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Abstract

Users are constantly involved in a multitude of activities
in ever-changing context. Analyzing activities in context-
rich environments has become a great challenge in context-
awareness research. Traditional methods for activity recogni-
tion, such as classification, cannot cope with the variety and
dynamicity of context and activities. In this paper, we pro-
pose an activity recognition approach that incorporates unsu-
pervised learning. We analyze the feasibility of applying sub-
space clustering—a specific type of unsupervised learning—
to high-dimensional, heterogeneous sensory input. Then we
present the correspondence between clustering output and
classification input. This approach has the potential to dis-
cover implicit, evolving activities, and can provide valuable
assistance to traditional classification based methods.

As sensors become prevalent means in context detection
and information channels proliferate to make context shar-
ing easier, it is increasingly challenging to interpret context
and analyze its effects on the activities (Lim and Dey 2010).
We argue that applying traditional approaches to activity
recognition may become more and more difficult to apply
in context and activity-rich environments. In the literature,
context attributes used for learning activities are chosenby
either empirical assumption or dimension reduction to ren-
der a small set of features (Krause, Smailagic, and Siewiorek
2006). These approaches are infeasible in face of a broad
spectrum of context information. The most significant draw-
back is that they fail to acknowledge the large variety of fea-
tures needed to describe different activities.

For activity recognition, most previous works applied su-
pervised learning approaches that aimed at predicting ac-
tivities among a set of known classes(Ferscha et al. 2004).
These approaches, however, are also challenged when cop-
ing with new and fast evolving activities. Unsupervised
learning, particularly clustering, has been highly successful
for revealing implicit relationships and regularities in large
data sets. Intuitively, we can envisage an activity recogni-
tion approach that applies clustering to context history. The
clusters, representing frequent context patterns, can suggest
activities and their contextual conditions. The results can be
used independently for analyzing and interpreting activities.
Furthermore, clusters can reveal the scopes and conditions

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of activities and interactions. This information is valuable
when determining the scopes of information sharing in per-
vasive environments.

Although clustering is a promising approach in discover-
ing associations within context, the feasibility of traditional
clustering is questionable in dealing with high dimensional-
ity and heterogeneity of context data. In this paper, we will
first conduct a detailed analysis about the challenges to ap-
ply clustering for activity recognition. Afterwards we intro-
duce two recent subspace clustering methods that can ad-
dress these challenges. Lastly, based on the analysis of un-
supervised activity recognition, we will propose an activity
recognition framework that incorporates clustering in con-
ventional classification. We will show that the two directions
are complementary to each other, and developing a hybrid
approach will greatly benefit activity context awareness.

Unsupervised activity learning
Challenges

Given the various possibilities in collecting data, context
contains a potentially large number of attributes. From a
data analysis viewpoint, the variety and number of attributes
is a double-edged sword. On the one hand, the more at-
tributes we have, the more fine-grained associations we can
get. On the other hand, more attributes can bring in more
noise, obscuring hidden patterns in data. Classic clustering
approaches, e.g. kNN (k-Nearest Neighbors), usually rely
on various types of distance measures that are effective on
low-dimensional data. However, on high-dimensional data
the ”Curse of Dimensionality” becomes a significant prob-
lem because ”as dimensionality increases, the distance to the
nearest data point approaches the distance to the farthest data
point” (Beyer et al. 1999). Consequently, distance measures
become ineffective. Dimension reduction techniques, such
as Principle Component Analysis (PCA) (Wold 1987), can
derive a single reduced set of dimensions for a whole data
set, but at the same time they lose information aboutlocal
correlations of dimensions. In activity recognition, an activ-
ity can be characterized by a certain set of dimensions, while
another activity is characterized by a different set. Thus a
single dimension reduction approach may not be suitable for
activity recognition. We will illustrate the importance oflo-
cal correlations through an example later.



Aimed at high dimensional data, subspace clustering or
projected clustering (Kriegel, Kröger, and Zimek 2009;
Parsons, Haque, and Liu 2004) has drawn considerable at-
tention in the last years. The goal of subspace clustering is
to find a list of clusters, each of a pair< D, O >, where
D is a set of data attributes1, andO is a set of data objects.
In contrast to classic clustering methods, subspace cluster-
ing recognizeslocal feature correlationsand finds similar-
ities in data with regard to different subsets of dimensions.
Subspace clustering have been applied to gene expression
analysis, product recommendation, text analysis, etc.

Because activity recognition is highly dependent on dis-
covering local correlations, subspace clustering is a promis-
ing direction in seeking an unsupervised activity recognition
approach. However, there are more challenges for apply-
ing subspace clustering to context data. Most applications
of subspace clustering use data consisting of homogeneous
dimensions such as gene data. This is not the case in con-
text data. Heterogeneity poses a strong limitation on choos-
ing an effective clustering method. Similarity calculation,
essential in many clustering approaches (Ester et al. 1996)
and based on certain distance measures across multiple di-
mensions, is not applicable. Context data is heterogeneous
in two respects:

• Dimension semantics.Each dimension in context data has
unique semantics. The semantics decide the data type of
each dimension, which can be numerical or nominal, con-
tinuous or discrete. It is not meaningful to measure the
distance between two multidimensional points if the di-
mensions are semantically different.

• Distribution.Context data on each dimension is in a spe-
cific value domain and of a specific distribution. Although
we can always define certain distance measure on each
dimension, it is usually arbitrary and subjective to assign
distance measures to non-numerical attributes. Even in a
case of only numerical dimensions, different distributions
of attributes can make normalization unreliable or even
impossible, and eventually render similarity calculation
defective.

A sample of context data is presented in Table 1. The sam-
ple contains a few fields to illustrate what is subspace clus-
ter and how local correlations are reflected in clusters. Each
dimension presents different semantics, has a different data
type and value set. The data are an excerpt of a work day sen-
sory records in a small company. B has to work from home
that morning to wait for a plumbing service, and come to of-
fice in the afternoon. The data are collected every hour, and
the dimension A.IMMsgNum means the number of IM mes-
sages A sent to the party in A.IMChat field in the last hour.
Some clusters in one dimension can easily be observed. For
example, in A’s IMChat status,{o0, o1, o2, o7} is a cluster
indicating that he is mostly chatting with B. Some subspace
clusters are also self-explanatory. The projection of ob-
jects{o0, o1, o2} on dimensions{A.Loc, B.Loc, A.IMChat,
A.IMMsgNum} reveal that B is working from home and still

1In this paper we useattributeanddimensioninterchangeably.

closely in touch with A. Projecting{o4, o5} onto {A.Loc,
B.Loc}, we can understand A and B are having a meeting.

Applicable approaches
Based on previous analysis, we need a subspace clustering
approach that can effectively handle heterogeneity of data.
In other words, an approach that does not rely on distance
calculation across more than one dimension. We found two
possible candidates in the literature.

FIRES (FIlter REfinement Subspace cluster-
ing)(Kriegel et al. 2005) is a 3-step approach that
avoids varying densities of different dimensionality in
subspace clusters. The first step isPreclustering, which
finds 1-dimensional (1D) clusters in all dimensions sep-
arately. Finding 1D clusters is easy since there is a rich
selection of traditional clustering algorithms. Furthermore,
we can choose different traditional clustering approaches
for different dimensions according to their own patterns.
With respect to context data, the significance of this step
is that it treats attributes separately and transform them
to a homogeneous structure–1D clusters, thus effectively
solves heterogeneity problem. In thegeneralizationstep,
the authors propose a highly scalable algorithm that merges
1D clusters in quadratic complexity w.r.t. the number of
dimensionality. The third step, postprocessing, refines the
subspace clusters found by generalization.

HSM (Heterogeneous Subspace Mining)(Mueller, As-
sent, and Seidl 2009) is a very recent algorithm dedicated to
deal with heterogeneous data such as sensory inputs. Differ-
ent to FIRES, HSM deals with heterogeneity while merging
dimensions. The algorithm uses SCY-tree (Subspace Clus-
ters with in-process-removal of redundancY) (Assent et al.
2008) as the supporting structure for dimension merging.
There is no dedicated 1D clustering step in HSM. Each layer
of SCY-tree consists of the data in one dimension. If the
dimension is numerical, a grid-like merging is applied to
find clusters in the dimension. The algorithm treats grids
and nominal values the same while merging. To counter the
problem of varying densities, the authors proposed a nor-
malized density calculation approach that is applicable to
subspace clusters containing both numerical and nominal di-
mensions.

A hybrid activity recognition process
The result of subspace clustering is a set of< D, O >
pairs, whereD is a subset of all input dimensionsD, and
O is a subset of all input data objectsO. SupposeD andO

also represent the data space of training set for classifica-
tion, users should label all objects in order to identify which
class an object belongs to. The labeling process has some
known limitations. Users can make mistakes when labeling
due to wrong perception of situation. Labels provided by ex-
perts are not always up-to-date, and may not include new
activities. On the other hand, large attribute set, i.e., high di-
mensionality of training data, also poses challenges to both
classification algorithm and experts in data preparation. It is
known that non-important attributes can obscure classifica-
tion methods, and downgrade algorithm performance. Do-



Object ID Time A.Loc B.Loc A.IMChat A.IMMsgNum A.Phone
o0 09:30 office home B 23 occupied
o1 10:30 office home B 26 available
o2 11:30 office home B 18 available
o3 12:30 out in-car inactive 0 available
o4 13:30 meeting-room meeting-room inactive 0 available
o5 14:30 meeting-room meeting-room inactive 0 available
o6 15:30 office office C 12 occupied
o7 16:30 office meeting-room B 5 occupied
o8 17:30 out out inactive 0 available

Table 1: Sample context data

main experts may overlook some attributes or involve un-
necessary ones when selecting attributes. In general, more
sensory inputs make experts more prone to mistakes in se-
lecting attributes.

Aimed at improving activity recognition capability in
sensor and activity-rich environment, we propose a hybrid
recognition process that utilizes the results of subspace clus-
tering. The approach is illustrated in Figure 1.
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Figure 1: A hybrid activity recognition process

The output of subspace clustering is a set of clusters repre-
senting recurring activities{C}. Correspondingly, in classi-
fication the identified activities are used as labels. The sub-
space clusters can also identify different sets of associated
attributes{D}, thus provide references for dimension reduc-
tion. The approach could benefit traditional activity recogni-
tion in several ways.

1. Providing initial labels. The found clusters suggest a set of
identifiable activities, which can be directly named by ex-
perts rather than users. These names become initial labels.
Although the list of clusters does not ensure the complete-
ness of activities, the discovered label set can help reduce
error rate in user labeling.

2. Finding unnoticed activities. Since unsupervised learn-
ing works with minimal assumptions about the result,
it is possible to find implicit activities that may have
been unnoticed. Periodically applying subspace cluster-
ing method can also help identify changes in the activities
that users are often engaged with.

3. Identifying local attribute associations. This is the most
significant advantage of subspace clustering. Among a
large number of attributes, different activities may be as-
sociated with different attributes. The projected dimen-
sion setD is particularly useful when selecting attributes

for classifier. For example, in Table 1, we can identify a
close relationship between A’s location (office) and his IM
chatting party (B). We can even apply multiple classifiers
to different associated attribute sets and in turn identify
different groups of activities.

4. Finding overlapping activities. Since it is possible to have
multiple projections of the same data object, overlapping
of activities may be revealed in the original context his-
tory. In an environment of multiple activities conducted
by multiple users, the overlapping is particularly valu-
able information that may suggest user groups, resource
sharing, space sharing, parallelism of activities, etc. For
example, projecting{o0, o6, o7} onto{A.Loc, A.Phone},
one can observe that A’s phone usage is not tightly related
to B’s location, suggesting A’s other activities in parallel
with the continuous discussion with B.

Conclusion and further discussion
In this paper, we analyzed the feasibility and potential ben-
efits of incorporating unsupervised learning methods in ac-
tivity recognition. We have already started implementing the
proposed approach and will carry out extensive experiments
in the near future.

Although conceptually the proposed method is promis-
ing, there are still some further challenges to be addressed.
In users’ daily activities, there are some routine tasks that
may lead to big clusters, e.g., A’s phone status in Table 1—
phone is available at most of the sampled time. Another ex-
treme example is sensory input of emergency status, e.g. fire
alarm, which in most cases will be standby. These statuses
will naturally form big clusters. The significance of this type
of big clusters is subject to specific situation, but at leastin
the previous examples, they do not add useful information
to other subspace clusters. The approach to dealing with
this type of attributes is still under investigation. The vari-
ety of sensors and activities challenge not only analytical
methods, but also data fusion and activity context model-
ing. Activity context can be collected from diverse sources,
including sensors for environmental information, personal
mobile devices for individual status, status messages on so-
cial network, etc. Before applying context analysis methods,
context fusion should first mediate, aggregate and process
sensory data to ensure basic data quality. Context informa-
tion should be presented by an exchangeable and extensible



model that enables context sharing between machines. The
model should also allow easy updates of activity description
based on analytical results.
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