
COPAL: An Adaptive Approach to Context
Provisioning

Fei Li, Sanjin Sehic, Schahram Dustdar
Distributed Systems Group (DSG)

Information Systems Institute
Vienna University of Technology, Austria
A-1040 Wien, Argentinierstrasse 8/184-1

Email: {li, ssehic, dustdar}@infosys.tuwien.ac.at

Abstract—Context-aware services need to acquire context in-
formation from heterogeneous context sources. The diversity of
service requirements posts challenges on context provisioning
systems as well as their programming models.

This paper proposes COPAL (COntext Provisioning for ALl)
— an adaptive approach to context provisioning. COPAL is
at first a runtime middleware, which provides loose-coupling
between context and its processing. The component architecture
of COPAL ensures that new context processing functions can
be added dynamically. A set of context processing patterns are
proposed to customize context attributes and compose context
provisioning schemes. The COPAL components and models are
reflected in a Domain Specific Language (DSL), which can
further reduce the development efforts of context provisioning
using automatic code generation. A motivating scenario is used
throughout the paper to illustrate COPAL approach.

I. I NTRODUCTION

Context-awareness is one of the cornerstones of mobile and
ubiquitous computing [1][2]. One major problem in providing
context-aware services is how to bridge the vast information
gap between context sources and context-aware services. Con-
text information is generated by heterogeneous and lower-
level devices, which are unaware of application requirements
and information models. Services need to understand complex
context information to achieve context-awareness.Context
provisioning refers to the approach of gathering, transferring
and processing context in order to raise context-awarenessof
ubiquitous services.

In ubiquitous environments, new devices are incrementally
added to meet new requirements. Thus context provisioning
should integrate new context sources and customize context
information. The same context could come from different
sources, with different source properties and informationqual-
ity, and some of these properties are not explicitly provided by
sources. Different services could have different requirements
for the same type of context. Context-aware services could
be interested in aggregative results of more than one type
of context for a certain time span. All these diversities of
service requirements post significant challenges not only on
the architecture of context provisioning systems, but alsoon
the programming model of context provisioning, which has
rarely been addressed in the literature.

This paper presents COPAL (COntext Provisioning for

ALl) 1. COPAL is intended to provide a runtime middleware as
well as a new programming model for context provisioning.
COPAL features a loosely-coupled and modularized architec-
ture for integrating new context sources, creating new infor-
mation models and supporting various information processing
requirements of context-aware services. Essential context at-
tributes are supported but services can enrich the attributes
and add corresponding processing actions. Five context pro-
cessing patterns are summarized to assist the design of context
provisioning schemes. Based on the COPAL architecture and
context provisioning models, a Domain-Specific Language
(DSL) [3] is proposed to facilitate the development of context
provisioning schemes. COPAL-DSL has a concise, text-based
grammar to define component and deployment models. Code
skeletons for COPAL components and deployment artifacts
can be generated from the DSL automatically.

The paper is structured as follows: Section 2 describes
a scenario to motivate the COPAL approach. The COPAL
framework and key concepts are introduced in Section 3. Sec-
tion 4 proposes context attributes in COPAL and the context
processing patterns to construct context provisioning plans.
Section 5 presents COPAL-DSL to facilitate the development
of context provisioning plans. The related work is surveyed
and compared in Section 6, and Section 7 concludes the paper
with future work.

II. M OTIVATING SCENARIO

Frida lives in a smart home equipped with sensors, con-
trol devices and a context-aware service platform. A basic
requirement of context-aware services is to keep a comfortable
ambience for Frida. This requirement needs environmental
luminance andtemperature to decide the suitable lighting and
the setting of air conditioner respectively. In addition, Frida’s
presence in certain area is essential for managing the status of
devices.

Furthermore, the town where Frida lives is involved in
an experimental deployment of Smart Meters and Smart
Grids [4], which implement a brand new pattern of power
service and encourages residential energy saving. Some smart

1COPAL development information and tutorial are available at:
http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/

meters are deployed in Frida’s house to monitor and control
lights and air conditioner, which are two of the major sources
of residential power consumption [5]. A price indicator is
connected to smart grid to get real-time price information
from power market [6]. Frida has a context-aware service
platform and she wants to reduce her power consumption
while keeping her home environment comfortable. A context-
aware Cozy&Green (C&G) service will be designed to meet
her requirements.

From the perspective of context provisioning, C&G should
know where luminance and temperature are measured. Frida’s
presence is detected by RFID (Radio Frequency Identifica-
tion), which might give false-positive readings occasionally.
The smart meters and price indicator provide two types of con-
text respectively: the real-timepower consumption and real-
time power price. The smart meters are not very precise, thus
the quality of information has to be considered before using
it. The price information is reliable and straightforward.For
scheduling energy usage of her home, total power consumption
and total power cost are also of interest to Frida.

This scenario is meant to illustrate the requirements to flex-
ible context provisioning but not to be over-complicated. The
example C&G service should exploit multiple context types
provided by many sources—luminance sensor, thermometer,
presence sensors and smart meters and price indicators. The
preliminary sensor readings has to be processed (e.g., to
evaluate the quality of information) before being used by
C&G. Some indirect context information (e.g., total price of
consumed power) has to be provided. The goal of context
provisioning is to provide sufficient information for services
to make decisions and adapt itself to the changing context, thus
we leave the logic inside C&G service to Frida, e.g. when to
activate air conditioner and what is the target temperature. This
paper will illustrate the architectural elements of COPAL and
our approach to context provisioning.

III. T HE COPAL FRAMEWORK

COPAL is situated in the overall architecture of smart home
middleware developed in SM4ALL (Smart hoMes for ALL)
project2. The important system services, COPAL components
and general process of context provisioning are illustrated in
Fig. 13 (on the next page). The system parts outside COPAL
are simplified for the sake of clarity.

1) Device services: Device services refer to devices and
sensors in the environment. The heterogeneity of hardware
and communication protocols is hidden by device-specific
Wrappers (W), which implement access protocols and expose
devices as web services to upper-layer. The service descrip-
tions comply to UPnP (Universal Plug and Play4) standard,
which is extensible, and has already provided a broad spectrum
of service descriptions. The sensors that have very simple

2http://www.sm4all-project.eu
3In this section, we denote systemservices in italic and COPALcompo-

nents in bold.
4http://www.upnp.org/

functions and limited resources are not able to act as wrap-
pers. They are connected to and accessed via wrappers that
implement their communication protocols.Device manager
stores hardware information, maintains a device catalog, and
monitors device status. From COPAL point of view, the device
services serve as contextPublishers.

2) Context-aware (CA) services: Context provisioning pro-
vides interested context to CA services. From COPAL point of
view, CA services are merely contextListenerswhich COPAL
has to notify when corresponding queries are met. Each service
can have multiple listeners to collect context of differenttypes,
from different sources, or with different criteria.

3) COPAL: The relationship between COPAL components
are illustrated in Fig. 2. It is worth noting that understand-
ing the relationship between the components is required for
developing context provisioning schemes using COPAL-DSL.

-name

-attr1

-attr2

-...

ContextType

+processedBy()

-required

Action

-name

-contextType

-criteria

ContextQuery

+start()

+stop()

Publisher

+process()

-action

-inputTypes

-resultTypes

Processor

+onEvent()

Listener

1 0..*

-sourceID

-timeStamp

-priority

-ttl

ContextEvent

1
0..*

10..*

10..*

Fig. 2. COPAL components

Context Type (CT) is central in COPAL components. A
context type has a unique name and a set of attributes. A
publisher can only publish a certain type of context. If the type
is unknown to COPAL it will be registered toContext Type
Registry. Publishers register themselves toPublisher Registry.
A publisher can leave and join COPAL anytime, but when
it leaves COPAL, the registered context type will be kept in
context type registry. Thus, context types are incrementally
added to COPAL.

Context Query (CQ) is used for continuously selecting
Context Events. A query is identified by its name, and the
query statement contains a context type and a set of criteria.
Each listener is associated with a context query, which can be
reused by multiple listeners. If there is no query suitable for
the service, it can create a new query usingQuery Factory.

Context Processor (CP)is the key concept by which a wide
range of context operations are carried out. Each processor
holds a name of the action that it is able to perform. A set of
input context types and a set of result context types define the
function of a processor. Correspondingly, each context type has
a set of defaultActions that add, modify or remove some of its
attributes. Each action can be done by one or more processors,

Legend

System

MessageS

COPAL

PluginsEvent Core

CP

CP

CP CP

CP

Localization

QoC

Evaluator

Context

Persistence

Listener

Publisher

Query

Factory

Publisher

Registry

ContextType

Registry

Processor

Registry

PublisherPublisherPublisher

ListenerListener

Reg

Reg(CT)

Reg(CT)

Reg(Action)

create

Device

Manager

S

CQ CQ

WW W

Create

Context

Event

CA Services

Device

Services

Fig. 1. COPAL Architecture

which register themselves toProcessor Registry. Processors
and context are only coupled by action name dynamically at
runtime. Actions can be optional or required. The required
actions must be performed by at least one processor, otherwise
an exception is thrown. Events are self-contained, that means
each event provides sufficient information for COPAL to
process it properly. The actions are represented as a list in
the event and are processed in order. The context exchange
between publishers, listeners and processors is supportedby
Event Core. The event core service is implemented on top of
Esper5 — a widely used open source event processing system.
Events in COPAL are XML documents that conform to context
types defined in XML schema. COPAL queries will eventually
be transformed to EPL (Event Processing Language), which
is an SQL-like query language provided by Esper. The high
performance of Esper6 ensures the efficiency of COPAL at
run-time.

Plugins are optional services to be used in the context pro-
visioning process. They are not required by the core COPAL
architecture but they can extend the functions of COPAL.
For instance, to add attributes of source location and QoC
(Quality of Context)[7],Localization and QoC evaluator are
developed. Beside continuous queries, COPAL also provides
Context persistence plugin to support query of historical data.
COPAL architecture is based on OSGi7 framework to achieve
modularization and dynamic deployment of components and
plugins.

5http://esper.codehaus.org
6http://esper.codehaus.org/esper/performance/performance.html
7http://www.osgi.org

IV. CONTEXT PROCESSING

Context in COPAL is delivered by events. This section
introduces the event attributes applied to context, and the
patterns of COPAL context processing to build adaptive and
customizable context provisioning processes.

A. Context attributes

1) Required attributes: The four essential context attributes
are: SourceID, Timestamp, Priority and Time To Live
(TTL) . SourceID and Timestamp are inserted by context
publishers when an event is created. Default Priority and TTL
are decided by the context type of the event.

• Priority : When processing a context event, the processor
is aware of its significance from its Priority. Priority can
assure emergency events as security related information
to be processed first.

• TTL : TTL is strongly related to event type and the
specific source that provides the event. For example, the
location of car might be valid for less than 3 seconds,
while the temperature of living room could be valid for
half an hour. COPAL will discard any context event that
is out of TTL.

2) Optional attributes: COPAL provides three optional
attributes to all context types:SourceLocation, QoC (Quality
of Context), and Authorization . The processing of these
attributes is not in COPAL core functions, but supported by
processors and plugins.

SourceLocation: Location is a well-defined concept in the
literature. As an attribute of context event, it denotes where
the event is generated. For the complexity and various choices

of localization [8], we provide two options to present Source-
Location attributes. One is basic coordinates. The difficulty
to apply this approach is that the accuracy of coordinates is
largely limited by location detection technologies, especially
for indoor mobile context sources. Another is conceptual loca-
tion with concepts like ”living room”, ”car”, etc. Conceptual
location is easier to detect with higher confidence due to
the coarse resolution of information. Conceptual locationis
sufficient for most applications in smart home environments.
However, it is worth noting that location detection is not in
the scope of this paper.

QoC: QoC is defined as ”any inherent information that
describes context information and can be used to determine
the worthiness of information for a specific application”[7].
Several QoC metrics have been proposed by Buchholz, T
et al. [9] and Krause, M et al. [7]. COPAL supports the
most important metrics by using the QoC evaluation approach
developed by Manzoor, A et al. [10].

• Freshness: Freshness (also known as ”Up-to-dateness”) is
an important attribute to capture the merit of a context
event. It is evaluated using TTL and timestamp of a
context event. The requirements for freshness are highly
dependent on context-aware applications.

• Trust-worthiness: This quality measure indicates the be-
lief in the correctness of information in a context event.

• Precision: ”Precision describes how exactly the provided
context information mirrors the reality” [9]. Precision is
decided by the capability of context source itself.

Authorization : Context information is related to user en-
vironments or user activities, so the access to some sensitive
context should be limited to certain authorized services. Au-
thorization defines which service is entitled to access a certain
type of context. Services that can access a context event are
enumerated by this attribute. The authorization attributes can
be further combined with other properties to achieve flexible
access control, as changing access with time, location and
other criteria.

B. Processing patterns

Processing patterns define the abstract relationships between
input events and output events of a processor in COPAL.
Understanding the processing pattern can help design and
compose processors for constructing complex context provi-
sioning schemes. Five patterns are summarized in this section,
namelyFilter , Abstraction, Differentiation , Enrichment and
Peeling. These patterns are inspired by the work in complex
event processing [11] and event processing networks [12],
but they are adapted and elaborated specifically for context
provisioning.

• Filter Filter excludes the ”unqualified” context informa-
tion from further processing in COPAL. It is a basic
pattern that every processor applies on TTL attribute of
each event. More complex combinations of criteria can
be applied on context types, values and attributes, e.g.,
temperature > 10

◦C, location = livingRoom.

Filter... e4 e1e2e3 ... e1e3

Fig. 3. Filter

• Abstraction Abstraction creates events to indicate the
context which can only be derived from the occurrence
or missing of more than one event.

...

Abstraction

...
e
4

e
1

e
2

e
3

... e4

e4

e2

e3

e1

e1e2e3

Fig. 4. Abstraction

Abstraction can be further classified toSummarization
and Aggregation. Summarization gathers same type of
events that have occurred during a certain time span
and publishes a summarizing event, e.g. the power usage
of a fridge for each hour. Aggregation gathers different
types of events and publishes a new type of context,
e.g. ”door open” and ”lights on” together can indicate
the presence of person in a certain room. The hybrid
of summarization and abstraction can help build more
sophisticated and efficient context processing schemes.
For example, in our smart home environment, we ap-
ply several sensors to monitor physical status of users.
Heartbeat frequency, blood pressure and breath frequency
are periodically collected by COPAL. Most of the time,
user is stable and healthy, so it is unnecessary to invoke
any other services or take any further action. COPAL
uses an abstraction processor to gather all the latest
physical status, and periodically publish only one type
of Context—”UserHealthy”.
When applying abstraction pattern, the attributes of out-
put context should be set properly according to various
service requirements. Table I summarizes the aggregation
of attributes for the health monitoring example.

TABLE I
ATTRIBUTES AGGREGATION

Attribute Aggregation

Priority The highest of input events
TTL The shortest of input events

Location Delete if any
QoC The lowest of input events

• Differentiation Differentiation is applied when services
have different processing requirements for one type of
context. Using differentiation, same context can be forked

to multiple processors and eventually feed different ser-
vices.

Differentiation... e4 e1e2e3

...

...
e
4

e
1

e
2

e
3

e4

e2

e3

e1

Fig. 5. Differentiation

In our smart home environment, user presence is essential
for many services. Security and common environmental
control (e.g., Cozy&Green service) both need presence
information, but with largely different requirements of
quality and frequency. For Cozy&Green the resolution at
room level is enough, but for emergency monitoring, the
highest resolution and frequency that can be achieved by
the devices are always favorable. Therefore, the original
user presence information is differentiated into two types:
”RoomOfUser” which only reports when user moves
to another room, and ”DetailedLocation” including the
original coordinates, user moving direction and room
ID. The ”DetailedLocation” is further protected with
authorization attribute.

• Enrichment Enrichment adds additional information into
original events provided by context sources.

Enrichment... e4 e1e2e3 ... e2e3e4 e1

Fig. 6. Enrichment

The enrichments of Location, QoC or Authorization can
be applied as the first step of processing. The enrichment
is composable, which means two or three types of en-
richment can be added to one context event according
to service requirements. In certain cases dependencies
exist between enriched attributes. For example, if QoC
evaluation is based on location, then location attributes
are enriched before it. Beside these basic attributes,
various types of context may add their own attributes to
convey information.

• Peeling When the context information has been prop-
erly processed and is to be delivered to services, some
attributes of context may not be required anymore. A
processor can peel off the attributes and only relay the
useful information to services.

C. Solution to Cozy&Green service

With the knowledge of context attributes and processing
patterns, the context provisioning scheme of C&G is designed
as illustrated in Fig. 8 (on the next page).

Peeling ... e4 e1e2e3... e2e3e4 e1

Fig. 7. Peeling

A user could be moving constantly, so thePresence of user
will be evaluated by a QoC processor to indicate the confi-
dence and freshness of information.Temperature information
from different places have the same context type. Thus, a
localization processor is used for adding location information
to each event, and forLuminance likewise. The three types of
context events are selected by Q1, Q2 and Q3 respectively.

We have multiple smart meters that providePower context
measured in Watt-hours (Wh) for lights and air conditioner.
The quality of this context type has to be evaluated by
meterQoC to provide C&G assistance to decide on usefulness
of the information. C&G selects the readings of these meters
by Q4 to know current energy consumption of each device.

These readings are also the input for powerSum processor to
get a total energy consumption for a certain period. The output
of powerSum processor is again Power but for an extended
time period. Frida is only interested when the total power
consumption for last hour exceeds a certain threshold, so C&G
listens to the output of powerSum when it reaches a certain
threshold (Q5).

Frida is also interested in a total cost of power consump-
tion for last hour, therefore C&G provides another processor
priceSum that calculates the total cost. The input of priceSum
processor is total power consumption from powerSum and
current energy price. Every price change is notified to C&G by
Q7 for analyzing the price fluctuation patterns. Finally, C&G
listens on results of priceSum processor only when it exceeds
the threshold defined in Q6.

V. COPAL-DSL

”Domain-specific languages (DSLs) are languages tailored
to a specific application domain. They offer substantial gains
in expressiveness and ease of use compared with general-
purpose programming languages in their domain of appli-
cation” [3]. For these advantages, COPAL provides a DSL
to further facilitate the development of application-specific
context provisioning schemes.

COPAL-DSL, on one hand, is a description of COPAL
components and their relationships as defined in Fig. 2. On the
other hand, it hides COPAL system services to help developers
focus on context provisioning logics. The models defined by
COPAL-DSL can be used to generate code skeletons and
deployment artifacts in order to minimize implementation
efforts and maximize automation of context-aware service de-
velopment. This section goes through COPAL-DSL grammar
and code generation by developing the context provisioning
process of C&G service described in Fig. 8.

COPAL-DSL has a concise, text-based grammar. The DSL
encompassesComponent Models and Deployment Models.
Each model belongs to a model type, e.g., Listener, Manifest,

Meter 1 Meter 2 Price indicator

meter

QoC

Therometer

loc
pres

QoC

power

Sum

price

Sum

Pow(Wh) Pow(Wh)

Pow(Wh)

Prc(€)Pow(Wh)

T(C°)
L

Presence

T(C°)LPresence Pow(Wh)

Prc(€)

Prc(€)

L P(€)E(Wh)

Luminance

Presence

Q5 Q7Q6Q3Q2Q1

°C

Q4

Pow(Wh)

E(Wh)

Green&Cozy

P(€)

Fig. 8. COPAL solution for Cozy&Green Service

(in bold in following code snippets) and is identified by a
unique name. Inside each model is a set of required and
optional properties (initalic in following code snippets).
COPAL-DSL grammar is defined in Xtext8. Correspondingly,
code generator is implemented by Xpand9. These two tools
are based on EMF (Eclipse Modeling Framework)10.

A. Component model

• Publisher and ContextTypeEach publisher has to refer
to one and only one context type when implementing
the publisher class. Each context type is defined by
a set of attributes. The common attributes introduced
in previous section are implicitly injected to events by
COPAL, so they will not be specified in model defini-
tion. In the following code, Meter1 publisher publishes
Power. This Power type has three attributes. For example,
in ”metric:String!”, ”metric” is the name of attribute,
”String” is the datatype, and ”!” indicates that it is a
required attribute. ThedefaultAction specifies an action
that can be applied on this context type. ”!” indicates
that ”meterQoC” is a required action. The code for other
context types is skipped to save space.

P ub l i she r Meter1{
c o n t e x t T y p e =Power

}

ContextType Power{
a t t r i b u t e = m e t r i c : S t r i n g !
a t t r i b u t e = va lue : F l o a t !
a t t r i b u t e = d u r a t i o n : I n t
d e f a u l t A c t i o n =meterQoC !
d e f a u l t A c t i o n =powerSum
d e f a u l t A c t i o n =pr iceSum

}

8http://www.eclipse.org/Xtext/
9http://wiki.eclipse.org/Xpand
10http://www.eclipse.org/modeling/emf/

• Listener and ContextQuery Listener component speci-
fies in which events it is interested using queries. A query
is defined by a context type and the logical criteria on
attributes. A listener is associated with a query when it
registers itself to COPAL. In the code snippets below,
query Q5 selects the event notifying if the consumption
is greater than 1000 Wh.

L is tener l i s t e n e r 5{
query =q5

}

ContextQuery q5{
c o n t e x t T y p e =Power
c r i t e r i a =” sourceID = ’powerSum ’ and

u n i t = ’Wh’ and value>1000”
}

• ProcessorEach processor handles a certain action, which
is indicated by theaction field in processor definition. The
input and output events are defined byinputTypes and
resultTypes respectively. The code snippet below defines
the priceSum processor. Power and Price are input for
priceSum processor and its output is Price. priceSum
processor uses previously introduced Abstraction pattern.

Processor pr iceSum{
a c t i o n =pr iceSum
i n p u t T y p e s =[Power P r i c e]
r e s u l t T y p e s =[P r i c e]

}

Fig. 9 (on the next page) illustrates the component model
elements and generated artifacts. Context type definition will
generate an XML Schema containing the attributes and a
configuration file that specifies the default actions. Each pub-
lisher, processor and listener definition generates separate code
skeletons that require their specific methods (representedbold
in the figure) to be implemented by developer.

Reference

Generate

Component model

Publisher Listener

Processor

ContextType ContextQueryPublisher.java

Listener.javaProcessor.java

ContextQuery

.xml

ContextType.xsd ContextType.cfg.xml

1...*

1
...* 1...*

1

1...*1

type

type

action

query

Model

1

Artifact

...

start()

stop()

...

...

onEvent()

...

...

process()

...

...

<DefaultAction

name=“meterQoC

required=“true“/>

...

...

<xsi:element

name=“Metric“

type=“xsi:string“/>

...

Fig. 9. DSL component model and artifacts

B. Deployment model

The deployment model specifies how the artifacts generated
from component model are deployed as an OSGi bundle. The
general bundle information and the main activator name are
described in manifest model. Artifacts model enumerates the
publishers, listeners andprocessors to be deployed.

Mani fes t CGManifest {
BundleName = ’ sm 4a l l . copa l . cozygreen ’
BundleSymbolicName = ’ copal−cozygreen ’
B u n d l e V e r s i o n = ’0 .1 ’
A c t i v a t o r = ’ CGAct ivator ’

}

A r t i f a c t s CGComponents{
p u b l i s h e r s =[Meter1 Meter2 P r i c e I n d i c a t o r]
l i s t e n e r s =[l i s t e n e r 1 l i s t e n e r 2

l i s t e n e r 3 l i s t e n e r 4
l i s t e n e r 5 l i s t e n e r 6 l i s t e n e r 7]

p r o c e s s o r s =[meterQoC powerSum priceSum]
}

Fig. 10 illustrates the generation of deployment artifacts.
The generation of OSGi activators is based on the components
deployed in a bundle. Publishers, processors and listenersare
registered in corresponding activators. A main activator,named
in manifest model, activates and deactivates other activators.
The generated deployment artifacts require no further imple-
mentation efforts.

Deployment modelManifest

Artifacts

PublisherActivator

.java

ProcessorActivator

.java

ListenerActivator

.java

Activator

.java
MANIFEST.MF

1

1

0
...1 0...1

0
..
.1

(de)activate()

activator

Fig. 10. DSL deployment model and artifacts

VI. RELATED WORK

Context provisioning has been intensively investigated in
the past years, but COPAL approach distinguishes itself sub-
stantially.

To the best of our knowledge, there has not been an effort
to define a DSL for context provisioning in the literature. We
offer service engineers a DSL with source code generation
capability to facilitate development of context provisioning
schemes. COPAL-DSL is an abstraction of COPAL archi-
tecture and COPAL context event model. With concise text-
based grammar, COPAL-DSL helps engineers to define and
utilize context in a very intuitive way. One complementary
work to COPAL-DSL isHabitation DSL [13]. Habitation is a
result of applying Model-Driven Engineering (MDE) in home
automation domain. Its focus is on controlling home devices.
The graphical expression of Habitation is appealing, but it
does not support automatic code generation. Conceptually,
COPAL resembles the service development approach proposed
in SPICE (Service Platform for Innovative Communication En-
vironment) project [14][15]. The SPICE service development
approach employs MDE concepts. A domain-specific UML
dialect called SPATEL is developed to provide abstractionsof
mobile service interfaces. Code generation to different service
execution environments is supported. But SPATEL stresses on
mobile service description rather than context utilization.

Chen et al. [16][17][18] proposed a context sharing
middleware—Solar, which is a P2P network based on appli-
cation layer multicasting and Distributed Hash Table (DHT).
Distributed operators are proposed as the abstract basic units
of context data processing in Solar, and Filter-Pipe is the
core pattern to compose peers. COPAL enriches the idea
of Solar in two respects. At first, COPAL extends the pro-
gramming model to five context processing patterns in order
to accommodate complex application requirements and con-
text attributes. Second, COPAL decouples context process-
ing action and processor implementation, which offers more
flexibility when developing context-aware systems because
third-party processors can be utilized in COPAL easily. In
addition, COPAL is intended to hide the lower-level hardware
information from application developers. In contrast, Solar is
directly implemented on sensors.

Conan et al. [19] and Taherkordi et al. [20] proposed to use
composable components for context processing. We recognize
the significance of composability, but our approach to compo-
sition is largely different. COPAL uses context type to couple
processors, and event processing to manipulate context, thus

COPAL is able to maintain and operate on structural context
information with composition of processors.

Broker-based architecture [21][22][23] is popular in dis-
tributed context-aware systems. In the sense of a context provi-
sioning system situated between context providers and context-
aware services, COPAL is also a broker. Knappmeyer et
al. [23] proposed a broker-based context provisioning system
that supports context presentation, publish/subscribe and data
acquisition from devices. The configuration and management
of context is supported by Context Meta Language (Con-
textML). COPAL offers more adaptive and customizable con-
text data processing approach rather than publish/subscribe to
bridging context providers and services. Furthermore, COPAL-
DSL is tailored to be more expressive and concise than XML-
based ContextML.

VII. C ONCLUSIONS AND FUTURE WORK

This paper introduced COPAL (COntext Provisioning for
ALl) framework, which provides a runtime middleware as
well as a programming approach to context provisioning. The
COPAL architecture is designed following the principle of
loose-coupling and modularization. New context provisioning
schemes can be deployed to COPAL dynamically. Important
context attributes as QoC and source location are analyzed and
incorporated into COPAL. The context processors can com-
pose with each other via input and output events. The abstract
functions of processors are summarized to five processing
patterns. The usage of context attributes and processing pat-
terns is demonstrated by designing Cozy&Green service in our
scenario. The context provisioning scheme for C&G service is
further specified by COPAL-DSL, which largely reduces the
development efforts because of its concise grammar and code
generation capability.

COPAL is our first attempt to a new programming model of
context-aware systems. We plan to further improve COPAL in
several respects. First, we will extend COPAL framework to
distributed architecture that can be deployed on multiple hosts
and share context events among them. A context provisioning
plan can be executed by the cooperation of multiple COPAL
nodes. Correspondingly, the COPAL-DSL will be updated
to include distributed deployment model. Second, context
provisioning plans that are provided by developers need to be
tested and validated before deployment. Further more, we will
investigate graphical DSL and eventually offer a development
environment to accommodate COPAL programming model.

ACKNOWLEDGMENT

This work is supported by EU FP7 STREP Project SM4ALL
(Smart hoMes for ALL), under Grant No. 224332.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,”International Journal of Ad-Hoc and Ubiquitous Computing,
Jan 2006.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context andcontext-
awareness,” inHUC ’99: Proceedings of the 1st international symposium
on Handheld and Ubiquitous Computing. London, UK: Springer-
Verlag, 1999, pp. 304–307.

[3] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,”ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[4] M. Chebbo, “EU SmartGrids framework ”Electricity networks of the
future 2020 and beyond”,” in2007 IEEE Power Engineering Society
General Meeting, Tampa, FL, USA, 2007, pp. 1–8.

[5] Residential Energy Efficiency—DNR,
http://www.dnr.mo.gov/energy/residential/residential.htm.

[6] C. Wang, M. de Groot, and P. Marendy, “A Service-Orientedsystem for
optimizing residential energy use,” inWeb Services, 2009. ICWS 2009.
IEEE International Conference on, 2009, pp. 735–742.

[7] M. Krause and I. Hochstatter, “Challenges in modelling and using
quality of context (qoc),”Mobility Aware Technologies and Applications,
pp. 324–333, 2005.

[8] V. Zeimpekis, G. Giaglis, and G. Lekakos, “A taxonomy of indoor
and outdoor positioning techniques for mobile location services,” ACM
SIGecom Exchanges, vol. 3, no. 4, pp. 19–27, 2002.

[9] T. Buchholz, A. Kupper, and M. Schiffers, “Quality of context: What
it is and why we need it,” inProceedings of the workshop of the HP
OpenView University Association, 2003.

[10] A. Manzoor, H. Truong, and S. Dustdar, “On the Evaluation of Quality
of Context,” in Proceedings of the 3rd European Conference on Smart
Sensing and Context. Springer-Verlag Berlin, Heidelberg, 2008, pp.
140–153.

[11] D. Luckham, “The power of events: an introduction to complex event
processing in distributed enterprise systems,”Rule Representation, In-
terchange and Reasoning on the Web, pp. 3–3, 2008.

[12] G. Sharon and O. Etzion, “Event-processing network model and imple-
mentation,”IBM Syst. J., vol. 47, no. 2, pp. 321–334, 2008.

[13] M. Jimenez, F. Rosique, P. Sanchez, B. Alvarez, and A. Iborra,
“Habitation: A Domain-Specific language for home automation,” IEEE
Software., vol. 26, no. 4, pp. 30–38, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1592157

[14] O. Droegehorn, I. Konig, G. Le-Jeune, J. Cupillard, M. Belaunde,
and E. Kovacs, “Professional and end-user-driven service creation in
the SPICE platform,” inWorld of Wireless, Mobile and Multimedia
Networks, 2008. WoWMoM 2008. 2008 International Symposium on a,
2008, pp. 1–8.

[15] M. Belaunde and P. Falcarin, “Realizing an MDA and SOA marriage
for the development of mobile services,” inModel Driven Architecture
Foundations and Applications, 2010, pp. 393–405.

[16] G. Chen and D. Kotz, “Context aggregation and dissemination in
ubiquitous computing systems,” inMobile Computing Systems and
Applications, 2002. Proceedings Fourth IEEE Workshop on, 2002, pp.
105–114.

[17] G. Chen, M. Li, and D. Kotz, “Design and implementation of a large-
scale context fusion network,” inFirst Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services (Mobiq-
uitous), 2004, pp. 246–255.

[18] Chen, M. Li, and D. Kotz, “Data-centric middleware for context-aware
pervasive computing,”Pervasive and Mobile Computing, vol. 4, no. 2,
pp. 216–253, 2008.

[19] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable processing of
context information with COSMOS,” inDistributed Applications and
Interoperable Systems, 2007, pp. 210–224.

[20] A. Taherkordi, R. Rouvoy, Q. Le-Trung, and F. Eliassen,“A self-
adaptive context processing framework for wireless sensornetworks,”
in Proceedings of the 3rd international workshop on Middleware for
sensor networks. Leuven, Belgium: ACM, 2008, pp. 7–12.

[21] H. Chen, T. Finin, and A. Joshi, “Semantic web in the
context broker architecture,” inProceedings of the Second IEEE
International Conference on Pervasive Computing and Communications
(PerCom’04). IEEE Computer Society, 2004, p. 277. [Online].
Available: http://portal.acm.org/citation.cfm?id=978667

[22] M. van Sinderen, A. van Halteren, M. Wegdam, H. Meeuwissen, and
E. Eertink, “Supporting context-aware mobile applications: an infras-
tructure approach,”Communications Magazine, IEEE, vol. 44, no. 9,
pp. 96–104, 2006.

[23] M. Knappmeyer, N. Baker, S. Liaquat, and R. Tnjes, “A context provi-
sioning framework to support pervasive and ubiquitous applications,” in
Smart Sensing and Context, 2009, pp. 93–106.

