
TOWARDS AUTONOMIC MARKET MANAGEMENT IN CLOUD
COMPUTING INFRASTRUCTURES

Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic
Distributed Systems Group, Information Systems Institute, Vienna University of Technology, Austria

{breskovic, maurer, vincent, ivona}@infosys.tuwien.ac.at

Jörn Altmann
TEMEP, Department of Industrial Engineering, College of Engineering, Seoul National University, South Korea

jorn.altmann@acm.org

Keywords: Service Level Agreement, SLA management, electronic markets, autonomic computing

Abstract: Cloud computing markets face challenges, such as a large variety of different resource types in the market.
A large variety of resource types results in a low number of matches of ask and bids. Consequently, the
market has a low liquidity, which is economically inefficient and can lead to market failure. To counteract
this problem, SLA templates (i.e., templates for electronic contracts) have been introduced. However, until
now, SLA templates were static, not able to reflect changes in users’ requirements. In this paper, we apply
the adaptive SLA mapping approach for deriving public SLA templates from private SLA templates of users.
To achieve the adaptation of SLA templates, we combine clustering algorithms with adaptation methods. The
result is a set of new public SLA templates, which reflect the market situation more accurately. This way,
we enable marketplaces to automatically adapt to observed changes of market conditions. For the simulation-
based evaluation of our approach, we formalize a utility and cost model, calculate the overall net utility, and
assess the scalability of the approach. Our results show that the use of clustering algorithms can significantly
improve the performance of the adaptive SLA mapping approach.

1 INTRODUCTION

Cloud computing is the result of the convergence
of several concepts, ranging from virtualization, dis-
tributed application design, Grid computing, and en-
terprise IT management. It enables a flexible ap-
proach for deploying and using applications (Buyya
et al., 2009). In such a paradigm, hardware re-
sources, software resources, and data are offered as
on-demand services to the user in a pay-as-you go
model. Functional and non-functional requirements
of those services, termed quality of service (QoS) re-
quirements, are expressed and negotiated by means of
service level agreements (SLAs). Those are contracts
in Cloud resource markets and are signed between a
customer and a service provider.

For the successful implementation of the Cloud
computing paradigm, well-developed hardware and
software resource markets are fundamental (Risch
et al., 2010). One essential feature of a well-
developed market is liquidity of its goods. Illiq-
uid goods have the risk of not being sellable or pur-

chasable when needed, driving potential market par-
ticipants away. Therefore, well-developed resource
markets must enable immediate execution of standard
orders, which is possible through a sufficiently large
number of participants trading (Samuelson and Nord-
haus, 2005).

Many electronic marketplaces suffer from chal-
lenging situations, such as a highly dynamic evolution
of user requirements for goods. Due to the large re-
source variability in Cloud markets and still low num-
ber of market participants, a small difference in a sin-
gle user requirement might prevent a match. This can
result in very low percentage of matching of asks (i.e.,
consumers’ requirements) and bids (i.e., providers’
offers), making the market unattractive to both con-
sumers and providers.

To counteract this problem, SLA templates have
been introduced. They are documents comprising all
required elements of an SLA but without QoS val-
ues assigned (Brandic et al., 2010). By creating pub-
licly available SLA templates stored in searchable
registries, finding an appropriate trade partner is sim-

plified. However, since the generation of SLA tem-
plates has been static until now, they cannot efficiently
react to market changes that require the adaptation of
resource attributes within the SLA template.

To confront this challenge, we investigate auto-
nomic creation and management of SLA templates
with the goal of attracting participants to trade and,
therefore, increasing the liquidity of goods. In de-
tail, the approach presented in this paper is based on
SLA mapping. SLA mappings are XSLT documents,
which bridge the differences between two SLA tem-
plates by defining mappings between non-matching
parts of the two SLAs. A service consumer can there-
fore define mappings between his private SLA tem-
plate and the publicly available SLA template.

In this paper, in particular, we derive new public
SLA templates by utilizing clustering methods and
economic mechanisms, adapting public SLA tem-
plates to changes in demand in the market. This
method leads to the automation of resource markets.
By including economic mechanisms into Cloud com-
puting infrastructures, they can automatically adapt to
changes of market conditions. With the help of a sim-
ulation, we demonstrate the benefits of our approach.
In particular, we show that this SLA management ap-
proach brings three additional benefits for market par-
ticipants: (1) It allows market participants to keep
their existing private SLA templates that may already
be used in other business processes; (2) It enables par-
ticipants to impact the evolution of Cloud resource
markets; (3) It delivers better results for the Cloud
market as a whole. We show this benefit by formal-
izing and applying a measure for assessing publicly
available SLA templates within our simulation.

Concluding, the main contributions of this paper
are: (1) the introduction of an approach for applying
clustering algorithms to group similar SLA mappings
and to enable autonomic market management; (2) the
formalization of a measure for evaluating the SLA
mapping approach by determining the utility and the
cost to users; and (3) the evaluation of the proposed
mapping approach using an experimental testbed.

The remainder of the paper is organized as fol-
lows. Section 2 describes related work. Section 3 de-
fines the SLA mapping approach and introduces the
idea of applying clustering algorithms to group sim-
ilar SLA mappings. Section 4 introduces clustering
algorithms and adaptation methods used for gener-
ating new public SLA templates. The formalization
of the utility and cost model to assess the benefits of
the approach is given in Section 5. A description of
the simulation environment and evaluation results are
presented and discussed in Section 6. Section 7 con-
cludes the paper.

2 RELATED WORK

Over the past several years, many large IT companies
have entered the utility computing market by offer-
ing different types of services. We divide them in
three groups, based on types of resources offered: (1)
group of service providers who offer their comput-
ing resources on a pay-per-use basis in infrastructure-
as-a-service model, such as Amazon EC21 and S32,
(2) providers who offer their computing resources
in combination with their own software components,
such as Google Apps3 and Salesforce.com4, and (3)
group of providers offering not only a deployment
platform, but an application development platform as
well, such as Microsoft Azure5 and Salesforce.com.
However, although these providers offer a large vari-
ety of services, they usually sell a single type of re-
sources and do not cover flexible SLAs.

In addition to this, several research projects inves-
tigate SLA template generation (Oldham and Verma,
2006; Dobson and Sanchez-Macian, 2006; Green,
2006). As reported in (Karänke and Kirn, 2007), most
projects use SLA specifications, based on WSLA and
WS-Agreement, which lack support for economic
attributes and negotiation protocols. To compen-
sate these shortcomings, (Oldham and Verma, 2006)
introduce utilization of semantic Web technologies
based on WSDL-S and OWL for enhancement of
WS-Agreement specifications to achieve autonomic
SLA matching. Similar to that, (Green, 2006) in-
troduces an ontology-based SLA formalization where
OWL and SWRL are chosen to express the ontolo-
gies. (Dobson and Sanchez-Macian, 2006) suggest
producing a unified QoS ontology applicable to the
main scenarios such as QoS-based Web Services se-
lection, QoS monitoring, and QoS adaptation.

Several research projects have also discussed the
implementation of system resource markets (Buyya
et al., 2001; Nimis et al., 2008; Neumann et al.,
2008). GRACE (Buyya et al., 2001) developed a
market architecture for Grid markets and outlined a
market mechanism, while the good itself (i.e., com-
puting resource) has not been defined. Moreover,
the process of creating agreements between con-
sumers and providers has not been addressed. The
SORMA project (Nimis et al., 2008) has also con-
sidered open Grid markets. They identified several
market requirements, such as allocative efficiency,
budget-balance, truthfulness, and individual rational-

1http://aws.amazon.com/ec2/
2http://aws.amazon.com/s3/
3http://www.google.com/apps/
4http://www.salesforce.com/
5http://www.microsoft.com/windowsazure/

SaaS/PaaS/IaaS

SQL databasesInitial
template

Template
v.1

Template
v.2

Template
v.3

Step 5: Group mappings into clusters

Step 3: Lookup

Private
template

Service consumer

Step 4: Define mappings

Step 1: Assign service to a template

Applications

InfrastructureInfrastructure Private
template

Step 2: Define mappings

Service provider

Step 6: Apply learning methods

Figure 1: The SLA mapping process.

ity (Neumann et al., 2008). However, they have not
considered that a market can only function efficiently
if there is a sufficiently large liquidity of its goods.

Overall, most of the computing resource market
research did not define the tradable good, or they
worked only with simplified definitions of goods.
Furthermore, most of the existing approaches in SLA
management use static SLA templates and, therefore,
do not consider market changes. This means that the
issue of maintaining a sufficiently high liquidity in
electronic market has not been addressed yet.

3 COMPUTING RESOURCE
MARKETS

In this section, we present the SLA mapping approach
and introduce the idea of applying clustering algo-
rithms to group SLA mappings.

3.1 The SLA Mapping Approach

The SLA mapping process is presented in Figure 1.
In the step 1, a service provider assigns his service
(e.g., infrastructure resources) to a particular public
SLA template. Since it is sometimes not possible to
find a perfect match between a private SLA template
and a public SLA template, service provider can de-
fine mappings to bridge the differences between two
templates (step 2).

In the next step, a service consumer can look for
appropriate Cloud services. Since it might happen
that a consumer cannot change his private template
due to existing business processes, legal issues, or
other reasons, he can define SLA mappings to bridge
the differences between his private template and the
public template assigned to the service (step 4).

Both service provider and service consumer can
specify two types of SLA mappings:

1. Ad-hoc SLA mapping type defines translation
between a parameter existing in the user’s private
SLA template and the public SLA template. We
distinguish simple ad-hoc mappings, i.e., map-
ping of different values for an SLA element (e.g.,
a mapping between the names “CPUCores” and
“NumberOfCores” of an SLA parameter, or a
mapping between two different values of a service
level objective), and complex ad-hoc mappings.
The later one maps between different functions
used for calculating a value of an SLA parame-
ter (e.g., defining a mapping for a metric unit of a
value of an SLA parameter such as “Price” from
“EUR” to “USD” can translate one function for
calculating price to another one).

2. Future SLA mapping type defines a wish for
adding (or deleting) a new SLA parameter that is
supported by the private template to a public SLA
template. Unlike ad-hoc mapping, future mapping
cannot be applied immediately.

Figure 2 represents a sample public SLA template
and a service consumer’s private SLA template. Con-
sumer’s private template differs from the public tem-
plate in four ways: (1) the name of the SLA param-
eter “Price”, (2) the unit of a value of the parame-
ter “Performance” (i.e., the parameter metric), (3) the
parameter “Availability”, which does not exist in the
consumer’s private SLA template, and (4) the SLA
parameter “ClockSpeed”, which exists in the con-
sumer’s private template but not in the public SLA
template. Therefore, the consumer will create four
SLA mappings to bridge these difference, namely (i)
a simple ad-hoc mapping to map the difference of
the parameter name, (ii) a complex ad-hoc mapping
for defining a mapping function for measuring per-
formance, (iii) a deleting wish (future mapping) for
wishing for the deletion of the “Availability” parame-
ter from the public SLA template, and (iv) an adding

(Cost, EUR)
(Performance, GHz)
(ClockSpeed, GHz)

(Price, EUR)
(Performance, MHz)
(Availability, %)

Simple ad-hoc mapping:

Cost → Price

Complex ad-hoc mapping:

GHz → MHz

Future mapping (adding wish)

+ (ClockSpeed, GHz)

Future mapping (deleting wish)

- (Availability, %)

User‘s SLA template

SLA
registry

Public SLA template

Figure 2: An example of the SLA mapping process.

wish (future mapping) for adding a new parameter
“ClockSpeed” into the public SLA template.

3.2 Evolution of Public SLA Templates

After a certain period of time, SLA mappings are
evaluated in order to adapt public SLA templates to
the current market trends. By utilizing adaptation
methods, we enable the creation of new branches of
public templates that reflect consumers’ needs more
precisely. For example, a general template for internal
medicine applications can be substituted by more spe-
cialized templates on cardiology and oncology. The
adaptation process is executed in two steps. First,
by applying clustering algorithms, similar SLA map-
pings are grouped (step 5 in Figure 1). For exam-
ple, one group of SLA mappings could be for those
templates that name their parameters in a certain lan-
guage. In the second step (i.e., step 6 in Figure 1),
adaptation methods are applied to each of the groups.
Those methods analyze the SLA mappings and de-
cide about the content of new public SLA templates.
At the end of the process, new public templates are
generated. With this approach, public SLA templates
are adapted according to the need of market partici-
pants. This increases the likelihood that new requests
of consumers will need less SLA mappings, reducing
the cost of consumers and making the market more
attractive.

After new public SLA templates have been gener-
ated, users can decide if they want to use the newly
generated templates or if they prefer keeping the old
ones. Note, although new templates reflect their re-
quirements, users have to define new SLA mappings,
which incur cost.

4 IMPLEMENTATION ISSUES

In this section, we discuss the algorithms and meth-
ods implemented for grouping similar SLA mappings
and generating new public SLA templates. Besides,

we formalize a measure of (dis)similarity of two SLA
templates by utilizing an n-tuple SLA representation.

4.1 Clustering Algorithms for Grouping
SLA Mappings

For the purpose of grouping similar sets of SLA map-
pings, we apply two clustering algorithms: DBSCAN
and k-means. In our clustering algorithms, an item for
clustering is a set of consumer’s SLA mappings, and
a cluster centroid is a newly generated public SLA
template for a group of consumers (i.e., private SLA
templates).

DBSCAN is a data clustering algorithm that is
based on the density distribution of nodes and finds
an appropriate number of clusters (Ester et al., 1996).
The ε-neighborhood of a point p is defined as a set of
points that are not farther away from p than a given
distance ε. A point q is directly density-reachable
from the point p, if q is in the ε-neighborhood of p,
and the number of points in the ε-neighborhood of q is
bigger than MinPts. A cluster satisfies two properties:
(1) each two points are mutually density-reachable,
and (2) if a point is mutually density-reachable to any
point of the cluster, it is part of the cluster as well.

K-means is a clustering algorithm that, given an
initial set of k means, assigns each observation to a
cluster with the closest mean. It then calculates new
means to be centroids of observations in the clusters
and stops when the assignments no longer change
(MacQueen, 1967). A frequent problem in k-means
algorithm is the estimation of the number k. Within
this paper, we explain two implemented approaches.

1. Rule-of-Thumb is a simple but very effective
method in which k is set to

√
N/2, where N is

the number of entities (Mardia and Kent, 1980).

2. Hartigan’s Index is an internal index introduced in
(Hartigan, 1975). Let W (k) represents the sum of
squared distances between cluster members and
cluster centroid for k clusters. When grouping
n items, the optimal number k is chosen so that
the relative change of W (k) multiplied with the
correction index γ(k) = n− k−1 does not signifi-
cantly change for k+1, i.e.,

H(k) = γ(k)
W (k)−W (k+1)

W (k+1)
< 10

The threshold 10 shown in Hartigan’s index is also
used in our simulations. It is “a crude rule of
thumb” suggested by Hartigan (Hartigan, 1975).

4.1.1 Computing Distance Between SLA
Templates

In order to utilize clustering algorithms, the measure
of distance between two clustering items must be de-
fined, as well as the distance between a clustering
item and a cluster centroid. As already mentioned in
the previous section, an item for clustering is a set of
consumer’s SLA mappings, while a cluster centroid
is an SLA template for the given group of consumers.
Since having knowledge about the content of a public
SLA template and about the SLA mappings a con-
sumer created, we can exactly reconstruct consumer’s
private SLA template. Therefore, both the distance
between two clustering items as well as between an
item and a cluster centroid can be reduced to comput-
ing distances between two SLA templates. For this
purpose, we introduce the n-tuple representation of
SLAs.

An SLA consists of SLA parameters with SLA
metrics and service level objectives (SLOs) associ-
ated to the parameters. We distinguish between the
structure of an SLA, i.e., the list of parameters with
their names and SLA metrics, and the values of an
SLA, i.e., a list of numerical, boolean and string val-
ues of SLOs and SLA attributes. We introduce the
n-tuple representation of an SLA, where first n− 1
elements contain values of the SLA, while the last
element contains the SLA structure. By using such
a representation, we can define the distance between
two SLA templates as an n-tuple, where first n− 1
elements contain the differences between the two val-
ues of each of the parameters, while the final element
contains a value representing the difference between
the structures of the SLAs.

To formalize, we observe two SLA templates T1
and T2 defined by their SLA values {α,β,γ, ...} and
the SLA structure ∆.

T1 = (α1,β1,γ1, ...,∆1),T2 = (α2,β2,γ2, ...,∆2)

The n-tuple DT1,T2 representing the distance between
two SLA templates is defined as:

DT1,T2 =(f (α1,α2), f (β1,β2), f (γ1,γ2), ...,F(∆1,∆2))

The result of the function f for calculating the differ-
ence between two SLA values α1 and α2 depends on
the type of its arguments and is defined as follows.

f (α1,α2) =


|α2−α1|, if α1 and α2 are numerical
0, if α1 and α2 are not

numerical and α1 = α2
1, if α1 and α2 are not

numerical and α1 6= α2

The distance between the structures of SLA tem-
plates is expressed as a number of differences be-

tween properties of SLA templates. This value is cal-
culated by iterating through all SLA parameters con-
tained by at least one of the SLA templates, calculat-
ing the distance between the SLA templates with re-
spect to the parameters. We define the distance func-
tion F calculating the difference between structures
∆1 and ∆2 of two SLA templates T1 and T2as

F(∆1,∆2) = ∑
p∈T1∪T2

dp(T1,T2)

where the distance between two SLA parameters of
two SLA templates with respect to its properties (i.e.,
its name and metric) is defined as:

dp(T1,T2) =



0, if name and metric of p are
the same in T1 and T2

1, if T1 or T2 does not contain p
1, if only name or metric of p

differs in T1 and T2
2, if both name and metric of p

differ in T1 and T2

After the result tuple has been calculated, it can
be used to generate a single numerical value repre-
senting the distance between the two SLA templates.
In order to do so, the result tuple must be normalized
beforehand so that the tuple elements can be mutu-
ally comparable. Normalization is executed on each
of the n tuple elements separately, where a value of
an element is divided by a range of possible values
for the element (maximum value minus the minimum
value). Then, the final value representing the distance
between SLAs can be computed by a simple function
(e.g., summation of element values).

Note, in this paper, we discuss only the final ele-
ment of the distance tuple, i.e., the difference between
structures of two SLA templates. We plan to consider
the values of SLA templates in our future work.

4.2 Adaptation Methods for Evolving
Public SLA Templates

For adaptation of public SLA templates to react to
market changes, we utilize three adaptation methods.
These methods analyze submitted SLA mappings and
for each SLA parameter determine whether the cur-
rent parameter name and metric should be changed,
as well as if a new parameter should be added or an
existing one deleted.

To demonstrate the methods, we use the follow-
ing example. The example considers the evolution
of an SLA parameter π occuring in an initial pub-
lic SLA template Tinit when adapting the template
based on SLA mappings of 100 service consumers.
The value of the parameter π in the initial template

Table 1: Distribution of mappings for the SLA parameter π.

a) Name of the SLA parameter π

Name: Cost Charge Rate (Price)
Mappings: 15% 15% 40% (30%)

b) Unit of the SLA parameter π

Name: USD GBP YPI (EUR)
Mappings: 38% 2% 40% (20%)

Table 2: Distribution of mappings for the SLA parameter µ.

a) Name of the SLA parameter µ
Name: MemoryConsumption Consumption
Mappings: 70% 30%

b) Unit of the SLA parameter µ
Name: Mbit Gbit Tbit
Mappings: 5% 55% 40%

is (Price,EUR), where the first member of the tuple
represents the parameter name, and the second mem-
ber represents the metric unit for expressing the pa-
rameter value (see Table 1). The example also con-
siders an SLA parameter µ which has not been defined
in the initial public SLA template. Let 20 consumers
express a wish for deleting the parameter π from Tinit ,
and the rest of them define mappings according to the
distribution presented in Table 1. Note that the last
column of the table represents the number of non-
mapped values, i.e., the number of private SLA tem-
plates containing the same value as in the public SLA
template. Let 75 consumers express a wish for adding
the parameter µ to the public template, with a name
and unit by the distribution depicted in Table 2.

The maximum method selects the option which
has the highest number of SLA mappings (i.e., the
maximum candidate). This candidate will then be
used in the new SLA template. If there is more than
one maximum candidate with the same number of
SLA mappings, one of them is chosen randomly. In
the given example, only 20% of consumers wished
for deleting the parameter π, which is not sufficiently
high. Therefore, the parameter stays in the template
with “Rate” as the new parameter name because of
the highest number of mappings (40% in compari-
son to 30% who did not create mappings, i.e., who
want to keep the name “Price”). The price will be
expressed in Japanese Yens due to the highest num-
ber of mappings. The parameter µ will also be in the
new template, since there are more than 50 wishes for
this parameter, and parameter name and unit will be
(MemoryConsumption,Gbit).

In order to lower the requirements for selecting
the maximum candidate, the threshold method in-
troduces a threshold value. In this method, the value
gets chosen if it is used more than the given thresh-
old and has the highest count. If more than one value
satisfies the conditions, one of them is chosen ran-

domly. Throughout the evaluation in this paper, we
fix the threshold to 60%. In the given example, nei-
ther the mappings for the name nor for the unit of the
parameter π exceeds the threshold value. As for the
parameter µ, it will be introduced in the new public
template with the properties chosen according to the
maximum method.

The significant-change method is a modifica-
tion of the maximum-percentage-change method in-
troduced in (Maurer et al., 2010). In this method, an
SLA parameter property is only changed, if the per-
centage difference between the highest count value
and the current public SLA template value exceeds a
given threshold, which we assume to be significant at
σT > 15%. In the given example, 40 consumers have
the name “Rate” for the “Price” parameter, while 30
consumers use the same name as in the public SLA
template. Since the percentage difference of 33% is
higher than the given threshold, “Rate” will be chosen
as the new name for the parameter. As the new unit,
“YPI” will be chosen. Since “MemoryConsumption”
does not exist in the old public SLA template, the de-
cision about this SLA parameter is made as described
for the maximum method.

5 FORMALIZATION OF THE
UTILITY AND COST MODEL

As already mentioned in Section 1, the approach pre-
sented in this paper brings many benefits to market
participants. However, it also incurs cost. Namely,
whenever a public SLA template has been adapted,
the users of the template have to define new SLA map-
pings. Within this section, we investigate these costs
and assess the benefits of our approach. For this pur-
pose, we introduce the utility and cost model.

In the following, we observe a set of SLA pa-
rameters PN,F , where possible names of a parame-
ter α ∈ PN,F are N(α) = {A,A′,A′′, ...}, and the set
of possible metrics is F(α) = { fα, f ′α, f ′′α , ...}. Let
there be a set of consumers’ private SLA templates
C = {c1,c2, ...,cn} and two public SLA templates: the
initial public SLA template Tinit , and the newly gen-
erated public SLA template (for the given set of con-
sumers) Tnew.

For each SLA template p ∈ C ∪ {Tinit ,Tnew}, we
define the relationship between a certain SLA param-
eter with its name and metric as

SLAp : PN,F →
⋃

α∈PN,F

N(α)∪ /0×
⋃

α∈PN,F

F(α)∪ /0

where a parameter of a template is represented as a
tuple (name,metric), i.e., for an SLA parameter α in
an SLA template p it holds

SLAp(α) 7→ (N(α),F(α))

If the value of α in a template p is SLAp(α) = (A, fα),
then we can define the projection function Π as

ΠN(SLAp(α)) = A, ΠF(SLAp(α)) = fα

with the abbreviation

Np(α) = ΠN(SLAp(α)), Fp(α) = ΠF(SLAp(α))

Additionally, we define the function χ to determine if
an SLA template p contains an SLA parameter α:

χp(α) =

{
0, if p does not contain α

1, if p contains α

Finally, we can define the utility function for a
consumer c and for an SLA parameter α as follows.

u+c (α) =



0, χc(α) 6= χTnew(α)∨χc(α) = χTnew(α) = 0
A, χc(α) = χTnew(α) = 1∧

Nc(α) 6= NTnew(α)∧Fc(α) 6= FTnew(α)

B, χc(α) = χTnew(α) = 1∧
(Nc(α) = NTnew(α)∧Fc(α) 6= FTnew(α)∨
Nc(α) 6= NTnew(α)∧Fc(α) = FTnew(α))

C, χc(α) = χTnew(α) = 1∧
SLAc(α) = SLATnew(α)

As stated in the definition of the utility function, the
consumer gains no utility for an SLA parameter if
it does not exist in one of the SLA templates (con-
sumer’s private template or the public template). If
it does exist, the utility can be A (if both name and
metric for an SLA parameter differ in user’s private
SLA template and the public SLA template), B (if
only name or metric differ), or C (if templates do not
differ with respect to the parameter).

The cost function for a consumer c and an SLA
parameter α is defined as follows.

u−c (α)=



0, SLATnew(α) = SLATinit (α)∨
SLAc(α) = SLATnew(α)∨
(χc(α) = χTnew(α) = χTinit (α) = 1∧
(Nc(α) = NTnew(α)∧FTnew(α) = FTinit (α)∨
NTnew(α) = NTinit (α)∧Fc(α) = FTnew(α)))

E, χTinit (α) 6= χTnew(α)∧χc(α) 6= χTnew(α)

D, otherwise

The cost function states that a user has no cost if he
does not have to create new SLA mappings i.e., if the
parameter properties are the same in his private tem-
plate and in the newly generated public template, or
the new template did not change with respect to the
parameter. If a user has to create a future mapping,
the cost is equal to E. Finally, if a user has to create
ad-hoc mappings for name, metric, or both, the cost
is equal to D.

At the end, we define the overall utility U+ and
the overall cost U− for all service consumers C as:

U+ = ∑
c∈C

∑
α∈PN,F

u+c (α), U− = ∑
c∈C

∑
α∈PN,F

u−c (α)

The overall net utility UO is then calculated as

UO =U+−U− (1)

Note that the values for the utility and the cost
functions are not strictly defined, but considering the
effort or benefit it should hold that 0≤ A≤ B≤C and
0≤ D≤ E.

6 EVALUATION
In this section, we measure and investigate the ben-
efits and costs of defining SLA mappings and adapt-
ing public SLA templates to the current needs of mar-
ket participants, using the utility and cost model pre-
sented in Section 5. Moreover, we assess the scalabil-
ity of the approach and discuss the quality of newly
generated public SLA templates.

6.1 Simulation Environment

For the simulation of our approach, we designed
a testbed within the VieSLAF environment. VieS-
LAF is a framework for semi-automated management
of SLA mappings and generation of SLA templates
(Brandic et al., 2010). The major VieSLAF compo-
nents are the knowledge base and the SLA mapping
middleware.

1. The knowledge base is used for storing and man-
aging public SLA templates. Browsing and cre-
ating SLA templates is enabled over searchable
repositories implemented in Microsoft SQL 2008
DBMS with a Web service front-end to provide
the interface for the SLA mapping management.

2. The SLA mapping middleware is based on sev-
eral Windows Communication Foundation ser-
vices for administration (e.g., creating SLA tem-
plates), accounting (e.g., creating consumer ac-
counts), querying (e.g., finding an appropriate
SLA template), management of SLA mappings
(e.g., defining mappings for a user), and adapta-
tion of public SLA templates.

Both knowledge base and the registry services can be
accessed only with appropriate access rights depend-
ing on three access roles: service consumer, service
provider, and registry administrator.

We describe the VieSLAF architecture and the
testbed used for the simulation based on Figure 3.
The simulation process is conducted in several steps.
First, a service provider assigns his service (e.g., soft-
ware, resources, infrastructure) to a public SLA tem-
plate using VieSLAF’s registry services. Service con-
sumers than fetch the public template (step 2) and

Service
consumers

Private SLA
templates

Knowledge base

Accounting
service

Querying
serviceSLA mapping

service

Adaptation
service

Administration
service

Service
provider

Initial public SLA
template

1. Assign service to the template

2. Fetch the SLA template
3. Create SLA mappings

4. Apply clustering and
adaptation methods

New public SLA
templates

5. Assign templates to consumers 6. Measure overall
net utility

Figure 3: Simulation testbed.

generate SLA mappings to map the differences be-
tween their private templates and the public SLA tem-
plate (step 3). After the end of the mapping process,
the clustering algorithms are applied and consumers’
SLA mappings are grouped (step 4). For each of the
groups of SLA mappings, new public SLA templates
are generated and assigned to the consumers (step 5).

The process is evaluated by investigating the over-
all net utility (step 6). For evaluation purposes, all de-
scribed clustering algorithms and adaptation methods
for creating new public SLA templates are used and
compared. The number of service consumers creating
SLA mappings is varying from 100 to 10000. The ini-
tial public SLA template is static and contains 8 SLA
parameters, while the consumers’ private SLA tem-
plates are generated randomly at the beginning of the
evaluation process and can contain up to 11 SLA pa-
rameters, where, for each SLA parameter, consumers
can choose between 5 names and 2 metrics.

6.2 Evaluation Results
6.2.1 Overall Net Utility

To assess the benefits and costs of the SLA mapping
approach, we use the overall net utility defined by
Equation (1), where the values for the constants of the
utility and cost model are fixed as depicted in Table
3. For evaluation purposes, we simulate 500 service
consumers creating SLA mappings to a public SLA
template. In order to compare results achieved with
different methods, all presented clustering algorithms
and adaptation methods are used and compared. After
the new SLA templates are generated, the overall net
utility is calculated, representing the difference be-
tween gains and costs of the SLA mapping approach.
The simulation results are depicted in Figure 4.

Using the results depicted in the graph, we can
compare the approach described in this paper with our
previous work on SLA mapping described in (Maurer
et al., 2010), where we did not utilize clustering algo-

Table 3: Values of the utility and cost function variables
used for the evaluation.

Variable A B C D E
Value 1 2 3 1 2

rithms, but instead applied adaptation methods to cre-
ate a single new public SLA template for all market
participants. The first column of the graph presents
the overall net utility achieved when creating a single
new public template, while the rest of the columns
represent results achieved by utilizing different clus-
tering algorithms. As it can be seen from the graph,
by generating only one public SLA template for all
service consumers, the overall net utility is signifi-
cantly lower than in the other cases. This is due to
creating more new public SLA templates that reflect
consumers’ needs more precisely.

0	

2000	

4000	

6000	

8000	

10000	

12000	

Maximum	
 method	
 Threshold	
 method	
 Significant-­‐change	
 method	

O
ve
ra
ll	

ne

t	
 u
+
lit
y	

NO	
 CLUSTERING	
 DBSCAN	
 KMEANS	
 ROT	
 KMEANS	
 HARTIGAN	

Figure 4: Evaluation results: overall net utility.
When comparing the overall net utility gained by

utilizing different adaptation methods, we can con-
clude that the best results are achieved by using the
maximum method. Although the threshold method
causes significantly lower number of changes (due to
the high threshold), and therefore very low cost, the
maximum method adapts public template more dy-
namically and achieves higher utility rate. Highest
overall net utility is achieved by the k-means cluster-
ing algorithm with the rule-of-thumb method, due to
creating large number of very specific clusters.

The utility rate highly depends on the number of
generated clusters. The more clusters are created, the
higher utility will be achieved. This relation can be
seen when combining the results depicted in Figure
4 with Table 4, representing the number of clusters
per clustering algorithm and per number of service
consumers creating SLA mappings. The maximum
rate of overall net utility for n service consumers can
be achieved by creating n clusters i.e., by generating
one public SLA template per consumer. In this case,
public SLA templates would be equal to consumers’
private templates. Moreover, the utility rate would be
maximum, and the cost would be equal to 0. How-
ever, by raising the number of new public SLA tem-
plates in the market, the liquidity of its goods is at
the lowest point. Therefore, we must find a balance

Table 4: Number of generated clusters per algorithm and
number of service consumers.

DBSCAN k-means (RoT) k-means (H)
100 5 7 3
200 5 10 3
300 6 12 3
500 6 15 5
1000 7 22 6
2000 7 31 6
5000 8 50 6

10000 10 69 10

between keeping low cost of creating new SLA map-
pings and ensuring high liquidity of market goods.
The problem of finding the optimal number of new
public SLA templates to be introduced to the market
will be addressed in our future work.

Since the number of generated clusters influences
the overall net utility, we conclude that both the over-
all net utility and the dataset properties determine
the quality of newly generated public SLA templates.
Therefore, it is not sufficient to investigate only the
utility gained, but also the properties of the simula-
tion dataset that may have influenced the results of
the utility measurements. For this purpose, we intro-
duce the measure of compactness. In our discussion
of dataset properties, C represents a set of clusters,
where C j ∈C is a cluster, and C jc its centroid. Ri is a
clustering item, and D(Ri,Rk) a distance between two
items. |C| represents the total number of clusters, and
|Ci| represents a number of items in a cluster Ci.

Compactness is reciprocal of average distance
between consumers’ private SLA templates within
clusters, and is formally defined as follows.(

1
|C| ∑

C j∈C

(1
|C j|(|C j|−1) ∑

Ri∈C j

∑
Rk∈C j

D(Ri,Rk)
))−1

Since a cluster represents a group of consumers with
similar requirements, high compactness implies well
formed market. Figure 5 depicts the compactness
rates achieved by utilizing clustering algorithms. For
this purpose, we have simulated SLA mappings spec-
ified by different number of service consumers, vary-
ing from 100 to 10000. The adaptation method used
for the evaluation is the maximum method.

High utility is common for compact clusters, since
all members of the cluster have similar properties, and
the cluster centroid i.e., newly generated SLA tem-
plate, reflects those properties more precisely. On
the other side, items of a less compact cluster differ
in a larger extent, and it is probable that the utility
achieved by creating a new public SLA template will
be lower. High compactness can be achieved by creat-
ing large number of smaller clusters and is maximized
when there is one cluster per item.

0.1	

0.11	

0.12	

0.13	

0.14	

0.15	

0.16	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Co
m
pa

ct
ne

ss
	

Number	
 of	
 consumers	

DBSCAN	
 KMEANS	
 ROT	
 KMEANS	
 HARTIGAN	

Figure 5: Evaluation results: compactness.

As depicted in Figure 5, the k-means algorithm
with the Hartigan’s index achieves lowest rate of com-
pactness. This is due to creating small number of gen-
eral clusters, where items mutually differ in a large
extent. Therefore, as it can be seen on Figure 4, this
algorithm results in low overall net utility. k-means
algorithm with the-rule-of-thumb achieves larger rate
of compactness, and consequently larger rate of over-
all net utility, due to large number of specific clusters.

6.2.2 Scalability

For Cloud environments, it is of great importance that
the resource markets are highly scalable. In order to
assess the scalability of our approach, we measured
execution time of the clustering process for differ-
ent number of users creating SLA mappings, varying
from 100 to 10000. Results are depicted in Figure 6.

0	

100000	

200000	

300000	

400000	

500000	

600000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ex
ec
u&

on
	
 &
m
e	

(m

s)
	

Number	
 of	
 consumers	

DBSCAN	
 KMEANS	
 ROT	
 KMEANS	
 HARTIGAN	

Figure 6: Evaluation results: execution time.
As showed in the graph, the k-means algorithm

with the Hartigan’s index takes most time to compute
groups of SLA mappings. This is due to the nature
of the Hartigan’s index method, in which the clus-
tering algorithm runs in several iterations and com-
putes different number of clusters before it finds the
optimal number k. The best performance is achieved
by the DBSCAN algorithm. This result is also not
surprising, since unlike the k-means algorithm, it cre-
ates smaller number of clusters and does not compute
cluster centroids, which incurs cost.

The results show that the approach presented in
this paper is highly scalable. It is important to notice
that the clustering process in the worst scenario takes
less than 0.08% of the total simulation execution time.
This percentage decreases with the rising of the num-
ber of service consumers. Furthermore, the execution

time of k-means algorithm with the Hartigan’s index,
which is far the highest, can be improved by intro-
ducing heuristics for determining the initial number
k, which we will consider in our future work.

7 CONCLUSION AND FUTURE
WORK

In this paper, we have extended the SLA mapping ap-
proach by introducing the idea of applying clustering
algorithms to group users’ SLA mappings. This en-
ables the automatic creation of new public SLA tem-
plates, paving the way for autonomic market manage-
ment. In particular, we introduced the n-tuple SLA
representation to compute the difference between two
SLA templates, utilized two clustering algorithms for
grouping SLA mappings, and used three adaptation
methods for generating new SLA templates. We have
investigated the utility and cost to users when apply-
ing the adaptive SLA mapping approach. Our simula-
tion results show that our approach facilitates contin-
uous market evolution and adaptation of public SLA
templates, responding to market trends and changes.

In the future, we will consider heuristic methods
for improving the efficiency of clustering algorithms
for grouping SLA mappings and investigate the full
possibilities of the n-tuple representation of SLAs.
Also, we will address the problem of finding the op-
timal number of new public SLA templates to be in-
troduced to the market, in order to ensure liquidity on
the market while keeping a high utility rate.

ACKNOWLEDGEMENT

The work described in this paper is supported by
the Vienna Science and Technology Fund under the
grant agreement ICT08-018 Foundations of Self-
Governing ICT Infrastructures (FoSII), and by the
National Research Foundation of the Ministry of Ed-
ucation, Science and Technology of Korea under the
grant K21001001625-10B1300-03310.

REFERENCES

Brandic, I., Music, D., and Dustdar, S. (2010). Vieslaf
framework: Facilitating negotiations in clouds by ap-
plying service mediation and negotiation bootstrap-
ing.

Buyya, R., Abramson, D., and Giddy, J. (2001). A case
for economy grid architecture for service oriented grid
computing. Parallel and Distributed Processing Sym-
posium, International, 2.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging

it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Com-
puter Systems, 25(6):599 – 616.

Dobson, G. and Sanchez-Macian, A. (2006). Towards uni-
fied qos/sla ontologies. In Services Computing Work-
shops, 2006. SCW ’06. IEEE, pages 169 –174.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. pages 226–231.
AAAI Press.

Green, L. (2006). Service level agreements: an ontolog-
ical approach. In Proceedings of the 8th interna-
tional conference on Electronic commerce: The new
e-commerce: innovations for conquering current bar-
riers, obstacles and limitations to conducting success-
ful business on the internet, ICEC ’06, pages 185–194,
New York, NY, USA. ACM.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley
& Sons Inc.

Karänke, P. and Kirn, S. (2007). Service level agreements:
An evaluation from a business application perspective.
In In eChallenges e-2007 Conference, pages 104–111.
IEEE-CS Press.

MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Cam, L.
M. L. and Neyman, J., editors, Proc. of the fifth Berke-
ley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pages 281–297. University of Cali-
fornia Press.

Mardia, K. V. and Kent, J. T. (1980). Multivariate Analysis.
Academic Press.

Maurer, M., Emeakaroha, V. C., Risch, M., Brandic, I.,
and Altmann, J. (2010). Cost and benefit of the sla
mapping approach for defining standardized goods in
cloud computing markets. In International Confer-
ence on Utility and Cloud Computing (UCC 2010) in
conjunction with the International Conference on Ad-
vanced Computing (ICoAC 2010).

Neumann, D., Stösser, J., and Weinhardt, C. (2008). Bridg-
ing the adoption gap-developing a roadmap for trading
in grids. Electron. Market., 18:65–74.

Nimis, J., Anandasivam, A., Borissov, N., Smith, G., Neu-
mann, D., Wirstrm, N., Rosenberg, E., and Villa, M.
(2008). Sorma business cases for an open grid mar-
ket: Concept and implementation. In Grid Economics
and Business Models, volume 5206 of Lecture Notes
in Computer Science, pages 173–184. Springer Berlin
/ Heidelberg.

Oldham, N. and Verma, K. (2006). Semantic ws-agreement
partner selection. In In 15th Int. WWW Conf, pages
697–706. ACM Press.

Risch, M., Brandic, I., and Altmann, J. (2010). Us-
ing sla mapping to increase market liquidity.
In Service-Oriented Computing. ICSOC/ServiceWave
2009 Workshops, volume 6275 of Lecture Notes in
Computer Science, pages 238–247. Springer Berlin /
Heidelberg.

Samuelson, P. and Nordhaus, W. (2005). Economics.
McGraw-Hill/Irwin, 18. ed., internat. ed. edition.

