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Abstract. The analysis of massive amounts of diverse data provided
by large cities, combined with the requirements from multiple domain
experts and users, is becoming a challenging trend. Although current
process-based solutions rise in data awareness, there is less coverage
of approaches dealing with the Quality-of-Result (QoR) to assist data
analytics in distributed data-intensive environments. In this paper, we
present the fundamental building blocks of a framework for enabling
process selection and configuration through user-defined QoR at runtime.
These building blocks form the basis to support modeling, execution and
configuration of data-aware process variants in order to perform analyt-
ics. They can be integrated with different underlying APIs, promoting
abstraction, QoR-driven data interaction and configuration. Finally, we
carry out a preliminary evaluation on the URBEM scenario, conclud-
ing that our framework spends little time on QoR-driven selection and
configuration of data-aware processes.

Keywords: Data-aware Processes, Runtime Configuration, Data Ana-
lytics, Smart Cities.

1 Introduction

The emergence of the smart city paradigm has created a plethora of new chal-
lenges for ICT [1]. Specifically, the analysis of large volumes of diverse data
(referred to as Big Data) provided by large cities, combined with disperse re-
quirements from multiple domain experts and stakeholders is becoming challeng-
ing [2]. For instance, the task of urban planning in the smart city context needs
to collect data from all areas of significance ranging from energy consumption,
construction and mobility systems to sociological factors, to just name a few.

Although workflows have been used to compose and execute a series of com-
putational or data manipulation steps, such as scientific workflows [3,4], a few
discussions have been focused on the utilization of runtime mechanisms to se-
lect and configure data-aware processes based on user-defined Quality-of-Result
(QoR) to perform distributed data analytics. This is required in our URBEM1

1 http://urbem.tuwien.ac.at/
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Fig. 1. Artifacts and interactions in process-based data analytics

scenario where large sets of data-aware process variants interact with data ser-
vices, each with particular quality constraints. Hence, due to the high variability
of data-aware analytics processes and data endpoints, it is crucial to provide
means of quality-driven process selection and customization at runtime.

1.1 Motivation, Contributions and Paper Structure

In process-based data analytics the data needed to actually execute process
activities is much broader than the typical process-related data (see Fig. 1). Al-
though raw data (e.g. data from Data APIs) can be relevant to several artifacts,
such as services and process activities, it is not bound to any specific intent and
thus represents general information. On the other hand, the results of remote
analytics processes and available services can be offered as intent-specific data,
exposing the expected result as Data as a Service (DaaS).

Services include computational models (e.g. MATLAB model) from domain
experts which are required by activities in a process execution. An data-aware
analytics process, referred to as Workflow as a Service (WFaaS), represents a
particular intent for an industry stakeholder. Such process logic is represented
in form of process models (e.g. BPMN2, BPEL), which stands for a particular
analytics type, consisting of a number of activities to be executed. Hence, process
instances are created on user intent request which may indicate a desired QoR.

In this scenario and due to the high variability of related processes and data
variety, we need to defer WFaaS selection and configuration to runtime, where
process variants are customized and executed based on QoR. This would reduce
the complexity of managing large sets of process variants, as well as binding suit-
able data endpoints and processes ensuring required QoR for analytics. However,
although a number of approaches have been focused on data analytics processes,
such as scientific workflows [3,4], Quality-of-Service (QoS) based service selection
[5,6], and process variant re-configuration [7,8,9], none of them are capable of
selecting and configuring data-aware process variants based on QoR at runtime.
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In this paper, we therefore present some of the fundamental building blocks of
a framework (called DRain) for QoR-driven selection and configuration of data-
aware processes. The main contributions (C) are: C1 - we propose an approach
and a prototype framework to select, configure and execute data-aware analytics
processes at runtime; and C2 - we demonstrate through an evaluation on a
real example from URBEM that our framework spends little time for selecting
analytics processes and data endpoints, as well as configuring variation points
(DRi activities) based on data from the data realm.

The rest of the paper is structured as follows: In Section 2 related work is
summarized. We present the overall architecture and detail individual framework
building blocks in Section 3. Section 4 evaluates the functionality and usefulness
of the presented approach by encoding a realistic example in URBEM. Lastly,
we conclude the paper and present the direction of future work in Section 5.

2 Related Work

Alternative approaches have been focused on employing workflows for data an-
alytics, such as in scientific workflows [3,4], but without considering QoR, a
term originally coined for data analytics [10], or Quality-of-Service (QoS) to
drive process selection and configuration. The term QoS is mainly used in the
area of service composition. In this light, the Discorso framework [5] facilitates
late binding of services by the subsequent selection of applicable Web services
based on supervision rules and QoS constrains at runtime. Canfora et al. [6] pro-
vide a QoS-aware composite service binding and re-binding approach based on
Genetic Algorithms. These latter provide useful methods for QoS-based service
(re-)binding; however, they are focused on service selection, rather than enabling
process configuration at runtime through QoR-driven data interactions.

On the other hand, process re-configuration [7,8,9] capabilities have been pro-
moted by other authors. For instance, the CEVICHE framework [7] enables
BPEL process schema level re-configuration by means of monitoring QoS (ser-
vice availability and service performance). In a similar vein, Xiao et al. [8] present
a constraint-based framework to enable re-configuration (changing relationships
among fragments through constraints) and adaptation through adaptation poli-
cies to select fragments at runtime. Additionally, in [9] autonomic mechanisms
are used to guide the self-adaptation of service compositions according to context
changes and variability specification. With respect to the mentioned work, we
are not focused on re-configuration, otherwise our approach defers QoR-driven
process selection and configuration to runtime.

Last but not least, process configuration abstractions have also been proved
by other authors. For instance, a requirements-driven approach [11] enables
the configuration of BPEL processes based on quality constraints. Similarly, a
questionnaire-driven approach [12] enables a step-wise configuration of reference
processes at design-time. However, to the best of our knowledge, no framework
is capable of customizing QoR-driven data-aware process variants at runtime.
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Fig. 2. The DRain framework overview

3 DRain Building Blocks

The DRain framework (see Fig. 2) allows for modeling, configuration, processing
and execution of data-aware analytics processes based on user-defined QoR.

3.1 Modeling

Base Models and Fragments. In order to correspond to different user-defined
QoR needs (e.g. time and cost constraints), the process modeler may create base
models and fragments using BPMN2 elements (e.g. Service Tasks for invoking
available computational model services) and custom variation points (the so-
called DRi activities). In essence, a base model represents the commonality shared
by a process family and variation points that are subjected to change. Variation
points identify specific parts in a base model where data interaction and fragment
selection occur (in DRi activities). A process fragment, or fragment for short,
describes a particular configuration option for each variation point within a
base model. For a more detailed discussion of our foundations regarding process
variability modeling, we refer to our previous work [13].

IQoRM. The Intent and Quality of Result Model (IQoRM) is reflected through
an UML diagram, containing intents representing user requests, constraints
(QoR) representing user restrictions and analytics scope (see Fig. 3). Those
abstractions are used to construct a data analytics task and its strategy, and
thus represent constraints for the desired behavior. The analytics range is lim-
ited by the Scope class, which delimits the range of an analytics Intent.
For example, a user might want to perform the analysis: “determine the en-
ergy consumption for the specific district X” (X can be any district of the
city). In this case, “energy consumption” is the desired intent which contains
“for the specific district X” as a delimiter. Two sub-classes are differentiated:
ConfigurationScope which demarcates between different configuration alter-
natives (e.g. the value variable may determine selection (SelM), configuration
(ConCM), discovery (DiscM) or composition (CompM) alternatives, as distinguished
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by [14]), and InteractionScope for limiting available data endpoints (e.g. the
value variable delimits the range of data endpoints, such as check ALL available
resources from the data realm). Such parameters delimit data interactions dur-
ing a base model execution which considers both interaction and configuration
scopes, i.e., data endpoints that should be considered for a particular function.

QualityOfResult can determine not only the selection of a particular analyt-
ics process, but also the binding of inherent data endpoints. A Constraint is a
basic aspect of our framework which represents some condition, restriction or as-
sertion related to the analytics artifacts. It includes a set of Conditions that are
atomic formulae or implications (see the code snippet below) for driving process
selection and customization. Conditions (lessThan, greaterThan, inBetween)
may be applied to different constraint types. In Fig. 3, three constraints are
considered: (i) Time for the entire time that a process, computational service
or data service takes for execution (ExecutionTime) and its network channel
to ping (ResponseTime), (ii) Cost which represents the cumulative expected
cost of performing action, and (iii) DataQuality to exhibit the Availability

(refers to the availability of data) and Accuracy (refers to the level of provided
data values confidence) of provided data endpoints. In a simplified version, we
consider {True,False} for the former, and {Green,Orange,Red} for the lat-
ter. Once intent, scope and QoR are specified, ProcessSelector initializes the
search algorithm for finding a relevant analytics process.

Excerpt of a QoR condition

quality.addResponseTime (new ResponseTime ("responseTime ",

Condition .lessThan (400)));

3.2 Selection, Execution, Processing and Configuration

SelM. In DRain, the domain model is defined using ontologies. This type of rep-
resentation has been widely accepted as a conducive method for domain model-
ing (knowledge vocabulary) and reasoning, with low impact on scalability and
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performance. Our domain model defines six types of primitive classes which in-
clude several individuals and object/data properties as follow: (i) Intent individ-
uals with hasIntentName data property mapped to the name parameter in Fig. 3,
(ii) Scope individuals with hasConfigurationScope and hasInteractionScope data
properties, (iii) Time , Cost and DataQuality subclasses of QualityOfResult
class, (iv) BaseModel and Fragment as subclasses of Process individuals,
(v) DataEndpoint individuals which contain hasURI, hasServiceName and has-
DataModel data properties, and (vi) ConfigurationModel individuals with has-
FileName property to point a particular variability model. Hence, the process
selection service is capable of retrieving base models (WFaaS) for a given petition.
The first suitable base model that meets user-defined QoR is then instantiated.

EnM, DRi, AdaWR.Once an analytics process (base model) execution reaches
a DRi activity, the process engine follows several steps. If there is no fragment
assignment for the current DRi activity execution, this activity throws an event
to select a suitable fragment based on context data. Such selection requires two
types of processing. In the first interaction task, the event coming from a DRi

execution is triggered by the process interaction service to find a single data end-
point URI that satisfies pre-established QoR constraints (by running a SPARQL
query). Data collected from a REST resource (in JSON) is mapped to a data
model object (by a hasDataModel data property) to automatically perform the
base model instance configuration. For the latter, the context values gathered
from the REST service are mapped to placed attributes in a variability model, in
order to get a preferred fragment choice considering pre-established constraints
and fragments for each variation point. Once a suitable fragment is resolved us-
ing a Solver, DRain signals the particular DRi activity execution which executes
the preferred fragment and then continues its control-flow.

We adopt feature models [15] to model all configuration options for each
analytics base model and surrounding DRi activities (i.e. variation points) in a
variability model. The mapping between a domain model and a variability model
is realized by naming compounds as follows: (i) feature names are mapped to
BaseModel and Fragment individuals hasProcessKey data property, (ii) variation
point features are linked to hasServiceName data property of a DataEndpoint in-
dividual, and (iii) variability model attributes are related to data model variables
from each DataEndpoint. The latter relation correlates data model variable/-
value pairs with feature model attributes.

4 Evaluation

In the following, we briefly describe the evaluation scenario in URBEM and
present the results of the evaluation runs on DRain. The DRain framework was
developed in Java and Clojure based on open source technologies.

Provided Models. For the evaluation, we created 30 base model variants (indi-
viduals) with different time and cost QoR constraints for an energy consumption
intent in URBEM. This analytics process consists of four DRi activities (vari-
ation points) and two service tasks. Each DRi activity contained 2 fragment
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Fig. 4. Evaluation results

alternatives, providing each distinct data quality (availability and accuracy), so
we get 24 = 16 variant customizations for the outlined base model. Moreover, we
created 24 data endpoints with different QoR and five data values were parsed
in a configuration model in each data interaction.

Metrics. In order to obtain a reliable evaluation, we processed the base model
200 times and evaluated the results against three performance-related metrics:

– Time for base model retrieval (TSelM): This metric measures the time re-
quired for intent-driven and QoR-based base model searching.

– Time for data endpoint retrieval (TDRi): This metric defines the timespan
from DRi activity initialization to the moment when the process interaction
service finds a suitable data endpoint for the given QoR and invoked the
particular REST resource to collect data.

– Time for fragment solving (TAdaWR): This metrics measures the time re-
quired to establish context values and find a suitable fragment once data is
gathered from a REST resource.

Results. The results of our evaluation in terms of the average of all evaluation
runs are provided as graphics in Fig 4.2 Overall, we can state that our engine op-
erates with little impact on performance, and slightly affects the execution time
required by each analytics process instance. This allows for QoR-driven selection
and configuration of data-aware analytics processes that involve a considerable
number of variants and data endpoints (i.e. 30 and 24 respectively in the eval-
uation), offering greater flexibility and abstraction. As shown in Fig. 4 (a), the
difference between the minimum and maximum time required for a base model re-
trieval (TSelM) based on a user-defined QoR is about 3ms. In a similar vein, the
average time for data endpoint selection and processing (TDRi) is reasonable at
184.019ms, considering both sequential, such as BuildingSpecification and
EnergyDemand, and parallel activities, such as ElectricalGridUtilisationand
ThermalGridUtilisation (check supplement file). Finally, it is also important to
note the overall average time required to complete the runtime configuration, e.g.,
for (TAdaWR) an average time of 2.986ms is necessary for putting five context val-
ues in the variability model to set a particular fragment for a given DRi.

2 All datasets, a detailed description of the example and additional files are available
at: https://github.com/amurguzur/drain

https://github.com/amurguzur/drain
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5 Conclusion and Future Work
In this paper, we presented the main building blocks of a framework (DRain) to
automatically perform a Quality-of-Result (QoR) driven selection and configu-
ration of data-aware processes. Specifically, our approach enables abstractions
to select relevant analytic processes (exposed as WFaaS) and data endpoints
based on user-defined QoR, and provides flexibility in terms of runtime process
variants configuration. A preliminary evaluation concluded that our framework
is capable of high-performance selection, processing and configuration of data-
aware processes in subsequent QoR-driven data interactions. For future work, we
plan to extend the associated framework and test it against industrial case stud-
ies, and adapt the QoR model for a more domain-specific environment. Further,
we will explore ranking and selection algorithms/dimensions using QoR.
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