emit’ 〈ID〉 (〈attr-emit〉*)*

〈attr-emit〉 ::= 〈cond-expression〉 (‘as’ 〈ID〉)?

〈window〉 ::= ‘window’ (〈batch-window〉 | 〈time-window〉)

〈batch-window〉 ::= 〈Integer〉 ‘events’

〈time-window〉 ::= 〈Integer〉 (‘seconds’ | ‘minutes’ | ‘days’ | . . .)

〈condition〉 ::= ‘where’ 〈cond-expression〉

〈io-ratio〉 ::= ‘ratio’ 〈Decimal〉

〈cost〉 ::= ‘cost’ 〈Decimal〉

Figure 6. Simplified Monitoring Query Grammar in EBNF

In addition to the query construct presented above, the language infrastructure allows for the
integration of other CEP query languages, such as EQL [8] if necessary.

The set of queries Q is represented using the signature

sig : Q→ P(E)× P(E)×R+
0 ×R+

0

and the signature for a query qi ∈ Q is

sig : qi 7→ (IEi , O
E
i , ρi, ψi)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 9

Input and output event streams are denoted by IEi and OEi respectively, where ρi represents the
ratio of input events processed to output events emitted, and ψi represents the processing cost of the
query.

4.6. Adaptation Rule

Adaptation rules employ a knowledge base consisting of facts to reason on the current state of the
system and modify its behavior when necessary using a production rule system. Figure 7 shows
a simplified grammar of the adaptation rule construct in EBNF. A rule declaration starts with the
rule keyword and a rule identifier. After importing all necessary facts using the from keyword, a
rule contains a number of when-statements where the condition evaluates a 〈cond-expression〉 as
described above, referencing imported facts, and the then block specifies a number of adaptation
action invocations including any necessary parameter assignments. Optionally, a rule can indicate
processing requirements (cf. Figure 6) that will be adjusted at runtime.

〈rule〉 ::= ‘rule’ 〈ID〉 ‘{’ (〈r-sources〉)+ 〈stmt〉+ 〈cost〉?‘}’

〈r-sources〉 ::= ‘from’ 〈ID〉 (‘as’ 〈ID〉)?

〈stmt〉 ::= ‘when’ 〈cond-expression〉 ‘then’ 〈action-expr〉+

〈action-expr〉 ::= 〈ID〉 ‘(’ 〈action-attr〉 (‘,’ 〈action-attr〉)* ‘)’

〈action-attr〉 ::= 〈cond-expression〉 (‘as’ 〈ID〉)?

Figure 7. Simplified Adaptation Rule Grammar in EBNF

As with monitoring queries, the adaptation rule module is tailored to the requirements of the
Indenica infrastructure but also allows for the usage of different production rule languages, such as
the Drools [9] rule language, if more complex language constructs are required.

More formally, the set of rules R is represented with the signature function

sig : R→ P(F)× P(A)×R+
0

and the signature for a rule ri ∈ R is

sig : ri 7→ (IFi , O
A
i , ψi)

The set of facts from the knowledge base used by the adaptation rule are denoted by Fi, while Aj
representes the adaptation actions performed, and ψi represents te processing cost of the rule.

4.7. Host

Hosts represent the physical infrastructure available for deployment of infrastructure components.
Figure 8 shows a simplified grammar of the host construct in EBNF. A host declaration starts with
the host keyword and a host name. An address in the form of a fully qualified domain name
(FQDN) or an IP address can be supplied. If no address is given, the host name will be used instead.
Furthermore, a capacity indicator is provided that will be used for deployment decisions.

〈host〉 ::= ‘host’ 〈ID〉 ‘{’ 〈address〉? 〈capacity〉 ‘}’

〈address〉 ::= 〈fqdn〉 | 〈ip-address〉

〈capacity〉 ::= ‘capacity’ 〈Decimal〉

Figure 8. Simplified Host Grammar in EBNF

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

10 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

The set of hosts H is represented with the signature function

sig : H → R+
0

and the signature for a host hi ∈ H is

sig : hi 7→ (ψi)

with the capacity of a host represented by ψi.

5. DEPLOYMENT OF MONITORING QUERIES AND ADAPTATION RULES

In this section, we propose a methodology for efficiently deploying runtime elements, based on the
system description defined in a MONINA file. The deployment strategy attempts to find an optimal
placement with regard to locality of information producers and consumers, resource usage, network
load, and minimal reaction times. Our deployment procedure consists of three main stages. First, an
infrastructure graph is generated from the host declarations in the MONINA definition to create a
model of the physical infrastructure. Then, a dependency graph is derived from component, query,
fact, and rule definitions. Finally, a mathematical optimization problem is formulated based on both
graphs, which is utilized to find an optimal deployment scheme.

5.1. Infrastructure Graph

The infrastructure graph GI = (VI , EI) is a directed graph which models the available
infrastructure. The nodes of the graph represent execution environments. We will refer to execution
environments as hosts, even though they might not only represent single machines, but more
complex execution platforms. The graph’s edges represent the connection between hosts. The
capacity function cI : VI → R+

0 assigns to each host its capacity for hosting runtime elements, e.g.,
monitoring queries or adaptation rules. A capacity of zero prohibits any runtime elements on the
host. Edge weight function wI : EI → R+

0 models the delay between two hosts. Values close to
zero represent good connection. For the sake of convenience we assume that each vertex has a zero
weighted edge to itself. Figure 9a shows an exemplary infrastructure graph.

49

0

12

85.89

1.2

.4
9

2.1

0 0

00

1.633.
99

(a) Infrastructure Graph

C1

C2

C3

C4

C5

Q1

Q2

Q3

Q4

F1

F2

F3

R1

R2

(b) Dependency Graph

Figure 9. Graphs generated from a MONINA description

The infrastructure graph is generated based on a MONINA description, i.e., its node set VI is
taken from the description file, which also contains the hosts’ physical addresses. The next step is
the exploration of the edges based on the traceroute utility, which is available for all major operating
systems. It allows, amongst others, measuring transit delays. Furthermore, node capacities can be
read by operating system tools to complement missing MONINA values. In Unix-like operating
systems, for instance, the /proc pseudo-filesystem folder provides information about hardware
and its utilization.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 11

5.2. Dependency Graph

Dependency graphs model the dependencies between components, monitoring queries, facts, and
adaptation rules. A dependency graph GD = (VD, ED) is a directed, weighted graph, whose node
set VD = C ∪Q ∪ F ∪R is composed of pairwise disjoint sets C, Q, F , and R. These represent
components, queries, facts, and rules, respectively. Edges represent dependencies between these
entities, i.e., exchange of events, and weight function wD : ED → R+

0 quantifies the relative number
of events. Another function eD : ED → E maps edges to events they are based on, where E is the
set of event types. Components are event emitters, which may be consumed by queries or may be
converted into a fact in a knowledge base. Queries consume events from components or other queries
producing new events. Knowledge bases convert certain events into facts. Rule engines work upon
knowledge bases, and the rules trigger actions if respective conditions become true. Edges link event
emitters (components or queries) to respective event consumers (queries or knowledge bases). They
also connect knowledge bases to rules relying on facts they are managing. Finally, rules are linked
to the components they are adapting, i.e., components in which they trigger adaptation actions.
Thus, the edge set is limited to the following subset ED ⊆ (C ×Q) ∪ (C × F) ∪ (Q×Q) ∪ (Q×
F) ∪ (F ×R) ∪ (R× C). Figure 9b shows an exemplary dependency graph. Event types and edges
weights are omitted for readability.

The generation of a dependency graph is based on a MONINA description. Initially, the
dependency graph GD = (VD, ED) is created as a graph without any edges, i.e., VD = C ∪Q ∪
F ∪R and ED = ∅, where C, Q, F , R are taken from the MONINA description. Then, edges are
added according to the following edge production rules.

Component→ Query. An edge c ψ−→ q is added to ED for every component c ∈ C, query q ∈ Q,
and event e ∈ (OE ∩ IE), where sig(c) = (•, OE , ψ, •) and sig(q) = (IE , •, •, •). In case an

edge c ψ2−−→ q is supposed to be added to ED, but ED already contains c ψ1−−→ q, then the latter
is replaced by c ψ1+ψ2−−−−→ q. For all following edge production rules we assume that edges that
already exist are merged by adding weights, like here.

Component→ Fact. An edge c ψ−→ f is added to ED for every component c ∈ C, fact f ∈ F , and
event e ∈ OE , where sig(c) = (•, OE , ψ, •) and f = (•, e).

Query→ Query. An edge q1
ρ−→ q2 is added to ED for all queries q1, q2 ∈ Q and event e ∈

(OE1 ∩ IE2), where q1 6= q2, sig(q1) = (•, OE1 , ρ, •) and sig(q2) = (IE2 , •, •, •).

Monitoring Query→ Fact. An edge q ρ−→ f is added to ED for every query q ∈ Q, fact f ∈ F ,
and event e ∈ OE , where sig(q) = (•, OE , ρ, •) and f = (•, e).

Fact→ Adaptation Rule. An edge f → r is added to ED for every fact f ∈ F and adaptation rule
r ∈ R, where f ∈ IF and sig(r) = (IF , •, •).

Adaptation Rule→ Component. An edge r → c is added to ED for every adaptation rule r ∈ R
and component c ∈ C, where a ∈ (OA ∩ IA), sig(r) = (•, OA, •) and sig(c) = (IA, •, •, •).

5.3. Quadratic Programming Problem Formulation

Quadratic programming [10] is a mathematical optimization approach, which allows to
minimize/maximize a quadratic function subject to constraints. Assume that x,b, c,d ∈ Rn are
column vectors, and Q ∈ Rn×n is a symmetric matrix. Then, a quadratic programming problem can
be defined as follows.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

12 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

min
x

f(x) = 1
2x

TQx + cTx

Subject to
Ex = d (Equality constraint)
Ax ≤ b (Inequality constraint)

We want to achieve an optimal mapping (i.e., physical deployment) of the dependency graph
onto the infrastructure graph. Runtime entities described in the dependency graph that depend on
each other should be as close as possible, in the best case running on the same host. This results
in fast reactions, timely adaptations, and low network overhead. On the other hand, hosts have
capacity restrictions, which have to be considered. Adding more hosts (scaling out) is often the only
possibility to cope with growing load. Our mapping approach is able to find the optimal tradeoff
between the suboptimal strategies (1) putting everything on the same host and (2) evenly/randomly
distributing runtime elements among the available hosts.

Since we want to get a mapping from the optimization process, we introduce placement variables
pvI ,vD for each host vI ∈ VI in the dependency graph and each runtime element vD ∈ VD in
the dependency graph. Each of these variables has a binary domain, i.e., pvI ,vD ∈ {0, 1}. The
assignment pvI ,vD = 1 decodes that runtime element vD is hosted on vI , pvI ,vD = 0 stands for
vD is not running on host vI . This results in |VI | · |VD| binary variables, whose aggregation can be
represented as a single vector p ∈ {0, 1}|VI |·|VD|.

To find out the optimal mapping of the dependency graph onto the infrastructure, we solve the
following optimization problem, which can be classified as binary integer quadratic programming
problem, based on the form of variable p and the function to minimize.

min
p

∑
eI∈EI

wI(eI) ·
∑

eD∈ED

wD(eD) · pv1I ,v1D · pv2I ,v2D (1)

Subject to
∀c ∈ C : ph(c),c = 1 (2)

∀vD ∈ VD :
∑
vI∈VI

pvI ,vD = 1 (3)

∀vI ∈ VI :
∑

vD∈VD

pvI ,vD · cD(vD) ≤ cI(vI) (4)

The function to minimize (1) calculates for each edge eI = (v1I , v
2
I) in the infrastructure graph and

each edge eD = (v1D, v
2
D) the weight that incurs if this particular dependency edge is mapped to this

particular infrastructure edge. If both runtime elements (v1D and v2D) are mapped to the same node no
weight is added to the function, because all self-links have weight zero. The first equality constraint
(2) fixes the mapping for every component c ∈ C ⊆ VD to the hosts they are statically assigned
to, as defined in MONINA and represented by h(c), where sig(c) = (•, •, •, h). We assume that
components are bound to hosts. If there exist components that can be deployed on any host and do
not have an assignment in MONINA, then this can be handled by simply omitting the respective
constraint for this component. The second equality constraint (3) defines that each node from the
dependency graph is mapped to exactly one node in the infrastructure graph. Finally, the inequality
constraint (4) requires that for all hosts the summarized costs of all elements they are hosting is
less than the respective capacity. The function cD : VD → R+

0 represents the costs of executing a
runtime element vD, as defined in the MONINA description.

We use the Gurobi optimizer [11] for solving the optimization problem as described above.
Runtime aspects of the currently implemented deployment module are discussed in Section 6.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 13

5.4. Deployment in Cloud Computing Environments

The presented approach is suitable for continuous deployments in order to react to changes in the
runtime environment. If new rules are added or communication characteristics change significantly
we derive a new deployment strategy based on the existing structure. The goal of continuous
(re-)deployment is to maintain a near-optimal component distribution while minimizing the changes
to be performed. By moving as little components as possible, we minimize the cost of transferring
component state information between machines.

This model of continuous optimization and re-deployment integrates perfectly with the concept
of Cloud computing [12], which allows to dynamically allocate and release computing resources
to implement elastically scaling applications. Cloud environments fulfill two prerequisites which
are central to our approach. First, the Cloud provides the possibility to acquire a practically
unbounded number of virtual machine (VM) instances. In the optimization procedure of our
approach, application components and monitoring queries are placed on hosts, and Cloud computing
effectively removes any potential limits of the optimization procedure with regards to the number
of hosts. Our approach considers this by dynamically adjusting the number of hosts available
for deployment planning. Hosts are added to the solution space until a solution can be found
that does not violate any placement constraints. Second, cost aspects are typically an integral
part of (commercial) Cloud offerings, hence we can directly incorporate the computation and
communication costs into our optimization model. In addition, many Cloud providers offer a
convenient set of pre-configured software tools which simplify the implementation of our approach,
including distributed messaging fabrics for de-centralized event transmission, host and network
monitoring tools for obtaining the decision basis of our optimization, data storage services for
persisting (event) data, and more.

t

Application Configuration #1

Resource
Billing Unit

Application Configuration #2

Opt. Wt. Alloc. Rec. Opt. Wt. Alloc. Rec.

Opt. … Optimization Alloc. … Resource (De-)Allocation
Wt. … Waiting Time Rec. … Reconfiguration

Cycle 1 Cycle 2

Figure 10. Cost-Efficient Optimization and Re-Configuration in Cloud Environments

Note, however, that the commercial nature of Cloud computing entails certain peculiarities, which
should be taken into account for our approach. In particular, Cloud resources are typically subject
to a billing cycle (e.g., VMs are billed in units of one hour), which requires that the optimization
approach be adjusted in order to achieve optimal results. To address this issue, we suggest to perform
adaptations in cycles, as illustrated in Figure 10. The figure shows a timeline which is split up
into the billing units of computing resources, e.g., one hour (for simplification we assume that all
resources are stopped/started simultaneously in each cycle). The grey bars at the top illustrate the
current configuration (first #1, then #2) of the application whose deployment we strive to optimize.
We assume that two adaptations are triggered over the duration of the timeline, consisting of four
main parts each: optimization procedure, waiting time, allocating and de-allocating of resources,
and reconfiguration of the application based on the new resource allocations. The essential part
is that the change in resource allocation should be aligned with the expiry time of the resource
billing unit. If this alignment were not implemented, the unused resource utilization corresponding
to the “waiting time” would be wasted from a cost perspective. Depending on the duration of
the optimization algorithm (in relation to the resource billing unit), the duration of the waiting
time should be minimized, in order to avoid changes in the environmental conditions which could
potentially result in a different optimum at the time the adaptations get applied.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

14 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

6. IMPLEMENTATION

In this section we discuss the implementation of the concepts presented in this paper. The developed
prototype is available for download from the prototype web site§. As mentioned above, application
specification using the MONINA language is implemented as Eclipse plugin. We use the Xtext
language development framework to model MONINA. The plugin offers convenience functions
such as syntax highlighting, code completion and static analysis of system specifications to detect
definition errors. Fig. 11 shows a screen shot of the editor, illustrating some of the implemented
features. After specifying the relevant system structure, the MONINA plugin generates a set of
configuration directives to be used with the runtime infrastructure¶.

Figure 11. Sample Screen Shot of MONINA Editor

The runtime infrastructure implements the architecture presented in Section 3. At the core of
the runtime, a distributed messaging fabric (currently based on embedded ActiveMQ [13] brokers)
allows for extensible realization of distributed applications. The messaging fabric automatically
establishes a communication mesh between application components deployed in the same network
using multicast discovery. Components deployed in different networks need to know a single
address per external network to establish connections to all relevant modules of the deployed
app. When using a MONINA description for deployment, this information can be gathered from
the contained host declarations and the deployment strategy. The messaging fabric furthermore
establishes conventions for component discovery and management, such as common topic names
and management endpoint addresses for infrastructure components to subscribe to. Furthermore, the
messaging fabric allows components to register for communication paths or event streams they are
interested in to create the runtime interaction structure. Messages are then delivered to components
via the best available path (considering latency and bandwidth) to significantly reduce the introduced
traffic overhead compared to solutions using centralized messaging middleware. Future versions of
the framework will take additional factors, such as communication cost into account to enable more
fine-grained control over the communication behavior of deployed applications.

The control interface is realized using the Apache Tuscany [14] SCA container to allow for
easy integration of different interface technologies, such as SOAP and REST web services,
Java Messaging Service (JMS), Remote Method Invocation (RMI) or the Common Object

§http://indenicatuv.github.io/releases/
¶https://github.com/inz/indenica-runtime-core

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 15

Request Broker Architecture (CORBA). Configuration directives from the MONINA application
specification are used to establish connections to external components by registering monitoring
event sinks and adaptation endpoints.

As described in the architecture in Section 3, the monitoring engines process event streams from
integrated external components as well as queries running within the system to derive complex
events representing relevant application state changes. In the current implementation, we use the
Esper [8] CEP engine to perform event stream processing. Source events are received via the
messaging fabric, processed using monitoring queries defined in the MONINA description, and
derived events are handed back to the messaging infrastructure to make them available for further
processing by other monitoring queries or adaptation rules.

The adaptation engines execute production rules on the current system state to influence its
properties in order to maintain or achieve desired behavior. In the current implementation, we
use the Drools Expert [9] rule engine to execute adaptation rules as specified in the MONINA
system description. To establish a knowledge base from the available system state change events,
a fact transformer component is used, translating a stream of state change events into a fact
object representation that can be used in production rules. In the current implementation, fact
transformation is handled using the Esper CEP engine, aggregating state changes into appropriate
facts. Adaptation rules act on conditions about the state of facts in the knowledge base and can
execute adaptation actions on integrated components. Actions to be executed are delivered to the
according control interfaces by the messaging fabric. The control interface will then perform the
actual execution of adaptation actions on the external component.

Control interface specifications, monitoring queries, fact transformation, and adaptation rules can
be submitted to the system in multiple formats. MONINA descriptions are supported as a portable,
technology-independent behavior specification, but component-native directives, such as raw Esper
Event Processing Language (EPL) queries or Drools Rule Language (DRL) rules are supported by
the currently implemented monitoring and adaptation engines respectively.

Application deployment is carried out using the deployment component. It analyzes the supplied
system specification, starts components on the available nodes according to computed deployment
strategy, and deploys all necessary configuration artifacts such as endpoint definitions for external
communication, monitoring queries, fact transformation rules, and adaptation rules. The deployment
strategy is currently realized using the Gurobi [11] optimizer to solve the mapping problem
discussed in Section 5. In the current version, a MONINA specification will be deployed according
to cost and communication traffic estimations provided with the system description and can
be redeployed based on interaction information gathered during runtime. In the future, we will
extend the deployment strategy module to allow incremental deployments considering the costs of
migrating existing components, rules, and queries.

Extensible interface design throughout the implemented framework allows for easy extension or
replacement of components if required to avoid potential vendor lock-in.

7. RELATED WORK

In this section we discuss important previous work related to event-based monitoring and adaptation,
as well as optimized deployment of query operators in monitoring infrastructures. Although some
of the seminal work dates back to the pre-Cloud era, we also emphasize the relevance of these
approaches for Cloud-based monitoring.

Monitoring of QoS and SLAs. Previous work on monitoring and adaptation of distributed
heterogeneous systems is mainly concerned with establishing and monitoring Service Level
Agreements (SLAs) and Quality of Service (QoS) policies. SLAs are typically composed
of a number of Service Level Objectives (SLOs) [15] which correspond to the monitoring
metrics, denoted facts, in our approach. The work by Comuzzi et al. [16] discusses a wholistic
SLA management approach. Whereas their work is strongly focused at the process for SLA
establishment, we assume that the SLAs and the corresponding SLO metrics are known to the
service provider. The MONINA language then facilitates the definition of raw facts (emitted by

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

16 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

monitoring agents) and complex or derived facts (resulting from monitoring queries) to monitor
the values of these SLOs. One of the core issues in service computing (and more recently Cloud
computing) is the efficient generation of adaptation policies. The approach by Jung et al. [17]
generates adaptation policies for multi-tier applications in consolidated server environments. The
authors argue that online adaptation approaches based on, both, control theory and rule-based expert
systems, have disadvantages. Hence, a hybrid approach is proposed which combines the best of
both worlds. Their approach builds on queuing theoretic models for predicting system behavior,
in order to automatically generate optimal system configurations. Our approach, on the other hand,
abstracts from the type of monitoring data (whether predicted or actual values are used), and focuses
on efficient definition and deployment of monitoring infrastructures. The work by Cardellini et
al. [18] targets QoS-driven runtime adaptation of service oriented architectures. The presented
approach does not, however, consider the efficient placement of the monitoring and adaptation
rules themselves, but relies on decent initial placement or intervention by the operator. Our work
contributes an integrated approach which allows high-level definition of application topologies,
which are then mapped to infrastructure graphs and deployed in Cloud environments.

Optimized Deployment of Monitoring Queries. The performance of monitoring infrastructures
depends on the topology and data flow between query operators, hence efficient operator
placement plays a key role. The work by Lakshmanan et al. [19] provides an overview of eight
different operator placement algorithms, which are evaluated with respect to five core dimensions:
node location (clustered/distributed), data rates (bursty/uniform), administrative domain
(single/multiple), topology changes (dynamic/uniform), and queries (redundant/heterogeneous).
Algorithms for efficient operator placement in widely-distributed systems are presented in [20].
Also the work by Pietzuch et al. [21] has influenced our work. Their approach performs operator
placement using a stream-based overlay network for decentralized optimization decisions. A
decentralized algorithm for near optimum operator placement in heterogeneous CEP systems is
presented in [22]. The algorithm in [23] models the system load as a time series X and computes
the load correlation coefficient ρij for pairs of nodes i and j. The optimization goal is to maximize
the overall correlation, which has the effect that the load variance of the system is minimized. A
comprehensive and fine-grained model of CPU capacity and system load is provided in [24]. The
feasible set of stream data rates under a certain placement plan is constructed. Mathematically, the
feasible set corresponds to the (nonnegative) space under n node hyperplanes, where n is the number
of nodes and the i-th hyperplane consists of all points that render node i fully loaded.

Adaptation Rules and Objectives. Machine learning approaches can be used to automatically
generate or improve adaptation rules based on the feedback the system is providing following
their execution [25, 26]. The approach in [27] achieves optimization and adaptation of service
compositions, which can arguably also be applied to the monitoring topology deployed in our
approach. In contrast to [27], which takes a cost-centric viewpoint, in this work we target fast
reactions, timely adaptations, and low network overhead. Adaptation rules based on the event-
condition-action (ECA) [28] scheme are a popular technique used to control systems. However,
for some complex systems the enumeration of all conditions, e.g., all possible types of failures, is
often impracticable. Also, the actions to recover the system can become too tedious to be specified
manually. Automated planning allows to automatically compute plans on top of a knowledge
base following predefined objectives, and helps to enable goal-driven management of computer
systems [29, 30].

Dynamic Reconfiguration and Redeployment. Facilities for dynamic reconfiguration and
redeployment of monitoring infrastructures is at the heart of our approach. Srivastava et al. [31]
present an approach for minimizing network usage and managing resource consumption in data
aquisition networks by moving query operators. An elastic approach for optimal CEP query operator
placement using cloud computing techniques is presented in [7]. As part of an optimization
algorithm, the approach achieves a tradeoff between load distribution, duplicate event buffering
and inter-node data traffic, also taking into account the costs of migration. The work also
tackles the technical challenge of migrating stateful operators between infrastructure nodes. On
the implementation level, dynamic deployment of hosts is typically achieved using tailor-made

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

EVENT-BASED MONITORING AND ADAPTATION METHODOLOGY FOR DISTRIBUTED SYSTEMS 17

automation scripts, which are prone to errors that could potentially leave part of the system in
an intermediate or undesired state. Since reliable (re-)configuration is imperative to our approach,
we utilize upfront testing techniques to increase the repeatability and reliability of deployment
automations [32].

8. CONCLUSION

In this paper we introduce an architecture and a domain-specific language that allow to
integrate functionality provided by different components and to define monitoring and adaptation
functionality. We assume that monitoring is carried out by complex-event processing queries, while
adaptation is performed by condition action rules performed on top of a distributed knowledge base.
However, our approach can be applied to other forms of control mechanisms with dependencies
among functionality blocks. Furthermore, we discuss implementation characteristics of the currently
realized prototype based on the proposed architecture.

In future work we will present extensive experiments in order to quantify the characteristics of
the implemented approach, and assess deployment performance relative to the size of infrastructure
and elements to deploy. We also plan to integrate continuous deployment techniques, i.e., the
capability to migrate elements at runtime to adapt according to more precise knowledge and
changing environments. Furthermore, we aim to integrate the presented framework with current
cloud management tools, such as OpenStack Heat [33] or a middleware-based meta cloud [34]
approach.

ACKNOWLEDGEMENTS

This research has received funding from the European Commission’s Seventh Framework Program
[FP7/2007-2013] under grant agreement 257483 (Indenica), as well as from the Austrian Science Fund
(FWF) under grant P23313-N23 (Audit 4 SOAs).

REFERENCES

1. Zang C, Fan Y. Complex event processing in enterprise information systems based on RFID. Enterprise Information
Systems 2007; 1(1):3–23, doi:10.1080/17517570601092127.

2. Mühl G, Fiege L, Pietzuch PR. Distributed event-based systems. Springer, 2006.
3. Inzinger C, Satzger B, Hummer W, Dustdar S. Specification and deployment of distributed monitoring and

adaptation infrastructures. Service-Oriented Computing - ICSOC 2012 Workshops, LNCS, vol. 7759. Springer
Berlin Heidelberg, 2012; 167–178, doi:10.1007/978-3-642-37804-1 18.

4. (W3C) WWWC. Soap version 1.2 part 1: Messaging framework (second edition). http://www.w3.org/TR/soap12-
part1 2007. Accessed: 2013-10-01.

5. Vinoski S. Advanced message queuing protocol. IEEE Internet Computing 2006; 10(6):8789.
6. Eclipse Foundation. Xtext Documentation. URL http://www.eclipse.org/Xtext/documentation.

html, [22 October 2013].
7. Hummer W, Leitner P, Satzger B, Dustdar S. Dynamic migration of processing elements for optimized query

execution in event-based systems. On the Move to Meaningful Internet Systems, Springer Berlin Heidelberg, 2011;
451–468, doi:10.1007/978-3-642-25106-1 3.

8. EsperTech. Esper Reference Documentation. URL http://esper.codehaus.org/esper/
documentation/documentation.html, [22 October 2013].

9. JBoss Drools team. Drools Expert User Guide. URL http://docs.jboss.org/drools/release/5.5.
0.Final/drools-expert-docs/html_single/index.html, [22 October 2013].

10. Bazaraa MS, Sherali HD, Shetty CM. Nonlinear Programming: Theory and Algorithms. 2nd edn., Wiley, 2006.
11. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. URL http://www.gurobi.com, [22 October

2013].
12. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, et al..

A view of cloud computing. Communications of the ACM 2010; 53(4):50–58.
13. Apache Software Foundation. ActiveMQ. URL http://activemq.apache.com, [22 October 2013].
14. Apache Software Foundation. Tuscany SCA. URL http://tuscany.apache.org, [22 October 2013].
15. Chen Y, Iyer S, Liu X, Milojicic D, Sahai A. SLA decomposition: Translating service level objectives to system

level thresholds. Proceedings of the Fourth International Conference on Autonomic Computing, IEEE, 2007; 3,
doi:10.1109/ICAC.2007.36.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://esper.codehaus.org/esper/documentation/documentation.html
http://esper.codehaus.org/esper/documentation/documentation.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/index.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/index.html
http://www.gurobi.com
http://activemq.apache.com
http://tuscany.apache.org

18 C. INZINGER, W. HUMMER, B. SATZGER, P. LEITNER, AND S. DUSTDAR

16. Comuzzi M, Kotsokalis C, Spanoudakis G, Yahyapour R. Establishing and monitoring SLAs in complex service
based systems. IEEE International Conference on Web Services, ICWS’09, 2009; 783–790, doi:10.1109/ICWS.
2009.47.

17. Jung G, Joshi KR, Hiltunen MA, Schlichting RD, Pu C. Generating adaptation policies for multi-tier applications
in consolidated server environments. International Conference on Autonomic Computing, ICAC’08, 2008; 23–32,
doi:10.1109/ICAC.2008.21.

18. Cardellini V, Casalicchio E, Grassi V, Lo Presti F, Mirandola R. Qos-driven runtime adaptation of service oriented
architectures. European software engineering conference/ACM SIGSOFT symposium on the foundations of software
engineering, ESEC/FSE’09, ACM, 2009, doi:10.1145/1595696.1595718.

19. Lakshmanan G, Li Y, Strom R. Placement strategies for internet-scale data stream systems. IEEE Internet
Computing 2008; 12(6):50–60, doi:10.1109/MIC.2008.129.

20. Ahmad Y, Çetintemel U. Network-aware query processing for stream-based applications. International conference
on Very large data bases, VLDB’04, VLDB Endowment, 2004; 456–467.

21. Pietzuch P, Ledlie J, Shneidman J, Roussopoulos M, Welsh M, Seltzer M. Network-aware operator placement
for stream-processing systems. International Conference on Data Engineering, ICDE’06, IEEE, 2006; 49, doi:
10.1109/ICDE.2006.105.

22. Schilling B, Koldehofe B, Rothermel K. Efficient and distributed rule placement in heavy constraint-driven event
systems. International Conference on High Performance Computing and Communications, HPCC’11, IEEE, 2011;
355–364, doi:10.1109/HPCC.2011.53.

23. Xing Y, Zdonik S, Hwang J. Dynamic load distribution in the borealis stream processor. International Conference
on Data Engineering, ICDE’05, IEEE, 2005; 791–802, doi:10.1109/ICDE.2005.53.

24. Xing Y, Hwang JH, Çetintemel U, Zdonik S. Providing resiliency to load variations in distributed stream processing.
International Conference on Very Large Data Bases, VLDB’06, VLDB Endowment, 2006; 775–786.

25. Inzinger C, Satzger B, Hummer W, Leitner P, Dustdar S. Non-intrusive policy optimization for dependable
and adaptive service-oriented systems. Symposium on Applied Computing, SAC’12, ACM, 2012; 504–510, doi:
10.1145/2245276.2245373.

26. Inzinger C, Hummer W, Satzger B, Leitner P, Dustdar S. Towards identifying root causes of faults in service
orchestrations. International Symposium on Reliable Distributed Systems, SRDS’12, IEEE, 2012; 404–405, doi:
10.1109/SRDS.2012.78.

27. Leitner P, Hummer W, Dustdar S. Cost-based optimization of service compositions. IEEE Transactions on Services
Computing 2013; 6(2):239–251, doi:10.1109/TSC.2011.53.

28. Almeida EE, Luntz JE, Tilbury DM. Event-condition-action systems for reconfigurable logic control. IEEE
Transactions on Automation Science and Engineering 2007; 4(2):167–181, doi:10.1109/TASE.2006.880857.

29. Satzger B, Pietzowski A, Trumler W, Ungerer T. Using automated planning for trusted self-organising organic
computing systems. Autonomic and Trusted Computing, LNCS, vol. 5060. Springer Berlin Heidelberg, 2008; 60–
72, doi:10.1007/978-3-540-69295-9 7.

30. Satzger B, Kramer O. Goal distance estimation for automated planning using neural networks and support vector
machines. Natural Computing 2012; 12(1):87–100, doi:10.1007/s11047-012-9332-y.

31. Srivastava U, Munagala K, Widom J. Operator placement for in-network stream query processing. ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS’05, ACM, 2005; 250–258, doi:10.1145/
1065167.1065199.

32. Hummer W, Rosenberg F, Oliveira F, Eilam T. Testing Idempotence for Infrastructure as Code. ACM/IFIP/USENIX
Middleware Conference, 2013.

33. OpenStack Foundation. OpenStack Heat. URL https://wiki.openstack.org/wiki/Heat, [22 October
2013].

34. Satzger B, Hummer W, Inzinger C, Leitner P, Dustdar S. Winds of Change: From Vendor Lock-In to the Meta
Cloud. IEEE Internet Computing 2013; 17(1):69–73, doi:10.1109/MIC.2013.19.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe.2254

https://wiki.openstack.org/wiki/Heat

	1 Introduction
	2 Scenario
	3 Architecture
	4 MONINA Language
	4.1 Event
	4.2 Action
	4.3 Fact
	4.4 Component
	4.5 Monitoring Query
	4.6 Adaptation Rule
	4.7 Host

	5 Deployment of Monitoring Queries and Adaptation Rules
	5.1 Infrastructure Graph
	5.2 Dependency Graph
	5.3 Quadratic Programming Problem Formulation
	5.4 Deployment in Cloud Computing Environments

	6 Implementation
	7 Related Work
	8 Conclusion

